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Abstract. We describe a coherent network algorithm for detection and reconstruc-
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1. Introduction

Coherent network analysis is addressing a problem of detection and reconstruction

of gravitational waves with the networks of GW detectors. It has been extensively

studied in the literature [1, 2, 3, 4, 5, 6] in application to detection of the bursts

signals, which may be produced by numerous gravitational wave sources in the

Universe [7, 8, 9, 10, 11, 12, 13, 14, 15]. In the coherent methods, a statistic is built

as a coherent sum over detector responses and, in general, it is expected to be more

optimal (better sensitivity at the same false alarm rate) than the detection statistics of

individual detectors. Also coherent methods provide estimators for the GW waveforms

and the source coordinates in the sky.

The method we present (called coherent WaveBurst) is significantly different from

the traditional burst detection methods. Unlike the coincident methods [16, 17, 18],

which first identify gravitational wave events in individual detectors by using excess

power statistic and than require coincidence between the detectors, the coherent

WaveBurst combines all data streams into one coherent statistic constructed in the

framework of the constrained maximum likelihood analysis [4]. Such approach has

significant advantages over the coincident methods. First, the sensitivity of the method

is not limited by the least sensitive detector in the network. The detection is based on

the coherent statistic which represents the total signal-to-noise ratio of the GW signal

detected in the network. Second, other coherent statistics, such as the null stream and

the network correlation coefficient can be constructed to distinguish genuine GW signals

from the environmental and instrumental artefacts. Finally, the source coordinates of

the GW waveforms can be reconstructed.
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2. Coherent analysis

The coherent WaveBurst pipeline uses a method for a coherent detection and

reconstruction of burst signals based on the use of the likelihood ratio functional [4].

For a general case of Gaussian quasi-stationary noise it can be written in the wavelet

(time-frequency) domain as

L =
K∑

k=1

N∑
i,j=1

(
w2

k[i, j]

σ2
k[i, j]

− (wk[i, j]− ξk[i, j])
2

σ2
k[i, j]

)
, (1)

where K is the number of detectors in the network, wk[i, j] is the sampled detector

data (time i and frequency j indexes run over some TF area of size N) and ξk[i, j] are

the detector responses. Note, we omit a traditional term 1/2 in the definition of the

likelihood ratio. The detector noise is characterized by its standard deviation σk[i, j],

which may vary over the TF plane. The detector responses are written in the standard

notations

ξk[i, j] = F+kh+[i, j] + F×kh×[i, j] , (2)

where F+k(θ, φ), F×k(θ, φ) are the detector antenna patterns (depend upon source

coordinates θ and φ) and h+[i, j], h×[i, j] are the two polarizations of the gravitational

wave signal in the wave frame. Since the detector responses ξk are invariant with respect

to the rotation around z-axis in the wave frame, the polarization angle is included in

the definition of the h+ and h×. The GW waveforms h+ and h× are found by variation

of L. The maximum likelihood ratio is obtained by substituting the solutions into the

functional L. The waveforms in time domain are reconstructed from the inverse wavelet

transformation. Below, for convenience we introduce the data vector w[i, j] and the

antenna pattern vectors f+[i, j] and f×[i, j]

w[i, j] =

(
w1[i, j]

σ1[i, j]
, ..,

wK [i, j]

σK [i, j]

)
(3)

f+(×)[i, j] =

(
F1+(×)

σ1[i, j]
, ..,

FK+(×)

σK [i, j]

)
(4)

Further in the text we omit the time-frequency indexes and replace the sum
∑N

i,j=1 with∑
ΩTF

, where ΩTF is the time-frequency area selected for the analysis.

The likelihood functional (Eq.1) can be written in the form L = L1 + L2:

L+ =
∑
ΩTF

[
(w · f+)h+ − 1

2
|f+|2h2

+

]
, (5)

L× =
∑
ΩTF

[
(w · f×)h× −

1

2
|f×|2h2

×

]
, (6)

where the antenna pattern vectors f+ and f× are defined in the Dominant Polarization

wave Frame (DPF) [4]. In this frame the antenna pattern vectors are orthogonal to

each other: (f+ · f×) = 0. The estimators of the GW waveforms are the solutions of the
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equations

(w · f+) = |f+|2h+ , (7)

(w · f×) = |f×|2h× . (8)

Note, the norm of |f+|2 and |f×|2 characterize the network sensitivity to the h+ and h×
polarizations.

2.1. Likelihood regulators

As first shown in [4], there is a specific class of constraints (often called regulators),

which arise from the way the network responds to a generic gravitational wave signal.

A classical example is a network of aligned detectors where the detector responses ξk are

identical. Therefore the algorithm can be constrained to search for an unknown function

ξ rather than for two gravitational wave polarizations h+ and h×, which span much larger

parameter space. Note, in this case |f×|2 = 0, the Equation 8 is ill-conditioned and the

solution for the h× waveform can not be found. The regulators are important not only

for aligned detectors, but also for networks of miss-aligned detectors, for example, the

LIGO and Virgo network [20, 21]. Depending on the source location the network can be

much less sensitive to the second GW component (|f×|2 << |f+|2) and the h× waveform

may not be reconstructed from noisy data.

In the coherent WaveBurst analysis we introduce a regulator by changing the norm

of the f× vector

|f ′×|2 = |f×|2 + δ, (9)

where δ is some parameter. This is equivalent to adding one more, dummy detector,

to the network with the antenna patterns f+,K+1 = 0, f×,K+1 =
√

δ and zero detector

output (xK+1 = 0). In this case, the regulator preserves the orthogonality of the vectors

f+ and f ′× and the maximum likelihood statistic is written as

Lmax =
∑
ΩTF

[
(w · f+)2

|f+|2
+

(w · f ′×)2

|f ′×|2

]
=
∑
ΩTF

[
(w · e+)2 + (w · e′×)2

]
, (10)

where e+ and e′× are unity vectors. Depending on the value of the parameter δ different

statistics can be generated, for example:

• δ = 0 - standard likelihood,

• δ = ∞ - hard constraint likelihood.

2.2. Reconstruction of GW waveforms

The GW waveforms are given by the solutions of the likelihood functional Eq.5,6. For

the first GW component the solution is

h+ =
(w · f+)

|f+|2
. (11)
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When the regulator is introduced it affects the solution for the second GW component.

In this case we look for such a solution, which gives the second term of the likelihood

statistic Lmax, when the solution is substituted into the likelihood functional. Namely,

we solve the equation

2(w · f×)h× − |f×|2h2
× −

(w · f ′×)2

|f ′×|2
= 0. (12)

Out of two possible solutions the following one is selected

h× =
(w · f×)

|f ′×|2

(
1 +

√
1− |f×|2

|f ′×|2

)−1

. (13)

In case of aligned detectors (|f×| = 0) this equation results in a trivial solution h× = 0.

3. Data analysis algorithms

In this section we describe the algorithms used in the coherent WaveBurst pipeline.

They include: wavelet transformation, conditioning of input data, construction of time

delay filters and generation of coherent triggers.

3.1. Wavelet transformation

The discrete wavelet transformations (DWT) are applied to discrete data and produce

discrete wavelet series w[ij], where j is the scale index (dilation) and i is a time index

(translation). Applied to time series, the DWT maps data from time domain to wavelet

domain. All DWTs used in cWB have critical sampling when the output data vector

has the same size as the input data vector.

Wavelet series give a time-scale representation of data where each wavelet scale can

be associated with a certain frequency band of the initial time series. Therefore the

wavelet time-scale spectra can be displayed as a time-frequency scallogram, where the

scale is replaced with the central frequency f of the band. The time series sampling rate

R and the scale number j determine the time resolution ∆tj(R) at this scale. The DWT

preserves the time-frequency volume of the data samples, which is equal to 1/2 for the

input time series. Therefore the frequency resolution ∆fj is defined as 1/(2∆tj) and

determines the data bandwidth at the scale j. For optimal localization of the GW energy

on the TF plane, the cWB analysis is performed at several time-frequency resolutions.

The time-frequency resolution defined above should be distinguished from the

intrinsic TF resolution of the wavelet transformation, which defines the spectral leakage

between the wavelet sub-bands and depends on the length of the wavelet filter. To reduce

spectral leakage we use Meyers wavelets for which long filters can be easily constructed

[22]. As shown in Figure 1, it allows us much better localization of the burst energy

on the time-frequency plane than for the Symlet60 wavelets used for the LIGO S2-S4

analysis [23, 24]. The disadvantage of the Meyer filters is that for the local support they

have to be trancated. As the result, the Meyer wavelets are approximately orthonormal.
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Figure 1. Comparison of spectral leakage from the first (low) frequency band to the
high frequency bands for Haar, Symlet 60 and Meyer 1024 wavelets after three wavelet
decomposition steps.

From the other side the Meyer filters can be constructed so that the Parseval identity

holds with better then 0.01% accuracy, which is more than adequate for the analysis.

3.2. Linear prediction error filter

The linear prediction error (LPE) filters are used to remove ”predictable” components

from an input time series. Usually they are constructed and applied in time domain.

In this case the output of the LPE filter is a whitened time series. The LPE filters

can be also used in the wavelet domain. For construction of the LPE filters we follow

the approach described in [26] The symmetric LPE filters can be constructed from the

backward and forward LPE filters by using classical Levinson algorithm or the split

lattice algorithm.

Since each wavelet layer is a time series, rather than applying LPE filter to a time

series x(t), one can perform a wavelet decomposition x(t) → w(f, t) first, and than

construct and apply the LPE filter F (f) individually to each wavelet layer. A set of

filters F (f) remove predictable components (like lines) in the wavelet layers producing

data w′(t). The filtered time series x′(t) can be reconstructed from w′(t). An example

PSD of the filtered S4 data is shown in Figure 2. As one can see, when applied in

wavelet domain the LPE filter removes data artifacts but preserves the power spectral
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density of the noise floor.

Figure 2. Power spectra of original (black) and LPE filtered (red) noise of the Hanford
4k detector.

3.3. Time delay filters in wavelet domain

The likelihood method requires calculation of the inner products 〈xn(τn), xm(τm)〉, where

the data streams are shifted in time to take into account the GW signal time delay

between the detectors n and m. The time delay τn − τm in turn, depends on the source

coordinates θ and φ.

In time domain it is straightforward to account for the time delays. But for

colored detector noise it is preferable to calculate the maximum likelihood statistics

in the Fourier or wavelet (time-frequency) domains. In the wavelet domain one needs

to calculate the inner products 〈wn(τn), wm(τm)〉. The delayed amplitudes can be

calculated from the original amplitudes (before delay) with the help of the time delay

filter Dkl(τ)

wn,m(i, j, τ) =
∑
kl

Dkl(τ, j)wn,m(i + k, j + l), (14)

where k and l are the local TF coordinates with respect to the TF location (i,j). The

delay filters are constructed individually for each wavelet layer, which is indicated with

the index j.
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The construction of the delay filters is related to the decomposition of the sampled

wavelet functions Ψj(t + τ) in the basis of the non-shifted wavelet functions Ψj(t). The

delay filter construction procedure can be described in the following steps:

• create a wavelet series with only one coefficient at the TF location (i,j) set to unity,

• apply the inverse wavelet transformation reconstructing Ψj(t) in time domain,

• shift Ψj(t) by delay time τ and perform wavelet decomposition of Ψj(t + τ),

• the resulting wavelet amplitudes at the TF locations (i + k, j + l) give the delay

filter coefficients Dkl(τ, j) for the wavelet layer j.

The length of the delay filter is determined by the requirement on the acceptable

energy loss when the delay filter is applied. By sorting D2
kl in the decreasing order the

fractional energy loss is

εK = 1−
∑
K

D2
kl, (15)

where the sum is calculated over K most significant coefficients. The selected coefficients

are also described by the list of their relative TF locations (k, l) which should be stored

along with the filter coefficients Dkl. Typically K should be greater then 20 to obtain

the fractional energy loss less than 1%.

3.4. Generation of coherent triggers

A starting point of any burst analysis is the identification of burst events (triggers).

Respectively, this stage of a burst analysis pipeline is called the event trigger generator

(ETG). Usually, the ETGs based on the excess power statistics of individual detectors

are used in the analysis [16, 17, 18]. Another example of ETG is corrPower algorithm

[19], which uses cross-correlation between detector pairs to generate the triggers. The

likelihood statistic used in the coherent WaveBurst utilizes both the excess power and

the cross-correlation terms.

3.4.1. Likelihood time-frequency map In general the likelihood functional is calculated

as a sum over the data samples selected for the analysis (see Eq.1). The number of

terms in the sum depends on the selected TF area in the wavelet domain. When the

sum consists of only one term, one can write the likelihood functional for a given TF

location and point in the sky ‡:
Lp(i, j, θ, φ) = |w|2 − |w − f+h1 − f×h2|2. (16)

Since the entire likelihood approach is applicable to the functional above, one can solve

the variation problem and find the maximum likelihood statistics Lp(θ, φ). They can be

maximized over the source coordinates θ and φ, resulting in the statistics

Lm(i, j) = maxθ,φ{Lp(i, j, θ, φ)}. (17)

Calculated as a function of time and frequency, it gives us a likelihood time-frequency

(LTF) map. Figure 3 shows an example of the LTF map for a segment of the S4 data.

‡ For definition of vectors w, f+, and f× see Eq.3,4
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Figure 3. Example of the LTF map for a magnetic glitch in S4 L1xH1xH2 data.

A single data sample in the map is called the LTF pixel. It is characterized by

its TF location (i,j) and by the wavelet amplitudes wk(i, j, τk(θ, φ)), which are used to

construct the likelihood statistics Lp.

3.4.2. Coherent triggers The statistic Lm has a meaning of the maximum possible

energy detected by the network at a given TF location. By selecting the values of Lm

above some threshold, one can identify groups of the LTF pixels (coherent trigger) on

the time-frequency plane. A coherent trigger is defined for the entire network, rather

than for individual detectors. Therefore, further in the text we reserve a name “cluster”

for a group of pixels selected in a single detector and refer to a group of the LTF pixels

as a coherent or network trigger.

After the coherent triggers are identified, one has to reconstruct the parameters

of the GW bursts associated with the triggers, including the reconstruction of the

source coordinates, the two GW polarizations, the individual detector responses and the

maximum likelihood statistics of the triggers. The likelihood of reconstructed triggers

is calculated as

Lc(θ, φ) =
∑
ij

Lp(i, j, θ, φ) (18)

where the sum is taken over the LTF pixels in the trigger. The maximum likelihood

statistic Lmax is obtained by variation of Lc over θ and φ. Unlike for Lp, which is
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calculated for a single LTF pixel, the Lmax is calculated simultaneously for all LTF

pixels forming the coherent trigger.

4. Coherent statistics

When the detector noise is Gaussian and stationary, the maximum likelihood Lmax is

the only statistic required for detection and selection of the GW events. In this case the

pipeline false alarm and false dismissal probabilities are controlled by the threshold on

Lmax. The real data, however, is contaminated with the instrumental and environmental

glitches and additional selection cuts should be applied to distinguish genuine GW

signals [25, 6]. Such selection cuts test the consistency of the reconstructed responses in

the detectors. In the coherent WaveBurst method the consistency test is based on the

coherent statistics constructed from the elements of the likelihood and the null matrices.

The likelihood matrix Lnm is obtained from the likelihood quadratic form (see

Eq.19)

Lmax =
∑
nm

Lnm =
∑
nm

[
〈wnwme+ne+m〉+

〈
wnwme′×ne

′
×m

〉]
. (19)

The diagonal (off-diagonal) terms of the matrix Lmn describe the reconstructed

normalized incoherent (coherent) energy. The sum of the off-diagonal terms is the

coherent energy Ecoh detected by the network. The coherent terms can also be used to

construct the correlation coefficients:

rnm =
Lnm√

LnnLmm

. (20)

which represent Pearson’s correlation coefficients in the case of aligned detectors. We

use the coefficients rnm to construct the reduced coherent energy

ecoh =
∑
nm

Lnm|rnm|. (21)

which provides one of the most efficient selection cuts for rejection of the incoherent

background events.

The null matrix represents the normalized energy of the reconstructed detector

noise

Nnm = Enm − Lnm, (22)

where Enm is the diagonal matrix of the normalized energy in the detectors: Enn = 〈x2
n〉.

To distinguish genuine GW signals from the instrumental and invironmental glitches we

introduce the network correlation coefficients

Cnet =
Ecoh

N + |Ecoh|
, cnet =

ecoh

N + |ecoh|
(23)

where N is a sum of all elements of the null matrix. Usually for glitches little coherent

energy is detected and the reconstructed detector responses are inconsistent with the

detector outputs which results in the large null energy. Therefore the correlation

coefficients Cnet and cnet can be used for a veto cut which effectively compares the null
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energy with the coherent energy. This is much safer veto than the null stream veto [25]

where the null energy is compared with the estimated noise energy. In any realistic

data analysis there is always some residual energy left in the null stream. Therefore for

strong gravitational waves the energy of the residual signal can be much larger than the

noise energy resulting in false rejection of the GW signal. This is not the case for the

veto cut based on Cnet and cnet.

5. Summary

In the paper we discussed how the coherent network algorithms are constructed for

burst searches. We found it convenient to construct coherent burst searches in the time-

frequency (wavelet) domain, which requires construction of the time delay filters. For

detection of burst signals we combine output of all detectors into one coherent statistic

- likelihood, which represents the total signal-to-noise ratio of the signal detected by the

network. To distinguish genuine GW signals from the instrumental and invironmental

glitches we introduced several coherent statistics constructed from the elements of the

likelihood and null matrix. We do not discuss the performance of the method in this

paper. However, we did numerous studies of the method with different sets of the real

LIGO and Vergo data. We found that, in general, the method has better performance

than the burst algorithm used for the analysis of LIGO data [16, 20, 21]. The results of

this of these studies will be presented in the subsequent papers.

6. Acknowledgments

We thank Keith Riles, Michele Zanolin and Brian O’Reilly for detail discussions and

review of the algorithm and suggestions which significantly improved its performance.

This work was supported by the US National Science Foundation grants PHY-0555453

to the University of Florida, Gainesville.

7. References

[1] Y. Gursel and M. Tinto, Phys. Rev. D 40, 3884 (1989)
[2] E. E. Flanagan and S. A. Hughes, Phys. Rev. D 57, 4577 (1998)
[3] N. Arnaud et al, Phys. Rev. D 68, 102001 (2003)
[4] S.Klimenko, S.Mohanty, M.Rakhmanov, G.Mitselmakher, Phys. Rev. D 72, 122002 (2005).
[5] M. Rakhmanov Class. Quantum Grav. 23 S673 (2006)
[6] S. Chatterji et al, Phys.Rev. D 74 082005 (2006)
[7] T. Zwerger and E. Mueller, Astron. Astrophys, 320, 209 (1997)
[8] H. Dimmelmeier, J. A. Font and E. Mueller, Astron. Astrophys, 393, 523 (2002)
[9] C. Ott et al, Astrophys. J., 600, 834 (2004)

[10] M. Shibata and Y. I. Sekiguchi, Phys. Rev. D 69, 084024 (2004)
[11] E. E. Flanagan and S. A. Hughes, Phys. Rev. D 57, 4535 (1998)
[12] J. Baker et al, Phys. Rev. D 73, 104002 (2006)
[13] F. Pretorius, Phys. Rev. Lett. 95, 121101 (2005)
[14] M. Campanelli et al, Phys. Rev. Lett. 96, 111101 (2006)



11

[15] P. Meszaros, Rept. Prog. Phys. 69, 2259-2322 (2006)
[16] S. Klimenko and G. Mitselmakher, Wavelet method for GW burst detection Class. Quantum Grav.

21, S1819 (2004). Class. Quantum Grav. 21, S1685 (2004).
[17] S. Chatterji, L. Blackburn, G. Martin, E. Katsavounidis, Multiresolution techniques for the

detection of gravitational-wave bursts. Class. Quantum Grav. 21, S1809 (2004).
[18] J.W.C. McNabb et al, arXiv:gr-qc/0404123 v1 29, April 2004
[19] L. Cadonati, Coherent waveform consistency test for LIGO burst candidates. Class. Quantum

Grav. 21, S1695 (2004).
[20] B. Abbott et al, (The LIGO Scientific Collaboration), Class. Quantum Grav. 23, S51-S56 (2006)
[21] F. Acernese et al, (The Virgo Collaboration), Class. Quantum Grav. 23, S63-S69 (2006)
[22] B. Vidakovic, Statistical modeling by wavelets, 1999.
[23] B. Abbot et al, Phys. Rev. D 72, (2005) 062001
[24] B. Abbot et al, Class. Quantum Grav. 24 5343-5369 (2007)
[25] L. Wen and B. F. Schutz,Coherent network detection of gravitational waves: the redundancy veto,

Class. Quantum Grav. 22, S1321 (2005).
[26] P. Delsarte and Y. Genin, On the Splitting of classical algorithms in Linear prediction theory,

IEEE, ASSP-35, 1987


