
LIGO-G0900562-v3

References

[1] C. Messenger, R. Prix, and M. A. Papa. Random template banks and relaxed lattice

coverings. Physical Review D, 79(10):104017, May 2009.

[2] J. O. Berger. Statistical decision theory and Bayesian analysis. Springer-Verlag, 2nd

edition, 1985.
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·· Binary inspiral context

In the context of binary inspiral signals, prior and template metric are par-

ticularly contradictory: templates need to be spaced densely at low masses

(these are the long-lived signals of many cycles), while a priori one rather

expects high masses (which are the high-amplitude signals that are detectible

out to large distances) [3].
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Bayes rule: p*(θ) ∝ p(θ) h(θ)

The optimized strategy (right panel) naturally leads to a compromise between

the two extremes.

The following plots illustrate actual MCMC runs for parameter estimation

on simulated data using the above sampling scheme. The low-temperature

chains converge to the true values yielding large likelihoods (left panel, blue

lines). At the same time, high-temperature chains sample from the complete

prior range (reddish dots, right panel).
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·· Summary

In the parallel tempering application, the decision theoretic approach leads to

an optimal solution to the problem of choosing a limiting distribution p⋆.

An analogous procedure should be helpful in related problems, e.g. in setting

up (random or deterministic) template banks for searches when prior informa-

tion is available. An obvious consequence is that if one were to place a single

template, one would choose the location θ∗ in parameter space where the tem-

plate covers the greatest prior probability, i.e., where h(θ∗)×p(θ∗) is largest.
A closely related question then is where to place templates given only lim-

ited (computational) resources, which should allow to optimally draw bounds

on the parameter space (instead of imposing arbitrary constraints). When re-

sources are not an issue, one might at least want to order templates by their

chances of success. Either way, the concept of a minimax strategy (indepen-

dent of a prior distribution) may also be of interest, in particular the question

of its existence, or its performance in comparison to a corresponding Bayes

rule.

·· Toy example 2

Consider the case of Θ = [0, 1], where prior and template metric are given by:

0.0 0.2 0.4 0.6 0.8 1.0

p(θ)

0.0 0.2 0.4 0.6 0.8 1.0

h(θ)

so the prior suggests θ ≈ 1 to be most likely, while the template metric de-
mands a denser sampling at both θ ≈ 0 and θ ≈ 1. Then the densities corre-
sponding to Bayes andMinimax strategies look like:

0.0 0.2 0.4 0.6 0.8 1.0

pBayes(θ)

0.0 0.2 0.4 0.6 0.8 1.0

pMinimax(θ)

The performances of the different strategies may be compared by a Monte

Carlo simulation—by repeated drawing of ‘true’ parameters from the prior p

and then trying to recover it using either the Bayes or Minimax strategies.

The following plots illustrate the cumulative distributions of the time it takes

until the true signal is found:
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The signal is usually found faster by the Bayes rule (left panel), while—not

surprisingly—the Minimax rule shows a better worst-case behaviour (right

panel). The mean numbers of trials used are 36 for the Bayes rule, and 48 for
the Minimax rule.

In practice, the discrepancies may be arbitrarily large, up to the case where

the Minimax rule does not exist, as in the previous example.

·· Parallel tempering example

Parallel tempering is a Markov chain Monte Carlo (MCMC) technique used

for parameter estimation and closely related to simulated annealing methods.

A ‘temperature’ parameter T ≥ 1 is introduced to smoothen the likelihood
surface and avoid getting trapped in local optima [3]. Instead of considering

the “plain” posterior density function p(θ|y), the tempered version may be set
up as

f(T )(θ) = p⋆(θ)1−
1

T p(θ|y)
1

T

which allows to adjust between the two density functions p(θ|y) and p⋆(θ)
by increasing the temperature T . An increase in T is supposed to enhance

the stochastic search capabilities of the MCMC sampler, and so the limiting

distribution p⋆ should optimize the chances of convergence, i.e., of finding

the true parameter value θ0.

In a parallel tempering algorithm one then basically runs several MCMC

chains at increasing temperatures in parallel, where only the first one (T = 1)
is used for Monte Carlo integration, while the additional chains (T > 1) are
supposed to improve the algorithm’s performance (mixing and convergence).

·· Decision-theoretic approach

The problem is of a decision theoretic / game-theoretic nature (“where should

I invest templates in order to maximize my gain?” ). The loss to be min-

imized here is related to the number of templates. Restricting for now to

independently, identically sampled templates, a strategy consists in a choice

of p⋆. The risk associated with a strategy is the expected loss for a given true

value θ0 and a sampling strategy p⋆. The Bayes risk is the expected risk with

respect to a prior distribution P(θ). In order to find an optimal p⋆, one needs

to properly define the risk and then minimize it [2].

·· Optimality criteria

The loss incurred in any instance may e.g. be defined as:

• the waiting time T until the true value is found

• a constant loss in case value is not found within N trials

• . . .

·· Minimizing the expected waiting time

For given θ0 and repeated independent sampling from p⋆, the probability of

success remains constant, and the number of templates (or ‘waiting time’) T

until the true θ0 is found follows a geometric distribution with

P(T = t|θ0) =
(

1 − c h(θ0) p⋆(θ0)
)t−1(

c h(θ0) p⋆(θ0)
)

for some c ∈ R+. The risk in this case is:

E[T |θ0] =
1

c h(θ0) p⋆(θ0)

For a given prior with density p(θ), the prior expected risk (Bayes risk) is:

E[T ] =
1

c

∫

Θ

p(θ0)

h(θ0) p⋆(θ0)
dθ0

which is minimized by choosing the Bayes rule

p⋆(θ) ∝

√

p(θ)

h(θ)
.

·· The Minimax rule

Instead of minimizing the expected risk, one might instead wish to minimize

the worst-case risk. This leads to a sampling density

p⋆(θ) ∝
(

h(θ)
)−1

which makes the probability of “finding” the true signal a constant, indepen-

dent of the true value θ0. ThisMinimax rule again also constitutes the Bayes

rule for a particular prior (p(θ) ∝
(

h(θ)
)−1
).

·· Toy example 1

Consider the simple case of a ‘flat’ template metric (h(θ) ∝ 1), and a Gaus-

sian prior distribution with mean µ and variance σ2 (p(θ) ∝ exp
(

−
(θ−µ)2

2σ2

)

).

In this case, the Bayes rule would again be a Gaussian p⋆ with mean µ and an

inflated variance of 2σ2. The Minimax rule on the other hand does not exist.

In signal detection and parameter estimation applications one is often

faced with random template placement problems. Problems of this kind

include e.g. the setup of template banks, and also Monte Carlo imple-

mentations like parallel tempering or importance resampling. Sampling

strategies are then commonly set up based on figures like minimum over-

lap, or SNR loss. With prior information available, template placement

may be formulated as a decision-theoretic problem, and optimal sam-

pling strategies may be derived. In particular, random template banks

(as in [1]) then turn out to contitute special cases of Minimax strategies.

·· Template placement

Suppose an unknown signal parameter θ0 ∈ Θ is to be determined. One
may ‘guess’ the true parameter value to be, say, θ̂. (This is the template

placement.) Then the signal is found if the guess θ̂ is “sufficiently close”

to θ0, and missed otherwise:

Θ

θ0

θ
^

"missed"

Θ

θ
^

θ0

"found"

The template’s “radius” in the above sketch (defining what exactly is “suf-

ficiently close”, i.e, defining the “volume” of the above template) is defined

through the parameter space metric, a function of θ. The metric again is

usually defined through considerations of minimum overlap or SNR loss.

·· Random templates

Randomly placed templates are for example utilised in setting up random

template banks. Templates θ̂ are (repeatedly, independently) drawn from a

distribution with density p⋆(θ). The probability of success then is a function
of the true value θ0:

P(“found”) ∝ h(θ0) p⋆(θ0)

where h(θ) corresponds to the volume covered by a template placed at θ

(h is the inverse template metric determinant). A common approach is to set

p⋆(θ) ∝
(

h(θ)
)−1
, so that the “missing probability” is constant across Θ [1].

·· Prior information

The above probability of a randomly placed template actually finding the true

signal in general depends on the true signal location, θ0. That location of

course is unknown, but a priori information may be available in the form of a

prior probability distribution P(θ).
The prior describes where in paramater space the true signal is actually likely

to be.

·· The problem

The placement of templates is usually associated with (computational) costs.

The question is how to place templates, i.e., to decide on the template distri-

bution p⋆. Due to the two competing factors of prior and template metric

one may be tempted to choose suboptimal coverings of Θ, e.g.:
• overly dense covering of regions that are unlikely to contain the signal
• dense sampling of likely regions that are easily covered by few templates
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