Status Report from Homestake

Jan Harms
University of Minnesota, Twin Cities

March 17th, 2009

Status quo

1. 300 ft station:

CMG-40T + remote access
2. 800 ft station: STS-2 + environmental sensors
3. 2000 ft station:

T240 + environmental sensors + remote access + two prototypes of horizontal seismometers

$\operatorname{ci}^{\downarrow}$
UnIVERSITY of Minnesota

Pumps at 4100ft

Mud

Humidity (now 300 ft station)

Communication (anno 2007)

Hoist room

4^{\downarrow}
UNIVERSITY of Minnesota

Changes

Fiber links

Public transportation

Water shield (800ft)

Publicity

The Labs

UNIVERSITY of Minnesota

800 ft station

2000 ft station

Prototypes at 2000ft

Sensor board at 2000ft

Weather at 2000ft Depth

UnIVERSITY of Minnesota

Spectral Densities

- Tilt noise at 300ft
- Güralp problem below microseisms
- Lead is quiet
- 2000ft level is world-class location

Average spectra

Quiet-time minimum

Spectral Ratios

- No microseismic Love waves (probably no Love waves at all)
- Small contribution of Rayleigh waves to surface microseisms
- Resonant modes at 2000ft station?

Spectral Ratios

Spectral Degree of Coherence

University of Minnesota

Coherence, North-Vertical 300ft

Coherence, Vertical 300ft - 2000ft

Coherence, North-Vertical 2000ft

Coherence, North 300ft - 2000ft

Time Evolution of sMS

- Microseisms change in magnitude and frequency
- Magnitude and frequency evolution uncorrelated
- Correlation with ocean-wind speeds?

Correlation with sMS Peak Maximum

UnIVERSITY of Minnesota

Correlation with sMS Frequency of Peak Maximum

