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advancedligo Outline of Talk

Introduction to gravitational wave detection

Suspension design for gravitational wave detectors

Advanced LIGO suspension design

Conclusion
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advancedligo Gravitational Wave Detection

e Gravitational waves are waves in the curvature of
space time.

* We expect a significant flux from astronomical events
such as inspiral and merger of neutron stars or black
holes, supernova explosions, pulsars.

* We can look for these signals by measuring the time-
dependent tidal strain, h, in space

« Simplest detector — two free masses a distance L
apart whose separation is monitored

AL
3 @
L L
* Magnitude of h for reasonable event rate: Pendulum

uspension Test Masses
h ~ 1022-1023 f/‘SP/ t N
* Practical detector: Michelson Interferometer rror —~

» long baseline interferometry between freely 'y
suspended test masses

» LIGO: Laser Interferometer Gravitational Wave &
Laser

Gravitational Physics/W.Benger-ZIB)

Observatory

Photodiode
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Suspension Design for LSC
Gravitational Wave Detectors
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In principal: long baseline laser interferometry between freely suspended test masses

Fundamental requirements L™ —  End Test
» support the mirrors to i Masses
minimise the effects of §
— thermal noise in the - -
suspensions el | Inner Test
— seismic noise acting at the A B Masses

support point
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» allow a means to damp the
low frequency suspension
resonances (local control)

» allow a means to maintain arm
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lengths as required in the S
interferometer (global control)
without adding additional : ’O;:’. A
W&
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advancedligo

Thermal Noise

Thermally excited vibrations of
» suspension pendulum modes
» suspension violin modes
» mirror substrates + coatings

Use fluctuation-dissipation theorem to
estimate magnitude of motion

To minimise:
» use low loss (high quality factor,
Q) materials for mirror and
suspension — gives low thermal

noise off resonance -silica is a
good choice

— silica fibre loss angle ~ 2e-7,
c.f. steel wire ~2e-4

— breaking stress can be larger
than steel

» use thin, long fibres to reduce

effect of losses from bending
LIGO-G0900367-v2
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advancedligo Seismic Noise

LSC

Seismic noise limits sensitivity at
low frequencies - “seismic wall”

Typical seismic noise at quiet site
at 10 Hz is ~ few x 10-1© m/\Hz

» many orders of magnitude
above target noise level

Solution - use multiple stages of
Isolation

Isolation required in vertical
direction as well as horizontal due
to cross-coupling

LIGO-G0900367-v2
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Transfer Function of Single and Double Pendulum
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Advantage of double
over single pendulum,
same overall length

Initial LIGO uses
a single stage
wire suspension

Quadruple pendulum
transfer function:
predicted longitudinal
isolation ~ 3 x 107 at
10 Hz
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advancedligo Suspension Design for Advanced LIGO

Target noise level (both for thermal and
seismic noise): 10-1° m/ v Hz at 10 Hz

Thermal noise reduction: use
monolithic fused silica suspension as
final stage

Seismic isolation: use quadruple
pendulum + 3 stages of maraging steel
blades for vertical isolation

» isolation @ 10Hz: quad ~ 3e-7,
c.f. single stage ~ 5e-3

Control noise minimisation: apply
damping at top mass (for 6 degrees of
freedom) + use quiet reaction
pendulum for global control actuation

» coil/magnet actuation at top 3
stages

» electrostatic drive at test mass

40 kg silica
test mass B University
LIGO-G0900367-v2 7 &F of Glasgdw



_ Monolithic Silica Suspensions
RANFLS GO developed for GEO 600

Monolithic fused silica suspensions are used in the German/UK GEOG600 detector:
makes use of silicate bonding technique developed for Gravity Probe B

/ cantilever s®
»
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upper mass |-

cantilever

Il—'|:|'—'q- Spring

intermediate
) Y

mass
test mass

2 stacks have been omitted for clarity

_ - Ears silicate
W L bonded to masses

Silica fibres
welded to ears
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Development of Monolithic Suspensions
for Advanced LIGO
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diameter
5mm
long
uearl}

Fibre pulling
machine at

Detail of fibre shape
close to weld: thick
flexure region used

790um
diameter

10mm to minimise

long . .
taper thermoelastic noise
fibre

start

394um
diameter

/_\ - Silica fibres 600 mm
| B long, 0.4 mm diam.

Welding test
Visual inspection of test at Glasgow
Mirror: 40 kg silica mass i ' weld using crossed
E.>$ample of ear to be bonded to polarisers at Glasgow _ .
silica mass é[a University
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Example of transfer functions (TF) taken

at top mass (drive to response)
Top: measured and modelled TF in X

direction with no damping applied

Middle: simulated and measured modal

damping of TF in X direction

Bottom: measurements of yaw TF

undamped and damped
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Quadruple Pendulum Transfer Functions | I&SYes

X Top Mass Model Comparison with Measurements
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Quad front view

yaw
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— Simulation
.| w— \easurement
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—Undamped

10°

Quad NP Modal X Damping

Yaw Modal Damping Performance
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advancedligo  Design Concept: other suspensions

Similar concept to test mass suspensions but with reduced number of stages, use
of wire suspensions, and no reaction chain
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advancedligo Conclusions

* Advanced LIGO suspensions work is progressing:

» Ongoing development work, in particular on the monolithic
suspensions

» Program of tests on full-scale prototypes

» Production of some parts already underway and assembly
imminent

— 2009 - 2011: 47 major suspensions will be constructed Sensor/actuator units for control

» EXxperience to date gives us confidence that we can meet
our requirements

» Large international team effort

in production at Birmingham
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Welding set-up at MIT

Installation of quad prototype Testing rig for UHV Welding test at University
LIGO- with full optics at MIT compatibility at RAL Glasgow S of Glasgow
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advancedligo Advantages of Interferometer

« Differential measurement — relaxes
requirement on laser frequency stability

* Matches to quadrupole nature of
gravitational wave

* Wideband operation

« Sensitivity to strain scales with armlength:
use long baseline, L

* Further increase in sensitivity by folding

light in the arms: —
» Fabry Perot cavities
» delay lines
I |
|
I 2 —
j, = ]

@ UHIVCl sity

LIGO-G0900367-v2 15 of Glasgow



advancedligo

Projected Advanced LIGO performance
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e Test mass mirror /

coatings thermal noise /
Unified quantum noise: 10%% ‘
dominates at

/ 10 Hz
most frequencies for full
power, broadband tuning

100 Hz 1 kHz
. h/rt HZ) -
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advancedligo LIGO vs Advanced LIGO

Factor of 10 in
sensitivity gives
factor of 1000 in
volume and
hence in event
rate
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LIGO LSC

advancedligo Laser Interferometer Gravitational Wave Observatory
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F |

T . LIGO Hanford Observatory, WA

2 detectors: currently 4 km arm length and 2 km arm length

g

LIGO Livingston Observatory, LA

1 detector: 4 km arm length

NSF funded. Designed and built by

Caltech and MIT. University
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Suspensions and Seismic Isolation —

From Initial to Advanced LIGO
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LlGO Advanced LIGO active isolation

/platform (2 stages
i of isolation)

4 layer passive coarse & fine hydraulic external pre-
isolation stack < actuators isolator (HEPI) (one

= —stage of isolation)
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quadruple pendulum (four
_ stages of isolation) with
single pendulum on monolithic silica final stage A University
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