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We discover these bounds by computing the likelihood of
our observation, namely the probability that no signal would
be observed in the on-source time, given the presence of a
compact binary progenitor with various parameters. Denote
the gravitational-wave signal by h(t;m2,D,!µ) where m2 is the
mass of the companion, D is the physical distance to the bi-
nary, and !µ = {m1,!s1,!s2, ι,Φ0,t0} is the mass of the neutron
star, the spins, the inclination, the coalescence phase, and the
coalescence time. The probability of interest is then

p[0|h(t;m2,D)] =
∫

p(!µ) p[0|h(t;m2,D,!µ)]d!µ (3)

where the nuisance parameters !µ are integrated over some
prior distribution p(!µ). This integration was performed by
injecting simulated signals into the data streams of both de-
tectors according to the desired prior distribution, and evaluat-
ing the efficiency for recovering those injections as candidate
events (as described in Sec. 3.1), as a function of m2 and D.
We choose uniform priors overm1 (1M! <m1 < 3M!),Φ0, t0
and the polarization angle; the priors for spin and inclination
ι are discussed below.
Astrophysical black holes are expected to have substantial

spin. The maximum allowed by accretion spin-up of the hole
is (a/M) = (cS/GM2)< 0.9982 (Thorne 1974) in units of the
Kerr spin parameter (S is the spin angular momentum of the
black hole). More detailed simulations and recent observa-
tions provide a broad range of values (O’Shaughnessy et al.
2005) with a maximum observed spin (a/M) > 0.98 (Mc-
Clintock et al. 2006). The maximum spin that a neutron
star can have is estimated from a combination of simulations
and observations of pulsar periods. Numerical simulations of
rapidly spinning neutron stars give (a/M)< 0.75 (Cook et al.
1994); the maximal spin of the observed pulsar sample may
be substantially lower than that. In our spinning simulations,
we adopted a distribution in which the spin magnitudes are
uniformly distributed between zero and (a/M) = (cS/GM2) =
0.98 and (a/M) = (cS/GM2) = 0.75 for the black holes and
neutron stars respectively, while the direction of each spin is
uniform over the sphere. There is strong evidence that short
GRBs are beamed (see, e.g., Soderberg et al. 2006; Nakar
2007; Burrows et al. 2006, and references therein), although
probably less beamed than long bursts (Grupe et al. 2006). If
this is the case, the most likely direction for beaming is along
the total angular momentumvector of the system. For binaries
with small component spins, this will correspond to the direc-
tion orthogonal to the plane of the orbit. Hence the inclination
angle of the binary, relative to the line of sight, is most likely
to be close to zero. However, since zero inclination is the best
case for detection of gravitational waves, a uniform prior on
cosι provides a conservative constraint. We drew cosι from a
uniform prior.
Figure 3 shows the contours of constant probability 1 −

p[0|h(t;m2,D)]. Compact binaries corresponding to parame-
ters (m2,D) in the darkest-shaded region are excluded as pro-
genitors for this event at the 90% confidence level. As a refer-
ence point, a compact binary progenitor with masses 1M! <
m1 < 3M! and 1M! <m2 < 4M! with D< 3.5 Mpc is ex-
cluded at 90% confidence; the same system withD< 8.8 Mpc
is excluded at the 50% level. This result is averaged over dif-
ferent theoretical waveform families; 20% of the simulated
waveforms include spins sampled as described above.
A number of systematic uncertainties enter into this analy-

sis, but amplitude calibration error (≈ 10%) and Monte-Carlo
statistics have the largest effects. These uncertainties have

been folded into our analysis in a manner similar to that de-
scribed in (Abbott et al. 2005b,c). In particular, the amplitude
calibration was taken into account by scaling the distance of
the injection signal to be 1.28×10% larger; the Monte-Carlo
error adds 1.28

√

p(1− p)/n to p = p[0|h(t;m2,D)] where n
is the total number of simulated signals in a particular mass-
distance bin.
We evaluate the hypothesis that the event occurred in M31,

as electromagnetic observations hint might be the case, given
our observation. We adopt the measured distance of 0.77 Mpc
to M31. We then simulated a large number of inspirals at
distances 0.77 Mpc < D < 0.9 Mpc which allows us to ac-
count for both uncertainty in distance to M31 (7%) (Freed-
man et al. 2001) and the amplitude calibration uncertainty dis-
cussed above. The simulations exclude any compact binary
progenitor in our simulation space at the distance of M31 at
the > 99% level.

FIG. 3.— The probability as described in Eq. (3) is computed using in-
jections made only into the 180 s segments immediately before and after the
on-source time. The shaded regions represent 90%, 75%, 50%, and 25% ex-
clusion regions, from darkest to lightest respectively. The distance to M31 is
indicated by the horizontal line at D = 0.77 Mpc. Both amplitude calibration
uncertainty and Monte-Carlo statistics are included in this result; apparent
fluctuations as a function of mass are due to Monte Carlo uncertainty.

4. SEARCH FOR A GRAVITATIONALWAVE BURST
To search for a gravitational wave burst associated with

GRB 070201 we have used LIGO’s current baseline method
for near-real time searches for gravitational wave bursts as-
sociated with GRB triggers (GCN 2007; IPN3 2007). A de-
tailed description of the analysis method is presented else-
where (Abbott et al. 2007a).

4.1. Search Method
The burst search method is based on cross-correlating a

pair of pre-conditioned datastreams from two different grav-
itational wave detectors. The pre-conditioning of the datas-
treams consists of whitening, phase-calibration, and band-
passing from 40 Hz to 2000 Hz. The cross-correlation is
calculated for short time series of equal length taken from
the datastreams of each detector. For discretely sampled
time series s1 and s2, each containing n elements, the cross-


