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1. Introduction 
One approach to mitigating or eliminating the risk of parametric instability, due to the coupling 
of optical and acoustic modes in the Advanced LIGO Fabry-Perot arm cavities, is to add 
passive damping to the acoustic modes by the addition of one or more passive dynamic 
dampers. In this technical memo we define the dynamics of the coupled test mass and 
absorber dynamics. The test mass frequencies of concern range from ~10 kHz to ~100 kHz. 

2. Dynamic Absorber Dynamics 
We simplify the dynamics of the infinite dimensional test mass as the combination of a finite 
set of normalized, orthogonal modes over the acoustic frequency range of interest. The effect 
of the addition of a set of dynamic absorbers is then treated as independent perturbations of 
each absorber on each test mass mode. The idealized case of a two degree of freedom 
coupled oscillator is depicted in Figure 1. The dynamic absorber mass, M2, is attached to the 
primary mass, M1, with a damped resilient element with complex modulus G*

1(ω) which varies 
with frequency, ω. The primary mass dynamics are represented by a damped resilient 
element with complex modulus G*

2(ω). 
 

 
Figure 1: Simplified dynamic absorber 
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For the case where the primary mass has multiple modes, the absorber coupling depends 
upon the mode shape amplitude at the absorber location, ϕ,as depicted in Figure 2. 

 
Figure 2: Effect of primary (test) mass mode shape on dynamic absorber coupling 

The simplified case of a dynamic damper has been analyzed previously by many authors; 
Here we follow the formulation given by Snowdon1, with the addition of the mode shape 
coupling factor. The equations of motion for each of the masses are as follows: 

))(())(( 32
*
2221

*
112

2
2

1 xxGkxxGk
dt

xdM −−−= ϕωϕω  

))(( 32
*
222

3
2

2 xxGk
dt

xdM −= ϕωϕ  

where  

ϕ is the mode shape amplitude at the location of the dynamic absorber 
k2 is a constant (with units of length) determined by the geometry of the resilient element of 
the dynamic absorber. For example if the resilient element is used directly in shear, k2 = A/l, 
the ratio of the cross-sectional area to the length. 
k1 is a constant (with units of length) required for compatibility of units, but does not have a 
physical analog to the case where the primary mass is connected to the ground; the product 

)(*11 ωGk  defines an effective spring constant for the mode of interest. 
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are the complex moduli for the resilient elements of the primary and absorber masses. The 
elastic modulus, G, and the loss factor, δ, should be chosen for the appropriate direction of 
strain (e.g. dilatation or shear). 

                                            
1 J.C. Snowdon, Vibration and Shock in Damped Mechanical Systems, John Wiley & Sons, cr 
1968, section 4.2. 
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In these equations of motion x2 is the generalized coordinate (modal coordinate) for the 
primary mass whereas x3 can be taken to be the physical or the generalized coordinate since 
the absorber is modeled as a single degree of freedom element. In order to develop the 
elastic and viscoelastic force due to the relative motion between the dynamic damper and the 
test mass, the test mass generalized motion, x2, is transformed to a physical displacement at 
the dynamic absorber location, q2, as follows: 

22 xq ϕ=  

where ϕ is the amplitude of the mode shape at the absorber position. The resulting physical 
viscoelastic force, ))(( 32

*
22 xxGk −ϕω , is then transformed to a generalized force by multiplying 

by the mode shape coupling factor, ϕ. 

In the above equations of motion, if we substitute ϕ/3
'
3 xx = , 2

2'
2 kk ϕ=  and 2

2'
2 MM ϕ= , then 

the equations are identical to Snowdon’s (equations 4.3 and 4.4). The transfer function from 
disturbance to test mass motion in the presence of the dynamic absorber is then2: 
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2 Snowdon has an error in his equations 4.12 through 4.15 for the real and imaginary terms of 
the numerator and denominator of the transfer function. Snowdon’s imaginary terms are 
actually the real terms and the real terms are the negative of the imaginary terms. 
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The above general equations apply for structural, viscous or viscoelastic damping. The 
derivation of the above equations is given in Appendix A. 
In the particular case where the damping of the primary resilient element is negligible and the 
elastic modulus is frequency independent (as is the case with the test mass), 1

*
1 )( GG =ω , and 

the above equations reduce to the following: 
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If in addition, the complex modulus of the resilient member of the dynamic absorber is 
frequency independent, then ( )22
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and the square of the transfer function is 
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When the absorber loss factor, δ1, is low and the absorber frequency is close to the 
undamped resonance of the primary mass (i.e. when n ≈ 1), then the transfer function has 
two peaks. As the absorber loss factor is increased, the amplitudes of the two peaks 
decrease to a minimum. If the absorber loss factor is increased further then the peaks merge 
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to a single peak of higher amplitude, i.e. there is an optimum loss factor for an absorber 
tuned to a single primary mass resonance (see Figure 3). 
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Figure 3: The Amplitude of the Transfer Function, T, as a function of the excitation frequency normalized by the 
primary mass, undamped resonant frequency, , for δ1 = 0, n = 0.9975 and μ = 10-4 and frequency independent 
moduli. Red curve for δ2 = 0.001, cyan curve for δ2 = 0.01 and black curve for δ2 = 0.1 

 

3. Peak Amplitude of the Coupled System 
For the case when the absorber damping is relatively high (δ1 ≈ 0.1), the frequency at which 
the transfer function has a maximum corresponds to the real root of the denominator of the 
square of the transfer function: 
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The derivative of the denominator, with respect to Ω, is quite linear in the vicinity of Ω =1. 
Consequently we take the first term in a series expansion of the derivative of the denominator 
about 1 (i.e. Ω = 1 + ε) as an approximation of the denominator for root solution. The resulting 

root solution is further simplified by taking the first term in a series expansion in 
1
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r = 0, since we are interested in small values of absorber mass relative to the modal mass. 
The resulting expression for the frequency at which the transfer function is a maximum is: 
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(see appendix A for the derivation). 
In the limit as the absorber frequency is much different from the primary mass resonance (n 
>> 1 or n << 1) and/or the absorber damping is low  (δ2 << 0.1), the apparent loss factor 
(inverse of the Q at resonance) will be lower than the actual test mass loss factor, due to the 
assumption that the test mass loss factor was negligible. The Q at resonance can be limited 
by the test mass loss factor in the following manner: 
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where, as a worse case, we assume that δ1 ≡ 10-7 
The amplitude of the primary mass resonance, as a function of absorber frequency, for the 
case where the absorber mass is equal to 10-4 times the primary mass (or ~1 gm for a 10 kg 
modal mass) for three values of absorber loss is shown in Figure 4. 
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Figure 4: The Q of the primary mass resonance versus the ratio of the absorber resonant frequency to the primary 
mass, undamped frequency for an absorber to primary mass ratio of 10-4. Green, blue, cyan, red and magenta 
curves are with δ2 = 0.05, 0.1, 0.2, 0.5 and 1.0, respectively. 
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Figure 5: Contours of transfer function peak as absorber frequency and loss factor vary for an absorber mass of 10-4 
times the test mass (contour values are Log10 of the Q) 

In order to achieve a reduction in test mass Q from ~10-7 to ~10-5, one needs to have a (or 
several) well coupled (i.e. well placed) absorber(s) with a resonance within a factor of ~1.6 of 
each test mass resonance and a loss factor of ~0.1 (typical for passive, shunted piezoelectric 
dampers) or within a factor of ~3 and a loss factor of 1.0 (typical of high damping viscoelastic 
dampers). 
The method to incorporate this analysis into an assessment of the performance of a chosen 
configuration of dynamic absorbers (number, position, frequencies, damping) based on test 
mass modal results is as follows: 

1) For each dynamic absorber, i, and each test mass mode, j, determine the modal 
coupling (mode shape at the absorber location in the direction of the absorber degree 
of freedom), ϕji. 

2) Calculate the mass ratio for each absorber and test mass resonance pair, μji, given the 
modal mass for resonance, Mj, the dynamic absorber mass, M2, and the modal 
coupling, ϕji. 

3) Calculate the ratio of the absorber frequency to each test mass frequency, n ji. 
4) Calculate the peak response, Qpij, from the above equation 
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4. Comparison with a Finite Element Simulation 

4.1. Simple 2-Degree of Freedom System 
A model of the idealized coupled two-mass/spring system (Figure 1) was created with the 
Ansys finite element code3. The macro script used to create and solve the model is given in 
Appendix B. The transfer functions calculated for the three cases embodied in Figure 3, are 
given in Figure 6. There is a good match between the analytical formulation and the Ansys 
results. 

4.2. Test Mass and Idealized Damper 
TBD – add an idealized mass-spring-damper to a node in a test mass finite element model 
and calculate the resulting transfer function change due to the presence of the dynamic 
absorber – compare to the formulation above. 
 

                                            
3 Ansys release 11.0, Ansys Inc., www.ansys.com. 
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δ2 = 0.001 

 
δ2 = 0.01 

 
δ2 = 0.1 

δ1 = 10-7 
n = 0.9975 

ω0 = 20 kHz 

μ = 10-4 
frequency independent moduli 

Figure 6: Ansys transfer function calculation for the simple two degree of freedom system to compare analytical formulation results shown in Figure 3. 
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Appendix A: Derivation of the Dynamic Absorber Transfer Function 
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Appendix B: Ansys macro for the simple 2 DOF dynamic absorber 
!*********************************************************************** 
! dynabs.mac 
!*********************************************************************** 
! ANSYS macro to analyse transfer function for a dynamic absorber 
! used as a check of the analytical formulation in T080194-01 
!  
! version 1 
!Dennis Coyne 2008-09-05 
!  
finish  
/CLEAR,START  
/COM,ANSYS MODEL OF A SIMPLE TWO MASS-SPRING SYSTEM 
/PREP7 
/TITLE,DYNAMIC ABSORBER 
!*********************************************************************** 
!*     PARAMETERS 
!*********************************************************************** 
! values of parameters 
! SI units (m,N,kg) 
 
! large ground mass to represent a rigid connection, but allow for an applied 
! ground acceleration (force) spectrum 
m0=1e9 
 
! undamped resonance 
f0=20e3  ! Hz 
w0 = 2*3.14*f0 
 
! primary mass 
m1=10  ! kg 
k1=1.5791e11  ! N/m 
g1=1e-7  ! structural damping ratio 
c1=g1*k1/w0  ! effective viscous damping ratio at resonance 
x1=1 
!* 
! secondary mass 
m2=0.001  ! kg 
k2=1.5713e7  ! N/m 
 
! Change the structural damping ratio g2 = 0.1, 0.01, 0.001 
! and compare to Figure 3 in T080194-01 
g2=0.001  ! structural damping ratio 
c2=g2*k2/w0  ! equivalent viscous damping near resonance 
x2=1.1 
 
!*********************************************************************** 
!*     GENERATE MODEL 
!*********************************************************************** 
! ground 
K,1,0,0,0, 
!* 
! primary mass 
K,2,0,x1,0,  
!* 
! secondary mass 
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K,3,0,x2,0,  
 
LSTR,1,2  ! primary spring 
LSTR,2,3  ! secondary spring 
 
!*********************************** 
!           Masses 
!*********************************** 
ET,1,MASS21,0,0,0 
TYPE,1     ! discrete mass elements 
KEYOPT,1,3,2  ! translational dofs only 
! ground mass 
R,1,m0,m0,m0 
REAL,1 
KMESH,1 
!     Primary Mass 
R,2,m1,m1,m1 
REAL,2 
KMESH,2 
!     Secondary Mass 
R,3,m2,m2,m2 
REAL,3 
KMESH,3 
 
!*********************************** 
!           Springs 
!*********************************** 
ET,2,COMBIN14,1,0 
TYPE,2      ! spring elements 
KEYOPT,2,1,0  ! linear 
KEYOPT,2,2,2  ! 1-D, UY dof 
ESIZE,,1 
 
R,4,k1,c1  ! primary spring 
REAL,4 
LMESH,1  ! primary spring 
 
R,5,k2,c2  ! secondary spring 
REAL,5 
LMESH,2  ! secondary spring 
 
NUMMRG,NODE,0.00001 
 
!*********************************************************************** 
!*     BOUNDARY CONDITIONS 
!*********************************************************************** 
!* 
! Clamp the ground node 
!DK, 1, ALL,0 
!DK, 2, UX,0,UZ 
!DK, 3, UX,0,UZ 
D,ALL,UX,0 
D,ALL,UZ,0 
 
EPLOT 
 
FINISH 
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!*********************************************************************** 
!   Harmonic Analysis 
!*********************************************************************** 
/SOLU 
ANTYPE,HARMIC 
HROUT,OFF 
LUMPM,ON 
!EQSLV,SPARSE 
F,1,FY,1e9 
NSUBST,200 
KBC,0 
HARFRQ,18000,22000 
OUTRES,ALL,ALL 
SAVE 
SOLVE 
FINISH 
/POST26 
NUMVAR,200 
NSOL,2,1,U,Y,GROUND 
NSOL,3,2,U,Y,PRIMARY_MASS 
NSOL,4,3,U,Y,SECONDARY_MASS 
QUOT,5,3,2,,T 
PLCPLX,0 
/GROPT,LOGY,ON 
PLVAR,5 
EXTREM,5 
/QUIT 

 


