LASER INTERFEROMETER GRAVITATIONAL WAVE
OBSERVATORY

-LIGO-

CALIFORNIA INSTITUTE OF TECHNOLOGY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Document Type DCC Number October 20, 2009

T080135-v3

AdvLigo CDS
Real-time Code Generator (RCG)
Application Developer’s Guide

R. Bork, M. Aronsson

This is an internal working note of the LIGO Laboratory

California Institute of Technology Massachusetts Institute of Technology
LIGO Project — MS 18-34 LIGO Project — NW 22-295
Pasadena, CA 91125 Cambridge, MA 01239

Phone (626) 395-2129 Phone (617) 253-4824
Fax (626) 304-9834 Fax (617) 253-7014
E-mail: info@ligo.caltech.edu E-mail: info@ligo.mit.edu

www: http://www.ligo.caltech.edu/

http://www.ligo.caltech.edu/

Table of Contents

R Vo1 (oo [0 Tod 1 To o SO SRS RSPRPRR 4
N B To ot 1= o A @ AT VT SRS 4
K I L (=1 (= (o1 S STP 4
I S OLC R @ =T 4V - Y SRS 5
A O To (I TV [0 o] 111 o OSSPSR 5
O 010 To (I 1T T | (OSSPSR 6
4.3 RUN-TIME SOTIWAIE......eiiiiiciccc ettt be e te e e e b e e e st e tesbestesreeneeseeseeneenrens 8

5 RCG Application DeVEIOPMENL.......cciviiiieieierc ettt re e e era e e enee s 10
5.1 BasiC Code DEVEIOPMENTcceiiiiieeieieses e e ettt sa e e e saesresneereeneeneennens 10
511 General Rules, GUIdelings and GOLCNES..........cccuviiviiiieiiiie ettt 10
512 EXAMPIE IMOGEL. ... bbb b 11

5.2 Code Compilation and INStAllatioNnccoveiiiiiiiiii e 17
5.3 Defining Multiple Models FOr ONe COMPULETcceiiiiiiiiiie et e 17

6 RUnNing the RCG APPHICATIONocuiiiiieiiiii bbb bbb e 19
6.1 Loading and Executing the SOTIWAIEcooiiiiiiiiiee e 19
6.1.1 YA (0] 4 oot] o] £ SRS 19
6.1.2 Manual Code EXECULIONccviiiicieiiiie sttt sttt st be s beere e e srens 19
6.1.3 LOG FIlES ..o Error! Bookmark not defined.

6.2 Performance Considerations...........cccvvvvvesvsiesieerieseenesese e Error! Bookmark not defined.
6.3 Auto Generated MEDM SCIEENScviiueiieriiriesieseeeeeete e e ste st e e eae e te e sne e aneerae e eneees 20
6.3.1 L€ LT I 1]] | S 20
6.3.2 ADC INPUE DISPIAY ...t 22
6.3.3 Standard Filter Module DiSplay.........c.cccoiiiiiiiiiicc e 22
6.3.4 MEEFIX DISPIAY ...ttt bbbttt bbb bbb 23

6.4 Additional RUN TiMeE TOOIS......uiiiiiiiiie et be et e e e re e st e sreenees 23
6.4.1 DAQ GUI ittt bbbttt bbbttt bt 24
6.4.2 EPICS DAQ CONFIGUIALIONevviviitiieiisiisieise ettt 25

7 RCG SOftWare PartS LIDIAIY.......cccccciiiiiiii ittt sttt sttt e et st sbesbesnesra e enee s 27
% R o) oI I T I Yoo U] PSS 27
7.1.1 (000 L0 =) OSSR 28
7.1.2 (ot 0 T 1o [1 S 30

7.2 L@ I g (PSS 32
721 ADC ..o 1 e ettt h bt r b et R e bt r e bttt enrennenen 33
7.2.2 ADC SEIBCION. ...ttt et et e ettt be e s be e be e be e s ae e reesbe e sbeeere et nnes 33
7.2.3 [OSSP 34
724 (010 5] I o SRS 35
725 (010 5121 .1 [LTSRS 36
7.2.6 CASRIO AN CASRIOL ... s e e re e sre s e e saeesbeesbeenre e 37
727 (070] | 2 OO S TP 39
7.2.8 (070] | 2 O OO SO ST 41
7.2.9] TSSOSO USSR 43
T.2.00 COSCDOB2 ...ttt ettt b etk b et b bbbttt bt 44

7 T 11101 11 S 2 o £ S 45
7.3.1 LT 0 - PSSR 46
7.3.2 SUBSYSTEM PAIT ...t bbbt b e 47
7.3.3 MALNFUNCEION. ...ttt et ettt e e s be e beebeeraesreesbeesaeesreenrennns 48
7.34 IN-l1ine (Math) FUNCLION........ciiiiii e 51

A I =1 (O3 T o OSSOSO 55
7.4.1 CASEPICSOULPUL/CASEPICSIN ...t 56
7.4.2 (o0] = 0T TotsY = 10| Lo USSR 57
7.4.3 (o0 et 0 0 T0] (=1 [)1 USSR 58
7.4.4 CASEZCAREAA/CASEZCAWTITEc.vcvve ettt ettt sttt sre bt neens 59

7.4.5 CASEPICSIMOMENTAIYcviiviieiiiie ettt bbb bbb 60

7.5 (@ 1074 2 1T 1T 61
7.5.1 (o0 o 4 YRR 62
7.5.2 (o0 [VAV £ = 4 P YRR 63
7.5.3 (610 15O LY RS 64
75.4 (000 [T 1 (O 10 o | TR 66

7.6 1L =] £ 68
7.6.1 CDS Standard HR FIlter MOAUIEoociiiiie ettt 69
7.6.2 IR Filter Module With CONLIOL..........ccuiiiiii et 74
7.6.3 POIYPIESE FIR FILEIvviiiciicce sttt nne e 76
7.6.4 LAY I T 1 (=T 77

1.7 Y A) - 1 TR 78
7.7.1 (o0 [\ 10D =1) SRR 79
7.7.2 LY [0 LS00 (=T TR 81
7.7.3 IVTAETEX «e vttt et st e et e bt e et e et e s b e e et e e e ste e s st e s e besesbe s e abeesabesebeeeabeseabaeenbeseeraesnraeas 82
7.7.4 1Y [0 £ T d 0o L8 (o1 R 83
775 VLTS (o I 84
7.7.6 T 0T IS Y (o o PSSR 85
117 CASBIt2WOrd/CASWOIUZ2BIL.........coviiieiicciee ettt ettt st be s s ae e 86

S VAV 1 (o 15 o S 89
7.8.1 (000 SRS U TSV o 90
7.8.2 (000 XYL 5 2 91

1 Introduction

For the development of real-time controls application software, the LIGO Control and Data Systems (CDS)
group has developed an automated real-time code generator (RCG). This RCG uses MATLAB Simulink as
a graphical data entry tool to define the desired control algorithms. The resulting MATLAB .mdl file is
then used by the RCG to produce software to run on an AdvLigo CDS front end control computer.

The software produced by the RCG includes:
o Areal-time code thread, with integrated timing, data acquisition and diagnostics.
e Network interface software, using the Experimental Physics and Industrial Control System
(EPICS) software and EPICS Channel Access. This software provides a remote interface into the
real-time code.

2 Document Overview

This document describes the means to develop a user application using the RCG. It contains the following
sections:

o Reference Section (3): The RCG produces software which integrates with various other
components of CDS software. In addition, there are various files and services which must be
configured prior to code operation. These items are covered under separate documentation, listed
in the reference section.

e RCG Overview (4): Provides a brief description of the RCG, its components and resulting code
threads.

o Application Development (5): Provides the basics for developing an application using the RCG,
with a sample application file.

e Software Execution (6): Describes how to start and stop the software application.

e RCG Software Parts Library (7): Describes the various components supported by the RCG.

3 References

LIGO T080136-C CDS Software Admin Guide: Describes the various computer services and
configuration files which must be in place to operate software produced by the RCG.

TBD CDS Software Development Guidelines: Provides the rules and guidelines for software
development for applications which are to run in AdvLigo CDS.

4 RCG Overview

The RCG uses MATLAB Simulink as a ‘drawing’ tool to allow for applications to be developed via a
Graphical User Interface (GUI). A basic description of this process, the RCG itself, and resulting
application software is provided in the following subsections.

4.1 Code Development

Code development is done by graphically placing and connecting blocks in the MATLAB Simulink editor.
The *building blocks’ supported by the RCG are included in the CDS_PARTS.mdl file. The contents of the
present file are shown below, with further descriptions of the blocks listed in Section 7.

[ClLibrary: CDS_PARTS =10l x|

File Edit Wew Format Help

D SHS| + 28 ¢s4 |0 nEmE|

M I
D
Text
Cyerview
n
?0‘1 I0_PARTS sinlinkParts EpicsParts Osc.Phase
ex
S Install
Dt 1l
1—4rrmll——bt
ite=H1 HatrizPart
rSaltEE=32K Filters UachDDgS atrixfart=s
Function Hame douid=10
cdsFunctionCall gds node id=1
cdsParansters
Ready 100% [Lacked 4

Figure 1: CDS Parts Library

Parts from the CDS library are copied (drag and drop) to the user application window and then connected
to show processing/signal flow. A simple example is shown in the following figure. This example shows:

e A CDS parameter block, used to identify the desired sample rate and connection into the CDS
infrastructure.

A single, 32 channel ADC (Analog-to-Digital Converter; adc_0).
An ADC channel selector, which is here used to pick off the first 6 ADC channels.

e A Matrix part (IN_MTRX) complete with an input Mux — multiplex or signal combiner — and an
output Demux — de-multiplex or signal splitter - which routes inputs to outputs with user
selectable gain for each.

e Four CDS standard IIR (Infinite Impulse Response) filter modules (FM1-4).

e Asingle, 16 channel DAC (Digital-to-Analog Converter).

This Simulink diagram is then saved to a user defined .mdl file, which is then processed by the RCG to
provide the final real-time and supporting software which run on a CDS front end computer.

E!sam =10l x|

File Edit Miew Simulation Formab Tools Help

D|ﬁn%|%ﬁ|¢¢ﬁ|9Q|i II‘ID.EI INu:urmaI ﬂ|@|ﬁ
site=m"1
rate=321
deuid=10
gd=_node_id=1
cdsParameters Fhi
cdsFilt
FhiZ
cdsFilt
IN_MTRX FMiz
cdshduxhiatrix cdsFilt
F i<t
cdsFilt DAL O
DAD
Ready [100% | | |od=45

Figure 2: Sample Application

4.2 Code Generator
The code generation process is shown in the following figure and the basic process is described below.

1) Once the user application is complete, it is saved to the user .mdl file in a predefined CDS software
directory.

2) The ‘make’ command is now invoked at the top level CDS directory. This results in the following
actions:
- A CDS Perl script (feCodeGen.pl) parses the user .mdl file and creates:
- Real-time C source code for all of the parts in the user .mdl file, in the sequence
specified by the links between parts.
- A Makefile to compile the real-time C code.
- A text file for use by a second Perl script to generate the EPICS code.
- An EPICS code Makefile.
- A header file, common to both the real-time code and EPICS interface code, for the
communication of data between the two during run-time.
- The compiler is invoked on the application C code file, which links in the standard CDS
developed C code modules, and produces a real-time executable.

- The Perl script for EPICS code generation (fmseq.pl) is invoked, which:

- Produces an EPICS database file.

- Produces an executable code object, based on EPICS State Notation Language (SNL).
This code module provides communication between CDS workstations on the CDS Ethernet and the real-
time FE (Front End) code.

- Produces basic EPICS MEDM (Motif Editor & Display Manager) screens.

- An EPICS BURT (Back Up and Restore Tool) back-up file for use in saving EPICS
settings.

- The header for the CDS standard filter module coefficient file.

- A list of all test points, for use by the GDS (Global Diagnostic System) tools.

- A basic DAQ (Data Acquisition) file.

- A list of all EPICS channels for use by the EDCU (EPICS Data Collection Unit).

CDS_Parts.m Simulink
dl | Graphical
File Editor

SimuLink.mdl
File
CDS Y
Individual feCodeGen.pl
Part Library Script
.mdl Files
v v : | v
Realtime R%ﬂﬂﬂz € Common Epics .txt EPICS
Makefile Header File File Makefile
Code
i Skeleton.st
postme | [Sceeonst |
Script
: Skeleton.db
Realtime
Controller — Compiler Y
Software EPICS
SNL
Code
Realtime | |
DAQ Library
‘ EPICS ‘ Basic ‘
Startup File Filter Flle
‘ EPICS ‘ GDS.par ‘
.db File File
‘ EPICS |_ _ [Basic .ini ‘
v autoBurt "|__DAQ Flle
Realtime EPICS Basic EDCU
Executable Executable MEDM - » File
Screens

Figure 3: Code Generation

4.3 Run-time Software

The primary software modules to run on CDS FE computers are shown in the figure below. The intention is
that all FE computers run the same generic code modules (highlighted in green), and that only the block
labeled FE Application be specific to each FE computer.

The computer itself is to be a multi-CPU/multi-core computer, with up to 4 cores available. Generic Linux
would be the operating system for the ‘Non-Real-time’ CPU (Central Processing Unit), and up to 3 extra
available running Real-time Linux.

The ‘“Non-Real-time” CPU runs the following tasks:

- GDS Test Point Manager (TPM) and Arbitrary Waveform Generator (AWG). In LIGO, one
TPM and one AWG was run per IFO (Interferometer) and communicated to the FE applications via
Reflected Memory (RFM). In the AdvLigo scheme, the TPM/AWG runs on each FE computer and
communicates to the FE application via internal memory space.

- EPICS based network interface. The purpose of this task is to relay real-time FE application
information to/from EPICS operator interfaces. In LIGO, an EPICS interface task is run on a separate
computer and communicates to the FE applications via RFM. In the AdvLigo scheme, there is an EPICS
task on the FE computer to relay this information via the CDS network and internal computer memory.

Real-time CPUs in the FE computer run the real-time control and monitoring application. The code
modules shown are inline compiled and run as a single task. The code modules that make up this task are:

- Synchronization software: This module controls initialization and timing of all other code
modules. This code is slaved to the CDS timing clock used to synchronize the ADC modules.

- 1/O Drivers: This code supports all input/output to the ADC/DAC modules in the 1/O chassis,
and data access to the CDS real-time network.

- DAQ/GDS: This module writes all data to the real-time network for data acquisition and handles
all TP and AWG signals.

- FE Application: This code is specific to each FE and runs all of the necessary control algorithms,
including CDS standard filter modules. To aid in the development of this software, a MATLAB Simulink
tool is provided. This allows the application to be developed through a standard GUI, then compiled with
the above generic modules.

CDS Realtime Network (to other FE Computers and FrameBuilders)

CDS Control and Monitoring Network

ﬁ ==

=~

CDS Front End Computer

GDS
TPMAN/AWG

DataAcq
GDS

1/0 Chassis =
Fiber Link T

Realtime

CPU
(1to 3) H E;'\‘CLS EPICS
' Software Database

Shared
Memory

Synchonization
Software

Non-Realtime
CPU

Figure 4: Runtime Software

5 RCG Application Development

This section describes how to use the RCG by stepping through a basic example.

5.1 Basic Code Development

5.1.1 General Rules, Guidelines and Gotchas
Some overview notes before starting an application development process:

1)

2)

3)

4)

Only modules shown in the CDS_PARTS.mdl file may be used in the application
development. Simulink native parts which may be used are shown in the CDS_PARTS >>
simLinkParts window. A description of all available parts is given in Section 7.
The tool is designed to work with the LIGO CDS standard naming convention, which
includes:

a. All channel names shall be upper case.

b. All channel names shall be of the form A1:SYS-SUBSYS_XXX_YYY where:

i. Alis the Interferometer (IFO) site and number, such as H1, H2, L1, M1,
etc., followed by a colon (:). The IFO part of the name is set using the
cdsParameters part in the application model (see example in next section).

ii. SYSisathree letter system designator, such as SUS, ISI, SEI, LSC, ASC,
etc., followed by a dash (-).

iii. SUBSYS and beyond are user definable, up to a maximum channel name
length of 28 characters (limit set by EPICS software). Underscores are used
to further break up the name, with any number of characters in between.

The present release of RCG uses the first three characters of the .mdl file name, by default, as
the three letter acronym for the SY'S part of the channel names in the model. This naming
‘feature” may be overridden by the use of ‘subsystem’ parts (see section 7.3.2).

ALL MODELS MUST CONTAIN AT LEAST ONE ADC PART AND TWO IIR
FILTER PARTS! This has to do with the compile scripts and shared memory setups running
properly.

10

5.1.2 Example Model

1) Start MATLAB. Ensure that the advLigo/src/epics/simLink directory and subdirectories are in the
MATLAB path.

2) Open the CDS_PARTS.mdl file. This will be used to select parts for inclusion in the user model.

3) Select File>>New>>Model from the MATLAB toolbar. This will open a new, blank Simulink

window.
4) From the CDS_PARTS.mdl window, drag and drop a ‘cdsParameters’ block into the user model
[51sam =10l x|

File Edit Wew Simulation Formak Tools Help

DSE&| 2@ |E ¢ (22 r = foo

site=hi1

rate=22K
deuid=10
gds_node_id=1
cdz Parameters

Ready [100% | | |ode45 Y

window. One, and only one, of these blocks is required in every user application model.
5) Define the parameters for this block by editing the text. The following is the minimal number of
parameters which need to be defined. A complete list is given in section 7.1.1.
a. site=: The RCG will name all of the parts using the LIGO CDS standard naming
convention, i.e., IFO:SYS-SUBSYS_XXX_XXX_ XXX to a maximum of 28 characters
(EPICS limit). The IFO portion of all signal names for this model will be filled in by this
site definition. In this example, M1: will be the prefix for all channel names in this
model. If the code generated from this model is to run on multiple IFOs, then multiple
entries can be listed after site=, e.g., site=H1,H2,L 1.
b. rate: The rate field indicates the run-time sample rate of the real-time process. Presently
supported are 64K (65,536 Hz), 32K (32,768 Hz), 16K (16,384 Hz) and 2K (2,048 Hz).
c. dcuid: Every real-time process requires a unique id. number to properly address the data
acquisition system.
d. gds_node_id: In the same manner, a unique Global Diagnostic System (GDS) id. is
required for each real-time process, starting with 1 for the first model within a system.
This is needed to properly attach the test point manager (TPM) and Arbitrary Waveform
Generator (AWG) at run-time.
6) From the Simulink>>Model-Wide Utilities menu (i.e., click on the Simulink icon in the toolbar
located second from the top in the MATLAB window, then double click on the Model_Wide

11

[]sam

File Edit Wwiew Simulation Format Tools Help

DEE&E $BR & 452 = oo

= .
Loc
|. Tex‘t

site=hi1
rate=32HK
deuid=10
gds_node_id=1
cdz Parameters

Re: [100% nded5 A

7) Addan ADC and a DAC module to the model. This is done by double clicking on the ‘1/O Parts’
block in the CDS_PARTS window, which opens the 1/O parts window. Then, drag and drop the
ADC and DAC parts.

Clsam o] 1|
Elle Edit Mew Simulation Format Tools Help
D|ﬁﬂ§|é€ﬁ|<}==ﬁ>{rlﬁﬁ|b II'ID.D INormaI j||§
Loc
T et
site=h11
rate=32K
deuid=10
gds_node_id=1
wids Parameters
ade:_0
DAC_D
0Ac
Ready [100% [[|ode4s v

8) Save this model file as ‘sam.mdl’. In the present RCG release, this must be a three letter name, as
the three letters, in this case ‘sam’, are used as part of the signal names generated from this model.

12

9) Add a Subsystem block from the Simulink>>Commonly Used Blocks Menu (i.e., click on the
Simulink icon, followed by double clicking on the Commonly Used Blocks entry in the Simulink
Library Browser window, and drag and drop the Subsystem part into the user model). While a
simple ‘flat” model can be used, it is more common to organize the diagram using subsystems.
This is done to keep the model view from becoming too complex and also allows the reuse of
subsystems as “parts’.

10) Change the name of the Subsystem part to ‘ETMX’. Note that the convention is to name all parts
in the model using upper case, in keeping with the CDS naming convention. In the following
steps, blocks will be added to the Subsystem block. The name of every item within the subsystem
block will later be prefixed by ‘M1:SAM-ETMX_’, where M1 came from the cdsParameters
block, SAM comes from the name of the model file, and ETMX comes from the subsystem part

name.
Z1sam -0 x|
File Edit Wiew Simulation Format Tools Help
DEE&| L BER|e= ¢ =2 » 5o [Noma | 58 e [
poc
T]
site=hi1
rate=321K
deuid=10
gd=s_node_id=1
cd=Parameters
In1 Ot e
EThix
adc_0
DAC_D
DAC
Ready [100% [| |odeds 4

11) Double click on the ‘ETMX’ subsystem part, which will open a window showing an input
connected to an output.

a. Disconnect the link between ‘In1” and ‘Outl’ (i.e., click on the link between ‘In1’ and
‘Outl’, followed by clicking on the cut — scissors — icon in the MATLAB toolbar).

b. Copy ‘Inl’ (i.e., click on “In1’, followed by clicking on the copy — double page — icon in
the MATLAB toolbar, followed by clicking on the location in the user model where the
copy should be placed, and finally clicking on the paste — clipboard — icon in the
MATLAB toolbar) several times until there are ‘In1’ thru ‘In4’. Do the same with ‘Outl’.
Change the names of these parts to something more meaningful, as these connection
points will appear as part of the subsystem part at the top level diagram. In the case of
this example, the four inputs are renamed UL, UR, LL, LR and the four outputs are

13

¢c. Fromthe CDS_PARTS, select and place filter modules and matrix parts into the
subsystem window and make connections and name changes until the window appears as
shown in the next figure. Note that the number of inputs and outputs to a matrix part can
be changed by double clicking on the Mux/Demux parts and entering the number of
desired ports (i.e., click on the black vertical - Mux/Demux — bars connected to the
cdsMuxMatrix block, which opens a window where the number of inputs/outputs can be
altered).
d. In keeping with CDS standards, add a ‘DOC’ block in the upper left to document this
code section.
12) After step 11, the subsystem block window should look like the following figure. When the code
is generated , the EPICS names of these channels will be prefixed by M1:SAM-ETMX; e.g.,
M1:SAM-ETMX_UL_SEN.

E!sam,.-"ETMK =10l x|
File Edit Wiew Simulation Format Tools Help
D|@n§|ﬂg|¢=§?|52|b II1D.EI INDlmaI j|$|ﬁ|
Loc
T exd]
g]
UL
UL_SEN
cdzFilt
Py
LR cdzFilt
UR_SEN
cdsFilt
Lt LL_SEHN IN_MTRX. OUT_MTRX
cdsFilt cdshArdtatrix cdshinditatric
LR cdsFitt
LR_SEMN
cd=Filt
Ready [1009% |ode4s 4

14

13) Close the subsystem window. The top level window should now appear as shown in the following
figure. Note that the input/output names now appear on the ETMX part.

Z)sam o] 4
File Edit Wiews Simulation Format Tools Help
D|@E§|%E|<}=$?|9Q Pllm.ﬂ INDrmaI jl@
cac
Texd
site=hd1
rate=32K
douid=10
gds_node_id=1
cdsParameters I Lo
UR LR Ot
LL LLCnst
LR LR Ot
EThix
ade_0
DAC_O
OAC
Ready [100%% | [|odeds G

14) Next step is to connect ADC channel(s) to the ETMX part. From the CDS_PARTS>>I10_Parts
drag and drop an ADC Selector part. Connect the adc_0 part to the ADC selector part. Double
click on the ADC selector. Select any four signals as inputs from the MATLAB GUI (i.e.,
highlight the desired signals in the left — Signals in the bus — window and click on “Select>>",
which should lead to the desired signals appearing in the right — Selected signals — window; finally
click on the “OK” button).

=] Function Block Parameters: Bus Selectorb |

— BusSelector

Thiz block accepts a bus az input which can be created from a Bus Creator, Bus Selectar or a black that defines itz output
uzing a bus object. The left listbox shows the zignals in the input bus. Usze the Select button to select the output signals. The
right listbox shows the selections. Use the Up, Down, or Remove button to rearder the selections. Check 'Output as bug' to
output a single bus signal.

r— Parameter

D

Signalz in the bus Fird | Selected signalz P

-adc 00 adc_0_0

- ade_0_1 N | My Dawn
- ade_0_2 Refrezh | ade_1.2 Remove
- ade_0_3 adc_ 03

- adc 04

- adc_ 05

- ade 0B —
- ade_0_7

- adc 08

- adc_0_9

- ade 010

~ade_0_11

- ade 012

- ade_0_13

- adc 014 | [~ Output as bus

-d. no4c

il

oK Cancel Help Apply

15

15) Connect the ADC selector to the ETMX part and ETMX part to the DAC and this sample model is

complete.
iZ)sam -0l x|
File Edit ‘iew Simulation Format Tools Help
DEE&E $BR|(E 4502 » =00 [Noma R == e
Lac
T x|
site=hi1
rate=324
deuid=10
gds_node_jd=1
cdsParameters

<ade O 0 UL UILOut
= UR UROut
ade_Q1r LL LLOut
LR LR Out

<adc_D_2f |
<ado_0_3F ETHhX
ADC Selector
ade_00
LAC_0
DAC
Ready 100% [ode4s v

16

5.2 Code Compilation and Installation

The software may be compiled in any user area that includes the cds/advLigo source code tree from the
CDS CVS software repository. This space must be mounted to a computer which has RT Linux installed,
as all compilation must be done on a real-time computer.

To compile the code:
1) Place the MATLAB .mdl file in the directory advLigo/src/epics/simLink
2) Move to the the advLigo directory.
3) Type ‘make <sys>’, where <sys> is the three letter name of the .mdl file. This command will
result in the compilation of all the code, including EPICS.

Once the code is compiled, a few more commands need to be run from the advLigo directory to install the
code for execution.

1) make install-<sys> : This command installs the code in the appropriate directories for
execution and makes the automated start-up commands. The EPICS code will be copied to the
[cvs/cds/<site>/target/<ifo><sys>epics directory and the front end code will be moved to the
[evs/cds/<site>/target/<ifo><sys> directory.

2) make install-dag-<sys> : This command creates the data acquisition file in the
[cvs/cds/<site>/chans/daq directory.

3) make install-screens-<sys> : Installs automatically generated MEDM screens in the
[evs/cds/<site>/medm/<ifo>/<sys> directory.

5.3 Defining Multiple Models For One Computer

During run-time, the RCG code requires one or more multi-core processor(s) to operate. Core 0 is reserved
for standard Linux tasks and the real-time support tasks, such as EPICS. Remaining cores may be used by

the real-time code threads. By default, as in the case of the example model, at run-time, the real-time code

will run on CPU 1.

If it is desired to run multiple applications on the same computer, a couple of things need to be done:
e The support services must be configured, as described in the SysAdmin Guide.
o Applications which are destined to run on Core 2 and higher must have some additional
parameters set:

0 The cdsParameter part must have specific_cpu=num, where num is the core number on
which to run. This number may be 2 to 15, dependent on the number of cores on the
target computer.

0 Since, in the present release, models may not share 1/0 cards, these cards require further
definition in the model file.

Taking the previous example model as an example, to have this model run on CPU core 2 and make use of
ADC card 1 (instead of the default core 1 and ADC 0 of the example model), the following changes would
need to take place:

e The cdsParameter block would need to have specific_cpu=2 added.

e The adc_0 block will need card_num=1 added to the block description. This is done by right
clicking on the adc_0 part and selecting Block Properties. This will bring up the following
window, where card_num needs to be added to the Description field.

The Block Properties window and resulting model changes are shown below. Note that even though

adc_num has been set to 1, the user application still needs to use ADC 0 and adc_0 signals for its first
ADC.

17

.} Block Properties:Bus Creatorl

General

Elock Annotation || Callbacks

=101 x]

Uzage

Priarity: Specifies the block's arder of exec
the =ame model.

Description: Text zaved with the block in the wedal fils

E!sam =10 x|

I CE

; File Edit Wew Simulaktion Format Tools
Tay: Text that appears in the block label th
Help
~u by,
Drescription: D|EE§|$E|‘Q’=€>‘&
adc_0
card_num=1
Lac
Text
Priarity: cite=31
I rate=2K
deuid=22
Tag. gd=s_node_id=2
no_syne=1

shmem_dag=1
specific_cpu=2

cd= R

<ade_0_0

AOC Selector

AOCH

card_num=1
| | i
Fllo0% | loc

18

6 Running the RCG Application

6.1 Loading and Executing the software

When the code is compiled and installed, it is ready to run, as outlined below. However, for data
acquisition and global diagnostics to function with this software, certain parameters must be set up for these
services to work properly. See the RCG SysAdmin Guide for instructions on how these parameters are set.

6.1.1 Automatic Scripts

During the make install process, scripts are generated in the /cvs/cds/<site>/scripts area for conveniently
starting and stopping the user application. This directory should be put into the user’s PATH. Note that the
user must have super user privileges, as the real-time code needs to be inserted into the kernel.

To start the RCG processes, type ‘start<sys>’, where <sys> is the name of the model file. This will result
in:

e The EPICS code being started, along with an automatic restoration of the last EPICS settings (if
EPICS Back Up and Restore Tool (BURT) is in the user’s path and a back-up had been made
previously).

e The awgtpman process will be executed to provide GDS support for this system. Note again that
this task will only function properly if the appropriate system parameters have been set up, as
described in the SysAdmin Guide.

e The real-time code thread will be executed and inserted into the kernel of CPU 1.

To verify that the software is functioning, use the auto generated MEDM screen, described below in section
6.2.1. There are also log files produced in the target areas for the EPICS and real-time code which provide
additional diagnostic information.

To stop the software, execute the kill<sys> script, where again <sys> is the model name. This will kill all
tasks associated with this model.

6.1.2 Manual Code Execution

The EPICS and real-time code may also be executed manually from the command line. This is typically
only done when trying to diagnose problems or the real-time code modifications do not affect the EPICS
code, such as modifications to user supplied C code modules, and it is not desired to constantly stop and
start the EPICS side.

During the make install-sys process, two target directories are built in /cvs/cds/<site>/target, one for the
EPICS components (named <site><sys>epics) and one for the real-time code (named <site><sys>). EPICS
and the real-time code may be started independently by using the start-up command (named startup<SITE>
and startup.cmd, respectively — please note the upper case <SITE> in the former) in those directories. Note
that EPICS must be running prior to starting the real-time code.

19

6.2 Auto Generated MEDM Screens

During the make process, various EPICS displays are automatically generated. These are fairly simple
displays, to get the user started and to provide for quick testing and some quick ‘copy-paste’ points to use
in building custom operator displays. After the make install-screens-<sys> command is executed, these
displays will appear in the /cvs/cds/<site>/medm/<ifo>/<sys> directory.

These displays are:

<IFO><SYS>_GDS_TP.adl: Provides basic diagnostic information for the running application.
<IFO><SYS>_ ADC_X: Provides a display of all ADC input channels for quick signal checkout.
Note that, in the present release, this display will only show ADC channels which are directly
connected to filter modules or EPICS outputs in the model file.

Filter module displays: For every filter module in the model file, a generic filter module display is
generated.

Matrix displays: For every matrix defined in the model, an associated EPICS display is generated.

These various displays are further described in the following subsections.

6.2.1 GDS_TP Display

A basic system diagnostic display is built for each system during the build process, with an example shown
below. This display includes the following:

Upper Left: DAQ data and status

Dcu Id: The DAQ node id. for this system. Each real-time process has a unique and separate id.
number on the network, as defined by the MATLAB model.

Chan Count: Number of channels presently being recorded by the DAQ system, as defined by the
user in the system .ini file.

DAQ Rate: Total data rate in Kbyte/sec for configured DAQ channels.

DAQ + TP rate: Total data rate in Kbyte/sec being transferred by this process to the framebuilders,
which is a combination of DAQ channels and selected test points.

CRC: This is the CRC checksum, calculated from the .ini file. This number is checked by both the
framebuilder and the real-time front end to verify that they have read the same .ini file.

DAQ Reload button: When pressed, causes the real-time front end to reload the DAQ .ini file.
This is to be asserted whenever a new DAQ configuration has been set by the user. Note that the
framebuilder must also be reset at this time for DAQ configuration to be computed.

Framebuilder status info: The next sub block contains framebuilder status information, as it
pertains to this system. In the LIGO system, two framebuilders run on the network for
redundancy, but only one framebuilder is required. The fields shown beside each framebuilder are:

o Status block, with two red/green indicators. The left-most indicator is front end status and
right-most is framebuilder status for this system.

0 Status: A hex status number, with meaning given below this block.

0 CPS: Transmission errors per second. The framebuilder performs CRC checksums on all
data received from the front end system. The number in this field should be zero, but if
there are continuous errors, the count will be indicated here and in the following field.

0 SUM: The total number of transmission CRC errors since the framebuilder counter was
reset.

Lower Left: Front end real-time process status:

Coeff Reload button: Pressing this button will cause the front end to reload all filter coefficients
listed in its coefficient file.

Diag Reset: Causes the reset of diagnostic values, including the CPU Max Time.

IRIGB Diff:

1PPS Trig:

20

e ADC Sync:

e USR Time: The maximum time, in psec, that it takes to cycle through the user application, which
was developed using the RCG.

e CPU Max: Maximum amount of time, in psec, that it took to run through a single cycle of the
software, including the user application and overhead, such as 1/0 and DAQ, of the front end code.
This field is held to the highest value until reset using the Diag Reset button.

e CPU: Similar to above, but this field is the maximum time during the last one second period.

e BURT Restore: When the software is started, the real-time code will wait for restoration of user
set-point values before running. This is typically done through a BURT restore. However, this can
be overridden by entering a “1” into this field.

‘C10MC_GDS_TP.adl
C1 - oM C10HC_GDS_TP Fri fpr 4 15:08:05

Tcu Id 1 OVERFLOMS Test Paints EXC Chans

Chan Count
T60 Rate ADED TACO TACL

TRC+TP Rate
CRC

| DA0 Reload

DAD Status CPS SUM

FBo 11
FE1

0x2000 - FB/FE config mizmatch
01000 - Transmission erraor
0x1 - Stopped or out of sync

Coeff file load co

1RIGE Diff [I r=
1pPS Tria [] [NED o=
AIC Sync |:| 0B
usk Tine [N “ us
CPU Max I:l us

CPU
BURT Restore

-
i

Center Section: The real-time code continuously checks for ADC and DAC overflows, i.e., greater than
32,000 counts or less than -32,000 counts. If these values are exceeded, the real-time code will clamp the
value to +/- 32,000 and report the error via overflow counters.
o Total and Reset (top): This field reports the total number of overflows detected for all channels.
This is a running count, which may be reset using the Reset button.
e Below each ADC and DAC on this display are individual overflow counters for each channel.
These fields indicate the number of overflows detected per second to help identify which
channel(s) is/are having problems.

Right hand section: This section provides a list of those GDS test-point and excitation channels which are
presently selected. There is also a meter representation of the maximum CPU time, same as the value in the
CPU field at the lower left of this display. The meter limit is set by the sample rate of this system. For
example, the system shown was set to run at 32KS/sec, so a single code cycle must complete in under 30
psec to function properly. For 2KS/sec systems, the max time on the meter would be 480 psec and 60 psec
for a 16KS/sec system.

21

6.2.2 ADC Input Display

6.2.3 Standard Filter Module Display

For each IIR filter module defined in the user model, a standard MEDM screen will be produced as part of
the build process. An example screen is shown below. This screen contains the following EPICS I/O:

INMON and Input On/Off: Displays the filter module input value. The following on/off switch
applies/removes the input signal from the filter bank.

EXCMON: The value of an excitation input. This field is typically 0.0 except when a GDS
excitation signal is being applied.

OFFSET value and Offset On/Off switch: Allows the user to add a DC offset to the input prior to
entering the filter bank. The indicator below the offset value will be green if turned on and red if
turned off.

Filter module names and selections: The 10 available filters per bank appear to the right of the
offset value field. Names, as defined using the foton tool, appear above each filter selection button.
The filter selection buttons are used to turn the filters on/off. Below each filter button are two
status indicator block. The left box indicates if a filter has been selected to be turned on (green) or
off (red). The right box indicates when the real-time code has actually turned on (green) the filter
or turned off (red) the filter.

Gain and Ramping: The signal out from the filter bank may be multiplied by the gain setting. To
avoid a sudden excursion of the signal when a new gain is selected, this gain may be ramped over
the number of seconds entered into the Ramp Time setting. This ramping is performed by the real-
time code. When the real-time code gain is not the same as the entered gain, i.e., during the
ramping, the background of the triangle surrounding the gain setting will be yellow. Once the
ramping is complete, the triangle will become black.

LIMIT setting and on/off switch: The output of the filter bank may be limited by the user by
setting the limit field and turning the limit switch on (green indicator). The real-time code will
then limit the output to +/- the limit setting.

Output On/Off and OUTPUT monitor: Turns the output on/off, with the filter bank output value
displayed in the OUTPUT field. Note that the OUTMON (output test-point) will still have the
output of the filter bank.

DECIMATION On/Off switch and OUT16 field: The real-time code decimates the filter bank
output to 16Hz, the resulting value being placed in the OUT16 field.

HOLD OUTPUT: When selected, the output of the filter module is held to the present value
(seldom used).

CLEAR HISTORY: When selected, clears the history of all filters within the filter module. This is
typically used when integrators have been defined and have rung up to a large value.

LOAD COEFFICIENTS: Loads new filter coefficients and reloads existing filter coefficients for
this filter module.

22

Hold Output

Limiter Val
i On/Off alue
AWG Filter Name on/off
Input Clear Load 16Hz
Offset Filter Ne Test Point Decimation
Input on/Off Histories Coeffs (ouT) On/Off

% C10MC_ASC_P1_CLOCK.adl :
ol - 0D C: _CLOCK A G @

0,000 | CLEGR HISTORY LOAD COEFFICIENTS | |

INL ot
o mm EEEAERERRE _ pm _
0,000 *ME * ; > N ? m
e Bl e
1000, 0

Ramp Time

Test Point Test Point Ir:jp(t;t IR (I;icl)t)ers Output R?ain Output
: amp
(IN1) (IN2) Offset Gain Time On/Off
Input Output
On/Off Limit
Setting

6.2.4 Matrix Display

For each matrix defined in a model, a matrix screen is automatically generated, as in the following example
screen. By default, matrix elements which are set to 0.0 have their backgrounds set to red. Any other value
results in a green background.

10MC_ASC_INMATRIX.adl

6.3 Additional Run Time Tools

Along with EPICS MEDM, various additional tools are available to support real-time applications during
run-time. These are listed below, with a few described briefly in the following subsections. For more
detailed information, see the appropriate user guides for these applications.

e EPICS Back Up and Restore Tool (BURT): Used to save and restore operator settings.

e EPICS StripTool: Provides strip charting for EPICS channels.

e Dataviewer: Allows users to view DAQ and GDS TP channels, either live or from disk.

23

e ligoDV: Based on the GEO developed tool, this is a MATLAB tool for reading, plotting and
analyzing DAQ data.

e Diagnostic Test Tool (DTT): Allows for analysis of live or recorded DAQ/TP data, particularly
useful for calculating and plotting transfer functions.

o DaqGui: A graphical user interface for setting up DAQ channels.

e Foton: A GUI for the development of filter coefficients for use by the real-time software.

e Ezca based scripting tools, along with TDS scripting tools. These tools allow for the addition of
automated scripts which may be used to sequence through operator settings automatically.

6.3.1 DAQ GUI

Screen shots of the DAQ configuration GUI are shown below. This tool is used to configure channels
which are to be stored by the DAQ system. By default, all filter module input and output test-points are
available to be recorded, but must be selected from the list and set to be stored to disk, if desired.

After the make install-dag-<sys> command is executed during the build phase, a DAQ file with all
available channels is built in the /cvs/cds/<site>/chans/daq directory (with suffix .ini). In addition, a
daqconfig script is generated in /cvs/cds/<site>/scripts to attach this file to the DAQ GUI. Running this
script will bring up the following window, with a list of all .ini files in the daq directory. Note that this
GUI is only used to configure ‘fast’ data channels, that is, channels which may be recorded at up to the
sample rate set for that system. Slow (EPICS) channels may also be stored to disk at 16Hz, but must be
separately configured, as described in section 6.4.2 below.

Running the script will bring up the following display. This display will list all systems which have .ini
files in the daq directory. Systems and active DAQ channels are shown in the left half of the window. A list
of available channels is shown to the right.

»¢ dagconfig 10l =l
File Help
Files, Active Channels Inactive Channels

(3 G4BTI G1:3AM-ETMX_LL_SEN_EXC I

i o SAM'ini G1:SAM-ETHMX_LL_SEN_IN1 J
G1:5AM-ETM:_LL_SEN_OUT g::gm'gm:—t;—??;—';zc |
G1:54M-ETM¥_LR_SEN_OUT) - — —
default G1:5AM-ETMX_LR_SEN_IN1

G1:SAM-ETMX_LR_SEHN_INZ
G1:3AM-ETMX_PIT_EXC
G1:5AM-ETMX_PIT_IN1
G1:SAM-ETMX_PIT_IN2
G1:SAM-ETMX_PIT_OUT
G1:SAM-ETMX_POS_EXC
G1:SAM-ETMX_POS_IN1
G1:5AM-ETMX_POS_INZ
G1:3AM-ETMX_POS_OUT
G1:SAM-ETMX_UL_SEN_EXC
G1:SAM-ETMX_UL_SEHN_IN1
G1:SAM-ETMX UL SEH INZ 7]

Activate

(2 G15UHini

=l

Double clicking on any signal name in the active or inactive list will result in the following window being
opened. From the window, the following may be selected:

24

e Acquire (0 or 1): Setting this value to ‘1’ will cause the channel to be continuously sent to the
framebuilder at the prescribed rate and stored to disk. Setting this value to ‘0" will also result in
the channel being continuously sent to the framebuilder, but it will not be recorded to disk.

o Rate: The data storage sample rate may be set from 256 samples/sec up to the native sample rate
of the system, as defined during the RCG model build. Decimation filters in the front end code
will properly down-sample the desired channels prior to sending them to the framebuilder.

e Data Type: The data type may be set to float, int, or short. Again, the real-time front end code will
perform the conversion prior to transmission.

e Deactivate: This will remove a signal from the active list.

Note that after a signal has been activated as a DAQ channel, the sample storage rate replaces the last part
of the channel name. For example, if the channel name is H1:SUS-ETMX_LR_SEN_IN1 and has been set
to be acquired at 256 samples/sec, the resulting DAQ channel name will become
H1:SUS-ETMX LR _SEN_256.

Once all of the desired changes have been made and the new file saved, it will be necessary to load the new
configuration before it will become active. This is done by pressing the DAQ Reconfig button on the
system GDS_TP MEDM screen (loads real-time front end) and then restarting the framebuilder(s).

}{'daqcnnﬁg =10l x|
File Help
Files, Active Channels G1:3AM-ETMX_LR_SEN_OUT
() G1ABC.ri AY)
G1 SAM ini Acquire
G1:5AM-ETH3_LL_SEN_OUT 1 |
G1:SAM-ETH3_LR_SEN_INI
G1:SAM-ETH¥_LR_SEN_OUT Rate
default 2048 s |
(2 G15UKni
Data Type

float — |

_f Deactivate |

6.3.2 EPICS DAQ Configuration

EPICS channels to be stored by the DAQ system are named in a single EPICS.ini file for all systems
running on the same network. This file must be located in the /cvs/cds/<site>/chans/daq directory, and
added to the master file list (see SysAdmin Guide).

An example file is shown below. The header portion must be as shown. Individual channels to be recorded
may then be added, one channel per line, with braces around each channel name.

*hkkhkkhhkhkhkhkhx Sample File *hhkhhkhkhkhkkkhhkhkhkhkikihiiii

[default]
dcuid=4
datarate=16
gain=1.0

25

acquire=1
ifoid=0
datatype=4
slope=1.0
offset=0
units=NONE

#

HEPI channels

#
[M1:SEI-BSC_HP_INMON]
[M1:SEI1-BSC_HP_0UT16]
[M1:SEI-BSC_RX_INMON]
[M1:SEI-BSC_RX _OUT16]
[M1:SEI-BSC_RY_INMON]

26

7 RCG Software Parts Library

The CDS_PARTS.mdl file contains symbols for the modules supported by the RCG. Only parts defined in
this library may be used with the RCG, i.e., the RCG does not support the full set of Simulink parts and
some custom parts have been added for specific purposes.

7.1 Top Level Modules

CDS parts at the top level of the library include:

- cdsParameters

- cdsFunctionCall

- DOC Text/Overview
- DOC Text/SW Install

The latter two are used for documentation. Text can be entered by double clicking on one of these

modules.

[lLibrary: CDS_PARTS
File Edit Yew Format Help

=101]

DISEHE| s Be ¢ 1 (2 nEE|

Iy
D

Text
Owverview

I
D

Text
SW In=tall

o]

Function Hame
cd=FunctionCall

Ready

-

I0_PARTS zimLinkPart=

Dt 1

L
ite=H1
rSalteE= 37K Filters
douid=10
gd=_node_id=1
cdsFParamnsters

EpicsParts Osc-Thase

VatchDogs MatrizParts

100% [Lacked v

27

7.1.1 cdsParameters

The purpose of this module is to define basic run-time parameters needed
by the CDS RCG.

This module must appear once, and only once, at the top level of an RCG
application model, by convention usually in the upper left-hand corner. It
contains four fields which must be edited.

1)

2)

3)

4)

7.1.1.1 Function -Bx
File Edit iew

Simulaktion Format Tools
Help

7.1.1.2 Usage O =d& & &

site: Somewhat of a misnomer, this field is actually the
designator for the site and interferometer on which the code
will run. This can be a single entry (as shown) or comma
delimited for multiple IFO use, such as site=H1,H2,L1. In atem K
this case, the RCG will generate code for three IFOs. This denid=A0
field will be used in the EPICS channel generation as the gds_node_id=1
first two characters of the channel name. In the example at cdsParameaters
right, all channel names within this RCG model will have an
M1: prefix. The following sites are recognized:
C (= CalTech or California Institute of Technology) Fl100% 4
G (=GEO)
H (= LHO or LIGO Hanford Observatory)
L (=LLO or LIGO Livingston Observatory)
M (= MIT or Massachusetts Institute of Technology)
.S (= Stanford)
rate: The sample rate of the generated code must be defined as one of the supported rates:

a. 64K (65,536 samples/sec)

b. 32K (32,768 samples/sec)

c. 16K (16,384 samples/sec)

d. 2K (2,048 samples/sec)
dcuid: All real-time processes must have a unique (per IFO) dcuid number. This is used to
identify a front end process to the data acquisition system for proper communications to the
framebuilders.
gds_node_id: Global Diagnostic System (GDS) functions are built into every real-time
application. To operate properly, each real-time application requires a unique GDS id.
number.

zite=hi1

o o0 T

For items 3 and 4 above, the site system administrator should be contacted for proper id. numbers if this
code is to operate on an integrated CDS computer.

In addition to the above fields, there are additional optional entries. Each of these entries must be on its
own line, followed by a carriage return:
» plant_name

o Plant name.

» accum_overflow

o ADC overflow accumulator value.

» shmem_daq

0 Thisresults in a compiler flag such that the run-time code will use shared memory to
communicate with the framebuilder software. This argument is only set if the software is
to run on a standalone computer which will run the real-time code and the DAQ code.

» no_sync

0 Set if real-time code is not to be synchronized to the GPS 1PPS signal. This flag should
be set if the real-time code is to be synchronized using an IRIG-B or if the system is to

28

» no_daq
0 System is to run without data acquisition capabilities.
» dac_internal_clocking
0 The DAC modules will be clocked using internal clock signal instead of external clock
signal from timing system. This is typically only used in testing.
» no_oversampling
0 The present default is to clock all ADC/DAC at 65,536Hz, then do decimation/up-sample
filtering of 1/0 data to match the desired servo ‘rate’. With this flag set, the decimation
filtering is not performed and it is expected that the timing clock will match the ‘rate’.
» no_dac_interpolation
0 Asabove, except this turns off the up-sample filtering to 65,536Hz.
» compat_initial_ligo=1
0 This must be set if the computer is to run as an integrated part of initial LIGO.
» specific_cpu=x
0 Without this definition, when a model is built into an application, it will run on cpu core
1. When it is desired to run multiple real-time applications, this parameter needs to be set
to the cpu core to use (2-15).
» remote_ipc_port
o0 Remote IPC port value.

7.1.1.3 Operation

This component is used solely to set up appropriate compiler flags in the RCG. It is not linked as part of the
real-time code.

7.1.1.4 Associated EPICS Records

None.

29

7.1.2 cdsFunctionCall

Cluncied SST=IE]

7.1.2.1 Function Fie Edt

=
The purpose of this block is to allow users to link their own C code into suleiiam Farmick Tadks
the real-time application built by RCG. It is typically used when RCG ;elp B -
does not support desired functions or the desired process is too —
complicated to be drawn in a model file. O=d& & &

7.1.2.2 Usage
Process variables are passed into and out of the user C function by

connecting signals at the Mux inputs and Demux outputs. Any number of
inputs or outputs may be connected by adjusting the Mux/Demux 1/O sizes In1 Out1
in MATLAB.

The ‘Function Name’ must be changed to the name of the user supplied Function Name
function. Keep in mind that, as with other parts, if this part is used within cdsFunctiontal
‘subsystem’ parts, it will inherit the upper level names, the same as any
other part used in the .mdl file. For example, if ‘Function Name’ is re-

entered as ‘prc_inv’ and this block is inside of a subsystem block named -
LSC, the full name of the function called in real-time will be Fl100% 4
LSC_prc_inv.

The user defined C code function must be of the form:
void Function_Name (double *in, int inSize, double *out, int outSize)

where:

e Function_Name is the full name of the function to be called. In the example above, this
would be LSC_prc_inv.

e *inis a pointer to the input variables. Inputs are passed in the same order as they are
connected to the input Mux.

e inSize indicates the number of parameters being passed to the function.

e *out is a pointer to the output variables. Outputs are passed back to the main code in the
same order as the Demux connections.

e outSize is the number of outputs allowed from the code module.

As a simple example of user code:
void LSC_prc_inv(double *in, int inSize, double *out, int outSize)

if (in[2] > in[0]) out[0] = in[1] * -1;
else out[0] = in[1];

After the user code module is written, it must be placed in the appropriate directory and properly named to
be compiled into the main real-time code. For example, if the above is part of a model named psl.mdl, then
the code must be in the file ‘LSC_prc_inv.c’ in the advLigo/src/fe/psl directory.

7.1.2.3 Operation
At run-time, the code operates as defined by the user provided C code.

30

7.1.2.4 Associated EPICS Records
None.

7.1.25 Code Example

The cdsFunctionCall module generates the following C code:

#include “FNam.c”

double demux[3];
double mux[4];

/I MUX

mux[0] = <In1[0]>;
mux[1] = <In1[1]>;
mux[2] = <In1[2]>;
mux|[3] = <In1[3]>;

/I Function Call
FNam(mux, 4, demux, 3);

<Out1[0]> = demux[0];
<Outl[1]> = demux[1];
<Outl[2]> = demux[2];

=

File Edit Wiew Simulation Format
Tools Help

IR R

In1 Ot 1

FHam
cd= Function Call

Fl100% | 4

31

7.2 /O Parts

The 1/0 parts library contains the drivers for connecting I/0O modules to the system.

=] Library:CDS_PARTS;10_PARTS - 10| x|
File Edit Wew Format Help
NSHE| 2R e 4|9 k@B
ADC Selector
adc_0 ADC1
I DigitalID
0x1000 GES ;
cdsREnI0 cdsDic
N=2000
cdsIPC Relayl0
cd=Rio
O=3000
cd=IPCS
Contec3zLo RelayIOl
cdsCDO32 cdsRiol
Ready 100% |Urlocked i

32

7.2.1 ADC

7.2.1.1 Function

The purpose of this module is to define an ADC module. At present, only
the General Standards 32 channel, 16 bit ADC is supported.

7.2.1.2 Usage

Each RCG model must include at least one (1) ADC block. The output of
this block must be tied to one or more ADC Selector blocks to pick out and
further connect individual ADC signal channels.

7.2.1.3 Operation

No software is directly produced for this part. Rather, it is used as an
indicator of how many and of what type ADC module(s) the real-time 1/0
software should expect during operation.

7.2.1.4 Associated EPICS Records

None.

7.2.2 ADC Selector

File Edit

7.2.2.1 Function

[untitled *
Fil= Edit

Yiew

Simulation Format Tools

Help

=10l x|

0|

= =N

E

f

ade_0

ADCH

F1100%:

Format Tools

Help

=10l x|

Wiews Simulation

The function of the ADC Selector is to route selected channels from

an ADC to other RCG model blocks (it is actually a Simulink Bus Ded&| e}

Selector part).

7.2.2.2 Usage

- Drag and drop the part into the model window.

- Connect the input to an ADC part.

- Double click on the ADC selector and select the desired
signals from the Simulink window.

- Connect the outputs to other RCG parts.

7.2.2.3 Operation

No real-time code is directly generated to support this part. Rather, it
is used by the RCG to produce appropriate signal links.

ade_0

AOC Selector

7.2.2.4 Associated EPICS Records Fl100%

None.

33

7.2.3 DAC

7.2.3.1 Function

The purpose of this block is to allow signal connections to be output to DAC
output channels.

7.2.3.2 Usage

Desired output signals are connected to the 16 inputs of the DAC part. The
output connections are not used.

7.2.3.3 Operation

As with the ADC part, this block is only used by the real-time code to route
signals to DAC modules.

7.2.3.4 Associated EPICS Records

None.

] untitled S =]
File Edit
Simulation Faormak

Tools

Help

Yiew

heE&| ¢

DAC_0
DAC

F1100%

KO

34

7.2.4 cdsDio

7.2.4.1 Function

Provide support for Acces 24 bit digital 1/0 module. The board manual
can be found at PCI-DIO-24DH.PDF

Forrmak

File Edit

Wiew Simulakion
Tools Help

=10l x|

OzEH&E & =E

7.2.4.2 Usage

In1 should be an integer, the lower 16 bits representing the bit pattern to
be sent as outputs. Outl will return an integer, the lower 8 bits of which
represent the inputs to the 1/0 module.

7.2.4.3 Operation

The software sets the board to use 16 bits as outputs (Port A and B) and 8
bits as inputs (Port C). Software within the advLigo/src/fe/map.c file

[E]n]
cd= Dio

provides three supporting routines:

1) int mapDio(), which registers and initializes the board for Fl100%

use.
2) unsigned int readDio(), which is used to read the binary input bits.
3) void writeDio(), which is used to write to the 16 output bits.

Standard code definitions used in these code modules can be found in the

advLigo/src/include/drv/cdsHardware.h file.

7.2.4.4 Associated EPICS Records
None.

7.2.4.5 Code Example
The cdsDio module generates the following C code:

[* Hardware configuration */
CDS_CARDS cards_used[] ={

{ACS_24DI0,0},
Y
/I DIO number is 0
dioOutput[0] = <Inl1>;

<Outl> = diolnput[0];

(The two integer arrays dioOutput[] and diolnput[] are declared in the front-end module controller.c)

35

http://www.accesio.com/MANUALS/PCI-DIO-24DH.PDF

7.25 cdsRfmlO

uncled SST=IEY

) File Edit iew
7.2.5.1 Function Simulation Format
The RCG supports communication between computers using the GEFanuc 5565 Tools Help

and 5979 reflected memory modules. This block allows single signal connection

to/from these modules. [| =& | do

7.2.5.2 Usage

If a signal value is to be sent to the module, a signal needs to be connected to
‘Inl’. If a signal is to be read from a reflected memory module, then a signal
should be connected from the ‘Outl’ connection. The offset from the memory

board base address is entered in the block label field. In the example at right, the 2000
memory offset is set to 0x2000. cdzRfmi0
7.2.5.3 Operation Flio0% | 4

The real-time code provides a single write or read at the specified memory board offset in the form of a
double precision float.

7.2.5.4 Associated EPICS Records
None.

7.2.5.5 Code Example
The cdsRfmlO module generates the following C code:

if (cdsPciModules.pci_rfm[0] '=0) {

/l RFM output
*((double *)(((char *)cdsPciModules.pci_rfm[0]) + 0x2000)) = <In1>;

<OQutl> = cdsPciModules.pci_rfm[0]? *((double *)(((void *)cdsPciModules.pci_rfm[0]) + 0x2000)) : 0.0;

(The PCI hardware structure cdsPciModules is declared in the front-end module controller.c)

36

7.2.6 cdsRio and cdsRiol

JRI=TEY

File Edit “Mjew Simulation Format Tools

7.2.6.1 Function Help

Provide support for Acces 8 (cdsRio part) and 16 bit relay - :
modules (cdsRiol part). The board manuals can be found at [| =S | do e | =

PCI-1IRO-8.PDF and PCI-1IRO-16.PDF.
7.2.6.2 Usage
When used, the part name must be modified to indicate the
instance of the card. For example, when using an 8 bit module
(cdsRio), the name of the part must be RIO_moduleNumber
(RIO_O0 for first instance of the module type on the bus). Same
needs to be done for the 16 bit part (cdsRiol_0). RID_1 RICT_1
cd=Rio cd=Riol
The input to both parts is an integer, the lower 8 or 16 bits F[t00% | | [

representing the output bit pattern to the module.

In the case of the cdsRio part, two outputs are provided. Outl simply returns the value written at In1. Out2
will read the 8 bits of the module input register.

Outl of the cdsRiol part will return an integer, the lower 16 bits of which represent the 16 input bits of the
module.

7.2.6.3 Operation
Code support for these two module types is incorporated into the advLigo/src/fe/map.c file.

For the 8 bit module:
1) int mapliroDio(), which registers and initializes the module for use.
2) void writeliroDio(), which outputs the value to the I/O module.
3) unsigned int readliroDio(), reads binary inputs from module.
4) unsigned int readliroDioOutput(), read back the value written to the output register by the
writeliroDio() function (just a check that value was written correctly).

For the 16 bit module:
1) int mapliroDiol(), registers and initializes the module for use.
2) void writeliroDiol(), writes 16 bit pattern to 1/O module output register.
3) unsigned int readliroDiol(), reads the 16 bit input register.

Standard definitions used in these code modules can be found in the
advLigo/src/include/drv/cdsHardware.h file.

7.2.6.4 Associated EPICS Records

None.

37

http://www.accesio.com/MANUALS/PCI-IIRO-8.PDF
http://www.accesio.com/MANUALS/PCI-IIRO-16.PDF

7.2.6.5 Code Examples

The cdsRio module generates the following C code:

/* Hardware configuration */
CDS_CARDS cards_used[]={

{ACS_8DIO,1},

¥
rioReaddps[<i>] =<0, 1, or2>;

/I Rio number is 1 name RIO_1
rioOutput[1] = <Inl1>;

<OQutl> = riolnputinput[1];
<Qut2> = riolnputOutput[1];

The cdsRiol module generates the following C code:

/* Hardware configuration */
CDS_CARDS cards_used[] ={

{ACS_16DIO,1},
¥

/I Riol (IIRO-16) number is 1 name RIO1_1
rioOutputl[1] = <Inl>;

<Outl> = riolnputl1[1];

(The integer arrays rioReadOps][], rioOutput][], rioOutputl[], riolnputinput[], riolnputOutput[], and
riolnputl[] are declared in the front-end module controller.c)

7.2.7 cdslIPC

7.2.7.1 Function

The purpose of this module is to allow communications, via
shared memory, between two or more real-time processes
running in the same computer, but on separate CPU cores.

7.2.7.2 Usage

The user needs to change the label to a hex value, for example
0x2000. This part needs to exist in both the ‘sender’ model and
the “receiver’ model, with the same address in both.

7.2.7.3 Operation

If there is a signal connected at ‘In1’ (of the cdsIPC module),
then this will result in the signal data being written to the address
location as a double precision float. Conversely, if the ‘Outl’ is
connected, data will be read in from the prescribed memory
location as a double precision float. Communications at run-time
use the ‘“ipc’ (inter-process communication) shared memory
block.

Warning:

This communication is asynchronous, i.e., the ‘receiver’ will not
wait for the ‘sender’. Therefore, it is up to the user to decide and
take care of any synchronization needs.

Warning:

Slunttied*—SSIaE

File Edit YWiew Simulation
Format Tools Help

D SHS| $ =@

i

UM e
cd=sIPC

Fl100%, | | W

[untitled * - 10| x|
File Edit Yew Simulation
Format Tools Help

N SEHS| &=

L g

oo
cdzIPC
Fl1oD% | | w

All computer cores on the same computer will use the same “ipc’ shared memory block. Therefore care
must be taken that models use unique addresses to communicate with each other.

7.2.7.4 Associated EPICS Records
None.

7.2.7.5 Code Examples

The cdsIPC module in the first (‘sending’) process generates the following C code:

double ipc_at_0x2000;
ipc_at_0x2000 = <Inl1>;
/I All IPC outputs

if (_ipc_shm 1=0) {
*((double *)(((char *)_ipc_shm) + 0x2000)) = ipc_at_0x2000;

39

The cdsIPC module in the second (‘receiving’) process generates the following C code:

double ipc_at_0x2000 = *((double *)(((void *)_ipc_shm) + 0x2000));

<Outl> =ipc_at_0x2000;

Or, more specifically (including the IR Filters in the above illustration):
The cdsIPC module in the first (‘sending’) process generates the following C code:
double ipc_at_0x2000;
ipc_at_0x2000 = cpul _iirl;
/I All IPC outputs

if (_ipc_shm 1=0) {
*((double *)(((char *)_ipc_shm) + 0x2000)) = ipc_at_0x2000;

The cdsIPC module in the second (‘receiving’) process generates the following C code:

double ipc_at_0x2000 = *((double *)(((void *)_ipc_shm) + 0x2000));

/I FILTER MODULE
cpu2_iirl = filterModuleD(dsp_ptr,dspCoeff,CPU2_IIR1,ipc_at_0x2000,0);

(The pointer _ipc_shm to the inter-process communication area is declared in the front-end module

controller.c)

40

7.2.8 cdsIPCS =10] x|

File Edit ‘ew Simulation Formak

7.2.8.1 Function Tools Help

~u by,
This part sends cycle count information between two real-time 3 | = EH& | db i) | -
processes running on separate computer cores via shared memory. It is
used to verify that the two (or more) related processes are in sync with

each other. In ot
2000
CRU1_IIR1
7.2.8.2 Usage cdeFit cdsIPCS

The shared memory address must be specified in the range of 0x1000
to 0x3000 on an 8 byte boundary. One of these parts should be put in

each of the two applications to be monitored, both with the same Fl1oa% | | %
address specification. The part which is to send the cycle count should

have its input connected (doesn’t really matter what the input part - 10| x|
connection is) and the receiver part should have its output connected. File Edit Miew Simulstion Format

The output connection is typically to an EPICS OUTPUT part to view

. . - L . Tools Hel
the status information (should always be zero if two applications are in =005 oeh
sync). O EeE& & E2R| <
7.2.8.3 Operation
During execution, the real-time code for each application maintains a m
“cycle counter”, which continuously counts from 0 to the (user 00 prE——
specified application rate — 1) each second. For example, if a model is cdsIPCE cdeFit
specified to run at 32K, this counter increments from 0 to 32,767 every
second. The send part (input connected, no output connected) will send

this cycle count + 1. The receive part (output connected) will read this Fl100%: i

value from shared memory and subtract its cycle count. If the two
applications are in sync, then the output of the receive part should always be zero.

7.2.8.4 Associated EPICS Records
None.
7.2.8.5 Code Examples

The cdsIPCS module in the first (‘sending’) process generates the following C code:
if (ipc_shm 1=0) {

/I IPCS output
*((float *)(((char *)_ipc_shm) + 0x2000)) = (cycle + 1)%FE_RATE;

The cdsIPC module in the second (‘receiving’) process generates the following C code:

<Out> = _ipc_shm? *((float *)(((void *)_ipc_shm) + 0x2000)) - cycle : 0.0;

41

Or, more specifically (including the IR Filters in the above illustration):
The cdsIPCS module in the first (‘sending’) process generates the following C code (no change):
if (_ipc_shm !=0) {

/[1PCS output
*((Float *)(((char *)_ipc_shm) + 0x2000)) = (cycle + 1)%FE_RATE;

The cdsIPC module in the second (‘receiving’) process generates the following C code:

cpu2_iirl = filterModuleD(dsp_ptr, dspCoeff,CPU2_IIR1,_ipc_shm? *((float *)(((void *)_ipc_shm) +
0x2000)) - cycle : 0.0,0);

(The pointer _ipc_shm to the inter-process communication area is declared in the front-end module
controller.c)

42

7.2.9 GPS

7.29.1 Function

Return GPS time information from an IRIG-B interface module.

7.2.9.2 Usage

7.2.9.3 Operation

7.2.9.4 Associated EPICS Records
None.
7.2.9.5 Code Example

The GPS module generates the following C code:

<full> = cycle_gps_time;

<s> = (unsigned long)cycle_gps_time;

<us> = cycle_gps_time - (unsigned long)cycle_gps_time;

<ns> =cycle_gps_ns;

[untitled S =] F4!

File Edit iew
Simulation Formak
Tools Help

D& -

Fllo0% |

(The double precision floating-point parameter cycle_gps_time and the integer parameter cycle_gps_ns are

declared in the front-end module controller.c)

43

7.2.10 cdsCDO32

Slunctied™ SWT=I1]

. File Edit iew
7.2.10.1 Function Simulakion Faormat Taools

This module provides 1/0 support for the Contec 32 bit, PCle binary output Help

module. The specification sheet can be found at Contec32output.pdf.

bDeEd& & &

7.2.10.2 Usage

In1 should be connected to a 32 bit value to be sent to the module. Outl will
return the value from the board output register, which should be the same as Int Outl B
the input value request.
£3z_1

7.2.10.3 Operation eds COO32

Code support for this module can be found in the advLigo/src/fe/map.c file. Fl1oD% |

Support routines are:
1) int mapContec32out(), register and initialize module for use.
2) unsigned int writeCDO32I(), write 32 bit value to the module output register.
3) unsigned int readCDO32I(), read the 32 bit value from the module output register (used to
verify write function).

7.2.10.4 Associated EPICS Records
None.

7.2.10.5 Code Example
The cdsCDO32 module generates the following C code:

/* Hardware configuration */
CDS_CARDS cards_used[] ={

{CON_32D0,1},
2 '

/I CDO32 number is 1 name C32_1
CDO0320utput[1] = ((int)<In1> << 16) + ((int)<In1> & Oxffff);

<Out1> = (CDO32Input[1] >> 16);

(The integer arrays CDO320utput[] and CDO32Input[] are declared in the front-end module controller.c)

44

http://www2.contec.co.jp/prod_data/do32bpe/c01e.pdf

7.3 Simulink Parts

The RCG supports a number of standard Simulink parts, as shown
in the simLinkParts window (at right). In general, the code
generated by the RCG behaves as it would in a Simulink model.
Special cases are described in the following subsections.

[=lLibrary:CD5_PARTS /s =10 x|

File Edit Wew Formatb Help

O sEHE %2R

b ANDE

Froduct Logicallperator

e

+ [

T 1 X
Divide =

{;} UnitDelay

= O}
Ground Choice
Termninator F
Operator
Inl
Trstly
o
and E::}
cd=Bitwise Cain
1 F
.
Con=tant]
Saturation
[a]F L
Ab= MathFunction
t{u)
Fcn
Ready [100% Locked i

45

(o]

7.3.1 Unit Delay File Edit Wiew Simulation Format Tools Help

7.3.1.1 Function DEed&| &t 2R 4=

Typically, the RCG produces sequential code that
starts with ADC inputs, performs the required
calculations, and ends with the DAC outputs.
However, there are cases where calculations IR Filter Module
performed within the code are to be fed back as cdsFit
inputs on the next code cycle. In these cases, the
desired feedback signal must be run through a
UnitDelay block to indicate to the RCG that this
signal will be used on the next cycle

IR Filter bModuled
cd=Filt

UnitCelay

7.3.1.2 Usage
An example showing the use of the UnitDelay Fl100% | | odeds

block is shown at right. If the output of Module 1 were to be tied directly back to the summing junction at
the input, it would produce an infinite loop in the code generator. By placing the UnitDelay in line, the
output of Module 1 is sent back to its input on the next cycle of the software.

7.3.1.3 Operation
Introduces a one cycle delay between input and output.

7.3.1.4 Associated EPICS Records
None.

7.3.1.5 Code Example
The UnitDelay module generates the following C code:

static double unitdelay;
<Out> = unitdelay;

/| DELAY
unitdelay = <In>;

46

7.3.2 Subsystem Part
[l untitled =10 x|

Eile Edit ‘iew
7.3.2.1 Function Simulation - Format
.. . . Tools Help
This is a standard MATLAB part for grouping individual parts into a
subsystem. De:Ed&E|
7.3.2.2 Usage
Any number of parts within the application model may be grouped into a In1 Outl |
subsystem using the MATLAB subsystem part. The RCG uses the assigned
name as a prefix to all block names within the subsystem. This is done in ASC
two ways:
» In the top example at right, if it is at the top level of the model, all In1 outl |
signal names for blocks within ASC would become
SITE:ModelFileName-ASC_xxxx. So, if the model file name is LsC
omc.mdl and site defined as L1, names for parts within the ASC top_names
subsystem part would become L1:OMC-ASC_XxXX.
> In the lower example (LSC), a tag has been added (using the Block ~_F100% | A

Properties Window) “top_names”. This is a flag to the RCG to use
the name of this subsystem to replace the model file name. Using the same example as above, all
parts within this subsystem would be prefixed L1:LSC-xxxx.

The use of the ‘top_names’ subsystem part tags provides a couple of useful features:

1) Assingle model may contain parts with multiple SYS names in the LIGO naming
convention. As seen in the example above, SYS is OMC (model name) for all ASC
subsystem parts (L1:0OMC-ASC), but L1:LSC- for all LSC subsystem parts. In the same
manner, ASC could also be defined ‘top_names’ and the results would be L1:ASC- and
L1:LSC-.

2) Multiple models may contain the same SY'S name. This allows models running on
different processors to use the same SYS identifier in the signal names.

Warning: Since the name of all subsystems marked with the ‘top_names’ tag are used to replace the
three character SYS part in the LIGO naming convention, this name must be 3 characters in length,
no more, no less!

Warning: Subsystems with the ‘top_names’ tag may only appear at the highest level of the model,
i.e., they may not be nested within other subsystems.

7.3.2.3 Operation
The subsystem part is only used by the RCG to produce appropriate signal names.

7.3.2.4 Associated EPICS Records

None.

47

7.3.3 MathFunction

7.3.3.1 Function [untitled -|0O] =|
This module is used to include one of several mathematical functions in a File Edit Wiew
model. Simulation Format
Tools Help
7.3.3.2 Usage -
Currently, the following mathematical functions are supported: O | =& | i
- Square of input value.
- Square root of input value. b
- Reciprocal of input value.
- Modulo of two input values. MathFunction
. Fl100%:
7.3.3.3 Operation | | Z

When using this module, place it in the model window and double click on the icon. This brings up a
Function Block Parameters window. Click on the down arrow at the right end of the “Function:” line. This
brings up a list of mathematical functions. Click on one of the supported functions (square, sgrt, reciprocal,
or mod), followed by clicking OK. Please note that clicking on any of the non-supported functions (exp,
log, 10”u, log10, magnitude”2, pow, conj, hypot, rem, transpose, or hermitian) will result in a fatal error
when attempting to make (compile) the model.

The square function will calculate the square of any input (double precision) value and pass it on as the
output value (in double precision).

The square root function will calculate the square root of any positive (double precision) value and pass it
on as the output value (in double precision). If the input value is negative or equal to zero, the output value
will be set to zero.

The reciprocal function will calculate the inverse of any input (double precision) value and pass it on as the
output value (in double precision), unless the input value is equal to zero in which case the output value
will be set to zero.

The mod (modulo) function takes two input values, In1 and In2. Since the modulo function only operates
on integer values, the output value (Outl, in double precision) is calculated as:

Outl = (double) ((int) In1%(int) In2)

except if the In2 value is equal to zero in which case the output value will be set to zero.

7.3.3.4 Associated EPICS Records
None.

48

7.3.3.5 Code Examples

The MathFunction module generates the following C code:

Square:

double mathfunction;

/I MATH FUNCTION - SQUARE
mathfunction = <In1> * <In1>;

<Qutl> = mathfunction;

Square root:

double mathfunction;

/I MATH FUNCTION - SQUARE ROOT
if (<In1>>0.0) {
mathfunction = Isgrt(<Inl1>);

}
else {

mathfunction = 0.0;
}

<QOutl> = mathfunction;

Reciprocal:

double mathfunction;

/l MATH FUNCTION - RECIPROCAL
if (<In1>1=0.0) {
mathfunction = 1.0/<In1>;

}
else {

mathfunction = 0.0;
}

<Outl1> = mathfunction;

=] untitled S =] |
File Edit Wiew
Simulation Farmak

Tools Help
DS HS
|.I2 >

MathFunction

Flioow | &

=] untitled S =] |
File Edit Wiew
Simulation Farmak

Tools Help
DS HS
=qrit B

MlathFunction

Flioow | &

1o
File Edit Wiew
Simulation Farmak
Tools Help

D SHS .

1
- F
u
M athFunction

Flioow | &

49

Modulo:

Clunttied SR [E

double mathfunction; File Edit Yiew
Simulation Farmak

/I MATH FUNCTION - MODULO Todls Help

if ((int) <In2>1=0) { = =
mathfunction = (double) ((int) <In1>%(int) <In2>); O e & .

}

else {
mathfunction = 0.0;

} mod |

MdathFunction

<Outl1> = mathfunction;

Fl1ooes | 4

50

7.3.4 In-line (math) function

7.3.4.1 Function

This module is used to include a user defined in-line (math)
function in a model.

7.3.4.2 Usage

The module supports a number of different types of mathematical
functions:

- Polynomials.

- Non-polynomial combinations of variables and
constants.

- Sines and cosines.

- Floating-point absolute values.

- loglo0.

- Square root.

- Combinations of the above.

7.3.4.3 Operation
When using this module, place it

[Sluntitled * S [aT £

Eile Edit Wiew Simulakion
Format Tools Help

D SEHS| 4B

f{u) b

Fen

F|100% | v

in the model window and

connect the desired number of

File Edit Wiew Simulation Format Tools Help

input variables via a Mux and

one output that will pass on the O d&| & B <o 4|5

resulting value from the (user
defined) function. Double click
on the Fcn icon and enter the
desired function in the
Expression field. The first (top)
input variable to the Mux is
defined as ‘u[1]’, the second
input variable (from the top) is
defined as ‘u[2]’, etc. (please
note the square brackets). The
user defined function can consist
of any combination of terms

IFh_1
cd=Filt

made up of constants multiplied Fen OF M
with variables, sine and/or cosine cdsFil
functions, floating-point absolute ”;MF__i
values, log10 values, and/or st
square roots.
A (ficticious) example could be LFd’;"F—I:
as follows (see next page):
Ready [100% |ode4s

51

Once the function has been

defined, click on OK and the
function will be incorporated [F=M
into the model. Please note General expression block, Use "u" as the input variable name,
that it is up to _th_e user to Example: sinfu[1] * expi2.3 * -u[Z]n
ensure the validity of entered
functions and values, e.g., —Parameters
only positive values for £ .
logarithms, no negative Xpression:
values for square roots, no {3.0* ul1]- 2.00u[2] + sin(u3]) * sart{Fabs(u[4])]
d_|V'S|0nS by_zero, etc. Also, Sample time (-1 For inherited);
sine and cosine values |'1
should, by default, be given
in radians. If angles in
degrees are desired, replace
‘sin” with ‘sindeg’ and ‘cos’
with ‘cosdeg’. ok Lancel Help Apply
In order to include polynomials, a special technique must be used. This is best explained with an example.
Let’s assume the following polynomial should be used:
Out=2.0*In1-35*In2**2+5.0*In3**3
This would require a Mux -lo

with six inputs:

In other words, the first
input variable (‘In1’) is
connected to the first input
to the Mux (‘u[1]’), the
second input variable (‘In2’)
is connected to the second
and third inputs to the Mux
(and will be referred to as
‘uf2]’ and “u[3]’ in the
function expression), and the
third input variable (‘In3’) is
connected to the fourth,
fifth, and sixth inputs to the
Mux (referred to as ‘u[4]’,
‘u[5]’, and ‘u[6]’,
respectively).

7.34.4

Associated

EPICS Records

None.

File Edit Mjew Simulation Format Tools Help

DSE&E| ¢+ BB = 4|92 » =fioo |n

IFhi_2
cd=Filt

IFhi_3
cd=Filt

E! Function Block Parameters: Fcn

Rea —Fcn

fu)

Fen OF b

cdsFilt

General expression block, Use "u" as the input variable name.
Example: sinful1] * exp(z.3 * -u[2]n

—Parameters

Expression:

IZ.EI *ul1]-3.5*u[Z] * u[3] + 5.0 * u[4]* u[5] * ul6]

Sample time (-1 For inherited):

f-1

Cancel Help apply

7.3.4.5 Code Examples
The in-line (math) function generates the following C code:

(This first example is identical to the first example in section 7.3.4.3.)

double fcn;
double conv = 3.141592654/180.0;
double lcosl, Isini;

double mux[4];

/I MUX

mux[0]= <In1[0]>;
mux[1]= <In1[1]>;
mux[2]= <In1[2]>;
mux|[3]= <In1[3]>;

/I Inline Function

mux[2] *= conv;

sincos(mux[2], &Isinl, &lcosl);

fcn = 3.0 * mux[0] - 2.0/mux[1] + Isin1 * Isgrt(Ifabs(mux[3]));

Tools Help

=10l %]

File Edit “ew Simulation Formak

M EIREE T

f{u)

Fen

<Outl> = fcn; E! Function Block Parameters: Fcn

—Fcn

General expression block, Use "u" as the input variable name.
Example: sinfu[1] * expiz.3 * -u[2In

— Paramekters

Expression:

Sample time (-1 for inherited);

5.0 * u[1] - 2,00u[2] + sindeg{ul3]]

[-1

izancel

Help

53

(This example is identical to the second example in section 7.3.4.3.)

double fon L=

File Edit Wiew Simulation

double mux[6]; Farmat Tools Help

/I MUX D EE& & =’

mux[0]= <In1[0]>;
mux[1]= <In1[1]>;
mux[2]= <In1[2]>;
mux[3]= <In1[3]>;
mux[4]= <In1[4]>;
mux[5]= <In1[5]>; fuy F

) i F
// Inline Function =

fcn = 2.0 * mux[0] - 3.5 * mux[1] * mux[2] + 5.0 * mux[3] * mux[4] *

mux|[5];

<Outl> = fen: =] Function Block Parameters: Fen

El1nnes [[-

—Fcn

General expression block, Use "u" as the input variable name.
Example: sinfu[1] * expiz.3 * -u[2]1)

—Parameters

Expression:

Sample time (-1 For inherited);

f-1

juls iCancel Help Apply

54

7.4 EPICS Parts

EPICS parts are used to input/output signals from/to the
real-time application and EPICS. Some are used
primarily to communicate with operator displays, while
others are intended to allow multiple FE computers to
communicate with each other using EPICS Channel
Access (CA) via Ethernet connections.

[Z1Library:CDS_PARTS/Epic -10] x|

File Edit Yiew Format Help

ODlzE& F BB &= 1

EpicsCutput
cd=Epics=Ctutput

EpicsInput Epic=Binln
cd=EpicsIn cd=EpicsBinIn

EpicsRemoteIntlk
cd=Remotelntllk

EpicsMomentary
cd=Epicslomnentary

W

Chatl

M1 :SY5-FOO_BAF cd=sEzCallrite
cd=EzCaRead cd=EzCallrite

Ready |100% lUrlocked >

55

7.4.1 cdsEpicsOutput/cdsEpicsin

7.4.1.1 Function

The cdsEpicsOutput module is used to write data into an EPICS channel and
the cdsEpicsin module reads in data from an EPICS channel. NOTE: The
resulting EPICS channels are built on and communicate with EPICS on the
local computer. To access EPICS channels on other computers, use the
cdsEzCaRead/Write modules.

7.4.1.2 Usage

For the EpicsOutput, connect the signal to be sent to EPICS via the ‘In1’
connection. The ‘Outl’ connection may be used to continue the signal into
another RCG part.

For Epicslinput, use the ‘Outl’ connection to pick up the EPICS data.

For both, modify the name to the desired EPICS channel name.

7.4.1.3 Operation
The RCG will produce local EPICS records with the assigned names and the

Cluntitled = S =] P

File Edit Wiew
Simulation Farmak
Tools Help

hEed&| &

Epics0utput
cds Epics Output

Epicsinput
cd= Bpicsin

Fl100% |

real-time software will communicate data to/from the EPICS records via shared memory.

7.4.1.4 Associated EPICS Records
A single “ai’ EPICS record will be produced using the assigned name.

7.4.1.5 Code Examples
The cdsEpicsin and cdsEpicsOutput modules generate the following C code:

void feCode(int cycle, double dWord[][32], /* ADC inputs */
double dacOut[][16], /* DAC outputs */
FILT_MOD *dsp_ptr, [* Filter Mod variables */
COEF *dspCoeff, [* Filter Mod coeffs */
CDS_EPICS *pLocalEpics, /* EPICS variables */
int felnit) /* Initialization flag */

<Outl> = pLocalEpics-><Sys>.Epicsinput;

/I EpicsOut
pLocalEpics-><Sys>.EpicsOutput = <In1>;

56

7.4.2 cdsEpicsBinin

7.4.2.1 Function

This part is used to interface a standard EPICS binary input record into the
real-time application.

7.4.2.2 Usage
Connect the output to where in EPICS value is to be passed.

7.4.2.3 Operation
Outl = EPICS value placed in shared memory.

7.4.2.4 Associated EPICS Records
A single ‘bi” EPICS record will be produced using the assigned name.

7.4.2.5 Code Example
The cdsEpicsBinIn module generates the following C code:

void feCode(int cycle, double dWord[][32], /* ADC inputs */

double dacOut[][16], /* DAC outputs */
FILT_MOD *dsp_ptr, [* Filter Mod variables */
COEF *dspCoeff, [* Filter Mod coeffs */

CDS_EPICS *pLocalEpics, /* EPICS variables */
int felnit) /* Initialization flag */

{

<Qutl>= pLocalEpics-><Sys>.EpicsBinln;

] untitled
File Edit
Simulation Farmak

g

Tools Help

=101 x|

hed&| &

EpicsBinln
cd=BpicsBinin

F100%:

57

7.4.3 cdsRemotelntlk

7.4.3.1 Function
7.4.3.2 Usage

7.4.3.3 Operation

7.4.3.4 Associated EPICS Records

A single “ai’ EPICS record will be produced using the assigned name.

7.4.3.5 Code Example

/l Remotelntlk
pLocalEpics-><Sys>.EpicsRemotelntlk = <In1>;

~oix]
te £,

Simulation Farmak
Tools Help

D EHS|

EpicsRemaoteintlk
cd=s Remote Intlk

Fl100% | =

58

7.4.4 cdsEzCaRead/cdsEzCaWrite

7.4.4.1 Function

These blocks are used to communicate data, via EPICS channel access,
between real-time code running on separate computers.

7.4.4.2 Usage

Insert the block into the model and modify the name to be the exact name of
the remote EPICS channel to be accessed. This must be the full name, in
LIGO standard format, including IFO:SYS-.

7.4.4.3 Operation

The EPICS sequencer which supports the real-time code will have
EzCaRead/EzCaWrite commands added to obtain/set the desired values via
the Ethernet. Values are passed out of/into the real-time code via shared
memory.

7.4.4.4 Associated EPICS Records

Each of these two modules will produce a double precision floating-point
EPICS channel access record.

7.4.45 Code Examples
The cdsEzCaRead module generates the following C code:

=Y untitled =S =[]
File Edit Wiew
Simulation Formak

Tools Help

OzE&| 2

Out1 f

hi1:5%5-FOO_BAR
cidsEzCaRead

cdsE=zC aWirrite
cd=s Bz Callrte

F1100%: L

<Outl> = pLocalEpics-><Sys>.<Remote_IFO>_<Remote_Sys> <Remote_Channel>;

The cdsEzCaWrite module generates the following C code:

/I EzCaWrite

pLocalEpics-><Sys>.<Remote IFO> <Remote_Sys> <Remote_Channel> = <In1>;

59

7.4.5 cdsEpicsMomentary

7.4.5.1 Function
The cdsEpicsMomentary module is used to flip one bit...

7.45.2 Usage
7.4.5.3 Operation

7.45.4 Associated EPICS Records

A momentary ‘ai’ EPICS record switch will be produced using the name
assigned to this block.

7.4.5.5 Code Example
static unsigned int epicsmomentary;

if(felnit)
{

epicsmomentary = 0;
}else {

/I EpicsMomentary
if (pLocalEpics-><Sys>.EPICSMOMENTARY !=0) {

=] untitled =10 x|

File Edit ‘iew
Simulation Farmak
Tools Help

hed&| &

Out 1 e

Epicshlomentany
cd=Epicshiomentany

F100%:

epicsmomentary = epicsmomentary " pLocalEpics-><Sys>.EPICSMOMENTARY;

pLocalEpics-><Sys>.EPICSMOMENTARY =0;
I3

<Qutl> = epicsmomentary;

60

7.5 Osc/Phase

The Osc/Phase section groups
together two different phase
rotators, a software oscillator,
and a saturation count module.

[FlLibrary:CD5_PARTS/Dsc/Phase
File Edit “ew Formak Help

=10l x|

DEeE& LR e ¢ |92 nEE

Feady

Fotator Hames
cd=sWf=Fhase

D=zcillator Hame
cd=O=sc

Fha=se Fotator Hames

cd=Phase

Saturation Count Hame

cd=SatCount

[100%

|Urlacked

A

61

7.5.1 cdsPhase

7.5.1.1 Function

This block replicates an 1&Q phase rotator used in the LIGO LSC control
software.

75.1.2 Usage

This module is used to change the phase of the input values by a specific phase
angle.

7.5.1.3 Operation

The EPICS code reads in the user variable and calculates the sine and cosine
for this entered value. These two values (sinPhase, cosPhase) are then passed to
the real-time software, which performs the following calculations:

Outl = In1 * cosPhase + In2 * sinPhase
Out2 = In2 * cosPhase — Inl1 * sinPhase

7.5.1.4 Associated EPICS Records

=] untitled S =] 9
File Edit iew
Simulation Format
Tools Help

D EH& |

Ind Ot 1 e

In2 Ot e

Phase Rotatar Name
cdzPhase

F100% |

A single “ai’ EPICS record is produced to support this module. Entries in this record are in units of degrees.

7.5.1.5 Code Example
The cdsPhase module generates the following C code:

static double prn[2];

/I PHASE

prn[0] = (<In1> * pLocalEpics-><Sys>.PRN[1]) +
(<In2> * pLocalEpics-><Sys>.PRN[0]);

prn[1] = (<In2> * pLocalEpics-><Sys>.PRN[1]) -
(<In1> * pLocalEpics-><Sys>.PRN[0]);

<Outl> = prn[0];
<Qut2> = prn[1];

where

pLocalEpics-><Sys>.PRN[0] = sin(pLocalEpics-><Sys>.PRN)
pLocalEpics-><Sys>.PRN[1] = cos(pLocalEpics-><Sys>.PRN)

[=]untitled i [m] B
File Edit Wiew
Simulation Farmak
Tools Help
Oed&| 7!
In Ot 1 el
In2 Ot e
FRM
cd=zPhase

Fl100%

62

7.5.2 cdsWfsPhase

7.5.2.1 Function
7.5.2.2 Usage
7.5.2.3 Operation

7.5.2.4 Associated EPICS Records

A single “ai’ EPICS record is produced to support this module. Entries in this
record are in units of degrees.

7.5.25 Code Example
The cdsWfsPhase module generates the following C code:

static double rn_0[2];

/I WFS PHASE

rn_0[0] = (<In1> * pLocalEpics-><Sys>.RN_0[0][0]) -
(<In2> * pLocalEpics-><Sys>.RN_0[1][0]);

rn_0[1] = (<In2> * pLocalEpics-><Sys>.RN_0[1][1]) -
(<In1>* pLocalEpics-><Sys>.RN_0[0][1]);

<Qutl>=rn_0[0];
<Out2>=rn_0[1];

where

pLocalEpics-><Sys>.RN_0[0][0] = sin(pLocalEpics-><Sys>.RN_0_r +
pLocalEpics-><Sys>.RN_0_d)/sin(pLocalEpics-><Sys>.RN_0_d)

pLocalEpics-><Sys>.RN_0[0][1] = cos(pLocalEpics-><Sys>.RN_0_r +
pLocalEpics-><Sys>.RN_0_d)/sin(pLocalEpics-><Sys>.RN_0_d)

pLocalEpics-><Sys>.RN_0[1][0] = sin(pLocalEpics-><Sys>.RN_0_r)/
sin(pLocalEpics-><Sys>.RN_0_d)

pLocalEpics-><Sys>.RN_0[1][1] = cos(pLocalEpics-><Sys>.RN_0 _r)/
sin(pLocalEpics-><Sys>.RN_0_d)

=] untitled S =] 9
File Edit iew
Simulation Format
Tools Help

D EZES| .

Raotator Hame
cd=Wf=Phase

F100% | 4

JRL=TEY
File Edit Wiew

Simulation Farmat

Tools Help

DeE& &

RHN_0O
cd=Wf=Phase

Fl100%: 4

63

7.5.3 cdsOsc

Clunutied s SI=IEY

File Edit Wiew Simulation

7.5.3.1 Function

Farmat Tools Help

This block is a software oscillator, developed to support dither locking

where two signals with 90 degrees phase rotation are required. O | = & | &

7.5.3.2 Usage
This module is used to produce a sine wave at a specific frequency.

7.5.3.3 Operation

The three outputs are a sine wave at the user requested frequency. The CLK Dzcillator Hame
and SIN outputs are in phase with each other and the COS is 90 degrees out edslise

of phase. The block internal sine wave varies in amplitude from -1 to 1. The
three outputs are then multiplied by their individual gain settings to produce
the CLK, SIN and COS outputs.

Fl100%:

|

7.5.3.4 Associated EPICS Records

Four EPICS records are produced for user entries:
_FREQ: Desired frequency in Hz

_CLKGAIN: CLK gain setting

_SINGAIN: SIN gain setting

_COSGAIN: COS gain setting

7535 Code Example =10/ x|

The cdsOsc module generates the following C code: File Edit View Simulation
Formak Tools Help

static double on[3]; O Eed@& 4

static double on_freq;

static double on_delta;
static double on_alpha;
static double on_beta;
static double on_cos_prev;
static double on_sin_prev;
static double on_cos_new;
static double on_sin_new;
double Isinx, Icosx, valx;

oM
cdz0se

if(felnit) F s

A

{

on_freq = pLocalEpics-><Sys>.ON_FREQ;

on_delta = 2.0 * 3.1415926535897932384626 * on_freq / FE_RATE;
valx = on_delta / 2.0;

sincos(valx, &lsinx, &Icosx);

on_alpha = 2.0 * Isinx * Isinx;

valx = on_delta;

sincos(valx, &lsinx, &Icosx);

on_beta = Isinx;

on_cos_prev = 1.0;

on_sin_prev = 0.0;

64

}else {

I/l Osc

on_cos_new = (1.0 - on_alpha) * on_cos_prev - on_beta * on_sin_prev;

on_sin_new = (1.0 - on_alpha) * on_sin_prev + on_beta * on_cos_prev;

on_sin_prev = on_sin_new;

0N_COS_prev = 0n_cos_new;

on[0] = on_sin_new * pLocalEpics-><Sys>.ON_CLKGAIN;

on[1] = on_sin_new * pLocalEpics-><Sys>.ON_SINGAIN;

on[2] = on_cos_new * pLocalEpics-><Sys>.ON_COSGAIN;

if((on_freq != pLocalEpics-><Sys>.ON_FREQ) && ((clock16K + 1) == FE_RATE))
{

on_freq = pLocalEpics-><Sys>.ON_FREQ;

on_delta = 2.0 * 3.1415926535897932384626 * on_freq / FE_RATE;
valx = on_delta / 2.0;

sincos(valx, &Isinx, &lcosx);

on_alpha = 2.0 * Isinx * Isinx;

valx = on_delta;

sincos(valx, &Isinx, &lcosx);

on_beta = Isinx;

on_cos_prev = 1.0;

on_sin_prev = 0.0;

}
<CLK> =on][0];

<SIN> =on[1];
<COS> =on[2];

}

65

7.5.4 cdsSatCount

Clunttied —SSSTeIEY

7.5.4.1 Function Fle Edit Wiew Simulation

The purpose of this block is to count the number of times a channel Format Tools Help
has saturated since the last time the counter was reset. = » = _
D@ EH&| & B=2E

75.4.2 Usage

This block is used to monitor a data channel in order to keep track of
whether or not the input datum is greater than or equal to a saturation
threshold value and also keep counts of how often this happens.

7.5.4.3 Operation

Both the TotalCount counter and the RunningCount counter are zeroed SH*L”E*;GE;SUF; Name
on initialization. ods Sat Cou

The TotalCount counter will keep incrementing (by one per cycle) as
long as the absolute value of the channel (input) datum is greater than Fl100% | | 4
or equal to the TRIGGER (EPICS input) threshold value. The TotalCount counter can only be reset (to
zero) by entering a one in the RESET (EPICS input) switch.

The RunningCount counter will keep incrementing (by one per cycle) as long as the absolute value of the
channel (input) datum is greater than or equal to the TRIGGER (EPICS input) threshold value. This
counter will be reset (to zero) when the channel (input) datum becomes less than the TRIGGER (EPICS
input) threshold value or, conversely, when the TRIGGER (EPICS input) threshold value is modified to a
value greater than the channel (input) datum.

7.5.4.4 Associated EPICS Records
Two EPICS records are produced for user inputs:

_RESET: This is a momentary RESET switch that zeroes the TotalCount output (when set to one;
initial default value is equal to zero and the RESET switch returns to zero after the
TotalCount output has been zeroed).

_TRIGGER: The TotalCount and RunningCount counters (and outputs) will increment as long as the

absolute value of the channel (input) datum is greater than or equal to the TRIGGER
threshold value (initial default TRIGGER value is equal to zero).

66

7545 Code Example

The cdsSatCount module generates the following C code:

Cluncriea—— SIeIE

int scn_0[2]; File Edit ‘iew Simulation Format
static int scn_0Q_first_time_through = 1; Tools Help

static int scn_0_total_counter; - _

static int scn_0_running_counter; [| = EH &S | & ie) | "
if(felnit)

{
if (scn_0_first_time_through) {

scn_0 total _counter = 0;
scn_0_running_counter = 0;

¥

} else { F 100 o

tnnin SCH_D
scn_0_first_time_through = 0; ods Sat Court

// SatCount

if (pLocalEpics-><Sys>.SCN_0 RESET ==1) {
scn_0_total_counter = 0;
pLocalEpics-><Sys>.SCN_0_RESET =0;

}

else if (abs(<InData>) >= pLocalEpics-><Sys>.SCN_0_TRIGGER) {
scn_0_total_counter++;
scn_0_total_counter%=100000000;
scn_0_running_counter++;
scn_0_running_counter%=100000000;

}

else {
scn_0_running_counter = 0;

}

scn_0[0] =scn_0_total_counter;

scn_0[1] =scn_0_running_counter;

}

<TotalCount> = scn_0[0];
<RunningCount> = scn_0[1];

67

7.6 Filters

The key servo control
functions provided by the
RCG are in the form of
digital filters, as shown in the
Filter Parts section.

For most applications, the
IIR Filter Module is used.
The PolyPhase FIR Filter is
designed only for the Ligo
HEPI (Hydraulic External
Pre-1solator) controls
application and is not
intended for general use.

[ILibrary:CD5_PARTS Filkers

File Edit

Wiew Format Help

=10l x|

D& 28 e 4|22 nEE

Ready

IIR Filter Hodules
cd=sFilt

FolvFPha=e FIR Filter

cd=FPFIR

ITR FH with control
cd=sFiltCtrl

FMS
cd=Ens

100%:

IUnlacked o

68

7.6.1 CDS Standard IIR Filter Module

7.6.1.1 Function

All CDS FE processors use digital Infinite Impulse Response (1IR) filters to
perform a majority of their signal conditioning and control algorithm tasks. In
order to facilitate their incorporation into FE software and to provide a standard
set of DAQ and diagnostic capabilities, the Standard Filter Module (SFM) was
developed.

7.6.1.2 Usage

Desired input signal is connected at ‘In1’ and output at ‘Outl’. ‘lIR Filter
Module’ name tag is replaced with user name.

7.6.1.3 Operation

] untitiesSy =] B4

n

le unkitled *

Simulation Farmak

Tools Help

DS HS|

IR Filter Madule
cd=Filt

Flloow |

To help illustrate the operation of the LIGO CDS Standard Filter Module (SFM), an operator MEDM

screen shot is shown below. Signal flow is from Input (left) to Output (right).

Limiter Hold Output
i On/Off Value
AWG Filter Name Jae
Input Clear Load 1§Hz_
Offset Filter Ne Test Point Decimation
nput On/Off Histories Coeffs (ouT) On/off

OMC [_CLOCK

| oewwsoer | Low corrciens ||
il BT, am |
*ﬁma * > t
SE T S
Ramp Ti
Test Point Test Point IB%K IIR(I:icI)t)ers Output RGain
i amp
(IN1) (IN2) o Gain Tk
Input Output
On/Off Limit
Setting

7.6.1.3.1 Input Section

Fri Apr 4

HOLD OUTPUT

Output
On/Off

The SFM input is as defined by the user in the MATLAB Simulink model. At run-time, this signal is
available to EPICS (_INMON) and is available to diagnostic tools as a test point (_IN1) at the sampling
rate of the software. This signal may continue on or be set to zero at this point by use of the Input On/Off

switch.

Each SFM also has an excitation signal input available from the Arbitrary Waveform Generator (AWG).
This signal is available for EPICS (_ EXCMON). The AWG signal is summed with the input signal, and

available to diagnostic tools as a second test point (_IN2).

69

To this resulting signal, a DC offset may be added (Input DC Offset) and this offset may be turned on/off
via the Offset on/off switch. The sum of the input, AWG and offset signal is then fed to the IIR filtering
section.

| Offset | |Offset On/Off

4
4
e
4
/7

4
7

Input Section

X’
| EXC 4
>€¢9—>$

p To Filter Section

_____________s\

| Input On/Off

7.6.1.3.2 Filtering Section

The filter section may have up to 10 IIR filters defined, with up to 10 Second Order Sections (SOS) each.
The software allows for any/all of these filters to be redefined “on the fly”, i.e., an FE process does not
need to be rebooted, restarted or otherwise interrupted from its tasks during reconfiguration.

Each filter within an SFM may be individually turned on/off during operation. Various types of
input/output switching may be defined for each individual filter.

[Filter Coefficients (x41)|

| Coefficient Reload | Number of SOS (1-10) |
i | Switching Method |
I
Filter Section vVYy +
Filter (x10)
A

| History Reset |

| Filter On/Off

h 4
[Output Switch Readback

70

The filter coefficients and switching properties are defined in a text file produced by the foton tool. Filter
coefficient files used by the SFM must be located in the /cvs/cds/<site>/chans directory. This file contains:

The names of all SFMs defined within an FE processor. Each SFM within a front end is given
a unique name in the EPICS sequencer software used to download the SFM coefficients to the
front end. These names must be provided in this file for use by foton. This is done by listing
the SFM names after the keyword ‘MODULES’. As an example, from the LSC FE file:

e #MODULES DARM MICH PRC CARM MICH_CORR

e #MODULESBSRM AS1_I

A line (or lines) for each filter within an SFM, describing filter attributes and coefficients.
These lines must contain the information listed in the following table, in the exact order given
in the table.

Field

Description

SFM Name

The EPICS name of the filter module to which the remaining parameters are to apply.

Filter Number | The number of the filter (0-9) within the given SFM to which the remaining parameters

are to apply.

Filter As previously mentioned, individual filters may have different switching capabilities set.

Switching This two digit number describes how the filter is to switch on/off. This number is
calculated by input_switch_type x 10 + output_switch_type.

The supported values for input switching are:

e 0-Inputis always applied to filter.

e 1 - Inputswitch will switch with output switch. When filter output switch
goes to ‘OFF’, all filter history variables will be set to zero.

Four types of output switching are supported. These are:

e 0- Immediate. The output will switch on or off as soon as commanded.

e 1 -—Ramp: The output will ramp up over the number of cycles defined by the
RAMP field.

e 2 —Input Crossing: The output will switch when the filter input and output
are within a given value of each other. This value is contained in the RAMP
field.

e 3 -—Zero Crossing: The output will switch when the filter input crosses zero.

Number of This field contains the number of Second Order Sections in this filter.

SOS

RAMP The contents of this field are dependent on the Filter Switching type.

Timeout For type 2 and 3 filter output switching (input and zero crossing), a time-out value must be
provided (in FE cycles). If the output switching requirements are not met within this
number of cycles, the output will switch anyway.

Filter Name This name will be printed to the EPICS displays which have that filter. It is basically a
comment field.

Filter Gain Overall gain term of the filter.

Filter The coefficients which describe the filter design.

Coefficients

A skeleton coefficient file is produced the first time ‘make-install’ is invoked after compiling a model file.
Thereafter, whenever ‘make-install’ is executed, the install process will make a back-up of the present
coefficient file, then patch the present file with any new filter modules or renaming of filter modules.

7.6.1.3.3 Output Section
The following figure shows the output section. The output section provides for:

A variable gain to be applied to the filter section output. This gain may be ramped over time
from one setting to another by setting the gain ramp time.
This output to be limited to a selected value (the output limiter can be switched on or off).

71

e A GDS TP. This TP is always on, regardless of whether the output is turned on or off.

e Ability to turn output on or off.

e A decimation filter to provide a 16Hz output (typically used by EPICS; the decimation filter
can be switched on or off).

e A “hold” output feature. When enabled, the output of the SFM will be held to its present

value.
Gain Setting | | Limit Setting
i i
| [}
| [}
| [}
| }
|]
E Output Section |
| [}
| [}
v s
V_ : /ﬂ
Output Limiter | ! > Output Hold ouT
A . ;
}
[}
i | Decimation Filter | al > >| ouT16 >
I A A A
i | | i
T T H T
— |
Limiter On/Off | | | OutputOn/Off | !
[} [}
| Decimation On/Off | | Output Hold On/Off

7.6.1.4 Associated EPICS Records
For each filter module, the following EPICS records are produced, with the filter name as the prefix:

_INMON = Filter module input value (RO)

_EXCMON = Filter module excitation signal input value (RO)
_OFFSET = User settable offset value (W/R)

_GAIN = Filter module output gain (W/R)

_TRAMP = Gain ramping time, in seconds (W/R)

_LIMIT = User defined filter module output limit (W/R)
_OUTMON = Output test-point value (RO)

_OUT16 = Filter module output, decimation filtered to 16Hz (RO)
_OUTPUT = Filter module output value (RO)

_SW1 = Momentary filter switch selections, lower 16 bits (WO)
_SW2 = Momentary filter switch selections, upper 16 bits (WO)
_RSET = Momentary clear filter history switch (WQO)

_SWIR = Filter switch read-backs, lower 16 bits (RO)

_SW2R = Filter switch read-backs, upper 16 bits (RO)

_SW1S = Saved filter switch selections, lower 16 bits (RO)
_SW2S = Saved filter switch selections, upper 16 bits (RO)
_Name00 thru _Name09 = Individual filter names, as defined in the coefficient file (RO)

72

7.6.1.5 Code Example

The cdsFilt module generates the following C code:
double ifm_0;

/I FILTER MODULE
ifm_0 = filterModuleD(dsp_ptr,dspCoeff,IFM_0,<In1>,0);

<Outl> =ifm_0;

(The IFM_0 parameter in the filterModuleD function call above is a constant
containing a unique filter module id. number.)

File Edit

Farmak

Tools Help

=10l x|

Wieww Simulation

DS E&| % &

IFhd_00
cd=Filt

Fl100%

73

7.6.2

7.6.2.1 Function

This module is a standard filter module, with the addition that the
SFM switch and filter status are output and a second input has been
added.

7.6.2.2 Usage

The additional input must be connected to ground or some other
module (e.g., cdsEpicsin) for the code to compile. The additional
control output is used to provide some downstream control or decision
making based on the switch settings within the SFM. Typically this
output is tied to a bitwise operator to select the desired bits, often to
then go to binary output modules to switch relays based on filters

being on/off.

[IR Filter Module with Control

[untitled * -1O] x|
File Edit Wwiew Simulation
Farmak

NSEHS| &=

I Fhd woith contral
cd=Filt Ctr

Tools Help

Fl100%:

7.6.2.3 Operation

In addition to the SFM operation, this block outputs the internal switch information in the form of a 32-bit
integer. The bits of this integer are defined in the following table.

Bit Name Description
0 Coeff Reset This is a momentary bit. When set, the EPICS CPU will read in new SFM
coeffs from file and send this information to the FE via the RFM network. The
FE SFM will read and load new filter coefficients from RFM.
1 Master Reset | Momentary; when set, SFM will reset all filter history buffers.
2 Input On/Off | Enables/disables signal input to SFM.
3 Offset Switch | Enables/disables application of SFM input offset value.
Even Filter Set to one when an SFM filter is requested ON, or zero when SFM filter
bits 4- | Request requested OFF (bit 4 is associated with filter module 1, bit 6 with filter module
22 2, etc.).
Odd Filter Status | Set to one by SFM when an SFM filter is ON, or zero when SFM filter is OFF
bits 5- (bit 5 is associated with filter module 1, bit 7 with filter module 2, etc.).
23
24 Limiter Enables/disables application of SFM output limit value.
Switch
25 Decimation Enables/Disables application of decimation filter to SFM OUT16 calculation.
Switch
26 Output Enables/Disables SFM output (SFM OUT and OUT16 variables)
Switch
27 Hold Output | If (1bit 26 && hit27), SFM OUT will be held at last value.
28 Gain Ramp If set, gain of filter module != requested gain. This bit is set when SFM gain is

ramping to a new gain request.

7.6.2.4 Associated EPICS Records

Same as cdsFilt module.

74

7.6.2.5 Code Example

. . = Juntitled * -0

The cdsFiltCtrl module generates the following C code: - —I—I—I
File Edit “iew Simulation

double ifmc; Format Tools Help

/I FILTER MODULE hEE&| &

ifmc = filterModuleD(dsp_ptr,dspCoeff,IFMC,<In1>,<Cin>);

<Ctrl> = dsp_ptr->inputs[IFMC].opSwitchP| IFMC
((0x4|0x8]0x1000000]0x2000000]0x4000000]0x8000000) & cd=Fitt Crd
dsp_ptr->inputs[IFMC].opSwitchE);

(The IFMC parameter in the filterModuleD function call above is a constant Fl100% E

containing a unique filter module id. number.)

75

7.6.3 PolyPhase FIR Filter
] untitiesSy =] B4

File Edit ba

untiled &

Simulation -

7.6.3.1 Function
This module allows the use of Polyphase FIR (Finite Impulse Response) filters,

. . L . Tools Help
typically used in seismic isolation system controls.
N S2HS|

7.6.3.2 Usage

This part is placed into the model and functions exactly as the cdsFilter part. To

load an FIR at runtime, a separate coefficient file must be provided for FIR In out] A

filters (/cvs/cds/site/chans/modelName.fir).

N.B. The sample rate must be either 2K or 4K when PolyPhase FIR Filters are FolyPhase FIR Filter

being used. cdsPPFIR
7.6.3.3 Operation Fl100% | 4

Use of this part simply sets a compiler flag to allow the use of FIR filters. In all other respects, it functions
in the same way as the cdsFilter part described previously. In fact, this part allows a mix of IIR and FIR
filters to be assigned to the 10 available digital filters within the module. The difference between IIR and
FIR is determined by the runtime software by the number of coefficients loaded (>10 SOS = FIR).

7.6.3.4 Associated EPICS Records
Same as cdsFilt module.

7.6.3.5 Code Example _ ol x|

The cdsPPFIR module generates the following C code:

double ppff; Farmat Tools Help

File Edit Mjew Simulation

/ FILTER MODULE

R

ppff = filterModuleD(dsp_ptr,dspCoeff,PPFF,<In1>,0);

<Outl> = ppff; It Outl #

(The PPFF parameter in the filterModuleD function call above is a constant FEFF

containing a unique filter module id. number.) cdsPPFIR
Fll00%;:

76

7.6.4 RMS Filter

7.6.4.1 Function
This block computes the RMS value of the input signal.

7.6.4.2 Usage
This module is used to calculate an RMS value.

7.6.4.3 Operation

The output value is the RMS value of the input value, within the limits of +2000
counts.

7.6.4.4 Associated EPICS Records
None.

7.6.4.5 Code Example
The cdsRms module generates the following C code:

float rms;
static float rms_avg;

if(felnit)
{

rms_avg = 0.0;

}else {

/I RMS

rms = <in>;

if(rms > 2000) rms = 2000;

if(rms < -2000) rms = -2000;

rms = rms * rms;

rms_avg = rms * .00005 + rms_avg * 0.99995;
rms = Isgrt(rms_avg);

<out> =rms;

¥

L= untitle a9

File gd'm-_ s
Simulakio untltld

Tools Help

D EHS|

77

7.7 Matrix Parts

Matrix parts are those which perform calculations based on array data. The most commonly used is the

cdsMuxMatrix part.

E!Lihrar'r:IZDS_PARTS,.I"Matri:H:Parts -0 x|
File Edit Wiew Format Help
DeEE| BB ¢ 4|0 n@REE
Il ot Inl
In2 =¥ Inl Outl - InDutl
In3 Cutl
Ind4 DutZ InZ Out? InZ InBut2
Ink
Ing Cut3 In3 Out3 In3 InBut3
In? O'th-2
InB Outd In4 Out4 Ind In@lut-'i
InY9 Oute InS Outh RampSwitch InBuths
Inlg-ut cd=RamnpSwitch
Inil Int Outb InButh
Outh
Inl2-% In? Out? InBut?
Inl3
Inld2ut? Ing Outh In@utd
ImlSO .
11 . n . .
Ll B] Matriz MultiProdust MultiSwitch
MultiSubtract Matrix cdzProduct cd=sSwitchl
cdsSubtracth
B0
Bl
B2
B3
Bd
BS
B
EE Out
cdsMuxMatrix Ed
cdsMu=zMatrix B1D
Bil
BlzZ
Bl3
Bld
Bi5
n
cd=BitZWord cdslord?Bit
cd=Bit2Word cdslord?Bit
Ready [100% [Unlocked 4

78

7.7.1 cdsMuxMatrix

7.7.1.1 Function

The primary function of this block is to produce output signals based on
the scaling and addition of various input signals.

7.7.1.2 Usage

Inputs are connected via the Mux part and outputs are connected via the
Demux part. The number of connections available at the input/output may
be modified to any size by double clicking on the Mux/Demux parts and
modifying the number of connection fields in the pop-up window.

7.7.1.3 Operation
Basic code function is:
Output[1] =
Input[1] * Matrix_11 + Input[2] * Matrix_12 + Input[n] * Matrix_1n,
where Matrix_xx is an EPICS entry field.

7.7.1.4 Associated EPICS Records

[untitled * =10 x|

File Edit iew

Simulation Format Tools

Help

D& 48
cd=zhd uzxhd atriz
cdzhiuxhiatris

Fl100%)

The RCG will produce an A x B matrix of EPICS records for use as input variables, where B is the number
of inputs and A is the number of outputs. The EPICS record names will be in the form of

PARTNAME_AB, starting at PARTNAME_11.

7.7.1.5 Code Example
The cdsMuxMatrix module generates the following C code:

int ii;

double demux][3];
double mux[5];
double cdsmuxmatrix[3];

/I MUX

mux[0]= <In1[0]>;
mux[1]= <In1[1]>;
mux[2]= <In1[2]>;
mux[3]= <In1[3]>;
mux[4]= <In1[4]>;

/I MuxMatrix
for(ii=0;ii<3;ii++)

cdsmuxmatrix[ii] =
pLocalEpics-><Sys>.cdsMuxMatrix[ii][0] * mux[0] +
pLocalEpics-><Sys>.cdsMuxMatrix[ii][1] * mux[1] +
pLocalEpics-><Sys>.cdsMuxMatrix[ii][2] * mux[2] +
pLocalEpics-><Sys>.cdsMuxMatrix[ii][3] * mux[3] +
pLocalEpics-><Sys>.cdsMuxMatrix[ii][4] * mux[4];

Clunutied = SRI=TEY

File Edit jew Simulation
Forrmak

M ER T

Tools Help

cd=shd uzhd atriz
cd=shduxhdatrix

Fl100%: | 2

79

/I DEMUX

demux[0]= cdsmuxmatrix[0];
demux[1]= cdsmuxmatrix[1];
demux[2]= cdsmuxmatrix[2];

<Out1[0]> = demux[O];
<Outl[1]> = demux[1];
<Outl[2]> = demux[2];

80

7.7.2 MultiSubtract

7.7.2.1 Function
This module is a group of subtractions, packaged into a single part.

7.7.2.2 Usage

Connect all input and output connectors. (N.B. All 16 inputs must be
connected to other modules in order for this module to compile.)

7.7.2.3 Operation

This module subtracts pairs of inputs (16) and produces 8 outputs, e.g.,
Outl = In2 - In1, Out2 = In4 — In3, etc.

7.7.2.4 Associated EPICS Records
None.

7.7.25 Code Example
The cdsSubtract8 module generates the following C code:

double multisubtract[16];

/I Diffiunc

multisubtract[0] = <In2> - <In1>;
multisubtract[1] = <In4> - <In3>;
multisubtract[2] = <In6> - <In5>;
multisubtract[3] = <In8> - <In7>;
multisubtract[4] = <In10> - <In9>;
multisubtract[5] = <In12> - <In11>;
multisubtract[6] = <In14> - <In13>;
multisubtract[7] = <In16> - <In15>;

<OQutl> = multisubtract[0];
<Out2> = multisubtract[1];
<Out3> = multisubtract[2];
<Out4> = multisubtract[3];
<Out5> = multisubtract[4];
<Out6> = multisubtract[5];
<Qut7> = multisubtract[6];
<Qut8> = multisubtract[7];

Sl untitled =10l x|
File Edit Wiew
Simulation Formak
Tools Help
D&

Ini

Iz Ot 1

In

Ind Out2

InG

G o3

In7

Ina Ot

Ind

o 05

Intl

Iniz Duits

In13

14 M7

In1a

g 08

MultiSubtract

cds Subtractd
F100% 4

81

7.7.3 Matrix

7.7.3.1 Function

The output values produced by this module are made up of the input values
multiplied by scale factors and added together.

7.7.3.2 Usage

This module has been replaced by the cdsMuxMatrix module. The Matrix
module should NOT be used!

7.7.3.3 Operation

Each input value is multiplied by a scale factor (supplied via EPICS records),
after which the resulting values are added together and assigned to the output
values.

7.7.3.4 Associated EPICS Records

A matrix of A x B EPICS records (where B is the number of inputs and A is the
number of outputs) is produced by the Real-Time Code Generator.

7.7.3.5 Code Example
The Matrix module generates the following C code:

int ii;
double matrix[8][8];

/I Matrix
for(ii=0;ii<8;ii++)

matrix[1][ii] =
pLocalEpics-><Sys>.Matrix[ii][0] * <In1> +
pLocalEpics-><Sys>.Matrix[ii][1] * <In2> +
pLocalEpics-><Sys>.Matrix[ii][2] * <In3> +
pLocalEpics-><Sys>.Matrix[ii][3] * <In4> +
pLocalEpics-><Sys>.Matrix[ii][4] * <In5> +
pLocalEpics-><Sys>.Matrix[ii][5] * <In6> +
pLocalEpics-><Sys>.Matrix[ii][6] * <In7> +
pLocalEpics-><Sys>.Matrix[ii][7] * <In8>;

}

<Qutl> = matrix[1][0];
<Qut2> = matrix[1][1];
<Out3> = matrix[1][2];
<Out4> = matrix[1][3];
<Out5> = matrix[1][4];
<Out6> = matrix[1][5];
<Out7> = matrix[1][6];
<Out8> = matrix[1][7];

=] untitled * -10] x|
File Edit
Simulation Format Tools

Wiga

Help
L'
OeEd& » &
In1 Ot 1
InZ Otz
In3 O3
Ing4 Ot
InG Outs
Ingi Ot
In? Out?
Ini Ot
hd atriz
hiatrix
Fl100% y

82

7.7.4 MultiProduct

7.7.4.1 Function

The purpose of this block is to multiply up to eight inputs by a single
input gain setting. Whenever a gain setting is changed, this block will
ramp the gain from the present to a new setting over the user defined
time interval.

7.7.4.2 Usage

The 8 inputs and outputs are connected, either to other signals or
terminators. The gain multiplier comes from EPICS.

7.7.4.3 Operation

The code for this block will multiply all inputs by the gain setting and
produce the results at the corresponding outputs. If the gain is
changed, the code will ramp the gain value over the requested ramp
time.

7.7.4.4 Associated EPICS Records

<block name>: Gain to be applied to all channels.
_TRAMP: Time (seconds) over which to ramp any gain changes.
_RMON: Return status code from gainRamp function (not used).

7.7.4.5 Code Example
The cdsProduct module generates the following C code:

double multiproduct[8];
float MultiProduct CALC;

/I PRODUCT

[untitled * -10O] x|
File Edit Wwiew Simulation
Farmak

NSEHS| &=

Tools Help

In1 Out1

InZ Outz

In3 Out3

Ind Outd

Ing Outs

Infi Outf

In? Out?

Ing Outs

hlultiFroduct
cds Product

Fl100%: | 2

pLocalEpics-><Sys>.MultiProduct. RMON = gainRamp(pLocalEpics-><Sys>.MultiProduct,
pLocalEpics><Sys>.MultiProduct. TRAMP,0,&MultiProduct_ CALC);

multiproduct[0] = MultiProduct CALC * <In1>;
multiproduct[1] = MultiProduct_CALC * <In2>;
multiproduct[2] = MultiProduct_ CALC * <In3>;
multiproduct[3] = MultiProduct_CALC * <In4>;
multiproduct[4] = MultiProduct_CALC * <In5>;
multiproduct[5] = MultiProduct_ CALC * <In6>;
multiproduct[6] = MultiProduct_ CALC * <In7>;
multiproduct[7] = MultiProduct CALC * <In8>;

<Qutl> = multiproduct[0];
<Out2> = multiproduct[1];
<Out3> = multiproduct[2];
<Out4> = multiproduct[3];
<Out5> = multiproduct[4];
<Out6> = multiproduct[5];
<Qut7> = multiproduct[6];
<Out8> = multiproduct[7];

83

7.7.5 MultiSwitch

7.75.1 Function

This block allows simultaneous on/off switching of up to 8 signals via a
single EPICS input record.

7.75.2 Usage

This module is used to connect up to eight inputs that are either passed
through to the outputs (if the associated EPICS record is set to one) or
switched off (if the EPICS record is set to zero).

7.7.5.3 Operation

When the associated EPICS record is set to “1’, ‘In1” thru “In8’ are passed
straight through to ‘Outl’ thru ‘Out8’. If the EPICS record is set to zero,
‘Outl’ through “‘Out8’ become zero.

7.7.5.4 Associated EPICS Records

The RCG produces a single EPICS “bi’ record with the name given to this
part by the user.

7.7.5.5 Code Example
The cdsSwitch1 module generates the following C code:

int ii;
double multiswitch[8];

/I MultiSwitch

multiswitch[0] = <In1>;

multiswitch[1] = <In2>;

multiswitch[2] = <In3>;

multiswitch[3] = <In4>;

multiswitch[4] = <In5>;

multiswitch[5] = <In6>;

multiswitch[6] = <In7>;

multiswitch[7] = <In8>;

if (pLocalEpics-><Sys>.MultiSwitch == 0) {
for (ii=0; ii<8; ii++) multiswitch[ii] = 0.0;

}

<Qutl> = multiswitch[0];
<Qut2> = multiswitch[1];
<Out3> = multiswitch[2];
<Out4> = multiswitch[3];
<Qut5> = multiswitch[4];
<Qut6> = multiswitch[5];
<Out7> = multiswitch[6];
<Out8> = multiswitch[7];

] untitled =S |
File Edit Wiew
Simulation Formak

Tools Help
D&

b ulti Switch
cds Switch 1

F100% 4

84

7.7.6 RampSwitch

7.7.6.1 Function
The purpose of this block is to allow switching between two pairs of inputs.

7.7.6.2 Usage

This module passes a pair of inputs to the outputs, depending on the setting of the
associated EPICS record.

7.7.6.3 Operation

If the associated EPICS record is equal to zero, Outl will be set equal to In1 and
Out2 will be set equal to In3. If the EPICS record is equal to one, Outl will be set
equal to In2 and Out2 will be set equal to In4.

7.7.6.4 Associated EPICS Records

The RCG produces a single EPICS “bi’ record with the name given to this part by the
user.

7.7.6.5 Code Example
The cdsRampSwitch module generates the following C code:

double rampswitch[4];

/I RampSwitch

rampswitch[0] = <Inl1>;

rampswitch[1] = <In2>;

rampswitch[2] = <In3>;

rampswitch[3] = <In4>;

if (pLocalEpics-><Sys>.RAMPSWITCH == 0)

rampswitch[1] = rampswitch[2];

else
{
rampswitch[0] = rampswitch[1];
rampswitch[1] = rampswitch[3];
}

<Qutl> = rampswitch[0];
<Qut2> = rampswitch[1];

[uncled * ST

File Edit iew
Simulation Format
Tools Help

L& 4

Ini
Ot
InZ

In3
Ourt2

Ing

RampSwitch
cdz Ramp Switch

Fllo0%

85

7.7.7 cdsBit2Word/cdsWord2Bit

(o]

File Edit Wiew Simulation Format Tools

7.7.7.1 Function
The purpose of these two blocks is to convert from 16

single bit inputs to one 16-bit output word O @& & R & 4

Help

(cdsBit2Word) and from one 16-bit input word to 16
single bit outputs (cdsWord2Bit), respectively.
BO
Bl
7.7.7.2 Usage e
For cdsBit2Word, connect 16 binary inputs to ‘B0’ B4
through ‘B15’, with the least significant bit connected Eg
to 'B0', the second least significant bit connected to B7
‘B1’, etc., and connect ‘Out’ to the module that should 33
receive the 16-bit output word. g}?
Biz
For cdsWord2Bit, connect the module that supplies the g}i
16-bit input to ‘In” and 16 binary outputs to ‘B0’ Bi%
through ‘B15’, with the least significant bit connected
to ‘B0O’, the second least significant bit connected to cdsBitita rd Bwrrare—
‘B1’, etc. oz Bit2iard cdeitiard Bit
Fl1o0% | | loc

7.7.7.3 Operation

cdsBit2Word will calculate the outputas Out=B0*1+B1*2+B2*4 + ... + B15 * 32,768 (i.e.,
Out=B0*2**0 + B1 * 2**1 + B2 * 2**2 + ... + B15 * 2**15), where BO through B15 are equal to 1 or 0,
e.g., if the binary inputs connected to B1, B2, B5, and B12 are equal to one and all other binary inputs are
equal to zero, then the output (16-bit) word would be equalto (1 *2+1*4 +1*32+1* 4,096 =) 4,134.

cdsWord2Bit will convert the 16-bit (integer) input, ‘In’, into 16 bits, e.g., the ‘In” value 33,609 will result
in the following bit pattern on the output: B15=1, B14 =0,B13=0,B12=0,B11=0,B10=0,B9 =1,
B8=1,B7=0,B6=1,B5=0,B4=0,B3=1,B2=0,B1=0,and BO = 1.

7.7.7.4 Associated EPICS Records
None.

86

7.7.7.5 Code Examples
The cdsBit2Word module generates the following C code:

int ii;

unsigned int cdshit2word;

unsigned int powers_of 2[16] = {1, 2, 4, 8, 16, 32, 64, 128, 256, 512,

if(felnit)
{

cdshit2word = 0;

}else {

/I Bit2Word

{

double ins[16] = {
<B0>,
<B1>,
<B2>,
<B3>,
<B4>,
<B5>,
<B6>,
<B7>,
<B8>,
<B9>,
<B10>,
<B11>,
<B12>,
<B13>,
<B14>,
<B15>

c&sbitZword =0;
for (il = 0; ii < 16; ii++)

{

if (ingfii]) {

cdsbit2word += powers_of_2[ii];
}

}

}

<Qut> = cdshit2word;

1024, 2048, 4096, 8192, 16384, 32768};

87

The cdsWord2Bit module generates the following C code:

int ii;
unsigned int cdsword2bit[16];

/I Word2Bit
{

unsigned int in = (int) <In>;
for (ii = 0; ii < 16; ii++)

{

if (in%2) {
cdsword2bit[ii] = 1;
}

else {
cdsword2bit[ii] = 0;
}

in =in>>1;

}

}

<B0> = cdsword2bit[0];
<B1> = cdsword2bit[1];
<B10> = cdsword2bit[10];
<B11> = cdsword2bit[11];
<B12> = cdsword2bit[12];
<B13> = cdsword2bit[13];
<B14> = cdsword2bit[14];
<B15> = cdsword2bit[15];
<B2> = cdsword2bit[2];
<B3> = cdsword2bit[3];
<B4> = cdsword2bit[4];
<B5> = cdsword2bit[5];
<B6> = cdsword2bit[6];
<B7> = cdsword2bit[7];
<B8> = cdsword2bit[8];
<B9> = cdsword2bit[9];

88

7.8 WatchDogs

Watchdogs are used to monitor their input signals and
produce an error signal at their output to automatically
trigger some fault handling code/modules. The modules to
date were designed to implement similar tasks in initial
LIGO controls.

NOTE: There is a third watchdog type (not shown), which
was specifically implemented to replicate the watchdogs
used in present LIGO HEPI systems. It is intended that it
will be redesigned and added to the Watchdog parts library
in a future release.

[=1Library: CDS_PARTS

L

=10l x|

Eile Edit Wiew Fop
Lib

[ed&| 2R [e=

Ll
rary: DS _PARTS W ak:

Ready

Inl Cutle

Szi=mic Watchdog
cdsSusWd

UL
LL
TR Outl
LR
=10]

Watchdog
cd=WD

[100% lLocked

A

89

7.8.1 cdsSusWwd

7.8.1.1 Function

This function was developed with the sole purpose of connecting a
suspension trip signal to the HEPI system in the early prototyping stages at
LASTI (LIGO Advanced System Test Interferometer). This block should not
be used in any new designs.

7.8.1.2 Usage

7.8.1.3 Operation

7.8.1.4 Associated EPICS Records

=] untitled S =] 1]

File Edit iew
Simulation Format
Tools Help

L& 4

In1 Out1 K

SzizmicWratchdog
cd=Susid

Fl100%:

90

7.8.2 cdsWD

7.8.2.1 Function

This block was designed to implement the suspension watchdog function found in

initial LIGO.

7.8.2.2 Usage

Typically, the raw suspension OSEM (Optical Sensing Electro-Magnet) signals are

input at the left of the block. The output is then connected to a product block, with the

second connection of the product being the signal path which is to be turned off if the
watchdog trips. An (incomplete) example is shown in the following figure.

File Edit Wiew Simulakion Format Tools

Help

eI
File Edifrritied]

Simulation Format

Tools

OzE&E|

Help

R Ot 1

Watchdayg

cdz'iD

I
_(of x|

DEeES| BB e 4922 5o

INDnnd

ol B 5 S

IIIIIIIIIII !_ x
uLOuT w
dsFilt Froduct1
— >
B
LLOUT gl
cdsFit Froduct?
— >
bl
UROUT il
cd= Fitt Froducts
LROUT o
cdsFilt Froduct}

Ready

D, >
In1
LULSEN
cdzFilt
In1 Out1
- =-—>Ir|2 o
In2
LLSEN InZ Ot
cd=Filt
Ind Ot
In2
URSEN InG Outf
cd=Filt
In? Out?
Int —
LRSEN INM TR
cdzFilt Iwigtrix
P LIL
I LL
P LR Ot 1
= LR
50
—
Graund? Wratchdog
cd=suD

[100%

|[odesds

KL

91

7.8.2.3 Operation

The run-time software for this module continuously calculates an RMS and variance for each input signal.
If all variances are within the tolerances, the output is 1. If the variance for any input signal exceeds the
RMS value beyond the operator set-points, the output becomes a value of 0, and remains 0 until reset by the

operator.

7.8.2.4 Associated EPICS Records

To support this module, the following EPICS records are produced for operator interaction. Signal names
shown in the table are based on the part being named ‘WD’ in the user model.

Name Type Purpose
WD Momentary | Used to turn the module on/off. If ‘on’, watchdog is operational. If ‘off’, the
ai output of the watchdog code goes to 0. This is also used to ‘reset’ the

watchdog after variances are back in tolerance.

WD_STAT | ai Provides watchdog status information

WD_MAX ai Trip set-point. If variance on any input exceeds its RMS value by greater
than this setting, the WD will trip.

WD_VAR_1 | ai These records provide read-backs on the present variance of all five input

thru signals.

WD _VAR 5

7.8.2.5 Code Example

The cdsWD module generates the following C code: - 10| x|
N File Edit Wiew
int ii; _ _
Simulation Format
static int sus_wd,; Tools Help
static float sus_wd_avg[5]; ,, |
static float sus_wd_var[5]; O | =Ha | i
float sus_wd_vabs;
uL
if(felnit)
{ LL
UR Ot
sus_wd =0;
for (ii=0; ii<5; ii++) { LR
sus_wd_avg[ii] = 0.0;
sus_wd_var[ii] = 0.0; =0
. SUS_WD
pLocalEpics-><Sys>.SUS WD =1, cdsrD
Fl100% v

}else {
/I Wd (Watchdog) MODULE

if((clock16K % (FE_RATE/1024)) ==0) {
if (pLocalEpics-><Sys>.SUS WD ==1) {

sus_wd =1;

pLocalEpics-><Sys>.SUS_WD = 0;

¥

92

double ins[5]={
,
<LL>,
<UR>,
<LR>,
<SD>,
Y
for(ii=0; ii<5;ii++) {
sus_wd_avg[ii] = ins[ii] * .00005 + sus_wd_avg[ii] * 0.99995;
sus_wd_vabs = ins[ii] - sus_wd_avg[ii];
if(sus_wd_vabs < 0) sus_wd_vabs *=-1.0;
sus_wd_varfii] = sus_wd_vabs * .00005 + sus_wd_var[ii] * 0.99995;
pLocalEpics-><Sys>.SUS_WD_VARJii] = sus_wd_varfii];
if(sus_wd_var[ii] > pLocalEpics-><Sys>.SUS_WD_MAX) sus_wd = 0;

pLocalEpics-><Sys>.SUS_WD_STAT = sus_wd,;
}

<Outl> =sus_wd;

93

	1 Introduction
	2 Document Overview
	3 References
	4 RCG Overview
	4.1 Code Development
	4.2 Code Generator
	4.3 Run-time Software

	5 RCG Application Development
	5.1 Basic Code Development
	5.1.1 General Rules, Guidelines and Gotchas
	5.1.2 Example Model

	5.2 Code Compilation and Installation
	5.3 Defining Multiple Models For One Computer

	6 Running the RCG Application
	6.1 Loading and Executing the software
	6.1.1 Automatic Scripts
	6.1.2 Manual Code Execution

	6.2 Auto Generated MEDM Screens
	6.2.1 GDS_TP Display
	6.2.2 ADC Input Display
	6.2.3 Standard Filter Module Display
	6.2.4 Matrix Display

	6.3 Additional Run Time Tools
	6.3.1 DAQ GUI
	6.3.2 EPICS DAQ Configuration

	7 RCG Software Parts Library
	7.1 Top Level Modules
	7.1.1 cdsParameters
	Function
	7.1.1.2 Usage
	7.1.1.3 Operation
	7.1.1.4 Associated EPICS Records

	7.1.2 cdsFunctionCall
	Function
	7.1.2.2 Usage
	7.1.2.3 Operation
	7.1.2.4 Associated EPICS Records
	7.1.2.5 Code Example

	7.2 I/O Parts
	7.2.1 ADC
	7.2.1.1 Function
	7.2.1.2 Usage
	7.2.1.3 Operation
	7.2.1.4 Associated EPICS Records

	7.2.2 ADC Selector
	7.2.2.1 Function
	7.2.2.2 Usage
	7.2.2.3 Operation
	7.2.2.4 Associated EPICS Records

	7.2.3 DAC
	7.2.3.1 Function
	7.2.3.2 Usage
	7.2.3.3 Operation
	7.2.3.4 Associated EPICS Records

	cdsDio
	7.2.4.1 Function
	7.2.4.2 Usage
	7.2.4.3 Operation
	7.2.4.4 Associated EPICS Records
	7.2.4.5 Code Example

	cdsRfmIO
	7.2.5.1 Function
	7.2.5.2 Usage
	7.2.5.3 Operation
	7.2.5.4 Associated EPICS Records
	7.2.5.5 Code Example

	cdsRio and cdsRio1
	7.2.6.1 Function
	7.2.6.2 Usage
	7.2.6.3 Operation
	7.2.6.4 Associated EPICS Records
	7.2.6.5 Code Examples

	cdsIPC
	7.2.7.1 Function
	7.2.7.2 Usage
	7.2.7.3 Operation
	7.2.7.4 Associated EPICS Records
	7.2.7.5 Code Examples

	cdsIPCS
	7.2.8.1 Function
	7.2.8.2 Usage
	7.2.8.3 Operation
	7.2.8.4 Associated EPICS Records
	7.2.8.5 Code Examples

	7.2.9 GPS
	7.2.9.1 Function
	7.2.9.2 Usage
	7.2.9.3 Operation
	7.2.9.4 Associated EPICS Records
	7.2.9.5 Code Example

	7.2.10 cdsCDO32
	7.2.10.1 Function
	7.2.10.2 Usage
	7.2.10.3 Operation
	7.2.10.4 Associated EPICS Records
	7.2.10.5 Code Example

	7.3 Simulink Parts
	7.3.1 Unit Delay
	7.3.1.1 Function
	7.3.1.2 Usage
	7.3.1.3 Operation
	7.3.1.4 Associated EPICS Records
	7.3.1.5 Code Example

	7.3.2 Subsystem Part
	7.3.2.1 Function
	7.3.2.2 Usage
	7.3.2.3 Operation
	7.3.2.4 Associated EPICS Records

	7.3.3 MathFunction
	7.3.3.1 Function
	7.3.3.2 Usage
	7.3.3.3 Operation
	7.3.3.4 Associated EPICS Records
	7.3.3.5 Code Examples

	7.3.4 In-line (math) function
	Function
	7.3.4.2 Usage
	7.3.4.3 Operation
	Associated EPICS Records
	7.3.4.5 Code Examples

	7.4 EPICS Parts
	7.4.1 cdsEpicsOutput/cdsEpicsIn
	7.4.1.1 Function
	7.4.1.2 Usage
	7.4.1.3 Operation
	7.4.1.4 Associated EPICS Records
	7.4.1.5 Code Examples

	7.4.2 cdsEpicsBinIn
	7.4.2.1 Function
	7.4.2.2 Usage
	7.4.2.3 Operation
	7.4.2.4 Associated EPICS Records
	7.4.2.5 Code Example

	7.4.3 cdsRemoteIntlk
	7.4.3.1 Function
	7.4.3.2 Usage
	7.4.3.3 Operation
	7.4.3.4 Associated EPICS Records
	7.4.3.5 Code Example

	7.4.4 cdsEzCaRead/cdsEzCaWrite
	7.4.4.1 Function
	7.4.4.2 Usage
	7.4.4.3 Operation
	7.4.4.4 Associated EPICS Records
	7.4.4.5 Code Examples

	7.4.5 cdsEpicsMomentary
	7.4.5.1 Function
	7.4.5.2 Usage
	7.4.5.3 Operation
	7.4.5.4 Associated EPICS Records
	7.4.5.5 Code Example

	7.5 Osc/Phase
	7.5.1 cdsPhase
	7.5.1.1 Function
	7.5.1.2 Usage
	7.5.1.3 Operation
	7.5.1.4 Associated EPICS Records
	Code Example

	7.5.2 cdsWfsPhase
	7.5.2.1 Function
	7.5.2.2 Usage
	7.5.2.3 Operation
	7.5.2.4 Associated EPICS Records
	7.5.2.5 Code Example

	cdsOsc
	7.5.3.1 Function
	7.5.3.2 Usage
	7.5.3.3 Operation
	7.5.3.4 Associated EPICS Records
	Code Example

	7.5.4 cdsSatCount
	7.5.4.1 Function
	7.5.4.2 Usage
	7.5.4.3 Operation
	7.5.4.4 Associated EPICS Records
	7.5.4.5 Code Example

	7.6 Filters
	7.6.1 CDS Standard IIR Filter Module
	7.6.1.1 Function
	7.6.1.2 Usage
	7.6.1.3 Operation
	7.6.1.3.1 Input Section
	7.6.1.3.2 Filtering Section
	7.6.1.3.3 Output Section

	7.6.1.4 Associated EPICS Records
	7.6.1.5 Code Example

	7.6.2 IIR Filter Module with Control
	7.6.2.1 Function
	7.6.2.2 Usage
	7.6.2.3 Operation
	7.6.2.4 Associated EPICS Records
	7.6.2.5 Code Example

	7.6.3 PolyPhase FIR Filter
	7.6.3.1 Function
	7.6.3.2 Usage
	7.6.3.3 Operation
	7.6.3.4 Associated EPICS Records
	Code Example

	7.6.4 RMS Filter
	7.6.4.1 Function
	7.6.4.2 Usage
	7.6.4.3 Operation
	7.6.4.4 Associated EPICS Records
	7.6.4.5 Code Example

	7.7 Matrix Parts
	7.7.1 cdsMuxMatrix
	7.7.1.1 Function
	7.7.1.2 Usage
	7.7.1.3 Operation
	7.7.1.4 Associated EPICS Records
	Code Example

	7.7.2 MultiSubtract
	7.7.2.1 Function
	7.7.2.2 Usage
	7.7.2.3 Operation
	7.7.2.4 Associated EPICS Records
	7.7.2.5 Code Example

	7.7.3 Matrix
	7.7.3.1 Function
	7.7.3.2 Usage
	7.7.3.3 Operation
	7.7.3.4 Associated EPICS Records
	7.7.3.5 Code Example

	7.7.4 MultiProduct
	7.7.4.1 Function
	7.7.4.2 Usage
	7.7.4.3 Operation
	7.7.4.4 Associated EPICS Records
	7.7.4.5 Code Example

	7.7.5 MultiSwitch
	7.7.5.1 Function
	7.7.5.2 Usage
	7.7.5.3 Operation
	7.7.5.4 Associated EPICS Records
	7.7.5.5 Code Example

	7.7.6 RampSwitch
	7.7.6.1 Function
	7.7.6.2 Usage
	7.7.6.3 Operation
	7.7.6.4 Associated EPICS Records
	7.7.6.5 Code Example

	7.7.7 cdsBit2Word/cdsWord2Bit
	7.7.7.1 Function
	7.7.7.2 Usage
	7.7.7.3 Operation
	7.7.7.4 Associated EPICS Records
	7.7.7.5 Code Examples

	7.8 WatchDogs
	7.8.1 cdsSusWd
	7.8.1.1 Function
	7.8.1.2 Usage
	7.8.1.3 Operation
	7.8.1.4 Associated EPICS Records

	7.8.2 cdsWD
	7.8.2.1 Function
	7.8.2.2 Usage
	7.8.2.3 Operation
	7.8.2.4 Associated EPICS Records
	Code Example

