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The Laser Interferometer Gravitational-Wave Observatory (LIGO) has test masses and optics
hung as the bottom mass on simple pendula in order to isolate them from the motion of the Earth.

In Advanced LIGO, optics will be hung on multistage pendula to increase isolation.

However,

cables need to be attached to sensors and actuators on some of these pendula, which can potentially
degrade the vibrational isolation and change the dynamics of the system. To understand the effects
of the cabling, we used Mathematica to model the cables as collections of small masses connected
by springs. With our model, we can quickly and easily look at how the cables affect the pendula,
once we have experimentally determined a few of their physical parameters.

With the upgrade from Initial LIGO to Enhanced
and Advanced LIGO, the aim is to increase the sensi-
tivity of the detector by a factor of 10, meaning Ad-
vanced LIGO should have a displacement sensitivity of
around 1071 m Hz~ /2 at 10 Hz, with better sensitivity
at higher frequencies. The fundamental sources of noise
in Initial LIGO are shot, seismic, and thermal noise, but
Advanced LIGO is designed to be limited at all levels by
quantum noise. Because of this ambitious noise floor,
much time and effort is put into analyzing and mini-
mizing other noise sources. For example, the Earth is
constantly vibrating on the order of a micron. These
vibrations need to be removed from the system.

To eliminate this problem, LIGO’s test masses and op-
tics are suspended on pendula. A pendulum acts as a
natural low-pass filter: the pendulum is affected by low-
frequency inputs, particularly at the resonant frequency,
but is isolated from high-frequency inputs . LIGO’s sus-
pensions take advantage of this effect to isolate the mo-
tion of the masses from the motion of the Earth in the
frequency range of interest (10 Hz to few kHz). When ad-
ditional isolation is needed, multistage pendula are used.

In particular, a double pendulum suspends the Output
Mode Cleaner (OMC), a piece of equipment that removes
noise from light as it leaves the interferometer. The OMC
has a suspension designed to isolate it from external in-
puts (see T060257-03-RI'). However, electronic cables
are needed which attach from the frame of the suspension
to the OMC. This has negative consequences because it
may short out the suspension at some frequencies, since
the cables bypass the pendula and loosely tie the OMC
to the ground. As of yet, the magnitude of this prob-
lem is unknown. Some previous research has been done
to see the effect of the cabling on the OMC, but it has
mostly been preliminary work to demonstrate that the
cables could have a considerable effect[? 3.

The goal of our research was to experimentally deter-
mine various cable parameters, such as the quality factor
and effective spring constant of the cables, and update
Mark Barton’s Mathematica model® of the suspensions
to include cabling. My Co-SURF, Chihyu Chen, did the
experimental work and I focused on the modeling.

FIG. 1: The OMC suspension installed at the Livingston Ob-
servatory. The OMC is mounted on a bench that hangs as
the ultimate mass of a double pendulum. From this picture,
we can see the cabling that attaches to the bench (boxed).

MODEL CONCEPT

The model starts by taking a series of parameters that
define the cable: stiffness, damping, mass, length, and
the attachments points. It then takes the cable and
“cuts” it into n segments. These segments are approxi-
mated as rigid bodies connected by springs. Then, the
model calculates a potential function, Fp, and kinetic
energy function, Fk, for the cable. By minimizing the
potential function, the model finds the equilibrium posi-
tion of the cable.

Once the kinetic and potential functions have been
updated, Dr. Barton’s model calculates the vibrational
modes and makes transfer function and thermal noise
plots using a stiffness matrix, K, where
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z; and x; are the position of the pendulum and cable
segments. Consider a classic potential energy equation
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FIG. 2: The test pendulum we have been doing experimental
work on (left) and the pendulum given by our model (right).

for a simple spring potential, where
1
Ep = *]{i(x)Z,
2
then there is a one by one stiffness matrix,
K=[k].

This result indicates that the matrix behaves as a matrix
of spring constants. Similarly, there is a mass matrix, M,
where
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These matrices can be used to find the vibrational
modes of the system. This is accomplished by solving

2
Ke; = w; Me;

for the eigenmodes, e;, and the angular eigenfrequencies,
Wi .

Additionally, the model calculates damping, dissipa-
tion dilution, and matrices representing equations of mo-
tion and coupling between the different degrees of free-
dom. From this, it produces transfer function and ther-
mal noise plots.

A more rigorous description of the processes can be
found in LIGO-T020205-02-D!. Of course, all of these
calculations are done automatically in the model, but a
general understanding of what the model is doing gives a
motivation for the structure of the model for the cables.

This formulation provides critical checks to see if the
model is working. For example, the equilibrium position
is only based on the attachment points and cable stiff-
ness. Hence, the equilibrium position predicted by our
model should have a natural looking arrangement that
can be compared to the actual cables. Furthermore, the
qualitative behavior of the cable should not change as
n is increased. In other words, the approximation with
n = 10 and n = 5 should have differences, but they
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FIG. 3: Sample output of the two dimensional model. n
increases by factors of 2 with each picture, starting with 5
(top left) and ending with 80 (bottom right).

should exhibit the same general behavior. For the ma-
jority of our research, we used the predicted equilibrium
position to evaluate the health of the model. Only now
that we have a more advanced model of the cables func-
tioning are we starting to compare quantitative results
of the model, like resonant frequencies and transfer func-
tions, to experimental data.

TWO DIMENSIONAL MODEL

A two dimensional cable model was used to see if the
model concept was valid. A two dimensional model is
much easier to work with. In 2D, each cable element
has three degrees of freedom: two translational degrees
of freedom (an x and y coordinate) and a rotational de-
gree of freedom. This contrasts with three dimensions,
where there are six degrees of freedom. Here, there are
three translational degrees of freedom (an x, y, and z co-
ordinate) and three rotational degrees of freedom (yaw,
pitch, and roll). This makes the 2D model much easier
to imagine, so it is a good starting point.

Under this regime, the model still takes the same in-
puts as the 3D model and gives an equilibrium cable po-
sition as output. Using the simplified model, qualitative
features of the model could be examined. In particular,
did the cables had natural dressing? That is, did the
cables generated by our model hang similarly to actual
cables?

An example of the outputs of the two-dimensional
model can be seen in Fig. 3. It should be noted that
this model excludes gravity: the position is completely



FIG. 4: Comparison between two dimensional model output
and actual cables.

determined by springs between the pieces of the cable.
The results of the 2D model were very promising. As n
increases by factors of 2, the qualitative behavior of the
cable does not change. Each cable has the same general
shape. This indicates that increasing n only increases
the resolution of our model. Hence, the model seems to
approximate the same behavior every time, but when the
cable is chopped into more pieces, the approximation gets
better.

Furthermore, the modeled cables have similar equilib-
rium positions to cables held with similar fixed points
(see Fig. 4). Obviously, they are not exactly the same,
but the parameters used in the model were only rough
estimates of the cable’s length, stiffness and attachments
points. However, despite these inexact values, they had
very similar shapes and features.

THREE DIMENSIONAL MODEL
Adding Cables

The initial problem of adding cables to Dr. Barton’s
model reduces to adding a large number of springs to the
model. However, there was already a way to add springs,
using an object called springlist. To add springs, an entry
is added to springlist that defines the springs attachment
points, stiffness (using a stiffness matrix to represent six
degrees of freedom and their possible coupling), and un-
stretched length.

To add cables, springlist was adapted into an object
called cablelist. With a cable approximated as n seg-

ments and length, mass and attachment points specified
in the model definition, a function generates cablelist so
that there is a spring between every cable segment. When
springlist is referenced to make a potential function, ca-
blelist is also referenced so that the potential incorporates
the stiffness of the cable. Later, cablelist is referenced
again in the potential function so that a gravitational
potential term is added for the cable elements. Since we
are using the same equation we use for springs, we have
that the potential between two cable elements is given by
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where K is the stiffness matrix between the cable seg-
ments.

To generate K., the stiffness of a length of cable is
experimentally measured. This measurement is used to
find effective spring constants for 5 cm of the cable in
the six degrees of freedom. Then, the model uses those
values to calculate spring constants for springs between
the cable segments. This calculation assumes the springs
in the model combine linearly and is based on the length
of the cable and n.

It was also useful to adapt springlist into cablelist, be-
cause springlist already has damping built into it, which
meant that we could add damping to the cable exactly
as it was added for springs. Like the calculation of vibra-
tional modes, there is a detailed description of how damp-
in[g]is incorporated into the model in LIGO-T020205-02-
DM,

Once cablelist was in place, the model just needed to
be tweaked a little more for it to work. To start, the vari-
ables the model solves for needed to be updated. Before
the update, the model found the coordinates of the pen-
dulum at equilibrium. With the update, the model also
solved for coordinates defining the cable. The kinetic en-
ergy function also needed to be changed to include the
cable and the dimension of a few matrices needed to be
changed. After these changes, the model computed ev-
erything it needed to. To finish the update, one last
function was added that includes the cabling in the plots
of the pendulum (see Fig. 5).

Small Angle Constraints

The improved model worked well for the most part, but
did have some serious problems. When it was tested for
various values of n, it did not exhibit consistent behavior.
With certain values of n, the pendulum would find un-
natural equilibria. Often, the cables would be connected



FIG. 5: Sample output of the model without cables (left)
and with cables (right). Note that in this case, the cable is
noticeably affecting the motion of the pendulum.

to their attachment points at 90 or 180 degree angles (see
Fig. 6).

The 90 and 180 degree angles indicated problems with
the potential functions for torsional springs. In partic-
ular, the potential function contained sinf and cos6 in
places where we did not think it should belong. This
gives unintuitive results because it says the force applied
by the spring will decrease if it is twisted more, finding a
minimum 180 degrees. This was a serious problem for the
cables. Unfortunately, it was not a problem that could
be easily disposed of, because attaching three torsional
springs simultaneously yields a very strange, nonlinear
system which is very difficult to deal with.

Before adding cabling, there was not a problem with
the potential because the pendulum calculations used a
small angle approximation. Unfortunately, the cables of-
ten had large angles, so the potential function failed when
it was applied.

To solve this problem, we added a feature where a max-
imum angle between two cable elements could be spec-
ified. This puts us into a sort of medium angle regime.
The angle cannot be too large, or it cannot reach the
unnatural equilibria at 90 or 180 degrees, but it is broad
enough that it will not force the cable into a small angle
approximation, which would not apply to our system.

Upon adding this constraint, the problem was imme-
diately fixed.

Number of Modes

The model had a very inconvenient feature. Before
cabling was added, all of the modes the model calculated
were important, because they all involved the pendulum,
and there were not very many of them. There is one
mode for every degree of freedom in the system, so the
double pendulum would have 12 modes.

When cabling was added, the degrees of freedom of the
system increased dramatically. For the final modeling of
the OMC, we used two lengths of cable and approximated
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FIG. 6: (Top)Two typical cabling errors. The cables are at-
tached to the pendulum at unnatural angles. (Bottom) The
pendulum once the problem was fixed.

each as 20 segments. This gave a total of 252 modes for
the system. This is a slightly overwhelming number of
plots to look at.

However, not all of the modes were significant. Most
of the modes involve internal oscillations in the cable and
are not actually important in the analysis of the pendu-
lum. Hence, we wanted the model to look at the modes
and only give us the ones that involved significant oscil-
lations of the pendulum.

To do this, we made a function that takes each mode
and looks at its kinetic energy. It would classify the mode
by what elements were contributing a certain percentage
of the kinetic energy. For example, if 95% of the energy
was coming from the pendulum rotating, it would rec-
ognize the mode as a pendulum mode. However, if all
but 1% of the kinetic energy is coming from the cabling,
then it is probably a cable mode and not a pendulum
mode. The function would look at all the modes, report
the ones that are pendulum modes and automatically
plot the ones we cared about. Also, since the mass of the
pendulum is so much greater than the mass of the cable,
pendulum motion is given much more weight in this anal-
ysis, since smaller motions cause larger kinetic energies.
That is, it is unlikely to disregard significant pendulum
modes. This is even less likely because the criteria the
function uses to classify the modes is adjustable.

With the cabling, there were typically 13 pendulum
modes for a double pendulum, regardless of the number
of segments we cut the cable into. This is nice, because it
was another qualitative check that the model was work-
ing well and, physically, it means the cables are not in-
troducing many new modes into the system. Also, the
vibrations in the cable tend to be higher frequency than
the vibrations of the pendulum. In the double pendu-
lum model, the highest frequency pendulum mode is the
nineteenth lowest mode out of 252. The pendulum fre-
quencies ranged from 0.48 Hz to 6.85 Hz whereas the



pendulum frequencies range from 2.06 Hz to 2513 Hz.

Having a function that classified modes for us was very
useful. It spend up our analysis and trims the fat off the
model. For a less experienced user, it cuts out superflu-
ous information for them and gives them what they are
interested in.

Packaging Update

Once the model was working, we wanted to make the
update easy to install on other people’s computers. Many
people use the existing Mathematica model. We want
people to be able to use the update without completely
rewriting the program.

We put the majority of the update in a file called Ca-
bles.m. This file contains the majority of the changes
needed to add the cables to the model. Now, users only
need to add Cables.m to their directory of support files
(which exists to let the model run anyway), add two lines
of code to the model to reference Cables.m, and add the
parameters defining the cables.

Packaging the update makes it significantly easier to
install.

Increasing Robustness

Since the update was developed, we have been making
it more capable than its first incarnation. In particu-
lar, we have changed how many cables the model could
handle. At first, we only had a single cable case. Sub-
sequently, we have made a symmetric two cable case, a
general two cable case and, finally, an arbitrary number
of cables (see Fig. 7). Additionally, we have applied the
model to different systems. Specifically, we added ca-
bling to a model of the OMC which mimic the cables in
the actual detector (see Fig. 8). Now, users can add and
remove cables very easily.

CONCLUSIONS

Our project culminated in modeling the actual OMC.
In our model, we included two cables going from the
frame of the suspension to the optics bench on the OMC.
The model assumes that the cables have the same mass
per unit length, diameter, stiffness and damping. How-
ever, the cables are attached asymmetrically and have
different lengths. The attachment points and lengths are
taken from the schematics of the OMC suspension. Each
cable was approximated 20 rigid segments. The equilib-
rium position given by the model is shown in Fig. 8.

Using my partner’s experimental results, we were able
to get measurements for the stiffness of the cable. In the

FIG. 7: The evolution of the cabling in the model.

FIG. 8: An accurate model of the OMC. This was the last
major step in the project.
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FIG. 9: The transfer function for the x motion of the optic
before we added cabling (above) and after we added cabling
(below). They are plotted over frequencies from 0.1 Hz to 100
Hz.

model, these measurements are expressed as spring con-
stants for a calibrated length of cable in the six different
degrees of freedom. Since cables compress and shear far
less than they bend and twist, we made the three spring
constants for the translational degrees of freedom arbi-
trarily high. For the rotational degrees of freedom, we
calibrate from the torsional spring constants

kyaw = .012 N m/rad,
kpiten = .012 N m/rad, and
krou = .003 N m/rad.

We calculated kyqw, Kpitch, and ko from my partner’s
data. For kyq. and kpisen, the spring constants that cor-
respond to bending the wire, we measured deflection of
horizontal lengths of cable as different weights were at-

tached to the end. To calculate k,..;;, we used the cable as
a torsional pendulum and measured the frequency. Phys-
ically, these values give a magnitude for the stiffness and
indicate that the cables are easier to twist than bend. For
the damping, we used an improbably high value for the
loss angle: ¢(f) = 0.1. My partner’s experimental data
showed that the actual loss angle was approximately an
order of magnitude less, which is better for our system.

Using these numbers, we generated transfer functions
for the  motion of the optic (Fig. 9). As we can
see, the differences in these two transfer functions are
nearly imperceptible. The heights of the peaks are dif-
ferent, but since the quality factors are very high in this
system, these plots may not be trustworthy around the
peaks. They are useful in other ranges, though. When
cabling was added, the worry was that the transfer func-
tion would fall off at a different rate than it was designed
to, which would happen if the cable introduced loss into
the system. However, these transfer functions suggest
that there is not a substantial change to the system at
high frequencies. Therefore, our model indicates that
the cable noise should not be a substantial problem in
the Enhanced and Advanced LIGO upgrades.
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