
LASER INTERFEROMETER GRAVITATIONAL WAVE
OBSERVATORY

-LIGO-

CALIFORNIA INSTITUTE OF TECHNOLOGY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Document Type DCC Number

T080135-v3

October 20, 2009

AdvLigo CDS
Real-time Code Generator (RCG)

Application Developer’s Guide

R. Bork, M. Aronsson

This is an internal working note of the LIGO Laboratory

 California Institute of Technology Massachusetts Institute of Technology
 LIGO Project – MS 18-34 LIGO Project – NW 22-295
 Pasadena, CA 91125 Cambridge, MA 01239
 Phone (626) 395-2129 Phone (617) 253-4824
 Fax (626) 304-9834 Fax (617) 253-7014
 E-mail: info@ligo.caltech.edu E-mail: info@ligo.mit.edu

www: http://www.ligo.caltech.edu/

http://www.ligo.caltech.edu/

Table of Contents

1 Introduction .. 4
2 Document Overview... 4
3 References .. 4
4 RCG Overview ... 5

4.1 Code Development ... 5
4.2 Code Generator... 6
4.3 Run-time Software.. 8

5 RCG Application Development.. 10
5.1 Basic Code Development ... 10

5.1.1 General Rules, Guidelines and Gotchas.. 10
5.1.2 Example Model... 11

5.2 Code Compilation and Installation ... 17
5.3 Defining Multiple Models For One Computer ... 17

6 Running the RCG Application ... 19
6.1 Loading and Executing the software .. 19

6.1.1 Automatic Scripts ... 19
6.1.2 Manual Code Execution ... 19
6.1.3 Log Files.. Error! Bookmark not defined.

6.2 Performance Considerations.. Error! Bookmark not defined.
6.3 Auto Generated MEDM Screens .. 20

6.3.1 GDS_TP Display .. 20
6.3.2 ADC Input Display... 22
6.3.3 Standard Filter Module Display.. 22
6.3.4 Matrix Display.. 23

6.4 Additional Run Time Tools .. 23
6.4.1 DAQ GUI ... 24
6.4.2 EPICS DAQ Configuration .. 25

7 RCG Software Parts Library... 27
7.1 Top Level Modules... 27

7.1.1 cdsParameters ... 28
7.1.2 cdsFunctionCall .. 30

7.2 I/O Parts.. 32
7.2.1 ADC.. 33
7.2.2 ADC Selector.. 33
7.2.3 DAC.. 34
7.2.4 cdsDio... 35
7.2.5 cdsRfmIO ... 36
7.2.6 cdsRio and cdsRio1 .. 37
7.2.7 cdsIPC... 39
7.2.8 cdsIPCS .. 41
7.2.9 GPS... 43
7.2.10 cdsCDO32 .. 44

7.3 Simulink Parts .. 45
7.3.1 Unit Delay .. 46
7.3.2 Subsystem Part ... 47
7.3.3 MathFunction.. 48
7.3.4 In-line (math) function.. 51

7.4 EPICS Parts .. 55
7.4.1 cdsEpicsOutput/cdsEpicsIn .. 56
7.4.2 cdsEpicsBinIn... 57
7.4.3 cdsRemoteIntlk... 58
7.4.4 cdsEzCaRead/cdsEzCaWrite .. 59

 2

7.4.5 cdsEpicsMomentary ... 60
7.5 Osc/Phase ... 61

7.5.1 cdsPhase ... 62
7.5.2 cdsWfsPhase... 63
7.5.3 cdsOsc... 64
7.5.4 cdsSatCount .. 66

7.6 Filters.. 68
7.6.1 CDS Standard IIR Filter Module .. 69
7.6.2 IIR Filter Module with Control... 74
7.6.3 PolyPhase FIR Filter... 76
7.6.4 RMS Filter .. 77

7.7 Matrix Parts .. 78
7.7.1 cdsMuxMatrix .. 79
7.7.2 MultiSubtract .. 81
7.7.3 Matrix ... 82
7.7.4 MultiProduct... 83
7.7.5 MultiSwitch .. 84
7.7.6 RampSwitch ... 85
7.7.7 cdsBit2Word/cdsWord2Bit... 86

7.8 WatchDogs ... 89
7.8.1 cdsSusWd ... 90
7.8.2 cdsWD .. 91

 3

1 Introduction
For the development of real-time controls application software, the LIGO Control and Data Systems (CDS)
group has developed an automated real-time code generator (RCG). This RCG uses MATLAB Simulink as
a graphical data entry tool to define the desired control algorithms. The resulting MATLAB .mdl file is
then used by the RCG to produce software to run on an AdvLigo CDS front end control computer.

The software produced by the RCG includes:

 A real-time code thread, with integrated timing, data acquisition and diagnostics.
 Network interface software, using the Experimental Physics and Industrial Control System

(EPICS) software and EPICS Channel Access. This software provides a remote interface into the
real-time code.

2 Document Overview
This document describes the means to develop a user application using the RCG. It contains the following
sections:

 Reference Section (3): The RCG produces software which integrates with various other
components of CDS software. In addition, there are various files and services which must be
configured prior to code operation. These items are covered under separate documentation, listed
in the reference section.

 RCG Overview (4): Provides a brief description of the RCG, its components and resulting code
threads.

 Application Development (5): Provides the basics for developing an application using the RCG,
with a sample application file.

 Software Execution (6): Describes how to start and stop the software application.
 RCG Software Parts Library (7): Describes the various components supported by the RCG.

3 References
LIGO T080136-C CDS Software Admin Guide: Describes the various computer services and
configuration files which must be in place to operate software produced by the RCG.
TBD CDS Software Development Guidelines: Provides the rules and guidelines for software
development for applications which are to run in AdvLigo CDS.

 4

4 RCG Overview
The RCG uses MATLAB Simulink as a ‘drawing’ tool to allow for applications to be developed via a
Graphical User Interface (GUI). A basic description of this process, the RCG itself, and resulting
application software is provided in the following subsections.

4.1 Code Development
Code development is done by graphically placing and connecting blocks in the MATLAB Simulink editor.
The ‘building blocks’ supported by the RCG are included in the CDS_PARTS.mdl file. The contents of the
present file are shown below, with further descriptions of the blocks listed in Section 7.

Figure 1: CDS Parts Library

Parts from the CDS library are copied (drag and drop) to the user application window and then connected
to show processing/signal flow. A simple example is shown in the following figure. This example shows:

 A CDS parameter block, used to identify the desired sample rate and connection into the CDS
infrastructure.

 A single, 32 channel ADC (Analog-to-Digital Converter; adc_0).
 An ADC channel selector, which is here used to pick off the first 6 ADC channels.
 A Matrix part (IN_MTRX) complete with an input Mux – multiplex or signal combiner – and an

output Demux – de-multiplex or signal splitter - which routes inputs to outputs with user
selectable gain for each.

 Four CDS standard IIR (Infinite Impulse Response) filter modules (FM1-4).
 A single, 16 channel DAC (Digital-to-Analog Converter).

This Simulink diagram is then saved to a user defined .mdl file, which is then processed by the RCG to
provide the final real-time and supporting software which run on a CDS front end computer.

 5

Figure 2: Sample Application

4.2 Code Generator
The code generation process is shown in the following figure and the basic process is described below.

1) Once the user application is complete, it is saved to the user .mdl file in a predefined CDS software
directory.

2) The ‘make’ command is now invoked at the top level CDS directory. This results in the following
actions:
 - A CDS Perl script (feCodeGen.pl) parses the user .mdl file and creates:
 - Real-time C source code for all of the parts in the user .mdl file, in the sequence
specified by the links between parts.
 - A Makefile to compile the real-time C code.
 - A text file for use by a second Perl script to generate the EPICS code.
 - An EPICS code Makefile.
 - A header file, common to both the real-time code and EPICS interface code, for the
communication of data between the two during run-time.
 - The compiler is invoked on the application C code file, which links in the standard CDS
developed C code modules, and produces a real-time executable.

 6

 - The Perl script for EPICS code generation (fmseq.pl) is invoked, which:
 - Produces an EPICS database file.
 - Produces an executable code object, based on EPICS State Notation Language (SNL).
This code module provides communication between CDS workstations on the CDS Ethernet and the real-
time FE (Front End) code.
 - Produces basic EPICS MEDM (Motif Editor & Display Manager) screens.
 - An EPICS BURT (Back Up and Restore Tool) back-up file for use in saving EPICS
settings.
 - The header for the CDS standard filter module coefficient file.
 - A list of all test points, for use by the GDS (Global Diagnostic System) tools.
 - A basic DAQ (Data Acquisition) file.
 - A list of all EPICS channels for use by the EDCU (EPICS Data Collection Unit).

SimuLink.mdl
File

CDS_Parts.m
dl

File

CDS
Individual

Part Library
.mdl Files

Realtime C
Source
Code

Common
Header File

Epics .txt
File

EPICS
Makefile

Realtime
Makefile

Skeleton.db

Skeleton.st

Simulink
Graphical

Editor

feCodeGen.pl
Script

Realtime
I/O Library

Realtime
Controller
Software

Realtime
DAQ Library

fmseq.pl
Script

EPICS
SNL
Code

Compiler

Realtime
Executable

EPICS
.db File

EPICS
autoBurt

GDS.par
File

EPICS
Startup File

Basic
MEDM

Screens

Basic .ini
DAQ FIle

Basic
Filter FIle

Compiler

EPICS
Executable

EDCU
File

Figure 3: Code Generation

 7

4.3 Run-time Software
The primary software modules to run on CDS FE computers are shown in the figure below. The intention is
that all FE computers run the same generic code modules (highlighted in green), and that only the block
labeled FE Application be specific to each FE computer.

The computer itself is to be a multi-CPU/multi-core computer, with up to 4 cores available. Generic Linux
would be the operating system for the ‘Non-Real-time’ CPU (Central Processing Unit), and up to 3 extra
available running Real-time Linux.

The ‘Non-Real-time’ CPU runs the following tasks:
 - GDS Test Point Manager (TPM) and Arbitrary Waveform Generator (AWG). In LIGO, one
TPM and one AWG was run per IFO (Interferometer) and communicated to the FE applications via
Reflected Memory (RFM). In the AdvLigo scheme, the TPM/AWG runs on each FE computer and
communicates to the FE application via internal memory space.
 - EPICS based network interface. The purpose of this task is to relay real-time FE application
information to/from EPICS operator interfaces. In LIGO, an EPICS interface task is run on a separate
computer and communicates to the FE applications via RFM. In the AdvLigo scheme, there is an EPICS
task on the FE computer to relay this information via the CDS network and internal computer memory.

Real-time CPUs in the FE computer run the real-time control and monitoring application. The code
modules shown are inline compiled and run as a single task. The code modules that make up this task are:
 - Synchronization software: This module controls initialization and timing of all other code
modules. This code is slaved to the CDS timing clock used to synchronize the ADC modules.
 - I/O Drivers: This code supports all input/output to the ADC/DAC modules in the I/O chassis,
and data access to the CDS real-time network.
 - DAQ/GDS: This module writes all data to the real-time network for data acquisition and handles
all TP and AWG signals.
 - FE Application: This code is specific to each FE and runs all of the necessary control algorithms,
including CDS standard filter modules. To aid in the development of this software, a MATLAB Simulink
tool is provided. This allows the application to be developed through a standard GUI, then compiled with
the above generic modules.

 8

CDS Front End Computer

Non-Realtime
CPU

Realtime
CPU

(1 to 3)

DataAcq
GDS

Synchonization
Software

I/O
Drivers

I/O Chassis
Fiber Link

CDS Realtime Network (to other FE Computers and FrameBuilders)

FE
Application

CDS Control and Monitoring Network

EPICS
Database

GDS
TPMAN/AWG

Shared
Memory

EPICS
SNL

Software

Figure 4: Runtime Software

 9

5 RCG Application Development
This section describes how to use the RCG by stepping through a basic example.

5.1 Basic Code Development

5.1.1 General Rules, Guidelines and Gotchas
Some overview notes before starting an application development process:

1) Only modules shown in the CDS_PARTS.mdl file may be used in the application
development. Simulink native parts which may be used are shown in the CDS_PARTS >>
simLinkParts window. A description of all available parts is given in Section 7.

2) The tool is designed to work with the LIGO CDS standard naming convention, which
includes:

a. All channel names shall be upper case.
b. All channel names shall be of the form A1:SYS-SUBSYS_XXX_YYY where:

i. A1 is the Interferometer (IFO) site and number, such as H1, H2, L1, M1,
etc., followed by a colon (:). The IFO part of the name is set using the
cdsParameters part in the application model (see example in next section).

ii. SYS is a three letter system designator, such as SUS, ISI, SEI, LSC, ASC,
etc., followed by a dash (-).

iii. SUBSYS and beyond are user definable, up to a maximum channel name
length of 28 characters (limit set by EPICS software). Underscores are used
to further break up the name, with any number of characters in between.

3) The present release of RCG uses the first three characters of the .mdl file name, by default, as
the three letter acronym for the SYS part of the channel names in the model. This naming
‘feature’ may be overridden by the use of ‘subsystem’ parts (see section 7.3.2).

4) ALL MODELS MUST CONTAIN AT LEAST ONE ADC PART AND TWO IIR
FILTER PARTS! This has to do with the compile scripts and shared memory setups running
properly.

 10

5.1.2 Example Model

1) Start MATLAB. Ensure that the advLigo/src/epics/simLink directory and subdirectories are in the
MATLAB path.

2) Open the CDS_PARTS.mdl file. This will be used to select parts for inclusion in the user model.
3) Select File>>New>>Model from the MATLAB toolbar. This will open a new, blank Simulink

window.
4) From the CDS_PARTS.mdl window, drag and drop a ‘cdsParameters’ block into the user model

window. One, and only one, of these blocks is required in every user application model.
5) Define the parameters for this block by editing the text. The following is the minimal number of

parameters which need to be defined. A complete list is given in section 7.1.1.
a. site=: The RCG will name all of the parts using the LIGO CDS standard naming

convention, i.e., IFO:SYS-SUBSYS_XXX_XXX_XXX to a maximum of 28 characters
(EPICS limit). The IFO portion of all signal names for this model will be filled in by this
site definition. In this example, M1: will be the prefix for all channel names in this
model. If the code generated from this model is to run on multiple IFOs, then multiple
entries can be listed after site=, e.g., site=H1,H2,L1.

b. rate: The rate field indicates the run-time sample rate of the real-time process. Presently
supported are 64K (65,536 Hz), 32K (32,768 Hz), 16K (16,384 Hz) and 2K (2,048 Hz).

c. dcuid: Every real-time process requires a unique id. number to properly address the data
acquisition system.

d. gds_node_id: In the same manner, a unique Global Diagnostic System (GDS) id. is
required for each real-time process, starting with 1 for the first model within a system.
This is needed to properly attach the test point manager (TPM) and Arbitrary Waveform
Generator (AWG) at run-time.

6) From the Simulink>>Model-Wide Utilities menu (i.e., click on the Simulink icon in the toolbar
located second from the top in the MATLAB window, then double click on the Model_Wide

 11

7) Add an ADC and a DAC module to the model. This is done by double clicking on the ‘I/O Parts’
block in the CDS_PARTS window, which opens the I/O parts window. Then, drag and drop the
ADC and DAC parts.

8) Save this model file as ‘sam.mdl’. In the present RCG release, this must be a three letter name, as

the three letters, in this case ‘sam’, are used as part of the signal names generated from this model.

 12

9) Add a Subsystem block from the Simulink>>Commonly Used Blocks Menu (i.e., click on the
Simulink icon, followed by double clicking on the Commonly Used Blocks entry in the Simulink
Library Browser window, and drag and drop the Subsystem part into the user model). While a
simple ‘flat’ model can be used, it is more common to organize the diagram using subsystems.
This is done to keep the model view from becoming too complex and also allows the reuse of
subsystems as ‘parts’.

10) Change the name of the Subsystem part to ‘ETMX’. Note that the convention is to name all parts
in the model using upper case, in keeping with the CDS naming convention. In the following
steps, blocks will be added to the Subsystem block. The name of every item within the subsystem
block will later be prefixed by ‘M1:SAM-ETMX_’, where M1 came from the cdsParameters
block, SAM comes from the name of the model file, and ETMX comes from the subsystem part
name.

11) Double click on the ‘ETMX’ subsystem part, which will open a window showing an input

connected to an output.
a. Disconnect the link between ‘In1’ and ‘Out1’ (i.e., click on the link between ‘In1’ and

‘Out1’, followed by clicking on the cut – scissors – icon in the MATLAB toolbar).
b. Copy ‘In1’ (i.e., click on ‘In1’, followed by clicking on the copy – double page – icon in

the MATLAB toolbar, followed by clicking on the location in the user model where the
copy should be placed, and finally clicking on the paste – clipboard – icon in the
MATLAB toolbar) several times until there are ‘In1’ thru ‘In4’. Do the same with ‘Out1’.
Change the names of these parts to something more meaningful, as these connection
points will appear as part of the subsystem part at the top level diagram. In the case of
this example, the four inputs are renamed UL, UR, LL, LR and the four outputs are

 13

c. From the CDS_PARTS, select and place filter modules and matrix parts into the
subsystem window and make connections and name changes until the window appears as
shown in the next figure. Note that the number of inputs and outputs to a matrix part can
be changed by double clicking on the Mux/Demux parts and entering the number of
desired ports (i.e., click on the black vertical - Mux/Demux – bars connected to the
cdsMuxMatrix block, which opens a window where the number of inputs/outputs can be
altered).

d. In keeping with CDS standards, add a ‘DOC’ block in the upper left to document this
code section.

12) After step 11, the subsystem block window should look like the following figure. When the code
is generated , the EPICS names of these channels will be prefixed by M1:SAM-ETMX, e.g.,
M1:SAM-ETMX_UL_SEN.

 14

13) Close the subsystem window. The top level window should now appear as shown in the following
figure. Note that the input/output names now appear on the ETMX part.

14) Next step is to connect ADC channel(s) to the ETMX part. From the CDS_PARTS>>IO_Parts

drag and drop an ADC Selector part. Connect the adc_0 part to the ADC selector part. Double
click on the ADC selector. Select any four signals as inputs from the MATLAB GUI (i.e.,
highlight the desired signals in the left – Signals in the bus – window and click on “Select>>”,
which should lead to the desired signals appearing in the right – Selected signals – window; finally
click on the “OK” button).

 15

15) Connect the ADC selector to the ETMX part and ETMX part to the DAC and this sample model is
complete.

 16

5.2 Code Compilation and Installation
The software may be compiled in any user area that includes the cds/advLigo source code tree from the
CDS CVS software repository. This space must be mounted to a computer which has RT Linux installed,
as all compilation must be done on a real-time computer.

To compile the code:

1) Place the MATLAB .mdl file in the directory advLigo/src/epics/simLink
2) Move to the the advLigo directory.
3) Type ‘make <sys>’, where <sys> is the three letter name of the .mdl file. This command will

result in the compilation of all the code, including EPICS.

Once the code is compiled, a few more commands need to be run from the advLigo directory to install the
code for execution.

1) make install-<sys> : This command installs the code in the appropriate directories for
execution and makes the automated start-up commands. The EPICS code will be copied to the
/cvs/cds/<site>/target/<ifo><sys>epics directory and the front end code will be moved to the
/cvs/cds/<site>/target/<ifo><sys> directory.

2) make install-daq-<sys> : This command creates the data acquisition file in the
/cvs/cds/<site>/chans/daq directory.

3) make install-screens-<sys> : Installs automatically generated MEDM screens in the
/cvs/cds/<site>/medm/<ifo>/<sys> directory.

5.3 Defining Multiple Models For One Computer
During run-time, the RCG code requires one or more multi-core processor(s) to operate. Core 0 is reserved
for standard Linux tasks and the real-time support tasks, such as EPICS. Remaining cores may be used by
the real-time code threads. By default, as in the case of the example model, at run-time, the real-time code
will run on CPU 1.

If it is desired to run multiple applications on the same computer, a couple of things need to be done:

 The support services must be configured, as described in the SysAdmin Guide.
 Applications which are destined to run on Core 2 and higher must have some additional

parameters set:
o The cdsParameter part must have specific_cpu=num, where num is the core number on

which to run. This number may be 2 to 15, dependent on the number of cores on the
target computer.

o Since, in the present release, models may not share I/O cards, these cards require further
definition in the model file.

Taking the previous example model as an example, to have this model run on CPU core 2 and make use of
ADC card 1 (instead of the default core 1 and ADC 0 of the example model), the following changes would
need to take place:

 The cdsParameter block would need to have specific_cpu=2 added.
 The adc_0 block will need card_num=1 added to the block description. This is done by right

clicking on the adc_0 part and selecting Block Properties. This will bring up the following
window, where card_num needs to be added to the Description field.

The Block Properties window and resulting model changes are shown below. Note that even though
adc_num has been set to 1, the user application still needs to use ADC 0 and adc_0 signals for its first
ADC.

 17

 18

6 Running the RCG Application

6.1 Loading and Executing the software
When the code is compiled and installed, it is ready to run, as outlined below. However, for data
acquisition and global diagnostics to function with this software, certain parameters must be set up for these
services to work properly. See the RCG SysAdmin Guide for instructions on how these parameters are set.

6.1.1 Automatic Scripts
During the make install process, scripts are generated in the /cvs/cds/<site>/scripts area for conveniently
starting and stopping the user application. This directory should be put into the user’s PATH. Note that the
user must have super user privileges, as the real-time code needs to be inserted into the kernel.

To start the RCG processes, type ‘start<sys>’, where <sys> is the name of the model file. This will result
in:

 The EPICS code being started, along with an automatic restoration of the last EPICS settings (if
EPICS Back Up and Restore Tool (BURT) is in the user’s path and a back-up had been made
previously).

 The awgtpman process will be executed to provide GDS support for this system. Note again that
this task will only function properly if the appropriate system parameters have been set up, as
described in the SysAdmin Guide.

 The real-time code thread will be executed and inserted into the kernel of CPU 1.

To verify that the software is functioning, use the auto generated MEDM screen, described below in section
6.2.1. There are also log files produced in the target areas for the EPICS and real-time code which provide
additional diagnostic information.

To stop the software, execute the kill<sys> script, where again <sys> is the model name. This will kill all
tasks associated with this model.

6.1.2 Manual Code Execution
The EPICS and real-time code may also be executed manually from the command line. This is typically
only done when trying to diagnose problems or the real-time code modifications do not affect the EPICS
code, such as modifications to user supplied C code modules, and it is not desired to constantly stop and
start the EPICS side.

During the make install-sys process, two target directories are built in /cvs/cds/<site>/target, one for the
EPICS components (named <site><sys>epics) and one for the real-time code (named <site><sys>). EPICS
and the real-time code may be started independently by using the start-up command (named startup<SITE>
and startup.cmd, respectively – please note the upper case <SITE> in the former) in those directories. Note
that EPICS must be running prior to starting the real-time code.

 19

6.2 Auto Generated MEDM Screens
During the make process, various EPICS displays are automatically generated. These are fairly simple
displays, to get the user started and to provide for quick testing and some quick ‘copy-paste’ points to use
in building custom operator displays. After the make install-screens-<sys> command is executed, these
displays will appear in the /cvs/cds/<site>/medm/<ifo>/<sys> directory.

These displays are:

 <IFO><SYS>_GDS_TP.adl: Provides basic diagnostic information for the running application.
 <IFO><SYS>_ADC_X: Provides a display of all ADC input channels for quick signal checkout.

Note that, in the present release, this display will only show ADC channels which are directly
connected to filter modules or EPICS outputs in the model file.

 Filter module displays: For every filter module in the model file, a generic filter module display is
generated.

 Matrix displays: For every matrix defined in the model, an associated EPICS display is generated.

These various displays are further described in the following subsections.

6.2.1 GDS_TP Display
A basic system diagnostic display is built for each system during the build process, with an example shown
below. This display includes the following:

Upper Left: DAQ data and status

 Dcu Id: The DAQ node id. for this system. Each real-time process has a unique and separate id.
number on the network, as defined by the MATLAB model.

 Chan Count: Number of channels presently being recorded by the DAQ system, as defined by the
user in the system .ini file.

 DAQ Rate: Total data rate in Kbyte/sec for configured DAQ channels.
 DAQ + TP rate: Total data rate in Kbyte/sec being transferred by this process to the framebuilders,

which is a combination of DAQ channels and selected test points.
 CRC: This is the CRC checksum, calculated from the .ini file. This number is checked by both the

framebuilder and the real-time front end to verify that they have read the same .ini file.
 DAQ Reload button: When pressed, causes the real-time front end to reload the DAQ .ini file.

This is to be asserted whenever a new DAQ configuration has been set by the user. Note that the
framebuilder must also be reset at this time for DAQ configuration to be computed.

 Framebuilder status info: The next sub block contains framebuilder status information, as it
pertains to this system. In the LIGO system, two framebuilders run on the network for
redundancy, but only one framebuilder is required. The fields shown beside each framebuilder are:

o Status block, with two red/green indicators. The left-most indicator is front end status and
right-most is framebuilder status for this system.

o Status: A hex status number, with meaning given below this block.
o CPS: Transmission errors per second. The framebuilder performs CRC checksums on all

data received from the front end system. The number in this field should be zero, but if
there are continuous errors, the count will be indicated here and in the following field.

o SUM: The total number of transmission CRC errors since the framebuilder counter was
reset.

Lower Left: Front end real-time process status:

 Coeff Reload button: Pressing this button will cause the front end to reload all filter coefficients
listed in its coefficient file.

 Diag Reset: Causes the reset of diagnostic values, including the CPU Max Time.
 IRIGB Diff:
 1PPS Trig:

 20

 ADC Sync:
 USR Time: The maximum time, in µsec, that it takes to cycle through the user application, which

was developed using the RCG.
 CPU Max: Maximum amount of time, in µsec, that it took to run through a single cycle of the

software, including the user application and overhead, such as I/O and DAQ, of the front end code.
This field is held to the highest value until reset using the Diag Reset button.

 CPU: Similar to above, but this field is the maximum time during the last one second period.
 BURT Restore: When the software is started, the real-time code will wait for restoration of user

set-point values before running. This is typically done through a BURT restore. However, this can
be overridden by entering a ‘1’ into this field.

Center Section: The real-time code continuously checks for ADC and DAC overflows, i.e., greater than
32,000 counts or less than -32,000 counts. If these values are exceeded, the real-time code will clamp the
value to +/- 32,000 and report the error via overflow counters.

 Total and Reset (top): This field reports the total number of overflows detected for all channels.
This is a running count, which may be reset using the Reset button.

 Below each ADC and DAC on this display are individual overflow counters for each channel.
These fields indicate the number of overflows detected per second to help identify which
channel(s) is/are having problems.

Right hand section: This section provides a list of those GDS test-point and excitation channels which are
presently selected. There is also a meter representation of the maximum CPU time, same as the value in the
CPU field at the lower left of this display. The meter limit is set by the sample rate of this system. For
example, the system shown was set to run at 32KS/sec, so a single code cycle must complete in under 30
µsec to function properly. For 2KS/sec systems, the max time on the meter would be 480 µsec and 60 µsec
for a 16KS/sec system.

 21

6.2.2 ADC Input Display

6.2.3 Standard Filter Module Display
For each IIR filter module defined in the user model, a standard MEDM screen will be produced as part of
the build process. An example screen is shown below. This screen contains the following EPICS I/O:

 INMON and Input On/Off: Displays the filter module input value. The following on/off switch
applies/removes the input signal from the filter bank.

 EXCMON: The value of an excitation input. This field is typically 0.0 except when a GDS
excitation signal is being applied.

 OFFSET value and Offset On/Off switch: Allows the user to add a DC offset to the input prior to
entering the filter bank. The indicator below the offset value will be green if turned on and red if
turned off.

 Filter module names and selections: The 10 available filters per bank appear to the right of the
offset value field. Names, as defined using the foton tool, appear above each filter selection button.
The filter selection buttons are used to turn the filters on/off. Below each filter button are two
status indicator block. The left box indicates if a filter has been selected to be turned on (green) or
off (red). The right box indicates when the real-time code has actually turned on (green) the filter
or turned off (red) the filter.

 Gain and Ramping: The signal out from the filter bank may be multiplied by the gain setting. To
avoid a sudden excursion of the signal when a new gain is selected, this gain may be ramped over
the number of seconds entered into the Ramp Time setting. This ramping is performed by the real-
time code. When the real-time code gain is not the same as the entered gain, i.e., during the
ramping, the background of the triangle surrounding the gain setting will be yellow. Once the
ramping is complete, the triangle will become black.

 LIMIT setting and on/off switch: The output of the filter bank may be limited by the user by
setting the limit field and turning the limit switch on (green indicator). The real-time code will
then limit the output to +/- the limit setting.

 Output On/Off and OUTPUT monitor: Turns the output on/off, with the filter bank output value
displayed in the OUTPUT field. Note that the OUTMON (output test-point) will still have the
output of the filter bank.

 DECIMATION On/Off switch and OUT16 field: The real-time code decimates the filter bank
output to 16Hz, the resulting value being placed in the OUT16 field.

 HOLD OUTPUT: When selected, the output of the filter module is held to the present value
(seldom used).

 CLEAR HISTORY: When selected, clears the history of all filters within the filter module. This is
typically used when integrators have been defined and have rung up to a large value.

 LOAD COEFFICIENTS: Loads new filter coefficients and reloads existing filter coefficients for
this filter module.

 22

Input

Input
On/Off

Input
DC

Offset

Offset
On/Off

AWG
Input

IIR Filters
(10)

Filter Name

Test Point
(IN1)

Test Point
(IN2)

Clear
Filter

Histories

Load
New

Coeffs

Output
Gain

Output
Limit

Setting

Limiter
On/Off

Test Point
(OUT)

Output
On/Off

16Hz
Decimation

On/Off

Hold Output
Value
On/Off

Gain
Ramp
Time

6.2.4 Matrix Display
For each matrix defined in a model, a matrix screen is automatically generated, as in the following example
screen. By default, matrix elements which are set to 0.0 have their backgrounds set to red. Any other value
results in a green background.

6.3 Additional Run Time Tools

Along with EPICS MEDM, various additional tools are available to support real-time applications during
run-time. These are listed below, with a few described briefly in the following subsections. For more
detailed information, see the appropriate user guides for these applications.

 EPICS Back Up and Restore Tool (BURT): Used to save and restore operator settings.
 EPICS StripTool: Provides strip charting for EPICS channels.
 Dataviewer: Allows users to view DAQ and GDS TP channels, either live or from disk.

 23

 ligoDV: Based on the GEO developed tool, this is a MATLAB tool for reading, plotting and
analyzing DAQ data.

 Diagnostic Test Tool (DTT): Allows for analysis of live or recorded DAQ/TP data, particularly
useful for calculating and plotting transfer functions.

 DaqGui: A graphical user interface for setting up DAQ channels.
 Foton: A GUI for the development of filter coefficients for use by the real-time software.
 Ezca based scripting tools, along with TDS scripting tools. These tools allow for the addition of

automated scripts which may be used to sequence through operator settings automatically.

6.3.1 DAQ GUI

Screen shots of the DAQ configuration GUI are shown below. This tool is used to configure channels
which are to be stored by the DAQ system. By default, all filter module input and output test-points are
available to be recorded, but must be selected from the list and set to be stored to disk, if desired.

After the make install-daq-<sys> command is executed during the build phase, a DAQ file with all
available channels is built in the /cvs/cds/<site>/chans/daq directory (with suffix .ini). In addition, a
daqconfig script is generated in /cvs/cds/<site>/scripts to attach this file to the DAQ GUI. Running this
script will bring up the following window, with a list of all .ini files in the daq directory. Note that this
GUI is only used to configure ‘fast’ data channels, that is, channels which may be recorded at up to the
sample rate set for that system. Slow (EPICS) channels may also be stored to disk at 16Hz, but must be
separately configured, as described in section 6.4.2 below.

Running the script will bring up the following display. This display will list all systems which have .ini
files in the daq directory. Systems and active DAQ channels are shown in the left half of the window. A list
of available channels is shown to the right.

Double clicking on any signal name in the active or inactive list will result in the following window being
opened. From the window, the following may be selected:

 24

 Acquire (0 or 1): Setting this value to ‘1’ will cause the channel to be continuously sent to the
framebuilder at the prescribed rate and stored to disk. Setting this value to ‘0’ will also result in
the channel being continuously sent to the framebuilder, but it will not be recorded to disk.

 Rate: The data storage sample rate may be set from 256 samples/sec up to the native sample rate
of the system, as defined during the RCG model build. Decimation filters in the front end code
will properly down-sample the desired channels prior to sending them to the framebuilder.

 Data Type: The data type may be set to float, int, or short. Again, the real-time front end code will
perform the conversion prior to transmission.

 Deactivate: This will remove a signal from the active list.

Note that after a signal has been activated as a DAQ channel, the sample storage rate replaces the last part
of the channel name. For example, if the channel name is H1:SUS-ETMX_LR_SEN_IN1 and has been set
to be acquired at 256 samples/sec, the resulting DAQ channel name will become
H1:SUS-ETMX_LR_SEN_256.

Once all of the desired changes have been made and the new file saved, it will be necessary to load the new
configuration before it will become active. This is done by pressing the DAQ Reconfig button on the
system GDS_TP MEDM screen (loads real-time front end) and then restarting the framebuilder(s).

6.3.2 EPICS DAQ Configuration
EPICS channels to be stored by the DAQ system are named in a single EPICS.ini file for all systems
running on the same network. This file must be located in the /cvs/cds/<site>/chans/daq directory, and
added to the master file list (see SysAdmin Guide).

An example file is shown below. The header portion must be as shown. Individual channels to be recorded
may then be added, one channel per line, with braces around each channel name.

*********** Sample File **********************

[default]
dcuid=4
datarate=16
gain=1.0

 25

acquire=1
ifoid=0
datatype=4
slope=1.0
offset=0
units=NONE

HEPI channels

[M1:SEI-BSC_HP_INMON]
[M1:SEI-BSC_HP_OUT16]
[M1:SEI-BSC_RX_INMON]
[M1:SEI-BSC_RX_OUT16]
[M1:SEI-BSC_RY_INMON]

 26

7 RCG Software Parts Library
The CDS_PARTS.mdl file contains symbols for the modules supported by the RCG. Only parts defined in
this library may be used with the RCG, i.e., the RCG does not support the full set of Simulink parts and
some custom parts have been added for specific purposes.

7.1 Top Level Modules
CDS parts at the top level of the library include:

- cdsParameters
- cdsFunctionCall
- DOC Text/Overview
- DOC Text/SW Install

The latter two are used for documentation. Text can be entered by double clicking on one of these
modules.

 27

7.1.1 cdsParameters

7.1.1.1 Function
The purpose of this module is to define basic run-time parameters needed
by the CDS RCG.

7.1.1.2 Usage
This module must appear once, and only once, at the top level of an RCG
application model, by convention usually in the upper left-hand corner. It
contains four fields which must be edited.

1) site: Somewhat of a misnomer, this field is actually the
designator for the site and interferometer on which the code
will run. This can be a single entry (as shown) or comma
delimited for multiple IFO use, such as site=H1,H2,L1. In
this case, the RCG will generate code for three IFOs. This
field will be used in the EPICS channel generation as the
first two characters of the channel name. In the example at
right, all channel names within this RCG model will have an
M1: prefix. The following sites are recogniz

ed:

a. C (= CalTech or California Institute of Technology)
b. G (= GEO)
c. H (= LHO or LIGO Hanford Observatory)
d. L (= LLO or LIGO Livingston Observatory)
e. M (= MIT or Massachusetts Institute of Technology)
f. S (= Stanford)

2) rate: The sample rate of the generated code must be defined as one of the supported rates:
a. 64K (65,536 samples/sec)
b. 32K (32,768 samples/sec)
c. 16K (16,384 samples/sec)
d. 2K (2,048 samples/sec)

3) dcuid: All real-time processes must have a unique (per IFO) dcuid number. This is used to
identify a front end process to the data acquisition system for proper communications to the
framebuilders.

4) gds_node_id: Global Diagnostic System (GDS) functions are built into every real-time
application. To operate properly, each real-time application requires a unique GDS id.
number.

For items 3 and 4 above, the site system administrator should be contacted for proper id. numbers if this
code is to operate on an integrated CDS computer.

In addition to the above fields, there are additional optional entries. Each of these entries must be on its
own line, followed by a carriage return:

 plant_name
o Plant name.

 accum_overflow
o ADC overflow accumulator value.

 shmem_daq
o This results in a compiler flag such that the run-time code will use shared memory to

communicate with the framebuilder software. This argument is only set if the software is
to run on a standalone computer which will run the real-time code and the DAQ code.

 no_sync
o Set if real-time code is not to be synchronized to the GPS 1PPS signal. This flag should

be set if the real-time code is to be synchronized using an IRIG-B or if the system is to

 28

 no_daq
o System is to run without data acquisition capabilities.

 dac_internal_clocking
o The DAC modules will be clocked using internal clock signal instead of external clock

signal from timing system. This is typically only used in testing.
 no_oversampling

o The present default is to clock all ADC/DAC at 65,536Hz, then do decimation/up-sample
filtering of I/O data to match the desired servo ‘rate’. With this flag set, the decimation
filtering is not performed and it is expected that the timing clock will match the ‘rate’.

 no_dac_interpolation
o As above, except this turns off the up-sample filtering to 65,536Hz.

 compat_initial_ligo=1
o This must be set if the computer is to run as an integrated part of initial LIGO.

 specific_cpu=x
o Without this definition, when a model is built into an application, it will run on cpu core

1. When it is desired to run multiple real-time applications, this parameter needs to be set
to the cpu core to use (2-15).

 remote_ipc_port
o Remote IPC port value.

7.1.1.3 Operation
This component is used solely to set up appropriate compiler flags in the RCG. It is not linked as part of the
real-time code.

7.1.1.4 Associated EPICS Records

None.

 29

7.1.2 cdsFunctionCall

7.1.2.1 Function
The purpose of this block is to allow users to link their own C code into
the real-time application built by RCG. It is typically used when RCG
does not support desired functions or the desired process is too
complicated to be drawn in a model file.

7.1.2.2 Usage
Process variables are passed into and out of the user C function by
connecting signals at the Mux inputs and Demux outputs. Any number of
inputs or outputs may be connected by adjusting the Mux/Demux I/O sizes
in MATLAB.

The ‘Function Name’ must be changed to the name of the user supplied
function. Keep in mind that, as with other parts, if this part is used within
‘subsystem’ parts, it will inherit the upper level names, the same as any
other part used in the .mdl file. For example, if ‘Function Name’ is re-
entered as ‘prc_inv’ and this block is inside of a subsystem block named
LSC, the full name of the function called in real-time will be
LSC_prc_inv.

The user defined C code function must be of the form:

void Function_Name (double *in, int inSize, double *out, int outSize)

where:

 Function_Name is the full name of the function to be called. In the example above, this
would be LSC_prc_inv.

 *in is a pointer to the input variables. Inputs are passed in the same order as they are
connected to the input Mux.

 inSize indicates the number of parameters being passed to the function.
 *out is a pointer to the output variables. Outputs are passed back to the main code in the

same order as the Demux connections.
 outSize is the number of outputs allowed from the code module.

As a simple example of user code:

void LSC_prc_inv(double *in, int inSize, double *out, int outSize)
{
 if (in[2] > in[0]) out[0] = in[1] * -1;
 else out[0] = in[1];
}

After the user code module is written, it must be placed in the appropriate directory and properly named to
be compiled into the main real-time code. For example, if the above is part of a model named psl.mdl, then
the code must be in the file ‘LSC_prc_inv.c’ in the advLigo/src/fe/psl directory.

7.1.2.3 Operation
At run-time, the code operates as defined by the user provided C code.

 30

7.1.2.4 Associated EPICS Records

None.

7.1.2.5 Code Example

The cdsFunctionCall module generates the following C code:

#include “FNam.c”

double demux[3];
double mux[4];

// MUX
mux[0] = <In1[0]>;
mux[1] = <In1[1]>;
mux[2] = <In1[2]>;
mux[3] = <In1[3]>;

// Function Call
FNam(mux, 4, demux, 3);

<Out1[0]> = demux[0];
<Out1[1]> = demux[1];
<Out1[2]> = demux[2];

 31

7.2 I/O Parts

The I/O parts library contains the drivers for connecting I/O modules to the system.

 32

7.2.1 ADC

7.2.1.1 Function
The purpose of this module is to define an ADC module. At present, only
the General Standards 32 channel, 16 bit ADC is supported.

7.2.1.2 Usage
Each RCG model must include at least one (1) ADC block. The output of
this block must be tied to one or more ADC Selector blocks to pick out and
further connect individual ADC signal channels.

7.2.1.3 Operation
No software is directly produced for this part. Rather, it is used as an
indicator of how many and of what type ADC module(s) the real-time I/O
software should expect during operation.

7.2.1.4 Associated EPICS Records

None.

7.2.2 ADC Selector

7.2.2.1 Function
The function of the ADC Selector is to route selected channels from
an ADC to other RCG model blocks (it is actually a Simulink Bus
Selector part).

7.2.2.2 Usage
- Drag and drop the part into the model window.
- Connect the input to an ADC part.
- Double click on the ADC selector and select the desired

signals from the Simulink window.
- Connect the outputs to other RCG parts.

7.2.2.3 Operation
No real-time code is directly generated to support this part. Rather, it
is used by the RCG to produce appropriate signal links.

7.2.2.4 Associated EPICS Records

None.

 33

7.2.3 DAC

7.2.3.1 Function
The purpose of this block is to allow signal connections to be output to DAC
output channels.

7.2.3.2 Usage
Desired output signals are connected to the 16 inputs of the DAC part. The
output connections are not used.

7.2.3.3 Operation

As with the ADC part, this block is only used by the real-time code to route
signals to DAC modules.

7.2.3.4 Associated EPICS Records

None.

 34

7.2.4 cdsDio

7.2.4.1 Function
Provide support for Acces 24 bit digital I/O module. The board manual
can be found at PCI-DIO-24DH.PDF

7.2.4.2 Usage
In1 should be an integer, the lower 16 bits representing the bit pattern to
be sent as outputs. Out1 will return an integer, the lower 8 bits of which
represent the inputs to the I/O module.

7.2.4.3 Operation
The software sets the board to use 16 bits as outputs (Port A and B) and 8
bits as inputs (Port C). Software within the advLigo/src/fe/map.c file
provides three supporting routines:

1) int mapDio(), which registers and initializes the board for
use.

2) unsigned int readDio(), which is used to read the binary input bits.
3) void writeDio(), which is used to write to the 16 output bits.

Standard code definitions used in these code modules can be found in the
advLigo/src/include/drv/cdsHardware.h file.

7.2.4.4 Associated EPICS Records
None.

7.2.4.5 Code Example
The cdsDio module generates the following C code:

/* Hardware configuration */
CDS_CARDS cards_used[] = {
 :
 {ACS_24DIO,0},
 :
};

// DIO number is 0
dioOutput[0] = <In1>;

<Out1> = dioInput[0];

(The two integer arrays dioOutput[] and dioInput[] are declared in the front-end module controller.c)

 35

http://www.accesio.com/MANUALS/PCI-DIO-24DH.PDF

7.2.5 cdsRfmIO

7.2.5.1 Function
The RCG supports communication between computers using the GEFanuc 5565
and 5979 reflected memory modules. This block allows single signal connection
to/from these modules.

7.2.5.2 Usage
If a signal value is to be sent to the module, a signal needs to be connected to
‘In1’. If a signal is to be read from a reflected memory module, then a signal
should be connected from the ‘Out1’ connection. The offset from the memory
board base address is entered in the block label field. In the example at right, the
memory offset is set to 0x2000.

7.2.5.3 Operation
The real-time code provides a single write or read at the specified memory board offset in the form of a
double precision float.

7.2.5.4 Associated EPICS Records
None.

7.2.5.5 Code Example
The cdsRfmIO module generates the following C code:

if (cdsPciModules.pci_rfm[0] != 0) {
 // RFM output
 *((double *)(((char *)cdsPciModules.pci_rfm[0]) + 0x2000)) = <In1>;
}

<Out1> = cdsPciModules.pci_rfm[0]? *((double *)(((void *)cdsPciModules.pci_rfm[0]) + 0x2000)) : 0.0;

(The PCI hardware structure cdsPciModules is declared in the front-end module controller.c)

 36

7.2.6 cdsRio and cdsRio1

7.2.6.1 Function
Provide support for Acces 8 (cdsRio part) and 16 bit relay
modules (cdsRio1 part). The board manuals can be found at
PCI-IIRO-8.PDF and PCI-IIRO-16.PDF.

7.2.6.2 Usage
When used, the part name must be modified to indicate the
instance of the card. For example, when using an 8 bit module
(cdsRio), the name of the part must be RIO_moduleNumber
(RIO_0 for first instance of the module type on the bus). Same
needs to be done for the 16 bit part (cdsRio1_0).

The input to both parts is an integer, the lower 8 or 16 bits
representing the output bit pattern to the module.

In the case of the cdsRio part, two outputs are provided. Out1 simply returns the value written at In1. Out2
will read the 8 bits of the module input register.

Out1 of the cdsRio1 part will return an integer, the lower 16 bits of which represent the 16 input bits of the
module.

7.2.6.3 Operation
Code support for these two module types is incorporated into the advLigo/src/fe/map.c file.

For the 8 bit module:

1) int mapIiroDio(), which registers and initializes the module for use.
2) void writeIiroDio(), which outputs the value to the I/O module.
3) unsigned int readIiroDio(), reads binary inputs from module.
4) unsigned int readIiroDioOutput(), read back the value written to the output register by the

writeIiroDio() function (just a check that value was written correctly).

For the 16 bit module:

1) int mapIiroDio1(), registers and initializes the module for use.
2) void writeIiroDio1(), writes 16 bit pattern to I/O module output register.
3) unsigned int readIiroDio1(), reads the 16 bit input register.

Standard definitions used in these code modules can be found in the
advLigo/src/include/drv/cdsHardware.h file.

7.2.6.4 Associated EPICS Records

None.

 37

http://www.accesio.com/MANUALS/PCI-IIRO-8.PDF
http://www.accesio.com/MANUALS/PCI-IIRO-16.PDF

7.2.6.5 Code Examples

The cdsRio module generates the following C code:

/* Hardware configuration */
CDS_CARDS cards_used[] = {
 :
 {ACS_8DIO,1},
 :
};

:
rioReadOps[<i>] = <0, 1, or 2>;
 :

// Rio number is 1 name RIO_1
rioOutput[1] = <In1>;

 :

<Out1> = rioInputInput[1];
<Out2> = rioInputOutput[1];

The cdsRio1 module generates the following C code:

/* Hardware configuration */
CDS_CARDS cards_used[] = {
 :
 {ACS_16DIO,1},
 :
};

// Rio1 (IIRO-16) number is 1 name RIO1_1
rioOutput1[1] = <In1>;

 :

<Out1> = rioInput1[1];

(The integer arrays rioReadOps[], rioOutput[], rioOutput1[], rioInputInput[], rioInputOutput[], and
rioInput1[] are declared in the front-end module controller.c)

 38

7.2.7 cdsIPC

7.2.7.1 Function
The purpose of this module is to allow communications, via
shared memory, between two or more real-time processes
running in the same computer, but on separate CPU cores.

7.2.7.2 Usage
The user needs to change the label to a hex value, for example
0x2000. This part needs to exist in both the ‘sender’ model and
the ‘receiver’ model, with the same address in both.

7.2.7.3 Operation
If there is a signal connected at ‘In1’ (of the cdsIPC module),
then this will result in the signal data being written to the address
location as a double precision float. Conversely, if the ‘Out1’ is
connected, data will be read in from the prescribed memory
location as a double precision float. Communications at run-time
use the ‘ipc’ (inter-process communication) shared memory
block.

Warning:
This communication is asynchronous, i.e., the ‘receiver’ will not
wait for the ‘sender’. Therefore, it is up to the user to decide and
take care of any synchronization needs.

Warning:
All computer cores on the same computer will use the same ‘ipc’ shared memory block. Therefore care
must be taken that models use unique addresses to communicate with each other.

7.2.7.4 Associated EPICS Records
None.

7.2.7.5 Code Examples

The cdsIPC module in the first (‘sending’) process generates the following C code:

double ipc_at_0x2000;

ipc_at_0x2000 = <In1>;

 // All IPC outputs
 if (_ipc_shm != 0) {
 *((double *)(((char *)_ipc_shm) + 0x2000)) = ipc_at_0x2000;
 }

 39

The cdsIPC module in the second (‘receiving’) process generates the following C code:

double ipc_at_0x2000 = *((double *)(((void *)_ipc_shm) + 0x2000));

<Out1> = ipc_at_0x2000;

Or, more specifically (including the IIR Filters in the above illustration):

The cdsIPC module in the first (‘sending’) process generates the following C code:

double ipc_at_0x2000;

ipc_at_0x2000 = cpu1_iir1;

 // All IPC outputs
 if (_ipc_shm != 0) {
 *((double *)(((char *)_ipc_shm) + 0x2000)) = ipc_at_0x2000;
 }

The cdsIPC module in the second (‘receiving’) process generates the following C code:

double ipc_at_0x2000 = *((double *)(((void *)_ipc_shm) + 0x2000));

// FILTER MODULE
cpu2_iir1 = filterModuleD(dsp_ptr,dspCoeff,CPU2_IIR1,ipc_at_0x2000,0);

(The pointer _ipc_shm to the inter-process communication area is declared in the front-end module
controller.c)

 40

7.2.8 cdsIPCS

7.2.8.1 Function
This part sends cycle count information between two real-time
processes running on separate computer cores via shared memory. It is
used to verify that the two (or more) related processes are in sync with
each other.

7.2.8.2 Usage
The shared memory address must be specified in the range of 0x1000
to 0x3000 on an 8 byte boundary. One of these parts should be put in
each of the two applications to be monitored, both with the same
address specification. The part which is to send the cycle count should
have its input connected (doesn’t really matter what the input part
connection is) and the receiver part should have its output connected.
The output connection is typically to an EPICS OUTPUT part to view
the status information (should always be zero if two applications are in
sync).

7.2.8.3 Operation
During execution, the real-time code for each application maintains a
“cycle counter”, which continuously counts from 0 to the (user
specified application rate – 1) each second. For example, if a model is
specified to run at 32K, this counter increments from 0 to 32,767 every
second. The send part (input connected, no output connected) will send
this cycle count + 1. The receive part (output connected) will read this
value from shared memory and subtract its cycle count. If the two
applications are in sync, then the output of the receive part should always be zero.

7.2.8.4 Associated EPICS Records

None.

7.2.8.5 Code Examples

The cdsIPCS module in the first (‘sending’) process generates the following C code:

if (_ipc_shm != 0) {
 // IPCS output
 *((float *)(((char *)_ipc_shm) + 0x2000)) = (cycle + 1)%FE_RATE;
}

The cdsIPC module in the second (‘receiving’) process generates the following C code:

<Out> = _ipc_shm? *((float *)(((void *)_ipc_shm) + 0x2000)) - cycle : 0.0;

 41

Or, more specifically (including the IIR Filters in the above illustration):

The cdsIPCS module in the first (‘sending’) process generates the following C code (no change):

if (_ipc_shm != 0) {
 // IPCS output
 *((float *)(((char *)_ipc_shm) + 0x2000)) = (cycle + 1)%FE_RATE;
}

The cdsIPC module in the second (‘receiving’) process generates the following C code:

cpu2_iir1 = filterModuleD(dsp_ptr, dspCoeff,CPU2_IIR1,_ipc_shm? *((float *)(((void *)_ipc_shm) +
0x2000)) - cycle : 0.0,0);

(The pointer _ipc_shm to the inter-process communication area is declared in the front-end module
controller.c)

 42

7.2.9 GPS

7.2.9.1 Function
Return GPS time information from an IRIG-B interface module.

7.2.9.2 Usage

7.2.9.3 Operation

7.2.9.4 Associated EPICS Records

None.

7.2.9.5 Code Example

The GPS module generates the following C code:

<full> = cycle_gps_time;

<s> = (unsigned long)cycle_gps_time;

<us> = cycle_gps_time - (unsigned long)cycle_gps_time;

<ns> = cycle_gps_ns;

(The double precision floating-point parameter cycle_gps_time and the integer parameter cycle_gps_ns are
declared in the front-end module controller.c)

 43

7.2.10 cdsCDO32

7.2.10.1 Function
This module provides I/O support for the Contec 32 bit, PCIe binary output
module. The specification sheet can be found at Contec32output.pdf.

7.2.10.2 Usage
In1 should be connected to a 32 bit value to be sent to the module. Out1 will
return the value from the board output register, which should be the same as
the input value request.

7.2.10.3 Operation
Code support for this module can be found in the advLigo/src/fe/map.c file.
Support routines are:

1) int mapContec32out(), register and initialize module for use.
2) unsigned int writeCDO32l(), write 32 bit value to the module output register.
3) unsigned int readCDO32l(), read the 32 bit value from the module output register (used to

verify write function).

7.2.10.4 Associated EPICS Records
None.

7.2.10.5 Code Example
The cdsCDO32 module generates the following C code:

/* Hardware configuration */
CDS_CARDS cards_used[] = {
 :
 {CON_32DO,1},
 :
};

// CDO32 number is 1 name C32_1
CDO32Output[1] = ((int)<In1> << 16) + ((int)<In1> & 0xffff);

<Out1> = (CDO32Input[1] >> 16);

(The integer arrays CDO32Output[] and CDO32Input[] are declared in the front-end module controller.c)

 44

http://www2.contec.co.jp/prod_data/do32bpe/c01e.pdf

7.3 Simulink Parts

The RCG supports a number of standard Simulink parts, as shown
in the simLinkParts window (at right). In general, the code
generated by the RCG behaves as it would in a Simulink model.
Special cases are described in the following subsections.

 45

7.3.1 Unit Delay

7.3.1.1 Function
Typically, the RCG produces sequential code that
starts with ADC inputs, performs the required
calculations, and ends with the DAC outputs.
However, there are cases where calculations
performed within the code are to be fed back as
inputs on the next code cycle. In these cases, the
desired feedback signal must be run through a
UnitDelay block to indicate to the RCG that this
signal will be used on the next cycle

7.3.1.2 Usage
An example showing the use of the UnitDelay
block is shown at right. If the output of Module 1 were to be tied directly back to the summing junction at
the input, it would produce an infinite loop in the code generator. By placing the UnitDelay in line, the
output of Module 1 is sent back to its input on the next cycle of the software.

7.3.1.3 Operation
Introduces a one cycle delay between input and output.

7.3.1.4 Associated EPICS Records
None.

7.3.1.5 Code Example
The UnitDelay module generates the following C code:

static double unitdelay;

<Out> = unitdelay;

// DELAY
unitdelay = <In>;

 46

7.3.2 Subsystem Part

7.3.2.1 Function
This is a standard MATLAB part for grouping individual parts into a
subsystem.

7.3.2.2 Usage
Any number of parts within the application model may be grouped into a
subsystem using the MATLAB subsystem part. The RCG uses the assigned
name as a prefix to all block names within the subsystem. This is done in
two ways:

ll
be prefixed L1:LSC-xxxx.

 In the top example at right, if it is at the top level of the model, all
signal names for blocks within ASC would become
SITE:ModelFileName-ASC_xxxx. So, if the model file name is
omc.mdl and site defined as L1, names for parts within the ASC
subsystem part would become L1:OMC-ASC_xxxx.

 In the lower example (LSC), a tag has been added (using the Block
Properties Window) “top_names”. This is a flag to the RCG to use
the name of this subsystem to replace the model file name. Using the same example as above, a
parts within this subsystem would

The use of the ‘top_names’ subsystem part tags provides a couple of useful features:

1) A single model may contain parts with multiple SYS names in the LIGO naming
convention. As seen in the example above, SYS is OMC (model name) for all ASC
subsystem parts (L1:OMC-ASC_), but L1:LSC- for all LSC subsystem parts. In the same
manner, ASC could also be defined ‘top_names’ and the results would be L1:ASC- and
L1:LSC-.

2) Multiple models may contain the same SYS name. This allows models running on
different processors to use the same SYS identifier in the signal names.

Warning: Since the name of all subsystems marked with the ‘top_names’ tag are used to replace the
three character SYS part in the LIGO naming convention, this name must be 3 characters in length,
no more, no less!

Warning: Subsystems with the ‘top_names’ tag may only appear at the highest level of the model,
i.e., they may not be nested within other subsystems.

7.3.2.3 Operation
The subsystem part is only used by the RCG to produce appropriate signal names.

7.3.2.4 Associated EPICS Records

None.

 47

7.3.3 MathFunction

7.3.3.1 Function
This module is used to include one of several mathematical functions in a
model.

7.3.3.2 Usage
Currently, the following mathematical functions are supported:

- Square of input value.
- Square root of input value.
- Reciprocal of input value.
- Modulo of two input values.

7.3.3.3 Operation
When using this module, place it in the model window and double click on the icon. This brings up a
Function Block Parameters window. Click on the down arrow at the right end of the “Function:” line. This
brings up a list of mathematical functions. Click on one of the supported functions (square, sqrt, reciprocal,
or mod), followed by clicking OK. Please note that clicking on any of the non-supported functions (exp,
log, 10^u, log10, magnitude^2, pow, conj, hypot, rem, transpose, or hermitian) will result in a fatal error
when attempting to make (compile) the model.

The square function will calculate the square of any input (double precision) value and pass it on as the
output value (in double precision).

The square root function will calculate the square root of any positive (double precision) value and pass it
on as the output value (in double precision). If the input value is negative or equal to zero, the output value
will be set to zero.

The reciprocal function will calculate the inverse of any input (double precision) value and pass it on as the
output value (in double precision), unless the input value is equal to zero in which case the output value
will be set to zero.

The mod (modulo) function takes two input values, In1 and In2. Since the modulo function only operates
on integer values, the output value (Out1, in double precision) is calculated as:

 Out1 = (double) ((int) In1%(int) In2)

except if the In2 value is equal to zero in which case the output value will be set to zero.

7.3.3.4 Associated EPICS Records
None.

 48

7.3.3.5 Code Examples

The MathFunction module generates the following C code:

Square:

double mathfunction;

// MATH FUNCTION - SQUARE
mathfunction = <In1> * <In1>;

<Out1> = mathfunction;

Square root:

double mathfunction;

// MATH FUNCTION - SQUARE ROOT
if (<In1> > 0.0) {
 mathfunction = lsqrt(<In1>);
}
else {
 mathfunction = 0.0;
}

<Out1> = mathfunction;

Reciprocal:

double mathfunction;

// MATH FUNCTION - RECIPROCAL
if (<In1> != 0.0) {
 mathfunction = 1.0/<In1>;
}
else {
 mathfunction = 0.0;
}

<Out1> = mathfunction;

 49

Modulo:

double mathfunction;

// MATH FUNCTION - MODULO
if ((int) <In2> != 0) {
 mathfunction = (double) ((int) <In1>%(int) <In2>);
}
else {
 mathfunction = 0.0;
}

<Out1> = mathfunction;

 50

7.3.4 In-line (math) function

7.3.4.1 Function
This module is used to include a user defined in-line (math)
function in a model.

7.3.4.2 Usage
The module supports a number of different types of mathematical
functions:

- Polynomials.
- Non-polynomial combinations of variables and

constants.
- Sines and cosines.
- Floating-point absolute values.
- log10.
- Square root.
- Combinations of the above.

7.3.4.3 Operation
When using this module, place it
in the model window and
connect the desired number of
input variables via a Mux and
one output that will pass on the
resulting value from the (user
defined) function. Double click
on the Fcn icon and enter the
desired function in the
Expression field. The first (top)
input variable to the Mux is
defined as ‘u[1]’, the second
input variable (from the top) is
defined as ‘u[2]’, etc. (please
note the square brackets). The
user defined function can consist
of any combination of terms
made up of constants multiplied
with variables, sine and/or cosine
functions, floating-point absolute
values, log10 values, and/or
square roots.

A (ficticious) example could be
as follows (see next page):

 51

Once the function has been
defined, click on OK and the
function will be incorporated
into the model. Please note
that it is up to the user to
ensure the validity of entered
functions and values, e.g.,
only positive values for
logarithms, no negative
values for square roots, no
divisions by zero, etc. Also,
sine and cosine values
should, by default, be given
in radians. If angles in
degrees are desired, replace
‘sin’ with ‘sindeg’ and ‘cos’
with ‘cosdeg’.

In order to include polynomials, a special technique must be used. This is best explained with an example.
Let’s assume the following polynomial should be used:

 Out = 2.0 * In1 – 3.5 * In2 ** 2 + 5.0 * In3 ** 3

This would require a Mux
with six inputs:

In other words, the first
input variable (‘In1’) is
connected to the first input
to the Mux (‘u[1]’), the
second input variable (‘In2’)
is connected to the second
and third inputs to the Mux
(and will be referred to as
‘u[2]’ and ‘u[3]’ in the
function expression), and the
third input variable (‘In3’) is
connected to the fourth,
fifth, and sixth inputs to the
Mux (referred to as ‘u[4]’,
‘u[5]’, and ‘u[6]’,
respectively).

7.3.4.4

Associated
EPICS Records

None.

 52

7.3.4.5 Code Examples
The in-line (math) function generates the following C code:

(This first example is identical to the first example in section 7.3.4.3.)

double fcn;
double conv = 3.141592654/180.0;
double lcos1, lsin1;

double mux[4];

// MUX
mux[0]= <In1[0]>;
mux[1]= <In1[1]>;
mux[2]= <In1[2]>;
mux[3]= <In1[3]>;

// Inline Function
mux[2] *= conv;
sincos(mux[2], &lsin1, &lcos1);
fcn = 3.0 * mux[0] - 2.0/mux[1] + lsin1 * lsqrt(lfabs(mux[3]));

<Out1> = fcn;

 53

(This example is identical to the second example in section 7.3.4.3.)

double fcn;

double mux[6];

// MUX
mux[0]= <In1[0]>;
mux[1]= <In1[1]>;
mux[2]= <In1[2]>;
mux[3]= <In1[3]>;
mux[4]= <In1[4]>;
mux[5]= <In1[5]>;

// Inline Function
fcn = 2.0 * mux[0] - 3.5 * mux[1] * mux[2] + 5.0 * mux[3] * mux[4] *
mux[5];

<Out1> = fcn;

 54

7.4 EPICS Parts

EPICS parts are used to input/output signals from/to the
real-time application and EPICS. Some are used
primarily to communicate with operator displays, while
others are intended to allow multiple FE computers to
communicate with each other using EPICS Channel
Access (CA) via Ethernet connections.

 55

7.4.1 cdsEpicsOutput/cdsEpicsIn

7.4.1.1 Function
The cdsEpicsOutput module is used to write data into an EPICS channel and
the cdsEpicsIn module reads in data from an EPICS channel. NOTE: The
resulting EPICS channels are built on and communicate with EPICS on the
local computer. To access EPICS channels on other computers, use the
cdsEzCaRead/Write modules.

7.4.1.2 Usage
For the EpicsOutput, connect the signal to be sent to EPICS via the ‘In1’
connection. The ‘Out1’ connection may be used to continue the signal into
another RCG part.
For EpicsInput, use the ‘Out1’ connection to pick up the EPICS data.
For both, modify the name to the desired EPICS channel name.

7.4.1.3 Operation
The RCG will produce local EPICS records with the assigned names and the
real-time software will communicate data to/from the EPICS records via shared memory.

7.4.1.4 Associated EPICS Records
A single ‘ai’ EPICS record will be produced using the assigned name.

7.4.1.5 Code Examples
The cdsEpicsIn and cdsEpicsOutput modules generate the following C code:

void feCode(int cycle, double dWord[][32], /* ADC inputs */
 double dacOut[][16], /* DAC outputs */
 FILT_MOD *dsp_ptr, /* Filter Mod variables */
 COEF *dspCoeff, /* Filter Mod coeffs */
 CDS_EPICS *pLocalEpics, /* EPICS variables */
 int feInit) /* Initialization flag */
{

<Out1> = pLocalEpics-><Sys>.EpicsInput;

// EpicsOut
pLocalEpics-><Sys>.EpicsOutput = <In1>;

 56

7.4.2 cdsEpicsBinIn

7.4.2.1 Function
This part is used to interface a standard EPICS binary input record into the
real-time application.

7.4.2.2 Usage
Connect the output to where in EPICS value is to be passed.

7.4.2.3 Operation
Out1 = EPICS value placed in shared memory.

7.4.2.4 Associated EPICS Records
A single ‘bi’ EPICS record will be produced using the assigned name.

7.4.2.5 Code Example
The cdsEpicsBinIn module generates the following C code:

void feCode(int cycle, double dWord[][32], /* ADC inputs */
 double dacOut[][16], /* DAC outputs */
 FILT_MOD *dsp_ptr, /* Filter Mod variables */
 COEF *dspCoeff, /* Filter Mod coeffs */
 CDS_EPICS *pLocalEpics, /* EPICS variables */
 int feInit) /* Initialization flag */
{

<Out1>= pLocalEpics-><Sys>.EpicsBinIn;

 57

7.4.3 cdsRemoteIntlk

7.4.3.1 Function

7.4.3.2 Usage

7.4.3.3 Operation

7.4.3.4 Associated EPICS Records
A single ‘ai’ EPICS record will be produced using the assigned name.

7.4.3.5 Code Example
// RemoteIntlk
pLocalEpics-><Sys>.EpicsRemoteIntlk = <In1>;

 58

7.4.4 cdsEzCaRead/cdsEzCaWrite

7.4.4.1 Function
These blocks are used to communicate data, via EPICS channel access,
between real-time code running on separate computers.

7.4.4.2 Usage
Insert the block into the model and modify the name to be the exact name of
the remote EPICS channel to be accessed. This must be the full name, in
LIGO standard format, including IFO:SYS-.

7.4.4.3 Operation
The EPICS sequencer which supports the real-time code will have
EzCaRead/EzCaWrite commands added to obtain/set the desired values via
the Ethernet. Values are passed out of/into the real-time code via shared
memory.

7.4.4.4 Associated EPICS Records
Each of these two modules will produce a double precision floating-point
EPICS channel access record.

7.4.4.5 Code Examples
The cdsEzCaRead module generates the following C code:

<Out1> = pLocalEpics-><Sys>.<Remote_IFO>_<Remote_Sys>_<Remote_Channel>;

The cdsEzCaWrite module generates the following C code:

// EzCaWrite
pLocalEpics-><Sys>.<Remote_IFO>_<Remote_Sys>_<Remote_Channel> = <In1>;

 59

7.4.5 cdsEpicsMomentary

7.4.5.1 Function
The cdsEpicsMomentary module is used to flip one bit…

7.4.5.2 Usage
…

7.4.5.3 Operation
…

7.4.5.4 Associated EPICS Records
A momentary ‘ai’ EPICS record switch will be produced using the name
assigned to this block.

7.4.5.5 Code Example
static unsigned int epicsmomentary;

if(feInit)
{
 :
epicsmomentary = 0;
 :
} else {

// EpicsMomentary
if (pLocalEpics-><Sys>.EPICSMOMENTARY != 0) {
 epicsmomentary = epicsmomentary ^ pLocalEpics-><Sys>.EPICSMOMENTARY;
 pLocalEpics-><Sys>.EPICSMOMENTARY = 0;
};

<Out1> = epicsmomentary;

 60

7.5 Osc/Phase

The Osc/Phase section groups
together two different phase
rotators, a software oscillator,
and a saturation count module.

 61

7.5.1 cdsPhase

7.5.1.1 Function
This block replicates an I&Q phase rotator used in the LIGO LSC control
software.

7.5.1.2 Usage
This module is used to change the phase of the input values by a specific phase
angle.

7.5.1.3 Operation
The EPICS code reads in the user variable and calculates the sine and cosine
for this entered value. These two values (sinPhase, cosPhase) are then passed to
the real-time software, which performs the following calculations:

Out1 = In1 * cosPhase + In2 * sinPhase
Out2 = In2 * cosPhase – In1 * sinPhase

7.5.1.4 Associated EPICS Records
A single ‘ai’ EPICS record is produced to support this module. Entries in this record are in units of degrees.

7.5.1.5 Code Example
The cdsPhase module generates the following C code:

static double prn[2];

// PHASE
prn[0] = (<In1> * pLocalEpics-><Sys>.PRN[1]) +
 (<In2> * pLocalEpics-><Sys>.PRN[0]);
prn[1] = (<In2> * pLocalEpics-><Sys>.PRN[1]) –
 (<In1> * pLocalEpics-><Sys>.PRN[0]);

<Out1> = prn[0];
<Out2> = prn[1];

where

pLocalEpics-><Sys>.PRN[0] = sin(pLocalEpics-><Sys>.PRN)
pLocalEpics-><Sys>.PRN[1] = cos(pLocalEpics-><Sys>.PRN)

 62

7.5.2 cdsWfsPhase

7.5.2.1 Function

7.5.2.2 Usage

7.5.2.3 Operation

7.5.2.4 Associated EPICS Records
A single ‘ai’ EPICS record is produced to support this module. Entries in this
record are in units of degrees.

7.5.2.5 Code Example
The cdsWfsPhase module generates the following C code:

static double rn_0[2];

// WFS PHASE
rn_0[0] = (<In1> * pLocalEpics-><Sys>.RN_0[0][0]) –
 (<In2> * pLocalEpics-><Sys>.RN_0[1][0]);
rn_0[1] = (<In2> * pLocalEpics-><Sys>.RN_0[1][1]) –
 (<In1> * pLocalEpics-><Sys>.RN_0[0][1]);

<Out1> = rn_0[0];
<Out2> = rn_0[1];

where

pLocalEpics-><Sys>.RN_0[0][0] = sin(pLocalEpics-><Sys>.RN_0_r +
 pLocalEpics-><Sys>.RN_0_d)/sin(pLocalEpics-><Sys>.RN_0_d)
pLocalEpics-><Sys>.RN_0[0][1] = cos(pLocalEpics-><Sys>.RN_0_r +
 pLocalEpics-><Sys>.RN_0_d)/sin(pLocalEpics-><Sys>.RN_0_d)
pLocalEpics-><Sys>.RN_0[1][0] = sin(pLocalEpics-><Sys>.RN_0_r)/
 sin(pLocalEpics-><Sys>.RN_0_d)
pLocalEpics-><Sys>.RN_0[1][1] = cos(pLocalEpics-><Sys>.RN_0_r)/
 sin(pLocalEpics-><Sys>.RN_0_d)

 63

7.5.3 cdsOsc

7.5.3.1 Function
This block is a software oscillator, developed to support dither locking
where two signals with 90 degrees phase rotation are required.

7.5.3.2 Usage
This module is used to produce a sine wave at a specific frequency.

7.5.3.3 Operation
The three outputs are a sine wave at the user requested frequency. The CLK
and SIN outputs are in phase with each other and the COS is 90 degrees out
of phase. The block internal sine wave varies in amplitude from -1 to 1. The
three outputs are then multiplied by their individual gain settings to produce
the CLK, SIN and COS outputs.

7.5.3.4 Associated EPICS Records
Four EPICS records are produced for user entries:
_FREQ: Desired frequency in Hz
_CLKGAIN: CLK gain setting
_SINGAIN: SIN gain setting
_COSGAIN: COS gain setting

7.5.3.5 Code Example
The cdsOsc module generates the following C code:

static double on[3];
static double on_freq;
static double on_delta;
static double on_alpha;
static double on_beta;
static double on_cos_prev;
static double on_sin_prev;
static double on_cos_new;
static double on_sin_new;
double lsinx, lcosx, valx;

if(feInit)
{

on_freq = pLocalEpics-><Sys>.ON_FREQ;
on_delta = 2.0 * 3.1415926535897932384626 * on_freq / FE_RATE;
valx = on_delta / 2.0;
sincos(valx, &lsinx, &lcosx);
on_alpha = 2.0 * lsinx * lsinx;
valx = on_delta;
sincos(valx, &lsinx, &lcosx);
on_beta = lsinx;
on_cos_prev = 1.0;
on_sin_prev = 0.0;

 64

} else {

// Osc
on_cos_new = (1.0 - on_alpha) * on_cos_prev - on_beta * on_sin_prev;
on_sin_new = (1.0 - on_alpha) * on_sin_prev + on_beta * on_cos_prev;
on_sin_prev = on_sin_new;
on_cos_prev = on_cos_new;
on[0] = on_sin_new * pLocalEpics-><Sys>.ON_CLKGAIN;
on[1] = on_sin_new * pLocalEpics-><Sys>.ON_SINGAIN;
on[2] = on_cos_new * pLocalEpics-><Sys>.ON_COSGAIN;
if((on_freq != pLocalEpics-><Sys>.ON_FREQ) && ((clock16K + 1) == FE_RATE))
{
 on_freq = pLocalEpics-><Sys>.ON_FREQ;
 on_delta = 2.0 * 3.1415926535897932384626 * on_freq / FE_RATE;
 valx = on_delta / 2.0;
 sincos(valx, &lsinx, &lcosx);
 on_alpha = 2.0 * lsinx * lsinx;
 valx = on_delta;
 sincos(valx, &lsinx, &lcosx);
 on_beta = lsinx;
 on_cos_prev = 1.0;
 on_sin_prev = 0.0;
}

<CLK> = on[0];
<SIN> = on[1];
<COS> = on[2];

}

 65

7.5.4 cdsSatCount

7.5.4.1 Function
The purpose of this block is to count the number of times a channel
has saturated since the last time the counter was reset.

7.5.4.2 Usage
This block is used to monitor a data channel in order to keep track of
whether or not the input datum is greater than or equal to a saturation
threshold value and also keep counts of how often this happens.

7.5.4.3 Operation
Both the TotalCount counter and the RunningCount counter are zeroed
on initialization.

The TotalCount counter will keep incrementing (by one per cycle) as
long as the absolute value of the channel (input) datum is greater than
or equal to the TRIGGER (EPICS input) threshold value. The TotalCount counter can only be reset (to
zero) by entering a one in the RESET (EPICS input) switch.

The RunningCount counter will keep incrementing (by one per cycle) as long as the absolute value of the
channel (input) datum is greater than or equal to the TRIGGER (EPICS input) threshold value. This
counter will be reset (to zero) when the channel (input) datum becomes less than the TRIGGER (EPICS
input) threshold value or, conversely, when the TRIGGER (EPICS input) threshold value is modified to a
value greater than the channel (input) datum.

7.5.4.4 Associated EPICS Records
Two EPICS records are produced for user inputs:

_RESET: This is a momentary RESET switch that zeroes the TotalCount output (when set to one;

initial default value is equal to zero and the RESET switch returns to zero after the
TotalCount output has been zeroed).

_TRIGGER: The TotalCount and RunningCount counters (and outputs) will increment as long as the

absolute value of the channel (input) datum is greater than or equal to the TRIGGER
threshold value (initial default TRIGGER value is equal to zero).

 66

7.5.4.5 Code Example

The cdsSatCount module generates the following C code:

int scn_0[2];
static int scn_0_first_time_through = 1;
static int scn_0_total_counter;
static int scn_0_running_counter;

if(feInit)
{

if (scn_0_first_time_through) {
 scn_0_total_counter = 0;
 scn_0_running_counter = 0;
 scn_0_first_time_through = 0;
}

} else {

// SatCount
if (pLocalEpics-><Sys>.SCN_0_RESET == 1) {
 scn_0_total_counter = 0;
 pLocalEpics-><Sys>.SCN_0_RESET = 0;
}
else if (abs(<InData>) >= pLocalEpics-><Sys>.SCN_0_TRIGGER) {
 scn_0_total_counter++;
 scn_0_total_counter%=100000000;
 scn_0_running_counter++;
 scn_0_running_counter%=100000000;
}
else {
 scn_0_running_counter = 0;
}
scn_0[0] = scn_0_total_counter;
scn_0[1] = scn_0_running_counter;

}
<TotalCount> = scn_0[0];
<RunningCount> = scn_0[1];

 67

7.6 Filters

The key servo control
functions provided by the
RCG are in the form of
digital filters, as shown in the
Filter Parts section.

For most applications, the
IIR Filter Module is used.
The PolyPhase FIR Filte
designed only for the Ligo
HEPI (Hydraulic External
Pre-Isolator) controls
application and is not
intended for general use.

r is

 68

7.6.1 CDS Standard IIR Filter Module

7.6.1.1 Function
All CDS FE processors use digital Infinite Impulse Response (IIR) filters to
perform a majority of their signal conditioning and control algorithm tasks. In
order to facilitate their incorporation into FE software and to provide a standard
set of DAQ and diagnostic capabilities, the Standard Filter Module (SFM) was
developed.

7.6.1.2 Usage
Desired input signal is connected at ‘In1’ and output at ‘Out1’. ‘IIR Filter
Module’ name tag is replaced with user name.

7.6.1.3 Operation
To help illustrate the operation of the LIGO CDS Standard Filter Module (SFM), an operator MEDM
screen shot is shown below. Signal flow is from Input (left) to Output (right).

7.6.1.3.1 Input Section
The SFM input is as defined by the user in the MATLAB Simulink model. At run-time, this signal is
available to EPICS (_INMON) and is available to diagnostic tools as a test point (_IN1) at the sampling
rate of the software. This signal may continue on or be set to zero at this point by use of the Input On/Off
switch.

Each SFM also has an excitation signal input available from the Arbitrary Waveform Generator (AWG).
This signal is available for EPICS (_EXCMON). The AWG signal is summed with the input signal, and
available to diagnostic tools as a second test point (_IN2).

 69

To this resulting signal, a DC offset may be added (Input DC Offset) and this offset may be turned on/off
via the Offset on/off switch. The sum of the input, AWG and offset signal is then fed to the IIR filtering
section.

EXC

IN

Offset Offset On/Off

TP

TP

Input On/Off

To Filter Section

Input Section

7.6.1.3.2 Filtering Section
The filter section may have up to 10 IIR filters defined, with up to 10 Second Order Sections (SOS) each.
The software allows for any/all of these filters to be redefined “on the fly”, i.e., an FE process does not
need to be rebooted, restarted or otherwise interrupted from its tasks during reconfiguration.

Each filter within an SFM may be individually turned on/off during operation. Various types of
input/output switching may be defined for each individual filter.

Filter On/Off

Filter Coefficients (x41)

Number of SOS (1-10)

Switching Method

Output Switch Readback

History Reset

Coefficient Reload

Filter (x10)
Filter Section

 70

The filter coefficients and switching properties are defined in a text file produced by the foton tool. Filter
coefficient files used by the SFM must be located in the /cvs/cds/<site>/chans directory. This file contains:

 The names of all SFMs defined within an FE processor. Each SFM within a front end is given
a unique name in the EPICS sequencer software used to download the SFM coefficients to the
front end. These names must be provided in this file for use by foton. This is done by listing
the SFM names after the keyword ‘MODULES’. As an example, from the LSC FE file:
 # MODULES DARM MICH PRC CARM MICH_CORR
 # MODULES BS RM AS1_I

 A line (or lines) for each filter within an SFM, describing filter attributes and coefficients.
These lines must contain the information listed in the following table, in the exact order given
in the table.

Field Description
SFM Name The EPICS name of the filter module to which the remaining parameters are to apply.
Filter Number The number of the filter (0-9) within the given SFM to which the remaining parameters

are to apply.
Filter
Switching

As previously mentioned, individual filters may have different switching capabilities set.
This two digit number describes how the filter is to switch on/off. This number is
calculated by input_switch_type x 10 + output_switch_type.
The supported values for input switching are:

 0 – Input is always applied to filter.
 1 – Input switch will switch with output switch. When filter output switch

goes to ‘OFF’, all filter history variables will be set to zero.
Four types of output switching are supported. These are:

 0 – Immediate. The output will switch on or off as soon as commanded.
 1 – Ramp: The output will ramp up over the number of cycles defined by the

RAMP field.
 2 – Input Crossing: The output will switch when the filter input and output

are within a given value of each other. This value is contained in the RAMP
field.

 3 – Zero Crossing: The output will switch when the filter input crosses zero.
Number of
SOS

This field contains the number of Second Order Sections in this filter.

RAMP The contents of this field are dependent on the Filter Switching type.
Timeout For type 2 and 3 filter output switching (input and zero crossing), a time-out value must be

provided (in FE cycles). If the output switching requirements are not met within this
number of cycles, the output will switch anyway.

Filter Name This name will be printed to the EPICS displays which have that filter. It is basically a
comment field.

Filter Gain Overall gain term of the filter.
Filter
Coefficients

The coefficients which describe the filter design.

A skeleton coefficient file is produced the first time ‘make-install’ is invoked after compiling a model file.
Thereafter, whenever ‘make-install’ is executed, the install process will make a back-up of the present
coefficient file, then patch the present file with any new filter modules or renaming of filter modules.

7.6.1.3.3 Output Section
The following figure shows the output section. The output section provides for:

 A variable gain to be applied to the filter section output. This gain may be ramped over time
from one setting to another by setting the gain ramp time.

 This output to be limited to a selected value (the output limiter can be switched on or off).

 71

 A GDS TP. This TP is always on, regardless of whether the output is turned on or off.
 Ability to turn output on or off.
 A decimation filter to provide a 16Hz output (typically used by EPICS; the decimation filter

can be switched on or off).
 A “hold” output feature. When enabled, the output of the SFM will be held to its present

value.

Limit Setting

Decimation Filter

Decimation On/Off

Limiter On/Off

Output Hold

Gain Setting

Output Limiter

Output Section

GAIN

TP

OUT16

OUT

Output On/Off

Output Hold On/Off

7.6.1.4 Associated EPICS Records
For each filter module, the following EPICS records are produced, with the filter name as the prefix:

_INMON = Filter module input value (RO)
_EXCMON = Filter module excitation signal input value (RO)
_OFFSET = User settable offset value (W/R)
_GAIN = Filter module output gain (W/R)
_TRAMP = Gain ramping time, in seconds (W/R)
_LIMIT = User defined filter module output limit (W/R)
_OUTMON = Output test-point value (RO)
_OUT16 = Filter module output, decimation filtered to 16Hz (RO)
_OUTPUT = Filter module output value (RO)
_SW1 = Momentary filter switch selections, lower 16 bits (WO)
_SW2 = Momentary filter switch selections, upper 16 bits (WO)
_RSET = Momentary clear filter history switch (WO)
_SW1R = Filter switch read-backs, lower 16 bits (RO)
_SW2R = Filter switch read-backs, upper 16 bits (RO)
_SW1S = Saved filter switch selections, lower 16 bits (RO)
_SW2S = Saved filter switch selections, upper 16 bits (RO)
_Name00 thru _Name09 = Individual filter names, as defined in the coefficient file (RO)

 72

7.6.1.5 Code Example

The cdsFilt module generates the following C code:

double ifm_0;

// FILTER MODULE
ifm_0 = filterModuleD(dsp_ptr,dspCoeff,IFM_0,<In1>,0);

<Out1> = ifm_0;

(The IFM_0 parameter in the filterModuleD function call above is a constant
containing a unique filter module id. number.)

 73

7.6.2 IIR Filter Module with Control

7.6.2.1 Function
This module is a standard filter module, with the addition that the
SFM switch and filter status are output and a second input has been
added.

7.6.2.2 Usage
The additional input must be connected to ground or some other
module (e.g., cdsEpicsIn) for the code to compile. The additional
control output is used to provide some downstream control or decision
making based on the switch settings within the SFM. Typically this
output is tied to a bitwise operator to select the desired bits, often to
then go to binary output modules to switch relays based on filters
being on/off.

7.6.2.3 Operation
In addition to the SFM operation, this block outputs the internal switch information in the form of a 32-bit
integer. The bits of this integer are defined in the following table.

Bit Name Description
0 Coeff Reset This is a momentary bit. When set, the EPICS CPU will read in new SFM

coeffs from file and send this information to the FE via the RFM network. The
FE SFM will read and load new filter coefficients from RFM.

1 Master Reset Momentary; when set, SFM will reset all filter history buffers.
2 Input On/Off Enables/disables signal input to SFM.
3 Offset Switch Enables/disables application of SFM input offset value.
Even
bits 4-
22

Filter
Request

Set to one when an SFM filter is requested ON, or zero when SFM filter
requested OFF (bit 4 is associated with filter module 1, bit 6 with filter module
2, etc.).

Odd
bits 5-
23

Filter Status Set to one by SFM when an SFM filter is ON, or zero when SFM filter is OFF
(bit 5 is associated with filter module 1, bit 7 with filter module 2, etc.).

24 Limiter
Switch

Enables/disables application of SFM output limit value.

25 Decimation
Switch

Enables/Disables application of decimation filter to SFM OUT16 calculation.

26 Output
Switch

Enables/Disables SFM output (SFM OUT and OUT16 variables)

27 Hold Output If (!bit 26 && bit27), SFM OUT will be held at last value.
28 Gain Ramp If set, gain of filter module != requested gain. This bit is set when SFM gain is

ramping to a new gain request.

7.6.2.4 Associated EPICS Records

Same as cdsFilt module.

 74

7.6.2.5 Code Example

The cdsFiltCtrl module generates the following C code:

double ifmc;

// FILTER MODULE
ifmc = filterModuleD(dsp_ptr,dspCoeff,IFMC,<In1>,<Cin>);

<Val> = ifmc;

<Ctrl> = dsp_ptr->inputs[IFMC].opSwitchP|
((0x4|0x8|0x1000000|0x2000000|0x4000000|0x8000000) &
dsp_ptr->inputs[IFMC].opSwitchE);

(The IFMC parameter in the filterModuleD function call above is a constant
containing a unique filter module id. number.)

 75

7.6.3 PolyPhase FIR Filter

7.6.3.1 Function
This module allows the use of Polyphase FIR (Finite Impulse Response) filters,
typically used in seismic isolation system controls.

7.6.3.2 Usage
This part is placed into the model and functions exactly as the cdsFilter part. To
load an FIR at runtime, a separate coefficient file must be provided for FIR
filters (/cvs/cds/site/chans/modelName.fir).
N.B. The sample rate must be either 2K or 4K when PolyPhase FIR Filters are
being used.

7.6.3.3 Operation
Use of this part simply sets a compiler flag to allow the use of FIR filters. In all other respects, it functions
in the same way as the cdsFilter part described previously. In fact, this part allows a mix of IIR and FIR
filters to be assigned to the 10 available digital filters within the module. The difference between IIR and
FIR is determined by the runtime software by the number of coefficients loaded (>10 SOS = FIR).

7.6.3.4 Associated EPICS Records
Same as cdsFilt module.

7.6.3.5 Code Example
The cdsPPFIR module generates the following C code:

double ppff;

// FILTER MODULE
ppff = filterModuleD(dsp_ptr,dspCoeff,PPFF,<In1>,0);

<Out1> = ppff;

(The PPFF parameter in the filterModuleD function call above is a constant
containing a unique filter module id. number.)

 76

7.6.4 RMS Filter

7.6.4.1 Function
This block computes the RMS value of the input signal.

7.6.4.2 Usage
This module is used to calculate an RMS value.

7.6.4.3 Operation
The output value is the RMS value of the input value, within the limits of ±2000
counts.

7.6.4.4 Associated EPICS Records
None.

7.6.4.5 Code Example
The cdsRms module generates the following C code:

float rms;
static float rms_avg;

if(feInit)
{

rms_avg = 0.0;

} else {

// RMS
rms = <in>;
if(rms > 2000) rms = 2000;
if(rms < -2000) rms = -2000;
rms = rms * rms;
rms_avg = rms * .00005 + rms_avg * 0.99995;
rms = lsqrt(rms_avg);

<out> = rms;
}

 77

7.7 Matrix Parts

Matrix parts are those which perform calculations based on array data. The most commonly used is the
cdsMuxMatrix part.

 78

7.7.1 cdsMuxMatrix

7.7.1.1 Function
The primary function of this block is to produce output signals based on
the scaling and addition of various input signals.

7.7.1.2 Usage
Inputs are connected via the Mux part and outputs are connected via the
Demux part. The number of connections available at the input/output may
be modified to any size by double clicking on the Mux/Demux parts and
modifying the number of connection fields in the pop-up window.

7.7.1.3 Operation
Basic code function is:
Output[1] =
 Input[1] * Matrix_11 + Input[2] * Matrix_12 + Input[n] * Matrix_1n,
where Matrix_xx is an EPICS entry field.

7.7.1.4 Associated EPICS Records
The RCG will produce an A x B matrix of EPICS records for use as input variables, where B is the number
of inputs and A is the number of outputs. The EPICS record names will be in the form of
PARTNAME_AB, starting at PARTNAME_11.

7.7.1.5 Code Example
The cdsMuxMatrix module generates the following C code:

int ii;

double demux[3];
double mux[5];
double cdsmuxmatrix[3];

// MUX
mux[0]= <In1[0]>;
mux[1]= <In1[1]>;
mux[2]= <In1[2]>;
mux[3]= <In1[3]>;
mux[4]= <In1[4]>;

// MuxMatrix
for(ii=0;ii<3;ii++)
{
cdsmuxmatrix[ii] =
 pLocalEpics-><Sys>.cdsMuxMatrix[ii][0] * mux[0] +
 pLocalEpics-><Sys>.cdsMuxMatrix[ii][1] * mux[1] +
 pLocalEpics-><Sys>.cdsMuxMatrix[ii][2] * mux[2] +
 pLocalEpics-><Sys>.cdsMuxMatrix[ii][3] * mux[3] +
 pLocalEpics-><Sys>.cdsMuxMatrix[ii][4] * mux[4];
}

 79

// DEMUX
demux[0]= cdsmuxmatrix[0];
demux[1]= cdsmuxmatrix[1];
demux[2]= cdsmuxmatrix[2];

<Out1[0]> = demux[0];
<Out1[1]> = demux[1];
<Out1[2]> = demux[2];

 80

7.7.2 MultiSubtract

7.7.2.1 Function
This module is a group of subtractions, packaged into a single part.

7.7.2.2 Usage
Connect all input and output connectors. (N.B. All 16 inputs must be
connected to other modules in order for this module to compile.)

7.7.2.3 Operation
This module subtracts pairs of inputs (16) and produces 8 outputs, e.g.,
Out1 = In2 – In1, Out2 = In4 – In3, etc.

7.7.2.4 Associated EPICS Records
None.

7.7.2.5 Code Example
The cdsSubtract8 module generates the following C code:

double multisubtract[16];

// DiffJunc
multisubtract[0] = <In2> - <In1>;
multisubtract[1] = <In4> - <In3>;
multisubtract[2] = <In6> - <In5>;
multisubtract[3] = <In8> - <In7>;
multisubtract[4] = <In10> - <In9>;
multisubtract[5] = <In12> - <In11>;
multisubtract[6] = <In14> - <In13>;
multisubtract[7] = <In16> - <In15>;

<Out1> = multisubtract[0];
<Out2> = multisubtract[1];
<Out3> = multisubtract[2];
<Out4> = multisubtract[3];
<Out5> = multisubtract[4];
<Out6> = multisubtract[5];
<Out7> = multisubtract[6];
<Out8> = multisubtract[7];

 81

7.7.3 Matrix

7.7.3.1 Function
The output values produced by this module are made up of the input values
multiplied by scale factors and added together.

7.7.3.2 Usage
This module has been replaced by the cdsMuxMatrix module. The Matrix
module should NOT be used!

7.7.3.3 Operation
Each input value is multiplied by a scale factor (supplied via EPICS records),
after which the resulting values are added together and assigned to the output
values.

7.7.3.4 Associated EPICS Records
A matrix of A x B EPICS records (where B is the number of inputs and A is the
number of outputs) is produced by the Real-Time Code Generator.

7.7.3.5 Code Example
The Matrix module generates the following C code:

int ii;

double matrix[8][8];

// Matrix
for(ii=0;ii<8;ii++)
{
matrix[1][ii] =
 pLocalEpics-><Sys>.Matrix[ii][0] * <In1> +
 pLocalEpics-><Sys>.Matrix[ii][1] * <In2> +
 pLocalEpics-><Sys>.Matrix[ii][2] * <In3> +
 pLocalEpics-><Sys>.Matrix[ii][3] * <In4> +
 pLocalEpics-><Sys>.Matrix[ii][4] * <In5> +
 pLocalEpics-><Sys>.Matrix[ii][5] * <In6> +
 pLocalEpics-><Sys>.Matrix[ii][6] * <In7> +
 pLocalEpics-><Sys>.Matrix[ii][7] * <In8>;
}

<Out1> = matrix[1][0];
<Out2> = matrix[1][1];
<Out3> = matrix[1][2];
<Out4> = matrix[1][3];
<Out5> = matrix[1][4];
<Out6> = matrix[1][5];
<Out7> = matrix[1][6];
<Out8> = matrix[1][7];

 82

7.7.4 MultiProduct

7.7.4.1 Function
The purpose of this block is to multiply up to eight inputs by a single
input gain setting. Whenever a gain setting is changed, this block will
ramp the gain from the present to a new setting over the user defined
time interval.

7.7.4.2 Usage
The 8 inputs and outputs are connected, either to other signals or
terminators. The gain multiplier comes from EPICS.

7.7.4.3 Operation
The code for this block will multiply all inputs by the gain setting and
produce the results at the corresponding outputs. If the gain is
changed, the code will ramp the gain value over the requested ramp
time.

7.7.4.4 Associated EPICS Records
<block name>: Gain to be applied to all channels.
_TRAMP: Time (seconds) over which to ramp any gain changes.
_RMON: Return status code from gainRamp function (not used).

7.7.4.5 Code Example
The cdsProduct module generates the following C code:

double multiproduct[8];
float MultiProduct_CALC;

// PRODUCT
pLocalEpics-><Sys>.MultiProduct_RMON = gainRamp(pLocalEpics-><Sys>.MultiProduct,
 pLocalEpics><Sys>.MultiProduct_TRAMP,0,&MultiProduct_CALC);

multiproduct[0] = MultiProduct_CALC * <In1>;
multiproduct[1] = MultiProduct_CALC * <In2>;
multiproduct[2] = MultiProduct_CALC * <In3>;
multiproduct[3] = MultiProduct_CALC * <In4>;
multiproduct[4] = MultiProduct_CALC * <In5>;
multiproduct[5] = MultiProduct_CALC * <In6>;
multiproduct[6] = MultiProduct_CALC * <In7>;
multiproduct[7] = MultiProduct_CALC * <In8>;

<Out1> = multiproduct[0];
<Out2> = multiproduct[1];
<Out3> = multiproduct[2];
<Out4> = multiproduct[3];
<Out5> = multiproduct[4];
<Out6> = multiproduct[5];
<Out7> = multiproduct[6];
<Out8> = multiproduct[7];

 83

7.7.5 MultiSwitch

7.7.5.1 Function

This block allows simultaneous on/off switching of up to 8 signals via a
single EPICS input record.

7.7.5.2 Usage
This module is used to connect up to eight inputs that are either passed
through to the outputs (if the associated EPICS record is set to one) or
switched off (if the EPICS record is set to zero).

7.7.5.3 Operation
When the associated EPICS record is set to ‘1’, ‘In1’ thru ‘In8’ are passed
straight through to ‘Out1’ thru ‘Out8’. If the EPICS record is set to zero,
‘Out1’ through ‘Out8’ become zero.

7.7.5.4 Associated EPICS Records
The RCG produces a single EPICS ‘bi’ record with the name given to this
part by the user.

7.7.5.5 Code Example
The cdsSwitch1 module generates the following C code:

int ii;

double multiswitch[8];

// MultiSwitch
multiswitch[0] = <In1>;
multiswitch[1] = <In2>;
multiswitch[2] = <In3>;
multiswitch[3] = <In4>;
multiswitch[4] = <In5>;
multiswitch[5] = <In6>;
multiswitch[6] = <In7>;
multiswitch[7] = <In8>;
if (pLocalEpics-><Sys>.MultiSwitch == 0) {
 for (ii=0; ii<8; ii++) multiswitch[ii] = 0.0;
}

<Out1> = multiswitch[0];
<Out2> = multiswitch[1];
<Out3> = multiswitch[2];
<Out4> = multiswitch[3];
<Out5> = multiswitch[4];
<Out6> = multiswitch[5];
<Out7> = multiswitch[6];
<Out8> = multiswitch[7];

 84

7.7.6 RampSwitch

7.7.6.1 Function
The purpose of this block is to allow switching between two pairs of inputs.

7.7.6.2 Usage
This module passes a pair of inputs to the outputs, depending on the setting of the
associated EPICS record.

7.7.6.3 Operation
If the associated EPICS record is equal to zero, Out1 will be set equal to In1 and
Out2 will be set equal to In3. If the EPICS record is equal to one, Out1 will be set
equal to In2 and Out2 will be set equal to In4.

7.7.6.4 Associated EPICS Records
The RCG produces a single EPICS ‘bi’ record with the name given to this part by the
user.

7.7.6.5 Code Example
The cdsRampSwitch module generates the following C code:

double rampswitch[4];

// RampSwitch
rampswitch[0] = <In1>;
rampswitch[1] = <In2>;
rampswitch[2] = <In3>;
rampswitch[3] = <In4>;
if (pLocalEpics-><Sys>.RAMPSWITCH == 0)
{
 rampswitch[1] = rampswitch[2];
}
else
{
 rampswitch[0] = rampswitch[1];
 rampswitch[1] = rampswitch[3];
}

<Out1> = rampswitch[0];
<Out2> = rampswitch[1];

 85

7.7.7 cdsBit2Word/cdsWord2Bit

7.7.7.1 Function
The purpose of these two blocks is to convert from 16
single bit inputs to one 16-bit output word
(cdsBit2Word) and from one 16-bit input word to 16
single bit outputs (cdsWord2Bit), respectively.

7.7.7.2 Usage
For cdsBit2Word, connect 16 binary inputs to ‘B0’
through ‘B15’, with the least significant bit connected
to 'B0', the second least significant bit connected to
‘B1’, etc., and connect ‘Out’ to the module that should
receive the 16-bit output word.

For cdsWord2Bit, connect the module that supplies the
16-bit input to ‘In’ and 16 binary outputs to ‘B0’
through ‘B15’, with the least significant bit connected
to ‘B0’, the second least significant bit connected to
‘B1’, etc.

7.7.7.3 Operation
cdsBit2Word will calculate the output as Out = B0 * 1 + B1 * 2 + B2 * 4 + ... + B15 * 32,768 (i.e.,
Out = B0 * 2**0 + B1 * 2**1 + B2 * 2**2 + ... + B15 * 2**15), where B0 through B15 are equal to 1 or 0,
e.g., if the binary inputs connected to B1, B2, B5, and B12 are equal to one and all other binary inputs are
equal to zero, then the output (16-bit) word would be equal to (1 * 2 + 1 * 4 + 1 * 32 + 1 * 4,096 =) 4,134.

cdsWord2Bit will convert the 16-bit (integer) input, ‘In’, into 16 bits, e.g., the ‘In’ value 33,609 will result
in the following bit pattern on the output: B15 = 1, B14 = 0, B13 = 0, B12 = 0, B11 = 0, B10 = 0, B9 = 1,
B8 = 1, B7 = 0, B6 = 1, B5 = 0, B4 = 0, B3 = 1, B2 = 0, B1 = 0, and B0 = 1.

7.7.7.4 Associated EPICS Records
None.

 86

7.7.7.5 Code Examples
The cdsBit2Word module generates the following C code:

int ii;

unsigned int cdsbit2word;
unsigned int powers_of_2[16] = {1, 2, 4, 8, 16, 32, 64, 128, 256, 512,
 1024, 2048, 4096, 8192, 16384, 32768};

if(feInit)
{

cdsbit2word = 0;

} else {

// Bit2Word
{
double ins[16] = {
 <B0>,
 <B1>,
 <B2>,
 <B3>,
 <B4>,
 <B5>,
 <B6>,
 <B7>,
 <B8>,
 <B9>,
 <B10>,
 <B11>,
 <B12>,
 <B13>,
 <B14>,
 <B15>
};
cdsbit2word = 0;
for (ii = 0; ii < 16; ii++)
{
if (ins[ii]) {
cdsbit2word += powers_of_2[ii];
}
}
}

<Out> = cdsbit2word;

 87

The cdsWord2Bit module generates the following C code:

int ii;

unsigned int cdsword2bit[16];

// Word2Bit
{
unsigned int in = (int) <In>;
for (ii = 0; ii < 16; ii++)
{
if (in%2) {
cdsword2bit[ii] = 1;
}
else {
cdsword2bit[ii] = 0;
}
in = in>>1;
}
}

<B0> = cdsword2bit[0];
<B1> = cdsword2bit[1];
<B10> = cdsword2bit[10];
<B11> = cdsword2bit[11];
<B12> = cdsword2bit[12];
<B13> = cdsword2bit[13];
<B14> = cdsword2bit[14];
<B15> = cdsword2bit[15];
<B2> = cdsword2bit[2];
<B3> = cdsword2bit[3];
<B4> = cdsword2bit[4];
<B5> = cdsword2bit[5];
<B6> = cdsword2bit[6];
<B7> = cdsword2bit[7];
<B8> = cdsword2bit[8];
<B9> = cdsword2bit[9];

 88

7.8 WatchDogs

Watchdogs are used to monitor their input signals and
produce an error signal at their output to automatically
trigger some fault handling code/modules. The modules to
date were designed to implement similar tasks in initial
LIGO controls.

NOTE: There is a third watchdog type (not shown), which
was specifically implemented to replicate the watchdogs
used in present LIGO HEPI systems. It is intended that it
will be redesigned and added to the Watchdog parts library
in a future release.

 89

7.8.1 cdsSusWd

7.8.1.1 Function
This function was developed with the sole purpose of connecting a
suspension trip signal to the HEPI system in the early prototyping stages at
LASTI (LIGO Advanced System Test Interferometer). This block should not
be used in any new designs.

7.8.1.2 Usage

7.8.1.3 Operation

7.8.1.4 Associated EPICS Records

 90

7.8.2 cdsWD

7.8.2.1 Function
This block was designed to implement the suspension watchdog function found in
initial LIGO.

7.8.2.2 Usage
Typically, the raw suspension OSEM (Optical Sensing Electro-Magnet) signals are
input at the left of the block. The output is then connected to a product block, with the
second connection of the product being the signal path which is to be turned off if the
watchdog trips. An (incomplete) example is shown in the following figure.

 91

7.8.2.3 Operation
The run-time software for this module continuously calculates an RMS and variance for each input signal.
If all variances are within the tolerances, the output is 1. If the variance for any input signal exceeds the
RMS value beyond the operator set-points, the output becomes a value of 0, and remains 0 until reset by the
operator.

7.8.2.4 Associated EPICS Records
To support this module, the following EPICS records are produced for operator interaction. Signal names
shown in the table are based on the part being named ‘WD’ in the user model.

Name Type Purpose
WD Momentary

ai
Used to turn the module on/off. If ‘on’, watchdog is operational. If ‘off’, the
output of the watchdog code goes to 0. This is also used to ‘reset’ the
watchdog after variances are back in tolerance.

WD_STAT ai Provides watchdog status information
WD_MAX ai Trip set-point. If variance on any input exceeds its RMS value by greater

than this setting, the WD will trip.
WD_VAR_1
thru
WD_VAR_5

ai These records provide read-backs on the present variance of all five input
signals.

7.8.2.5 Code Example
The cdsWD module generates the following C code:

int ii;

static int sus_wd;
static float sus_wd_avg[5];
static float sus_wd_var[5];
float sus_wd_vabs;

if(feInit)
{

sus_wd = 0;
for (ii=0; ii<5; ii++) {
 sus_wd_avg[ii] = 0.0;
 sus_wd_var[ii] = 0.0;
}
pLocalEpics-><Sys>.SUS_WD = 1;

} else {

// Wd (Watchdog) MODULE
if((clock16K % (FE_RATE/1024)) == 0) {
if (pLocalEpics-><Sys>.SUS_WD == 1) {
 sus_wd = 1;
 pLocalEpics-><Sys>.SUS_WD = 0;
};

 92

 93

double ins[5]= {
 ,
 <LL>,
 <UR>,
 <LR>,
 <SD>,
};
 for(ii=0; ii<5;ii++) {
 sus_wd_avg[ii] = ins[ii] * .00005 + sus_wd_avg[ii] * 0.99995;
 sus_wd_vabs = ins[ii] - sus_wd_avg[ii];
 if(sus_wd_vabs < 0) sus_wd_vabs *= -1.0;
 sus_wd_var[ii] = sus_wd_vabs * .00005 + sus_wd_var[ii] * 0.99995;
 pLocalEpics-><Sys>.SUS_WD_VAR[ii] = sus_wd_var[ii];
 if(sus_wd_var[ii] > pLocalEpics-><Sys>.SUS_WD_MAX) sus_wd = 0;
 }
 pLocalEpics-><Sys>.SUS_WD_STAT = sus_wd;
}

<Out1> = sus_wd;

	1 Introduction
	2 Document Overview
	3 References
	4 RCG Overview
	4.1 Code Development
	4.2 Code Generator
	4.3 Run-time Software

	5 RCG Application Development
	5.1 Basic Code Development
	5.1.1 General Rules, Guidelines and Gotchas
	5.1.2 Example Model

	5.2 Code Compilation and Installation
	5.3 Defining Multiple Models For One Computer

	6 Running the RCG Application
	6.1 Loading and Executing the software
	6.1.1 Automatic Scripts
	6.1.2 Manual Code Execution

	6.2 Auto Generated MEDM Screens
	6.2.1 GDS_TP Display
	6.2.2 ADC Input Display
	6.2.3 Standard Filter Module Display
	6.2.4 Matrix Display

	6.3 Additional Run Time Tools
	6.3.1 DAQ GUI
	6.3.2 EPICS DAQ Configuration

	7 RCG Software Parts Library
	7.1 Top Level Modules
	7.1.1 cdsParameters
	Function
	7.1.1.2 Usage
	7.1.1.3 Operation
	7.1.1.4 Associated EPICS Records

	7.1.2 cdsFunctionCall
	Function
	7.1.2.2 Usage
	7.1.2.3 Operation
	7.1.2.4 Associated EPICS Records
	7.1.2.5 Code Example

	7.2 I/O Parts
	7.2.1 ADC
	7.2.1.1 Function
	7.2.1.2 Usage
	7.2.1.3 Operation
	7.2.1.4 Associated EPICS Records

	7.2.2 ADC Selector
	7.2.2.1 Function
	7.2.2.2 Usage
	7.2.2.3 Operation
	7.2.2.4 Associated EPICS Records

	7.2.3 DAC
	7.2.3.1 Function
	7.2.3.2 Usage
	7.2.3.3 Operation
	7.2.3.4 Associated EPICS Records

	cdsDio
	7.2.4.1 Function
	7.2.4.2 Usage
	7.2.4.3 Operation
	7.2.4.4 Associated EPICS Records
	7.2.4.5 Code Example

	cdsRfmIO
	7.2.5.1 Function
	7.2.5.2 Usage
	7.2.5.3 Operation
	7.2.5.4 Associated EPICS Records
	7.2.5.5 Code Example

	cdsRio and cdsRio1
	7.2.6.1 Function
	7.2.6.2 Usage
	7.2.6.3 Operation
	7.2.6.4 Associated EPICS Records
	7.2.6.5 Code Examples

	cdsIPC
	7.2.7.1 Function
	7.2.7.2 Usage
	7.2.7.3 Operation
	7.2.7.4 Associated EPICS Records
	7.2.7.5 Code Examples

	cdsIPCS
	7.2.8.1 Function
	7.2.8.2 Usage
	7.2.8.3 Operation
	7.2.8.4 Associated EPICS Records
	7.2.8.5 Code Examples

	7.2.9 GPS
	7.2.9.1 Function
	7.2.9.2 Usage
	7.2.9.3 Operation
	7.2.9.4 Associated EPICS Records
	7.2.9.5 Code Example

	7.2.10 cdsCDO32
	7.2.10.1 Function
	7.2.10.2 Usage
	7.2.10.3 Operation
	7.2.10.4 Associated EPICS Records
	7.2.10.5 Code Example

	7.3 Simulink Parts
	7.3.1 Unit Delay
	7.3.1.1 Function
	7.3.1.2 Usage
	7.3.1.3 Operation
	7.3.1.4 Associated EPICS Records
	7.3.1.5 Code Example

	7.3.2 Subsystem Part
	7.3.2.1 Function
	7.3.2.2 Usage
	7.3.2.3 Operation
	7.3.2.4 Associated EPICS Records

	7.3.3 MathFunction
	7.3.3.1 Function
	7.3.3.2 Usage
	7.3.3.3 Operation
	7.3.3.4 Associated EPICS Records
	7.3.3.5 Code Examples

	7.3.4 In-line (math) function
	Function
	7.3.4.2 Usage
	7.3.4.3 Operation
	Associated EPICS Records
	7.3.4.5 Code Examples

	7.4 EPICS Parts
	7.4.1 cdsEpicsOutput/cdsEpicsIn
	7.4.1.1 Function
	7.4.1.2 Usage
	7.4.1.3 Operation
	7.4.1.4 Associated EPICS Records
	7.4.1.5 Code Examples

	7.4.2 cdsEpicsBinIn
	7.4.2.1 Function
	7.4.2.2 Usage
	7.4.2.3 Operation
	7.4.2.4 Associated EPICS Records
	7.4.2.5 Code Example

	7.4.3 cdsRemoteIntlk
	7.4.3.1 Function
	7.4.3.2 Usage
	7.4.3.3 Operation
	7.4.3.4 Associated EPICS Records
	7.4.3.5 Code Example

	7.4.4 cdsEzCaRead/cdsEzCaWrite
	7.4.4.1 Function
	7.4.4.2 Usage
	7.4.4.3 Operation
	7.4.4.4 Associated EPICS Records
	7.4.4.5 Code Examples

	7.4.5 cdsEpicsMomentary
	7.4.5.1 Function
	7.4.5.2 Usage
	7.4.5.3 Operation
	7.4.5.4 Associated EPICS Records
	7.4.5.5 Code Example

	7.5 Osc/Phase
	7.5.1 cdsPhase
	7.5.1.1 Function
	7.5.1.2 Usage
	7.5.1.3 Operation
	7.5.1.4 Associated EPICS Records
	Code Example

	7.5.2 cdsWfsPhase
	7.5.2.1 Function
	7.5.2.2 Usage
	7.5.2.3 Operation
	7.5.2.4 Associated EPICS Records
	7.5.2.5 Code Example

	cdsOsc
	7.5.3.1 Function
	7.5.3.2 Usage
	7.5.3.3 Operation
	7.5.3.4 Associated EPICS Records
	Code Example

	7.5.4 cdsSatCount
	7.5.4.1 Function
	7.5.4.2 Usage
	7.5.4.3 Operation
	7.5.4.4 Associated EPICS Records
	7.5.4.5 Code Example

	7.6 Filters
	7.6.1 CDS Standard IIR Filter Module
	7.6.1.1 Function
	7.6.1.2 Usage
	7.6.1.3 Operation
	7.6.1.3.1 Input Section
	7.6.1.3.2 Filtering Section
	7.6.1.3.3 Output Section

	7.6.1.4 Associated EPICS Records
	7.6.1.5 Code Example

	7.6.2 IIR Filter Module with Control
	7.6.2.1 Function
	7.6.2.2 Usage
	7.6.2.3 Operation
	7.6.2.4 Associated EPICS Records
	7.6.2.5 Code Example

	7.6.3 PolyPhase FIR Filter
	7.6.3.1 Function
	7.6.3.2 Usage
	7.6.3.3 Operation
	7.6.3.4 Associated EPICS Records
	Code Example

	7.6.4 RMS Filter
	7.6.4.1 Function
	7.6.4.2 Usage
	7.6.4.3 Operation
	7.6.4.4 Associated EPICS Records
	7.6.4.5 Code Example

	7.7 Matrix Parts
	7.7.1 cdsMuxMatrix
	7.7.1.1 Function
	7.7.1.2 Usage
	7.7.1.3 Operation
	7.7.1.4 Associated EPICS Records
	Code Example

	7.7.2 MultiSubtract
	7.7.2.1 Function
	7.7.2.2 Usage
	7.7.2.3 Operation
	7.7.2.4 Associated EPICS Records
	7.7.2.5 Code Example

	7.7.3 Matrix
	7.7.3.1 Function
	7.7.3.2 Usage
	7.7.3.3 Operation
	7.7.3.4 Associated EPICS Records
	7.7.3.5 Code Example

	7.7.4 MultiProduct
	7.7.4.1 Function
	7.7.4.2 Usage
	7.7.4.3 Operation
	7.7.4.4 Associated EPICS Records
	7.7.4.5 Code Example

	7.7.5 MultiSwitch
	7.7.5.1 Function
	7.7.5.2 Usage
	7.7.5.3 Operation
	7.7.5.4 Associated EPICS Records
	7.7.5.5 Code Example

	7.7.6 RampSwitch
	7.7.6.1 Function
	7.7.6.2 Usage
	7.7.6.3 Operation
	7.7.6.4 Associated EPICS Records
	7.7.6.5 Code Example

	7.7.7 cdsBit2Word/cdsWord2Bit
	7.7.7.1 Function
	7.7.7.2 Usage
	7.7.7.3 Operation
	7.7.7.4 Associated EPICS Records
	7.7.7.5 Code Examples

	7.8 WatchDogs
	7.8.1 cdsSusWd
	7.8.1.1 Function
	7.8.1.2 Usage
	7.8.1.3 Operation
	7.8.1.4 Associated EPICS Records

	7.8.2 cdsWD
	7.8.2.1 Function
	7.8.2.2 Usage
	7.8.2.3 Operation
	7.8.2.4 Associated EPICS Records
	Code Example

