Physics Colloquium, Purdue University, Nov. 5, 2009

LIGO: Chasing After Gravitational Waves

David Reitze

Physics Department University of Florida Gainesville, FL 32611 For the LIGO Science Collaboration

LIGO G0900991-v1

"Colliding Black Holes", Werner Benger, AEI, CCT, LSU

LIGO Interferometer

PR. P.

General relativity simplified

- "Gravity is Geometry"
 - Space tells matter how to move $\leftarrow \rightarrow$ matter tells space how to curve
 - Metric $(g_{\mu\nu})$ = flat spacetime $(\eta_{\mu\nu})$ + perturbation $(h_{\mu\nu})$
- Propagating gravitational waves:

$$\left(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}\right) h = 0$$

$$h(t) \sim h_{\mu\nu} e^{i(\vec{k} \cdot \vec{x} - \omega t)} + h_{\mu\nu} e^{-i(\vec{k} \cdot \vec{x} - \omega t)}$$

Gravitational waves

 Effect of a gravitational wave (in z) on light traveling between <u>freely falling masses</u>, observer fixed to near masses

Electromagnetic Waves

• Time-dependent <u>dipole</u> moment arising from *charge motion*

$$\vec{E}(\vec{r},t) \sim \frac{\mu_0}{4\pi r} \left[\hat{r} \times \left(\hat{r} \times \ddot{\vec{p}} \right) \right]$$

- Traveling wave solutions of Maxwell wave equation, v = c
- Two polarizations: σ^+ , σ^-

Gravitational Waves

• Time-dependent <u>quadrapole</u> moment arising from *mass motion*

$$h_{\mu\nu}(\omega,t) = \frac{2G}{rc^4} \ddot{I}_{\mu\nu}(\omega,t)$$

$$h \approx \frac{4\pi^2 GMR^2 f_{orb}^2}{rc^4}$$

- Traveling wave solutions of Einstein's equation, v = c
- Two polarizations: h_+ , h_x

How to make a gravitational wave

Case #1: your own lab! M = 1000 kg R = 1 m f = 1000 Hz r = 300 m

h ~ 10⁻³⁶

1000 kg

1000 kg

 $h \approx \frac{4\pi^2 GMR^2 f_{or}^2}{1}$

 rc^4

!!!

How to make a gravitational wave that can be detected

Case #2: A 1.4 solar mass binary pair M = 1.4 M, R = 11 km f = 400 Hz r = 10²³ m

- Einstein predicts gravitational waves (1916,1918)
 - A. Einstein, Sitzber. deut. Akad. Wiss. Berlin, Kl. Math. Physik u. Tech. (1916), p. 688; (1918), p. 154
- Einstein changes his mind (1936)

Together with a young collaborator, <u>I arrived</u> at the interesting result that gravitational <u>waves do not exist</u>, though they had been assumed a certainty to the first approximation. This shows that the non-linear general relativistic field equations can tell us more or, rather, limit us more than we have believed up to now.⁴

 A. Einstein, The Born-Einstein Letters: Friendship, Politics, and Physics in Uncertain Times, MacMillan, New York (2005), p. 122.
 Daniel Kennefick, Physics Today, Sept. 2005

Existence proof: PSR 1913+16

LIGO

Purdue Physics Department 5 November 2009

How to detect a gravitational wave

LIGO

Realistically, how LIGO sensitive can an interferometer be?

Purdue Physics Department 5 November 2009

LIGO sites

An interferometer is really a microphone

• Sensitivity depends on propagation direction, polarization

LIGO

Fundamental noises in LIGO

LIGO

Displacement noises

- Seismic noise
- Radiation pressure
- Thermal noise
 - Suspensions
 - Optics
- Sensing noises
 - Shot noise
 - Residual gas noise

Seismic noise

LIGO

LIGO Vacuum Chambers

LIGO

Suspended Mirrors

- mirrors are hung in a pendulum
 - 'freely falling masses'
- provide 100x suppression above 1 Hz
- provide ultraprecise control of mirror displacement (< 1 pm)

Frequency stabilization in LIGO

Hierarchical approach \rightarrow use the stability provided by the arm cavities

Length readout and control

Enhanced LIGO

 Improved sensitivity over initial LIGO

LIGO

- New readout scheme
 - » DC (homodyne)
 - Suspended output mode cleaner + seismic isolation
 - » In-vacuum detection diodes
- Higher laser power → 35 W
 - New Input Optics Upgraded thermal compensation system
- New magnets, better electronics, a few other fixes
- <u>Science Run S6</u>
 <u>began July 7</u>

UF FLORIDA

» Will go through late 2010

Purdue Physics Department 5 November 2009

Nature can be a problem...

Purdue Physics Department 5 November 2009

As can cars...

The Gravitational Wave Spectrum

Dick Manchester, CSIRO

 $\log_{10}(f/Hz)$

LIGO Astrophysics

- The LIGO Scientific Collaboration
 - » 640 members, 50 institutions, 11 countries
- Five Science Runs To Date
 - » S1: August 23 September 9, 2002 (17 days)
 - » S2: February 14 April 14, 2003 (59 days)
 - » S3: October 31, 2003 January 9, 2004 (70 days)
 - » S4: February 22 March 23, 2005 (30 days)
 - » S5: November 4, 2005 September 31, 2007
 - > 365 days of triple coincidence, 400 days of double coincidence
 - Duty cycle: 78% for the Hanford 4k, 79% for the Hanford 2k and 66% for Livingston 4k
- LSC-Virgo started data-sharing on May 18, 2007
 - » Virgo VSR1: May 18, 2007 Oct 1, 2007
 - » >75 days of 3-site coincidences with LIGO, 95 days of 2-site coincidences
 - » Duty cycle: 81% for Virgo

UF FLORIDA

LIGO

The astrophysical gravitational wave source catalog

Coalescing **Binary Systems**

- Neutron stars, black holes
- 'chirped' waveform

Credit: AEI, CCT, LSU

http://web.mit.edu/sahughes/www/sounds.html

The astrophysical gravitational wave source catalog

Credit: Chandra X-ray Observatory

'Bursts'

- asymmetric core collapse supernovae
- cosmic strings
- ???? (sources we haven't thought about

The astrophysical gravitational wave source catalog

Continuous Sources

- Spinning neutron stars
- monotone waveform

Casey Reed, Penn State

The astrophysical gravitational wave source catalog

NASA/WMAP Science Team

Cosmic GW background

 residue of the Big Bang

•probes back to 10⁻²¹ s after the birth of the universe

 stochastic, incoherent background

Has LIGO detected a gravitational wave yet?

- No, not yet.
- When will LIGO detect a gravitational wave?
- "Predictions are difficult, especially about the future" (Yogi Berra)

IFO	Source	$\dot{N}_{ m low}$	$\dot{N}_{\rm re}$	$\dot{N}_{\rm pl}$	\dot{N}_{up}
		yr^{-1}	$\rm yr^{-1}$	$\rm yr^{-1}$	$\rm yr^{-1}$
Initial	NS-NS	2×10^{-4}	0.02	0.2	0.6
	NS-BH	7×10^{-5}	0.004	0.1	
	BH-BH	2×10^{-4}	0.007	0.5	
	IMRI into IMBH			$< 0.001^{b}$	0.01^{c}
	IMBH-IMBH			10^{-4d}	10^{-3e}
Advanced	NS-NS	0.4	40	400	1000
	NS-BH	0.2	10	300	
	BH-BH	0.4	20	1000	
	IMRI into IMBH			10^{b}	300^{c}
	IMBH-IMBH			0.1^d	1^e

TABLE V: Detection rates for compact binary coalescence sources.

UF FLORIDA

Gamma Ray Bursts

- Intense flashes of gamma rays from (mostly) extra-galactic sources
 - » GRBs are the most luminous events in the Universe
- Long (> 2 s) and short duration (< 2 s)
 - » Long GRBs are associated with star forming galaxies
 - Large red shift, Z=2.6
 - » Short GRBs are less well understood
 - Soft gamma repeaters \rightarrow magnatars

UF FLORIDA

LIGO

Purdue Physics Department 5 November 2009

GRB 070201

Refs: GCN: http://gcn.gsfc.nasa.gov/gcn3/6103.gcn3

X-ray emission curves (IPN)

GRB070201: Not a Binary Merger in M31!

Inspiral (matched filter search:

LIGO

- Binary merger in M31 scenario excluded at >99% level
- Exclusion of merger at larger distances

Burst search:

NIVERSITY of

- Cannot exclude an SGR in M31
 - SGR in M31 is the current best explanation for this emission
- Upper limit: 8x10⁵⁰ ergs (4x10⁻⁴ M_•c²) (emitted within 100 ms for isotropic emission of energy in GW at M31 distance)

Pulsars

- Spinning neutron stars 'brake' due to:
 - » Symmetric particle ejection
 - » Magnetic dipole radiation
 - » Gravitational wave emission
- Neutron stars could emit gravitational waves if:
 - » They are non-axially distorted from crustal shear stresses

$$\epsilon_{\rm max} \approx 5 \times 10^{-7} \left(\frac{\sigma}{10^{-2}}\right)$$

- They have non-axisymmetric instabilities due to internal hydrodynamic modes
- » they wobble about their axis
- But the emission amplitude will be very small...

LIGO

The Crab Pulsar: Beating the Spin Down Limit!

- Remnant from supernova in year 1054
- Spin frequency $v_{EM} = 29.8 \text{ Hz}$

 \rightarrow v_{gw} = 2 v_{EM} = 59.6 Hz

observed luminosity of the Crab nebula

accounts for < 1/2 spin down powerspin down due to:

- electromagnetic braking
- particle acceleration
- GW emission?
- S5 result: h < 2.0 x 10⁻²⁵ → < 7X <u>below</u>

the spin down limit (assuming restricted priors)

- ellipticity upper limit: $\varepsilon < 1.0 \times 10^{-4}$
- GW energy upper limit < 2% of radiated energy is in GWs

Abbott, et al., *"Beating the spin-down limit on gravitational wave emission from the Crab pulsar,"* Ap. J. Lett. **683**, L45-L49, (2008); *http://arxiv.org/abs/0909.3583*

The stochastic GW background

- An isotropic Stochastic GW background could come from:
 - » Primordial universe (inflation)
 - » Incoherent sum of point emitters isotropically distributed over the sky
- Expressed a fraction of closure density of the universe:

LIGO

$$\Omega_{GW}(f) = \frac{1}{\rho_c} \frac{d\rho_{GW}(f)}{d\ln f}$$
$$\int \Omega_{GW}(f) d(\ln f) = \frac{\rho_{GW}}{\rho_c} \equiv \Omega_c$$

 Big Bang Nucleosynthesis limit:

UF FLORIDA

$$\Omega_{0, BBN} < 1.1 \text{ x } 10^{-5}$$

Abbott, et al. "*An upper limit on the stochastic gravitational-wave background of cosmological origin*", Nature., V460: 990 (2009).

LIGO

UF

The Global Network of Gravitational Wave Detectors

AdvLIGO tunings

Advanced LIGO

Purdue Physics Department 5 November 2009

Advanced LIGO

180 W laser

Seismic isolation

Mirror Suspensions

Mirrors

Ribbons welded to silica ears bonded to mass

UF FLORIDA

Purdue Physics Department 5 November 2009

The Gravitational Wave Universe

Stay Tuned...

Acknowledgments

- Members of the UF LIGO group UF FLORIDA
- •Members of the LIGO Laboratory
- Members of the LIGO Science Collaboration

National Science Foundation

LIGO

More Information

<u>http://www.ligo.caltech.edu;</u> <u>www.ligo.org</u>

