

Gravitational wave detectors - broadening their horizon -

Mariëlle van Veggel on behalf of the LIGO Scientific Collaboration

NRDA 2009, AEI, Golm, 6th – 9th July 2009 LIGO-G0900652-v2

Real progress in recent years

- Ground based detectors (this talk)
- Waveform Predictions from Numerical Relativity (this meeting)
- Space Borne Detectors LISA and DECIGO
- Pulsar Timing
- Multi-messenger Astronomy

^{sgow} World wide network

of interferometric ground-based detectors

LIGO detectors

 2 detectors of 4 km arm length + 1 detector of 2 km arm length Washington State and Louisiana

LIGO-G0900652-v2

- Fabry-Perot Michelson
 configuration
 - Laser power: 10 W Nd:YAG laser @ 1064 nm

8th July 2009

Wire

7335 mm

GROUND

Payload

Filter Zero

Pre-Isolator

Standard Filters

> Filter Sever

University of Glasgow VIRGO: The French-Italian Project 3 km armlength at Cascina near Pisa

The 'Super Attenuator' filters

the seismic noise above 4 Hz

8th July 2009

LIGO-G0900652-v2

Marionette

GEO600

Arm length is 600 m

Novel technologies make GEO unique and allow it to run in coincidence with the larger LIGO (and Virgo) instruments

Novel technologies are e.g.

- Signal recycling
- Monolithic suspensions

W Other Detectors and Developments 300 and AIGO

TAMA 300 Tokyo 300 m arms

AIGO Gingin, West Australia 80 m arm test facility

LIGO-G0900652-v2

LIGO

Gravitational wave network sensitivity

LÍGO

LIGO reached design sensitivity during S5

The LIGO Scientific Collaboration (LSC)

- 55 institutions and > 500 people
- The LSC carries out a scientific program of instrument science and data analysis
- The 3 LIGO interferometers and the GEO600 instrument are analysed as one data set
- LSC & Virgo signed a 'Memorandum of Understanding'
 - Joint data analysis
 - Increased science potential
 - Joint run plan for the single,
 global GW network
 - Goal of observation of the gravitational sky over the next decade

Fifth science run (S5)

S5 started in Nov 2005 and ended Oct 2007

- LIGO collected 1 year of triple coincidence data at design sensitivity
- Duty cycle: ~75% per interferometer, 53% triple coincidence

GEO joined

- in overnight & weekend mode
 January 20th 2006
- in 24/7 mode May 1st 2006 (Duty cycle: ~91%)
- back in overnight & weekend mode Oct. 2006 – Oct. 2007

VIRGO joint May 18th 2007 (VSR1)

- Duty cycle: 81%

A figure of merit is the range to which a NS/NS binary (1.4 M_{\odot}) is seen at SNR of 8

- LIGO: 4 km range 15 Mpc
 - 2 km range 7 Mpc
 - VIRGO: range 4 Mpc

LIGO-G0900652-v2

Astrophysical searches

Five science runs to date involving LIGO, GEO and recently also VIRGO (approaching 40 publications)

- Continuous waves
 - e.g. Rapidly rotating deformed neutron stars etc
- Compact binary coalescences
- Transient searches
 - e.g. GRBs, etc
- Stochastic background

Interesting upper limits set of a variety of sources

What about the future?

- Most probable rate of binary black hole coalescences detectable by the LIGO system ~ 1/100 years (I Mandel, NRDA 2009)
- Thus detection at the sensitivity level of the initial detectors
 is not guaranteed
- Need another 10 to 15 x improvement in strain sensitivity
- Then the most probable expected rate of detectable BH-BH binaries: ~ 20 per year (I Mandel, NRDA 2009)

Principal limitations to sensitivity

- Photon shot noise improves with increasing laser power and
- Radiation pressure becomes worse with increasing laser power

There is an optimum light power which gives the same limitation expected by application of the Heisenberg Uncertainty Principle – the 'Standard Quantum limit'

- Seismic noise relatively easy to isolate against use suspended test masses
- Gravitational gradient noise, particularly important at frequencies below ~10 Hz
- Thermal noise Brownian motion of test masses and suspensions

LIGO-G0900652-v2

LÍGO

15

University of Glasgow Astronomical reach

for 1.4 M_o binary neutron star inspirals

LIGO-G0900652-v2

- Aimed improvement in range over the coming years in two stages:
 - Enhanced detectors Enhanced LIGO x 2
 - VIRGO+ x 1.5 4
 - Advanced detectors
 - x 10

(broadening our horizon stage 1)

- LIGO and Virgo have been working on incremental detector enhancements
 - Enhanced LIGO

higher laser power, improved faraday isolator, enhanced internal seismic isolation, better optical readout, higher power optics \Rightarrow goal x 2 improvement of sensitivity

– VIRGO+

higher laser power, improved faraday isolator, better optical readout, some infrastructural upgrades \Rightarrow goal x 1.5 – 4 improvement of sensitivity

Meanwhile GEO + LIGO H2 + bar detectors have maintained 'Astrowatch' until two days ago (6th July 2009)

Some images of the upgrades in

enhanced LIGO

Active seismic system (ISI), **UFL** Faraday multi-stage output mode Isolater, cleaner suspension (OMC input optics SUS), in-vacuum OMC and modified readout electronics З_в **PSL** AEI/LZH 35W laser (first stage of Advanced LIGO laser) LIGO LIGO-G0900652-v2 IGR 17

LIGO

Also ...

- Enhanced LIGO, VIRGO+ and GEO HF are working towards adding in a thermal compensation system (TCS) which was pioneered during S5 in iLIGO
- To minimise thermal lensing of the input mirrors at high laser powers

And from now into the future

To move from detection to astronomy the current detector network will upgrade, starting 2011, to a series of 'Advanced' instruments with sensitivity improvements of 10 to 15

\Rightarrow 1 year of Initial LIGO = < 1 day of Advanced LIGO

- Advanced LIGO (major upgrades, in advanced design stage, currently under construction)
- Advanced Virgo (major upgrades, in advanced design stage, currently under construction)
- **GEO-HF** (incremental upgrades, some elements nearing installation)
- Large Cryogenic Gravitational Telescope (LCGT) (a lot of experience from TAMA300 and CLIO, in proposal phase)

Upgrades Advanced LIGO

- Aim to improve overall strain sensitivity with a factor 10 w.r.t. initial LIGO
- Aim to improve lower frequency limit with a factor 4
 ~10 Hz instead of ~40 Hz

LIGO-G0900652-v2

Upgrades Advanced LIGO

Some main upgrades for advanced LIGO are:

- Replace seismic isolation systems and suspensions
- Replace cavity optics
- Second stage of AEI/LZH Laser increasing power from 35 W to 180 W power
- Add signal recycling

University Some suspensions that will be replaced LIGO

Quadruple suspension

- Thermal noise reduction: monolithic fused silica suspension as final stage low pendulum thermal noise and preservation of high mirror quality factor
 - silica fibre loss angle ~ 3.10^{-7} ,
 - − c.f. steel ~2·10⁻⁴

 Seismic isolation: use quadruple pendulum with 3 stages of maraging steel blades for enhanced vertical isolation

the quadruple suspension

University of Glasgow Manufacturing fibres for the monolithic suspension

University Current status of monolithic suspension

(40 kg test hang in Glasgow)

8th July 2009

~ 50% larger than iLIGO, to reduce thermal noise

LIGO-G0900652-v2

Signal recycling

- Pioneered in GEO
- Add a partially transmitting mirror to the output port
- Provides the ability to alter the interferometer frequency response

Upgrades Advanced LIGO

Parameter	LIGO	Advanced LIGO
Input Laser Power	10 W	180 W
Cavity laser power	10 kW	800 kW
Mirror Mass	10kg	40kg
Topology	Power recycled Fabry- Perot arm cavity Michelson	Power/Signal recycled Fabry- Perot arm cavity Michelson
Low frequency performance	f> 40Hz	f>10Hz
Mirror suspension	Single metal pendulum	Quadruple monolithic pendulum

Advanced VIRGO

- Aim to improve overall strain sensitivity with a factor 10 w.r.t. initial LIGO
- Hardware upgrades
 - Laser power increase
 - Include signal recycling
 - New optics and coatings
 - Monolithic suspensions
 - Etc.

GEO HF

Some of the upgrades in GEO HF are:

- Optical readout change
- Squeezing
- Monolithic OMC (output mode cleaner)
- Increase laser power
- Thermal compensation
 system

Look in the squeezing box

LIGO-G0900652-v2

34

LÍGO

Large Cryogenic Gravitational Telescope (LCGT)

Planned for construction in the Kamioka mine in Japan

Will use sapphire mirrors cooled to 40K

Not yet funded – proposal still being developed

Sensitivity goals very similar to Advanced LIGO and Advanced VIRGO

LIGO

LIGO+Virgo

LIGO+Virgo+LCGT

University How about broadening the horizon stage 3?

3rd Generation detectors

- For a further factor of ten sensitivity improvement we need to
 - fully understand and further reduce seismic and thermal noise from mirrors and suspensions
 - improve interferometric techniques to reduce the significance of quantum noise in the optical system
 - refine data analysis techniques

 A design study for such a detector in Europe [the Einstein gravitational-wave Telescope – 'ET'] has now been funded by the EC under FP 7

Advanced detector network

The Network of Gravitational Wave Facilities

- During upgrades for enhanced detectors (enhanced LIGO and VIRGO+)
 - Astrowatch has been running at LIGO H2, GEO and bar detectors
- Enhanced detectors started Science run S6/VSR2 yesterday
- 2nd generation follows 2010-14, designs mature,
 - Advanced LIGO (USA/GEO Group/LSC)
 - Advanced VIRGO (Italy/France + GEO Group?)
 - Large Cryogenic Gravitational Telescope (LCGT) (Japan)
 - GEO-HF (GEO/LSC)
- 3rd generation
 - Lab research underway around the globe
 - Plans for a design proposal under FP7 framework for a 3rd generation detector in Europe

Gravitational Wave Astronomy

A new way to observe the Universe

IGR

