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The Hilbert-Huang Transform is a novel, adaptive approach to time series analysis that does
not make assumptions about the data form. Its adaptive, local character allows the decomposi-
tion of non-stationary signals with hightime-frequency resolution but also renders it susceptible to
degradation from noise. We show that complementing the HHT with techniques such as zero-phase
�ltering, kernel density estimation and Fourier analysis allows it to be used e�ectively to detect and
characterize signals with low signal to noise ratio.

I. INTRODUCTION

The Hilbert-Huang Transform (HHT) [1, 2] is a novel
data analysis algorithm that adaptively decomposes time
series data and derives the instantaneous amplitude (IA)
and instantaneous frequency (IF) of oscillating signals.
Because this transform operates locally on the data,
and not as an integral in time over pre-selected basis
functions, it can e�ectively decompose non-linear, non-
stationary signals, and it is not limited by time-frequency
uncertainty. Applications of the HHT include monitoring
of heart rates[3], integrity of structures [4], and searching
for gravitational waves [5].

The HHT proceeds in two steps [2]. The �rst part
of the algorithm, the empirical mode decomposition
(EMD), decomposes the data into intrinsic mode func-
tions (IMF), each representing a locally monochromatic
frequency scale of the data, with the original data recov-
ered by summing over all IMFs. EMD involves forming
an envelope about the data maxima and minima with the
use of a cubic spline, then taking the average of the two
envelopes, and subtracting that from the time series to
obtain the residual. An iteration of this procedure con-
verges to an IMF, after which it is subtracted from the
time series, and the procedure begins again. The second
part applies the Hilbert transform to each individual IMF
to construct an analytical complex time series represen-
tation. The instantaneous frequency of the original IMF
is obtained by taking the derivative of the argument of
the complex time series, and the instantaneous amplitude
by taking the magnitude.

Many applications of the HHT to date have in-
volved the decomposition of complicated mixings of non-
stationary features, which may also be frequency modu-
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lated, but these generally have not been limited by low
signal strength relative to the noise background. A di�er-
ent class of problems involves signal detection and charac-
terization at low signal to noise ratio (SNR). The SNR of
a signal h, as recorded discretely according to a sampling
frequency with the individual time instances denoted by
the subscript i, in white noise with standard deviation
σn is de�ned as (matched �lter de�nition):

SNR =
√∑

i

h2
i /σn (1)

An interesting question is the e�ectiveness of the HHT
decomposition for low SNR. This is in�uenced by what
we describe as intrinsic and extrinsic e�ects. Intrinsic un-
certainties are evident in the presence of noise within the
bandwidth of the actual signal, so that the true wave-
form of the signal is never visible to the data analysis
method. Extrinsic uncertainties are induced by the data
analysis algorithm in the form of errors in the processing
of the data stream due to noise either inside or outside
the signal bandwidth, leading to envelope undershoot or
overshoot, with the error possibly magni�ed by the EMD
iterations. Additional extrinsic uncertainties can be in-
troduced in the application of the Hilbert transform if
the IMF is not perfectly locally monochromatic, or due to
limitations described in Bedrosian and Nuttal theorems
[6]; or in the determination of the IF, as the numerical
derivative of the instantaneous phase may be subject to
uncertainties and error propagation.
The length of the signal is also an important consid-

eration in the accuracy of the HHT decomposition. The
local character of the HHT implies a direct sensitivity
of the decomposition to the local signal amplitude rela-
tive to the noise (IA/σn). For a given SNR, the signal
amplitude relative to the noise increases as the signal be-
comes shorter in time (see Eq. 1). Thus shorter signals
at a given SNR will be less subject to uncertainties, and
more easily detected.
We consider in this paper methods for enhancing the

HHT performance in detecting and characterizing sig-
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nals at low SNR (<20), and with duration <100 msec.
Our principal motivation for this is in analyzing data
from the Laser Interferometer Gravitational-Wave Ob-
servatory (LIGO)[7, 8]. Gravitational wave signals at
the current sensitivity of LIGO are expected to show
only low SNR with predicted event rates not exceeding a
few per year [7]. The adaptive and high time-frequency
resolution features of the HHT are well-suited to LIGO
analysis[5], but its low SNR performance remains a key
issue of investigation. We focus in this paper on simula-
tions with time series data composed of stationary white
Gaussian noise and low SNR signals well separated in
time. We note that results are easily transferable to the
general �eld of low SNR analyses.
Below we present methods to limit extrinsic and in-

trinsic uncertainties. We introduce a two-stage use of
the HHT for detection and characterization: detection
strategies scan for excess signal power above the noise
�oor, and characterization strategies extract information
about the signal frequency and power evolution in time
using information from the detection stage. To enhance
the e�ectiveness of the HHT at low SNR, we present
the application of a number of techniques including least
squares velocity �lters[9], Bayesian blocks [10], zero-
phase high order Finite Impulse Response (FIR) �ltering
techniques [11], the fast Fourier transform (FFT)[11] and
weighted adaptive kernel density estimates [12]. We use
the Ensemble EMD method [13] as a tool to minimize
extrinsic noise from envelope over/undershoots, and also
as a guide to an approach to estimate the uncertainty of
the decomposed frequency evolution of the signal.
As the HHT is an empirical technique that is not

yet supported by a fully independent theoretical ba-
sis, we test our approaches through numerical simula-
tions. Throughout this paper we use three test sig-
nals to demonstrate our proposed methods (Fig. 1): a
Sine-Gaussian at f0 = 200 Hz with Q of 9 (hSG =
A sin(2πf0ti) exp(−(2πf0(ti − to))2/2Q)), spanning 55
msec with 9 oscillations; a numerical simulation of a black
hole binary merger (total mass of 20 solar masses (M�),
(hereafter referred to as short BH merger)[14], which
shows strong non-linear frequency modulation from ∼300
Hz to ∼900 Hz over 5 msec and 3 oscillations; and a 60
M� BH merger (hereafter referred to as long BH merger),
drifting in frequency from ∼100 to ∼300 Hz over 20 msec.
We place these signals in a time window of 62.5 msec
white Gaussian noise, bandpass limited to 1000 Hz at
SNR=8, at a sampling frequency of 16384 Hz.

II. DETECTION METHODS

A. Detection statistics and Bayesian blocks

EMD decomposes stationary white noise data in the
absence of signals according to a dyadic �lter bank, where
the mean frequency of the IFs in nth-IMF is ∝ fs/2n+1
where fs is the data sampling rate [2, 15, 16]. The HHT

Figure 1: Three test signals at SNR=8 are used in this paper
to illustrate our approaches - a Sine-Gaussian at 200 Hz with
Q of 9 in the top panels and a numerical simulation of a
black hole binary merger (referred to as BH merger, for details
see text) in the middle (total mass low, short duration) and
bottom (total mass high, long duration) panels. We show the
signals (right side), and the signals injected in white Gaussian
noise at SNR=8 (left side).

power spectrum, derived by plotting the instantaneous
power IP ( = IA2) per frequency interval, shows a uni-
form distribution of power over frequencies [16], indicat-
ing that the decomposition preserves the �at frequency
content of white noise. This allows us to formulate an
HHT detection strategy for a signal in noise, by search-
ing for a temporal region of excess power which is sta-
tistically distinguishable from the case of noise with no
signal. We show in Fig. 2 the EMD decomposition of the
three test signals, where the IA is seen as an upper en-
velope to the IMFs. Regions of excess power can clearly
be seen.
The excess power in a time series can be quanti�ed

in a number of di�erent ways, each of which provides a
statistic which may be compared to a threshold to in-
dicate a detection. We tested several quantities for the
exact formulation of the statistic: 1) the sum over all
the IAs in every IMF (sumPow), 2) the maximum IA as
seen across all IMFs (maxPow), 3) identifying temporal
regions in IA which are signi�cantly above noise levels in
their mean value, and deriving the mean over these re-
gions (stat1), 4) identifying temporal regions in IA which
are signi�cantly above noise levels in their mean value,
and deriving the sum over these regions (stat2), 5) com-
bining stat1 and stat2 by adding the normalized statistic
values for each trial (stat1+2). We note that the lat-
ter three statistics are adaptive, and require the use of a
technique known as Bayesian blocks [10, 17].
Bayesian blocks determine temporal regions of excess

power based on the Bayesian analysis of the relative prob-
ability of two di�erent hypotheses. The �rst hypothesis
(M1) is that a data segment Xn is drawn from a distri-
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Sine-Gaussian

BH merger short

BH merger long

Figure 2: The IMF, IA (upper envelope of the IMF) and IF of an EMD decomposition of our three test signals. The presence
of a signal is indicated by an elevated power level. We observe Bayesian blocking to identify equi-statistical regions of the IP,
with regions in which the mean and the standard deviation of the IP is signi�cantly di�erent compared to a noise-only test
scenario indicated in blue at the top axis of each panel.

bution characterized by a single mean (µ) and variance
(σ2) and the second, that the segment Xn consists of two
continuous and adjacent sub-segments each drawn from
a distribution characterized by a di�erent µ and/or σ2,
as separated by a discrete �change point� in the individ-

ual statistics. The probability that a given data set is
drawn from a normal distribution with unknown µ and
σ2 is equal to:

P (Xn|M1) =
∫

dσ
∫

dµ(2πσ2)−
N
2 P (µ, σ)ΠN−1

k=0 e−
(xk−µ)

2σ2 ,
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Figure 3: We show the histograms of the detection statistic
value stat1+2 and maxPow over 106 trials (noise only) and
104 trials (signal injections) for the short BH merger. As
stat1+2 implements a threshhold in IA we �nd a signi�cant
fraction of the detection statistic equal to zero, as indicated
at the left of the plot. The threshhold for a FAR 10−2 Hz
and 10−3 Hz is indicated as black vertical line. Detection
e�ciency is de�ned as fraction of triggers above threshold for
given FAR. (For details see text).

where P (µ, σ) is the a priori probability that the mean
and the variance takes on a speci�c value. Data blocks
are de�ned by �nding the temporal start and end point
of a deviation in µ or σ (in which several change points in
one data stretch are found by iteratively applying the al-
gorithm to each data stretch to the left and right of a just
found change point). Temporal regions of excess power
are de�ned by �nding blocks with signi�cantly elevated
µ or σ2. We refer to [10] for details. The identi�cation
of the Bayesian blocks that indicate regions of 4σ-excess
power in our test signals is shown in Fig. 2 as the blue
bars at the top of the panels.

Figure 4: The e�ciency curves for our three test signals. We
show FAR of 10−2 Hz (red), 10−3 Hz (green) and 10−4 Hz
(blue), and display detection e�ciency vs SNR. Based on
these plots, we choose stat1+2 as our detection statistic.

B. E�ciency Curves

To judge the usefulness of the various statistics to iden-
tify signals in noise, we use a Monte Carlo approach to
generate detection e�ciency curves as follows[18, 19]. Af-
ter choosing the detection statistic, a set of trials are
performed on noise without a signal to track the rate of
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Figure 5: Estimation of the maximum frequency in our three
test signals (SNR 8). The generation of a Fourier power spec-
trum over the boundaries of the triggered blocks within the
lowest IMF allows an estimate of the signal maximum fre-
quency. The estimate is inexact (high) due to time-frequency
uncertainty of the Fourier analysis. By restricting the an-
alyzed region to the detected blocks within IMFs we elimi-
nate a signi�cant fraction of the noise background, allowing
a cleaner determination of the maximum frequency.

noise detections, or false alarm rate (FAR), which may
be caused by extrinsic uncertainties or statistical �uctua-
tions of the noise power at any given instant. A threshold
is set to yield the FAR at a low value, typically 10−2 Hz
to 10−3 Hz (for our trial time window of 62.5 msec). Next
a signal of given SNR is added to a white noise time se-
ries. The HHT decomposition is run and the extracted
value of the detection statistic is compared to the thresh-
old to determine whether a detection was made. This is
repeated for a large number of trials to examine the ef-
�ciency of signal detection at a given SNR and FAR.
We show in Fig. 3 examples of the histograms for stat1
and maxPow detection statistics with 106 noise-only tri-
als and 104 signal injection trials per given SNR for the
short BH merger. We additionally show the noise only
distribution and display the speci�c FAR of 10−2 Hz and
10−3 Hz, corresponding to 625 and 63 false alarms per
million trials respectively. We note that the adaptive de-
tection statistics stat1, stat2 and stat1+2 use a 4σ IA
threshold in each decomposed IMF to identify a block,
which is also required to consist of at least 4 data points;
these conditions limit noise �uctuations from exceeding
the detection threshold. Thus for stat1+2 96% percent
of noise detection statistic values are zero, as indicated
in Fig. 3. In contrast, the added amplitude of signals re-
sults in an increased detection e�ciency so that only 25%
of the detection statistic values are zero at SNR 6 and
3% are zero at SNR 8. The detection statistic maxPow
and sumPow do not use a threshold in IA, thus their his-
tograms of the statistics of signal and noise do not show
zeros and are Gaussian in shape.

We display in Fig. 4 the e�ciency curves for all �ve
detection statistics as applied to the three test signals,
where we plot detection e�ciency for the three test sig-
nals vs. SNR, with FAR of 10−2 Hz, 10−3 Hz and 10−4

Hz. We draw a number of conclusions from these plots.
In general we �nd that shorter signals at a �xed SNR
show a higher detection e�ciency, as they show larger
IA/σn, as discussed earlier. We also �nd that the adap-
tive statistics stat1, stat2 and stat1+2 perform better
than maxPow and sumPow in most cases, due to the ef-
�ciency of the Bayesian blocks in identifying signals. We
�nd that stat1 tends to trigger on excess power in short
regions, while stat2 is more e�cient for excess power
over longer intervals, assuming the same amount of total
added power is placed in either short or long regions re-
spectively; thus the combined statistic stat1+2 appears
to be e�cient for the range of our test signals. We iden-
tify outliers from extrinsic HHT uncertainties yielding
a 4σ level IA increase over a given region to primarily
contribute to false alarms in stat1, stat2, and stat1+2.
Finally, we note that all three signals are best detected at
the 50% e�ciency level with stat1+2 for all false alarm
rates. We therefore choose stat1+2 as detection statistic
for the remainder of the paper.

C. Additional information from Bayesian blocks

Additional information about the signal can be ob-
tained by analyzing the detected blocks: the start and
end times of the event can be derived by looking at the
outermost edges of all the triggered blocks over the IMFs,
and the SNR of the detected event may be estimated by
summing over the amplitude of the triggered blocks and
comparing to the standard deviation of the noise. Finally,
the maximum frequency of the signal, a very important
quantity in this analysis, may be obtained by examining
the Fourier power spectrum of the shortest data stretch
that includes all the triggered blocks of the lowest IMF.
We show below that the signal can be greatly clari�ed in
the characterization stage by applying a low-pass �lter
based on this maximum frequency, which removes noise
in the time series that is outside the bandwidth of the
signal evolution. We illustrate the derivation of the max-
imum frequencies in Fig. 5, where we have generated the
power spectra of the detected blocks for each test signal.
We �nd that an e�ective way to separate the upper edge
of the power spectrum from the noise background is to
identify the �rst in�ection point after the spectrum peak
and round up to the next highest multiple of 50 Hz in
frequency. We note that restricting the analyzed region
to the detected blocks eliminates a signi�cant fraction
of the noise background (roughly the ratio of length of
the signal to the length of the time window), allowing a
cleaner determination of the maximum frequency.
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III. CHARACTERIZATION METHODS

With the identi�cation of a region of excess power that
indicates a signal, we consider methods to accurately
characterize the signal including its frequency evolution
in time. With these methods we seek to reduce extrin-
sic and intrinsic uncertainties, and also to estimate the
remaining uncertainty. We further look into the special
case of very low SNR (<5) signal characterizations.

A. Reduction of extrinsic and intrinsic uncertainty

The most e�ective method to suppress extrinsic un-
certainties in the decomposition of the time series into
its IMFs was the implementation of an aggressive zero-
phase FIR low-pass �lter technique[11], removing noise
with frequency content above the maximum frequency of
the signal. We illustrate this procedure in Fig. 6 using
the test signals. The application of a �lter with low-
pass frequency close to the maximum frequency of the
waveform removes the need for decomposition of the data
into multiple IMFs before the signal is encountered, and
reduces the associated extrinsic uncertainties caused by
numerous envelope generations, and their possible over-
/undershoot. Using the �ltering, the very �rst EMD
decomposition directly targets the frequency scales of
the signal. Furthermore, the �lter suppresses �uctuat-
ing noise which can cause di�erent parts of the signal to
appear in di�erent IMFs. The �lter needs to satisfy sev-
eral requirements: a) it must be zero-phase so that the
slope of the signal is not altered by phase dispersion; b)
it should have a very sharp transition from the pass band
(below the �lter frequency) to the stop band (above the
�lter frequency) to allow it to remove frequency content
close to the signal; c) it should suppress ringing in the
pass band and stop band; d) the �lter frequency should
be as close as possible to the maximum frequency of the
signal to be most e�ective in �ltering noise (we estimate
that the �lter cut o� frequency should not be closer than
50 Hz to the intrinsic maximum frequency of the signal to
avoid distorting the signal waveform.) The �lter cut-o�
frequency can be found adaptively, as mentioned above,
by generating a Fourier spectrum of the signal region of
the lowest IMF identi�ed by the Bayesian blocks. This
estimate yields 250 Hz, 900 Hz and 450 Hz as �lter fre-
quency for the Sine-Gaussian, the short BH merger and
the long BH merger respectively, as shown in Fig. 5.
After application of the zero-phase �ltering, envelope

over/undershoot in the remaining EMD decomposition
can be reduced with ensemble EMD (EEMD,[13]) meth-
ods. In this technique ensembles of data are produced by
injecting small, random distributions of Gaussian white
noise into the original data stream. EMD is then per-
formed on each ensemble member, with the result that
each member su�ers a perturbation of the position of
local maxima and minima and thus a slightly di�erent
envelope �tting. The error propagation related to any

Figure 6: The use of a zero-phase �lter speci�ed in the de-
tection stage is used to remove noise from the data above the
maximum frequency of the event. Here we show the three test
signals before (�rst panel of each plot) and after the �ltering
(second panel of each plot). The third panel shows the result
of applying EEMD to the �ltered waveform, which now yields
the signal in the �rst IMF, as opposed to the multiple IMFs
of 2. Comparison of this result with the signal waveform (in
blue) shows the e�ectiveness of the �ltering method. Finally,
in the forth panel we show the IFs derived from IMF1, which
are considerably more accurate than those of Fig. 2.
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Figure 7: The IF of the �rst IMF of the test signals as derived
either by a 3-point di�erentiation rule or the least squares
velocity �lter (LSVF), here using a 20-point averaging. The 3-
point estimate experiences �uctuations that are non-physical,
reaching values larger than 1000 Hz in noisy regions although
the data bandwidth is 1000 Hz. The LSVF reduces the largest
�uctuations and singularities.

member of the ensemble tends to be attenuated once the
ensembles are averaged, yielding a better measure of the
signal compared to one EMD run alone. We average over
20 ensemble members, and inject white Gaussian noise at
10 percent of the original time series noise standard de-
viation.
To demonstrate the e�ectiveness of the zero-phase �l-

tering, we compare in Fig. 6 the true IF evolution of the
test signals with the decomposed IFs version. The pan-
els of the plots, from top to bottom, show: 1) the time
series of the signal in noise with SNR=8; 2) the time
series obtained from the application of the zero-phase
�lter with �lter frequency found as described above; 3)
the �rst IMF obtained from the application of EEMD to
the �ltered time series; 4) the IF obtained from the �rst
IMF. In panels 3 and 4, the blue trace shows the �rst
IMF and IF of the actual signal without noise. We �nd
the decomposed IF to closely approximate the true IF
in all three test cases: where the �ltered signal ampli-
tude is largest the agreement is ∆f/f ≤ 0.1, while the
error becomes larger at the signal boundaries where the
amplitude becomes comparable to the noise. These er-
rors represent the combination of remaining intrinsic and
extrinsic uncertainties, and are quanti�ed in the next sec-
tion. The improvement of the IF evolution as found in
the �nal characterization stage relative to the detection
stage (Fig. 2) is apparent: the Sine-Gaussian now ap-
pears well resolved in its (�at) IF evolution, and the long
BH merger shows signi�cantly less oscillatory behaviour
in the IF after �ltering. The short BH merger IF did not
change signi�cantly as the signal showed su�cient IA/σ
contrast to provide an accurate derivation of the IF in the
detection stage, and the data cut o� frequency of 1000

Hz is close to the estimated signal maximum frequency
of 900 Hz.
Remaining uncertainties in the IF determination can

take the form of singularities and/or oscillations outside
the physical IF range which are caused by noise-induced
spurious oscillations in the phase. These oscillations may
be controlled by implementing a least squares velocity �l-
ter (LSVF), which provides a 2nd order polynomial �t to
a speci�ed number of points of the IFs, thereby averag-
ing over sharp IF �uctuations. Frequencies in IMFn that
are much greater or much less than the range implied in
the dyadic structure ∝ fs/2n+1 will be attenuated with
this technique. In our examples we use a �lter of order 20
to derive the frequency from the phase, which smooths
the shape of 20 consecutive data points to derive one IF
value. This is illustrated in Fig. 7.

B. Estimation of uncertainties

An analytical estimate of the uncertainty of the IMF,
IA or IF of a decomposed signal at low SNR is di�-
cult to establish, due to the empirical nature of the HHT
decomposition. But it is possible to de�ne the relative
uncertainty of the individual decomposition by looking
at its variance with respect to a perturbation of the time
series. As described above, we use the EEMD averaging
process to obtain an accurate measure of the IFs by av-
eraging and smoothing out extrinsic uncertainties. We
can also use the EEMD as a tool to determine the uncer-
tainty of the decomposition. Since EEMD injects noise
at all frequencies into the data stream, it will alter both
the envelope �tting and the signal waveform itself. Thus
to quantify the total uncertainty we apply EEMD with
an injection of an additional amount of noise equal to the
noise level of the data.
In detail, we create an ensemble consisting of 40 mem-

bers by summing the time series with di�erent realiza-
tions of white Gaussian noise with the same standard
deviation of noise found in the data (the noise standard
deviation is estimated outside the block boundary which
marks the signal region.) We then apply a zero-phase
low-pass �lter at the maximum frequency of the signal to
each member of the ensemble, perform an EMD decom-
position and �nally derive the IF distribution. This new
decomposition is subject to large intrinsic uncertainties
as the additional injected noise signi�cantly changes the
slope of the waveform, and large extrinsic uncertainties as
the EMD envelope �tting is distorted by the altered local
maxima which propagates through the iterative process.
The 40 members of the ensemble then carry a di�erent
IF value at each time; the spread is used to derive a 2σ
uncertainty envelope. The IF trace derived from the orig-
inal data lies within the uncertainty envelope, with the
width of the envelope displaying the con�dence of the
IF derivation. In Fig. 8 we show two dimensional time-
frequency (tf) maps that plot IF and IA of the three test
signals vs. time, with power as color. We �nd the time-
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Figure 8: Estimation of the time-frequency-uncertainty for
the test signals with the Sine-Gaussian in the upper panel
and the short and long black hole mergers in the lower two
panels. The uncertainty is indicated by an envelope (white
lines) about the time-frequency trace of the signal (colored
trace)

frequency traces to �t inside the uncertainty envelopes,
with the uncertainties becoming relatively large where
the amplitude to noise ratio becomes small.

C. Kernel density estimates and very low SNR
signal characterization

We now consider the case of data analysis on signals at
SNR <5, in the case of our test signals IA/σ ratios of less
than 0.6. In order to detect these signals the threshold of
the detection statistic stat1+2 as described in Sec. II has
to be lowered (see Fig. 4). This results in the unavoid-
able generation of errors: noise bursts can trigger blocks,
resulting in poorer overall detection sensitivity as noise
enters the detection statistic; the number of false alarms
increases; and within the event blocks we �nd poorer
timing estimates and upper frequency estimates for the
signal. These errors lead to poor tf map evaluations as
the noise may be comparable or stronger in power than
the signal, and also noise is not e�ectively removed from
the tf map by considering only triggered blocks.
A method to regain signal contrast in SNR<5 tf maps

is the following. We seek to take advantage of the fact
that signal remnants show coherent structure and follow
the underlying trend of the true signal in the tf-plane by
clustering around its idealized true positions (in absence
of noise) with elevated power levels. Noise in comparison
is incoherent and scatters over the tf plane with random
power levels. Thus signal regions can be identi�ed by
locating clustered tf traces with elevated power levels.
We �nd weighted kernel density estimates on the tf-

plane (KD-tf) best suited to highlight signal regions [12].
The KD-tf starts with the assumption that a signal struc-
ture is evident in the data, and that it would, in absence
of noise, place a coherent and continuous trace in the tf-
plane. We posit this idealistic trace as a probability den-
sity distribution, e�ectively showing no density outside
the signal trace and a sharp, peaked probability density
within the signal trace where a coherent structure can be
found.
We implement an adaptive weighted kernel density es-

timate to recover this signal probability density. The
kernel, K(t, f), is a bi-variate Normal distribution, with
dimensions of time and frequency

K(ti− tj , fi− fj) =
1

2πσtj
σfj

√
1− η2

j

exp

[
− z

2(1− η2
j )

]
(2)

with

z =
(ti − tj)

2

σ2
tj

+
(fi − fj)

2

σ2
fj

− 2ηj (ti − tj) (fi − fj)
σtj σfj

(3)

and

ηj =
σtj ,fj

σtj σfj

(4)



9

Figure 9: The tf-map and the KD-tf map of the Sine-Gaussian at SNR=4 (top panels) and the short BH merger at SNR=3.

In the density estimate every point [tj , fj ] in the tf-
plane carries its own kernel, whose standard deviation in
both dimensions σtj , σfj , and correlation σtj ,fj , is esti-
mated adaptively on the basis of the tf-plane population.
Intuitively, a point within a sparse population (e.g. in-
coherent noise scattering) should carry a wide and �at
kernel, while points within a coherent clustering of signal
remnants should carry a peaked and sharp kernel. This
contrast allows the signal to be emphasized relative to the
noise. The contrast can be seen most clearly at frequen-
cies near the data sampling rate, and is found by applying
EMD to each IF and retaining only the �rst IMF, which
removes all but the highest frequency content in each IF.
Scanning each high frequency IF distribution for changes
in the standard deviation, and using the Bayesian block-
ing technique to �nd the kernel speci�cs at each point,
we �nd signal remnants and noise sources blocked sep-
arately and associated with di�erent mean, correlation
and standard deviation. Each point within a block uses
the statistics of the block to establish its individual ker-
nel. The �nal estimate is built according to

KD−tfi =
∑

j

IP 2
j K(ti − tj , fi − fj) (5)

where we weigh the power of the signal trace in quadratic
terms to balance contributions from clustering (as con-
tained in the Kernel) with power.

We demonstrate the advantages of the KD-tf for low
SNR in Fig. 9. We show two examples, the Sine-
Gaussian at SNR=4 and the short BH merger at SNR=3.
In both cases the estimation of the upper frequency of the
signal was not possible because of the low SNR, and thus
�ltering was not used, leading to relatively large extrin-
sic uncertainties. We see that the KD-tf maps help to
better de�ne the signal remnants and improve the sig-
nal to noise contrast ratio. We �nd the Sine-Gaussian to
oscillate around its center frequency, and the short BH
merger to only reveal the very peaked part of its wave-
form, the merger/ring-down transition at ∼870 Hz. We
estimate that KD-tf techniques are applicable only if the
maximum IA/σ ratio is larger than 0.3.

IV. DISCUSSION

We presented in this paper methods to enable the HHT
to e�ciently detect and accurately characterize signals
in the low SNR (<20) regime. Since the overall power
contained in the data is roughly preserved by the HHT
decomposition, we were able to construct strategies to
search for excess power to �nd a signal in comparison
to a noise only decomposition. The concept of Bayesian
blocking was introduced to adaptively locate regions of
excess power, and therefore to localize and analyze the
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signal while also gaining sensitivity by limiting noise con-
tributions to the detection statistic. We derived e�ciency
curves which showed that our black hole merger and Sine-
Gaussian test signals could be detected with better than
50% e�ciency at SNR <8 with FAR = 10−3 Hz. We
then considered measures to accurately derive the IF at
low SNR. We proposed zero-phase FIR low-pass �lters
and LSVF �lters to reduce the amount of extrinsic IF
uncertainties, and KD-tf mappings to limit intrinsic IF
uncertainties. A measure of the uncertainty or reliabil-
ity of the decomposition was obtained by testing the de-
pendence of the extracted signal waveform on increased
extrinsic and intrinsic IF uncertainties.
One direction for future research is the estimation of

the upper frequency of the event. We found FFT meth-
ods to overestimate an upper limit to the signal fre-
quency because of inherent FFT time-frequency uncer-
tainty. Also, if the signal maximum frequency shows a
strong gradient the FFT estimate becomes even more
spread out, resulting in ine�ective subsequent FIR �l-
tering. A possible approach to obtain a more accurate
measure is to assess the maximum frequency with the IF
and the IA, but this is more noise sensitive than the FFT,
especially if the signal shows its largest frequency at low
amplitude. A combination of both approaches might be

optimal.

Finally, we have investigated other adaptive de-
composition methods to compare their extrinsic er-
ror generation with those of EMD. (ITD[20], sawtooth
transform[21], fastEMD[22]). We �nd that the EMD has
a signi�cant advantage due to the way it handles wave-
form in�ections, which can either be caused by multiple
oscillations needing further decomposition, or by a fre-
quency modulation that is a true physical property of
the underlying waveform. EMD is able to e�ectively dif-
ferentiate between these, while the ITD and the sawtooth
transform methods do not, and the fastEMD incorrectly
decomposes all in�ections into multiple oscillations in dis-
tinct modes. We note that only with a proper decomposi-
tion can our proposed additional �lters help signi�cantly
in the process of detecting and characterizing the signal.
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