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Numerical simulations of 15 orbits of an equal-mass binary black hole system are presented.
Gravitational waveforms from these simulations, covering more than 30 cycles and ending about 1.5
cycles before merger, are compared with those from quasi-circular zero-spin post-Newtonian (PN)
formulae. The cumulative phase uncertainty of these comparisons is about 0.05 radians, dominated
by effects arising from the small residual spins of the black holes and the small residual orbital
eccentricity in the simulations. Matching numerical results to generic post-Newtonian time-domain
Taylor approximants about 22 cycles before merger yields good agreement (within 0.05 radians)
until 15 cycles before merger, but phase differences of several radians build up toward merger.
Similarly, when matching to generic post-Newtonian approximants at a time just before merger,
phase differences of several radians occur at early times. However, one specific post-Newtonian
approximant, TaylorT4 at 3.5PN order, agrees much better with the numerical simulations, with
accumulated phase differences of less than 0.05 radians over the 30-cycle waveform. Gravitational-
wave amplitude comparisons are also done between numerical simulations and post-Newtonian, and
the agreement depends on the post-Newtonian order of the amplitude expansion: the amplitude
difference is about 6–7% for zeroth order and becomes smaller for increasing order. A newly derived
3.0PN amplitude correction improves agreement significantly (< 1% amplitude difference throughout
most of the run, increasing to 4% near merger) over the previously known 2.5PN amplitude terms.

PACS numbers: 04.25.D-, 04.25.dg, 04.25.Nx, 04.30.-w, 04.30.Db, 02.70.Hm

I. INTRODUCTION

The last two years have witnessed tremendous progress
in simulations of black hole binaries, starting with
the first stable simulation of orbiting and merging
black holes [1, 2], development of the moving puncture
method [3, 4] and rapid progress by other groups [5–10].
Since then, an enormous amount of work has been done
on the late inspiral and merger of black hole binaries,
among them studies of the universality of the merger
waveforms [11, 12], investigations into black hole kicks
[13–26] and spin dynamics [27–29], comparisons to post-
Newtonian models [30–32], and applications to gravita-
tional wave data analysis [33–35].

Compared to the intense activity focusing on simula-
tions close to merger, there have been relatively few sim-
ulations covering the inspiral phase. To date, only three
simulations [36–40] cover more than five orbits. Long in-
spiral simulations are challenging for a variety of reasons:
First, the orbital period increases rapidly with separa-
tion, so that simulations must cover a significantly longer
evolution time. In addition, the gravitational waveform
must be extracted at larger radius (and the simulation
must therefore cover a larger spatial volume) because the
gravitational wavelength is longer. Furthermore, gravita-
tional wave data analysis requires small absolute accumu-
lated phase uncertainties in the waveform, so the relative

phase uncertainty of the simulation must be smaller.

Gravitational wave detectors provide a major driv-
ing force for numerical relativity (NR). The first gener-
ation interferometric gravitational wave detectors, such
as LIGO [41, 42], GEO600 [43] and VIRGO [44, 45], are
now operating at or near their design sensitivities. Fur-
thermore, the advanced generation of detectors are en-
tering their construction phases. This new generation
of interferometers will improve detector sensitivity by a
factor of ∼ 10 and hence increase expected event rates
by a factor of ∼ 1000 [46]. One of the most promising
sources for these detectors is the inspiral and merger of
binary black holes (BBHs) with masses m1 ∼ m2 ∼ 10–
20 M� [47]. These systems are expected to have circu-
larized long before their gravitational waves enter the
sensitive frequency band of ground-based detectors [48].

A detailed and accurate understanding of the gravita-
tional waves radiated as the black holes spiral towards
each other will be crucial not only to the initial de-
tection of such sources, but also to maximize the in-
formation that can be obtained from signals once they
are observed. When the black holes are far apart, the
gravitational waveform can be accurately computed us-
ing a post-Newtonian (PN) expansion. As the holes ap-
proach each other and their velocities increase, the post-
Newtonian expansion is expected to diverge from the true
waveform. It is important to quantify any differences

LIGO-P070101-00-Z



2

between theoretical waveforms and the true signals, as
discrepancies will cause a reduction of search sensitiv-
ity. Several techniques have been proposed to address the
problem of the breakdown of the post-Newtonian approx-
imation [49–51], but ultimately, the accuracy of the post-
Newtonian waveforms used in binary black hole gravi-
tational wave searches can only be established through
comparisons with full numerical simulations.

Unfortunately, comparing post-Newtonian approxima-
tions to numerical simulations is not straightforward, the
most obvious problem being the difficulty of producing
long and sufficiently accurate numerical simulations as
explained above. In addition, post-Newtonian waveforms
typically assume circular orbits, and most astrophysi-
cal binaries are expected to be on circular orbits late
in their inspiral, so the orbital eccentricity within the
numerical simulation must be sufficiently small1. An-
other factor that complicates comparisons is the variety
of post-Newtonian approximants available, from several
straightforward Taylor expansions to more sophisticated
Padé resummation techniques and the effective one-body
approach (see e.g. [49, 50, 52–58], as well as Section III E
below). While all post-Newtonian approximants of the
same order should agree sufficiently early in the inspiral
(when neglected higher-order terms are small), they be-
gin to disagree with each other during the late inspiral
when the post-Newtonian approximation starts to break
down—exactly the regime in which NR waveforms are
becoming available.

Finally, agreement (or disagreement) between NR and
PN waveforms will also depend very sensitively on the
precise protocol used to compare the waveforms. Are
PN and NR waveforms matched early or late in the in-
spiral? Is the matching done at a particular time, or is a
least-squares fit performed over part (or all) of the wave-
form? Does one compare frequencies ω(t) or phases φ(t)?
Are comparisons presented as functions of time or of fre-
quency? Up to which cutoff frequency does one compare
PN with NR?

Despite these difficulties, several comparisons between
NR and PN have been done for the last few orbits of
an equal-mass, non-spinning black hole binary. The first
such study was done by Buonanno et al [32, 33] based on
simulations performed by Pretorius [1] lasting somewhat
more than 4 orbits (∼ 8 gravitational wave cycles). This
comparison finds visual agreement between the numerical
evolution and a particular post-Newtonian approximant
(in our language TaylorT3 3.0/0.02). However, as the

1 Unfortunately, this circularization occurs on extremely long time
scales [48], thousands of orbits, making it impossible to run
the numerical simulation long enough to radiate the eccentric-
ity away.

2 We identify post-Newtonian approximants with three pieces of
information: the label introduced by [52] for how the orbital
phase is evolved; the PN order to which the orbital phase is
computed; and the PN order that the amplitude of the waveform

authors note, this study is severely limited by numeri-
cal resolution, sizable initial eccentricity (∼ 0.015), close
initial separation of the black holes, and coordinate arti-
facts; for these reasons, the authors do not quantify the
level of agreement.

More recently, Baker et al. [37, 38] performed simula-
tions covering the last ∼ 14 cycles before merger. These
simulations have an orbital eccentricity ∼ 0.008 [37],
forcing the authors to compare quasi-circular post-
Newtonian waveforms against a fitted smooth (“de-
eccentrized”) gravitational wave phase, rather than the
actual gravitational wave phase of their evolution. Com-
paring to TaylorT4 3.5/2.5, they find agreement be-
tween numerical and post-Newtonian gravitational wave
phase to within their numerical errors, which are about
2 radians. The authors also indicate that other post-
Newtonian approximants do not match their simulation
as well as TaylorT4, but unfortunately, they do not men-
tion whether any disagreement is significant (i.e., exceed-
ing their numerical errors).

The most accurate inspiral simulation to date was per-
formed by the Jena group and presented in Husa et

al. [40] and Hannam et al. [39]. This simulation covers
18 cycles before merger and has an orbital eccentricity of
∼ 0.0018 [59]. Discarding the first two cycles which are
contaminated by numerical noise, and terminating the
comparison at a gravitational-wave frequency mω = 0.1
(see Eq. (15) for the precise definition) their comparison
extends over 13 cycles. We discuss the results of Ref. [39]
in more detail in Sec. VI A1.

This paper presents a new inspiral simulation of a non-
spinning equal mass black hole binary. This new simu-
lation more than doubles the evolution time of the sim-
ulations in Refs. [37–40], resulting in a waveform with
30 gravitational wave cycles, ending ∼ 1.5 cycles before
merger, and improves numerical truncation errors by one
to two orders of magnitude over those in Refs. [37–40].
The orbital eccentricity of our simulations is ∼ 6× 10−5;
this low eccentricity is achieved using refinements of tech-
niques described in [36]. We present a detailed analysis
of various effects which might influence our comparisons
to post-Newtonian waveforms for non-spinning black hole
binaries on circular orbits. These effects result in an un-
certainty of ∼ 0.05 radians out of the accumulated ∼ 200
radians. Perhaps surprisingly, the largest uncertainty
arises from the residual orbital eccentricity, despite its
tiny value. The second largest effect arises due to a po-
tential residual spin on the black holes, which we bound
by |S|/M2

irr < 5 × 10−4.

We compare the numerical waveforms with three
different time-domain post-Newtonian Taylor-
approximants [51–53] and we match PN and NR
waveforms at a specific time during the inspiral. We
explore the effects of varying this matching time. When

is computed. See Sec. III E for more details.
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matching ∼ 9 cycles after the start of our evolution, all
post-Newtonian approximants of 3.0PN and 3.5PN order
in orbital phase agree with our simulation to within
∼ 0.03 radians over these first 9 cycles. This agree-
ment is better than the combined uncertainties of the
comparison, thus validating our simulations in a regime
where the 3.5PN truncation error of post-Newtonian
theory is comparable to the accuracy of our simulations.
Lower order post-Newtonian approximants (2.0PN and
2.5PN order), however, accumulate a significant phase
difference of ∼ 0.2 radians over this region.

Extending the comparison toward merger (as well as
when matching closer to merger), we find, not surpris-
ingly, that the agreement between PN and NR at late
times depends strongly on exactly what post-Newtonian
approximant we use [52, 53]. Typical accumulated phase
differences are on the order of radians at frequency mω =
0.1. One particular post-Newtonian approximant, Tay-
lorT4 at 3.5PN order in phase, agrees with our NR wave-
forms far better than the other approximants, the agree-
ment being within the phase uncertainty of the compar-
ison (0.05 radians) until after the gravitational wave fre-
quency passes mω = 0.1 (about 3.5 cycles before merger).
It remains to be seen whether this agreement is fun-
damental or accidental, and whether it applies to more
complicated situations (e.g. unequal masses, nontrivial
spins).

We also compare the post-Newtonian gravitational
wave amplitude to the numerical amplitude, where we
estimate the uncertainty of this comparison to be about
0.5%. Restricted waveforms (i.e., 0PN order in the am-
plitude expansion) are found to disagree with the nu-
merical amplitudes by 6–7%. An amplitude expansion of
order 2PN shows significantly better agreement than the
expansion at order 2.5PN. A newly derived 3PN ampli-
tude [60] is found to give much better agreement than
the 2.0PN amplitude.

This paper is organized as follows: Section II discusses
our numerical techniques. In particular, we describe how
we construct binary black hole initial data, evolve these
data for 15 orbits, extract gravitational wave information
from the evolution, and produce a gravitational waveform
as seen by an observer at infinity. Section III details the
generation of post-Newtonian waveforms, including de-
tails of how we produce the three approximants that we
compare against NR. We describe our procedure for com-
paring NR and PN waveforms in Sec. IV, and present a
detailed study of various sources of uncertainty in Sec. V.
The comparisons between NR and PN are presented in
Section VI. This section is split into two parts: First,
we compare each PN approximant separately with the
numerical simulation. Subsequently, we show some addi-
tional figures which facilitate cross-comparisons between
the different PN approximants. Finally, we present some
concluding remarks in Section VII. The impatient reader
primarily interested in NR-PN comparisons may wish to
proceed directly to Table III summarizing the uncertain-
ties of our comparisons, and then continue to Sec. VI,

starting with Fig. 15.

II. GENERATION OF NUMERICAL
WAVEFORMS

In order to do a quantitative comparison between nu-
merical and post-Newtonian waveforms, it is important
to have a code capable of starting the black holes far
enough apart to be in a regime where we strongly believe
the post-Newtonian approximation is valid, track the or-
bital phase extremely accurately, and do so efficiently so
the simulation can be completed in a reasonable amount
of time. Furthermore, the gravitational waves from such
a simulation must be extracted in such a manner that
preserves the accuracy of the simulation and predicts the
waveform as seen by a distant observer, so a comparison
with the post-Newtonian waveform can be made. In this
section we describe the techniques we use to do this, as
well as the results of a simulation starting more than 15
orbits prior to merger.

When discussing numerical solutions of Einstein’s
equations, we write all dimensionful quantities in terms
of some mass scale m, which we choose to be the sum of
the irreducible masses of the two black holes in the initial
data:

m = Mirr,1 + Mirr,2. (1)

The irreducible mass of a single hole is defined as

Mirr ≡
√

A/16π, (2)

where A is the surface area of the event horizon; in prac-
tice we take A to be the surface area of the apparent
horizon. More generally, it is more appropriate to use
the Christoudoulou mass of each black hole,

M2
BH = M2

irr +
S2

4M2
irr

, (3)

instead of the irreducible mass. Here S is the spin of the
hole. However, for the case considered in this paper, the
spins are sufficently small that there is little difference
between MBH and Mirr.

A. Initial data

Initial data are constructed within the conformal thin
sandwich formalism [61, 62] using a pseudo-spectral el-
liptic solver [63]. We employ quasi-equilibrium bound-
ary conditions [64, 65] on spherical excision boundaries,
choose conformal flatness and maximal slicing, and use
Eq. (33a) of Ref. [66] as the lapse boundary condition.
The spins of the black holes are made very small via an
appropriate choice of the tangential shift at the excision
surfaces, as described in [66].

As the most accurate post-Newtonian waveforms avail-
able assume adiabatic inspiral of quasi-circular orbits, it
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TABLE I: Summary of the initial data sets used in this paper. The first block of numbers (d, Ω0, fr, and vr) represent raw
parameters entering the construction of the initial data. The second block gives some properties of each initial data set: m
denotes the sum of the irreducible masses, MADM and JADM the ADM energy and angular momentum, and s0 the initial proper
separation between the horizons. The last column lists the eccentricity computed from Eq. (7). The initial data set 30c is used
for all evolutions (except for consistency checks) described in this paper.

Name d Ω0 fr vr × 104 mΩ0 MADM/m JADM/m2 s0/m eds/dt

30a 30 0.0080108 0.939561 0.00 0.01664793 0.992333 1.0857 17.37 1.0 × 10−2

30b 30 0.0080389 0.939561 -4.90 0.0167054 0.992400 1.0897 17.37 6.5 × 10−4

30c 30 0.0080401 0.939561 -4.26 0.0167081 0.992402 1.0898 17.37 5 × 10−5

24a 24 0.0110496 0.92373 -8.29 0.0231947 0.990759 1.0045 14.15 1.1 × 10−3

24b 24 0.0110506 0.923739 -8.44 0.0231967 0.990767 1.0049 14.15 1.5 × 10−4

0 500 1000 1500
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-0.001
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0.001
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s(t)/m

ds(t)/dt

t/m

FIG. 1: Proper separation (top panel) and its time derivative
(lower panel) versus time for short evolutions of the d = 30
initial data sets ’30a’, ’30b’, and ’30c’ (see Table I). These
three data sets represent zero through two iterations of our
eccentricity-reduction procedure. The orbital eccentricity is
reduced significantly by each iteration.

is desirable to reduce the eccentricity of the numerical
data as much as possible. Using techniques developed
in [36], each black hole is allowed to have a nonzero ini-
tial velocity component towards the other hole. This
small velocity component vr and the initial orbital angu-
lar velocity Ω0 are then fine-tuned in order to produce
an orbit with very small orbital eccentricity3. We have
improved our eccentricity-reduction procedure since the
version described in [36], so we summarize our new iter-
ative procedure here:

3 An alternative method of producing low-eccentricity initial data,
based on post-Newtonian ideas, is developed in [59]. While that
technique is computationally more efficient than ours, it merely
reduces orbital eccentricity by a factor of ∼ 5 relative to quasi-
circular initial data, which is insufficient for the comparisons pre-
sented here.

We start with a quasi-circular (i.e., vr = 0) initial data
set at coordinate separation d = 30, where Ω0 is deter-
mined by equating Komar mass with ADM mass [66]. We
then evolve these data for about 1.5 orbits, correspond-
ing to a time t/m ≈ 600. From this short evolution, we
measure the time derivative of the proper separation be-
tween the horizons, ds/dt (which is plotted in Fig. 1). We
fit ds/dt in the interval 100 <∼ t/m <∼ 600 to the function

ds

dt
= A0 + A1t + B cos(ωt + ϕ), (4)

where we vary all five parameters A0, A1, B, ω and ϕ to
achieve the best fit. The desired smooth inspiral is rep-
resented by the part A0 + A1t; the term B cos(ωt + ϕ)
corresponds to oscillations caused by orbital eccentric-
ity. We then choose new values of vr and Ω0 such that
a Newtonian orbit with radial velocity B cos(ωt + ϕ) at
initial separation s0 would be perfectly circular. This is
accomplished by the updating formulae

Ω0 → Ω0 +
B sin ϕ

2s0
, (5)

vr → vr −
B cosϕ

2
, (6)

where s0 is the initial proper separation between the hori-
zons. We then use the new values of Ω0 and vr to con-
struct a new initial data set, we again evolve for two
orbits, fit to Eq. (4), and again update Ω0 and vr. We
continue iterating this procedure until the eccentricity is
sufficiently small.

We estimate the eccentricity for each iteration from
the fit to Eq. (4) using the formula

eds/dt =
B

s0ω
, (7)

which is valid in Newtonian gravity for small eccentric-
ities. Successive iterations of this procedure yield the
initial data sets 30a, 30b, and 30c summarized in Ta-
ble I. Eccentricity decreases by roughly a factor of 10
in each iteration, with 30c having eds/dt ≈ 5 × 10−5.
The evolutions used during eccentricity reduction need
not be very accurate and need to run only for a short
time, t ∼ 600m. One iteration of this procedure at our
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second lowest resolution requires about 250 CPU-hours.
For completeness, Table I also lists parameters for initial
data at smaller separation; these data will be used for
consistency checks below. Apart from these consistency
checks, the remainder of this paper will focus exclusively
on evolutions of the low-eccentricity initial data set 30c.

B. Evolution of the inspiral phase

The Einstein evolution equations are solved with the
pseudo-spectral evolution code described in Ref. [10].
This code evolves a first-order representation [67] of the
generalized harmonic system [68–70]. We handle the sin-
gularities by excising the black hole interiors from our
grid. Our outer boundary conditions [67, 71, 72] are
designed to prevent the influx of unphysical constraint
violations [73–79] and undesired incoming gravitational
radiation [80], while allowing the outgoing gravitational
radiation to pass freely through the boundary.

The code uses a fairly complicated domain decompo-
sition to achieve maximum efficiency. Each black hole is
surrounded by several (typically six) concentric spher-
ical shells, with the inner boundary of the innermost
shell (the excision boundary) just inside the horizon. A
structure of touching cylinders (typically 34 of them) sur-
rounds these shells, with axes along the line between the
two black holes. The outermost shell around each black
hole overlaps the cylinders. The outermost cylinders
overlap a set of outer spherical shells, centered at the ori-
gin, which extend to large outer radius. External bound-
ary conditions are imposed only on the outer surface of
the largest outer spherical shell. We vary the location of
the outer boundary by adding more shells at the outer
edge. Since all outer shells have the same angular resolu-
tion, the cost of placing the outer boundary farther away
(at full resolution) increases only linearly with the ra-
dius of the boundary. External boundary conditions are
enforced using the method of Bjorhus [81], while inter-
domain boundary conditions are enforced with a penalty
method [82, 83].

We employ the dual-frame method described in
Ref. [10]: we solve the equations in an ’inertial frame’
that is asymptotically Minkowski, but our domain de-
composition is fixed in a ’comoving frame’ that rotates
with respect to the inertial frame and also shrinks with
respect to the inertial frame as the holes approach each
other. The positions of the holes are fixed in the comov-
ing frame; we account for the motion of the holes by dy-
namically adjusting the coordinate mapping between the
two frames. Note that the comoving frame is referenced
only internally in the code as a means of treating mov-
ing holes with a fixed domain. Therefore all coordinate
quantities (e.g. black hole trajectories, wave-extraction
radii) mentioned in this paper are inertial-frame values
unless explicitly stated otherwise.

One side effect of our dual frame system is that the
outer boundary of our domain (which is fixed in the co-

moving frame) moves inward with time as observed in
the inertial frame. This is because the comoving frame
shrinks with respect to the inertial frame to follow the
motion of the holes. In Refs. [10, 36] the inertial frame
coordinate radius r (with respect to the center of mass)
and the comoving coordinate radius r′ are related by a
simple scaling

r = a(t)r′. (8)

The expansion parameter a(t) is initially set to unity
and decreases dynamically as the holes approach each
other, so that the comoving-frame coordinate distance
between the holes remains constant. The outer boundary
of the computational grid is at a fixed comoving radius
R′

bdry, which is mapped to the inertial coordinate radius

Rbdry(t) = a(t)R′
bdry. Because we wish to accurately

compute the gravitational radiation as measured far from
the holes, it is desirable to have a moderately large outer
boundary (Rbdry(t) >∼ 200m) throughout the run. For
the linear mapping, Eq. (8), this requires a very dis-
tant outer boundary early in the run, Rbdry(0) ' 1000m.
Computationally this is not very expensive. However,
the initial junk radiation contaminates the evolutions for
a time interval proportional to the light-crossing time to
the outer boundary, and for Rbdry(0) ' 1000m it would
be necessary to discard a significant portion of the evo-
lution.

We therefore use the mapping

r =

[

a(t) + (1 − a(t))
r′2

R′2
0

]

r′, (9)

for some constant R′
0 which is chosen to be roughly the

radius of the outer boundary in comoving coordinates.
This mapping has the following properties: (1) At the
initial time t = 0, the map reduces to the identity map
because a(0) = 1. Thus we do not need to re-map our
initial data before evolving. (2) For small radii (i.e., at
the locations of the black holes), the map reduces to the
linear map, r = a(t)r′ + O(r′3). This allows use of the
control system without modifications. (3) The moving
radius r′ = R′

0 is mapped to a constant inertial radius:
r(R′

0) = R′
0. This allows us to keep the inertial radius

of the outer boundary constant (or nearly constant4) in
time rather than shrinking rapidly.

In total, we have run three evolutions of the 30c ini-
tial data set; these use different combinations of outer
boundary radius and radial mapping between inertial and
moving coordinates. Some properties of these evolutions
are summarized in Table II. We also performed exten-
sive convergence testing, running the same evolution on

4 In practice, we choose R′

0 somewhat larger than the outer bound-
ary, so that the outer boundary of the computational domain
slowly contracts in inertial coordinates. This makes the zero-
speed characteristic fields outgoing there, avoiding the need to
impose boundary conditions on those fields.
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TABLE II: Overview of low-eccentricity simulations discussed
in this paper. Rbdry is the initial coordinate radius of the
outer boundary; this radius changes during the evolution ac-
cording to the choice of “radial map” between inertial and
comoving coordinates. The last column lists the different res-
olutions run for each evolution, N6 being highest resolution.
Evolution 30c-1/N6 forms the basis of our post-Newtonian
comparisons, and is used in all figures unless noted otherwise.

Name ID Norbits Rbdry radial map resolutions

30c-1 30c 15.6 462m Eq. (9) N1, N2, . . . , N6

30c-2 30c 15.6 722m Eq. (8) N2, N4, N6

30c-3 30c 15.6 202m Eq. (8) N2, N3, . . . , N6

24b-1 24b 8.3 160m Eq. (8) N2, N3, N4

0 250 500 750
0

1000

2000

3000

4000

0 100 200 300

3800

4000

4200

r/m

t/m

r/m

t/m

30c-1

30c-3

30c-2

mω=0.1

mω=0.1

0.063

0.05

0.04

24a-1

FIG. 2: Spacetime diagram showing the spacetime volume
simulated by the numerical evolutions listed in Tab. II. The
magnified view in the right panel shows how the gravitational
waves are escorted to our extraction radii (see Sec. IIC) after
the simulation in the center has already crashed at t ∼ 3930m,
and after the estimated time of the black hole merger, which
is indicated by the circle. The thin diagonal lines are lines
of constant t − r∗; each corresponds to a retarded time at
which the gravitational wave frequency ω at infinity assumes
a particular value.

up to six distinct resolutions, N1 to N6. The coarsest
resolution 30c-1/N1 uses approximately 413 grid points
(summing all grid points in all the subdomains), while the
most accurate evolution, 30c-1/N6, uses about 673 grid
points. The run 30c-1/N2 required about 2,500 CPU-
hours and run 30c-1/N6 about 19,000, where our simula-
tions do not take advantage of symmetries. The distance
to the outer boundary is adjusted by adding or removing
outer spherical shells to an otherwise unmodified domain-
decomposition. Run 30c-1 has 20 such outer spherical
shells, while 30c-2 utilizes 32 and 30c-3 only 8. Thus, the
total number of grid points varies slightly between runs,
e.g. about 713 for 30c-2/N6. Figure 2 indicates the dif-

-4 0 4

-4

0

4

y/
m

x/m

FIG. 3: Coordinate trajectories of the centers of the black
holes. The small circles/ellipsoids show the apparent horizons
at the initial time and at the time when the simulation ends
and wave escorting begins. The inset shows an enlargement
of the dashed box.

ferent behavior of the outer boundary location for these
three evolutions.

For all of the evolutions 30c-1/2/3, the coordinate tra-
jectories of the centers of the apparent horizons appear
as in Fig. 3. The regular inspiral pattern without notice-
able oscillations once again indicates that our evolutions
indeed have very low eccentricity.

Figure 4 demonstrates the convergence of the black
hole mass m(t) with spatial resolution for run 30c-1. The
mass m(t) is computed as the sum of the irreducible
masses of both black holes, as defined in Eq. (2). At
the highest resolution, m(t) deviates by only a few parts
in 106 from its initial value m.

We also measure the quasi-local spin using coordinate
rotation vectors projected into the apparent horizon sur-
faces [84–86]. Only the z-component of the spin is non-
zero (i.e., the spins are aligned with the orbital angular
momentum). The spin starts at Sz/M

2
irr ≈ −6 × 10−5

and increases slowly to −5 × 10−4 during the evolution,
where the minus sign indicates that the black hole spin is
anti-aligned with the orbital angular momentum. Thus it
appears the black hole’s spins move further away from the
corotational state. We believe this effect is caused by the
use of coordinate rotation vectors when calculating the
quasi-local spin, rather than more sophisticated approx-
imate Killing vectors [87–89]. Preliminary results with
approximate Killing vectors find the initial spin to be less
than 10−6, and slowly increasing during the evolution to
a final value of 2× 10−5 at the end of the comparison in-
terval to post-Newtonian theory. Given the preliminary
character of these results, we will take here the conserva-
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FIG. 4: Deviation of total irreducible mass m(t) = 2Mirr(t)
from its value in the initial data. Plotted are the five different
resolutions of run 30a-1.

tive bound |S|/M2
irr ≤ 5×10−4 obtained from coordinate

rotation vectors.

C. Escorting gravitational waves

The simulation presented in Fig. 3 stops when the hori-
zons of the black holes become too distorted just before
merger. At that point, the proper separation between
the horizons is ∼ 4.0m, and the orbital frequency has
reached mΩorbit = 0.125; comparison with [32] suggests
this is about 15m before formation of a common apparent
horizon. So far our efforts to simulate the actual merger
and ringdown have been unsuccessful.

At the time the simulation ends, most of the domain
(all regions except for the immediate vicinity of the two
holes) is still well resolved, and the spacetime contains
gravitational radiation that has not yet propagated out
to the large radii where we perform wave extraction. So
instead of losing this information, which consists of sev-
eral gravitational-wave cycles, we evolve only the outer
portions of our grid beyond the time at which the code
crashes in the center, effectively ’escorting’ the radiation
out to the extraction radii.

To do this, we first stop the evolution shortly be-
fore it crashes, and we introduce a new spherical exci-
sion boundary that surrounds both black holes and has
a radius of roughly three times the black hole separa-
tion. This new excision boundary moves radially out-
ward at slightly faster than the speed of light so that it
is causally disconnected from the interior region where
the code is crashing, and so that no boundary conditions
are required on this boundary. We then continue the
evolution on the truncated spherical-shell domain that
extends from the new excision boundary to the outer
boundary. To move both boundaries appropriately, we
employ a new radial coordinate mapping

r = A(t)r(r′) + B(t), (10)
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0.004

0.04
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FIG. 5: Gravitational waveform extracted at r = 240m. From
top panel to bottom: The real part of the l = 2, m = 2 com-
ponent of rΨ4; the gravitational wave strain, obtained by two
time integrals of Re(rΨ4); the frequency of the gravitational
wave, Eq. (15); the gravitational wavelength, λ = 2π/ω. The
vertical grey line at t ≈ 3930m indicates the time when “wave
escorting” starts.

where r(r′) is given by Eq. (9). The functions A(t)
and B(t) are chosen to satisfy three criteria: First, the
inner boundary of the spherical shell moves outward
with coordinate speed of unity, which turns out to be
slightly superluminal. Second, the outer boundary loca-
tion Rbdry(t) has continuous first and second time deriva-
tives at the time we transition to the truncated domain.
And finally, the outer boundary location Rbdry(t) ap-
proaches some fixed value at late times. The right panel
of Fig. 2 shows the motion of the inner and outer radii
for evolutions 30c-1 and 30c-2 (we did not perform wave
escorting for 30c-3). For 30c-1, wave escorting extends
the evolution for an additional time 220m beyond the
point at which the simulation stops in the center.

Figure 5 shows the gravitational waveform extracted
at inertial coordinate radius R = 240m for the run 30c-
1. The grey vertical line indicates the time when wave
escorting starts. Wave escorting allows us to extract an-
other 4 cycles of gravitational waves. The gravitational
wave frequency at the end of the run is mω ≈ 0.16, plac-
ing the end of the waveform at about 50m (or ∼ 1.5
cycles) before formation of a common apparent horizon5

(judged by comparison with [32]).

5 The waveform ends somewhat further from merger than the or-
bital trajectory, because the artificial boundary is placed initially
at a radius ∼ 15m, and then moves outward somewhat faster
than the speed of light, thus overtaking the very last part of the
waveform as it travels to the wave-extraction radii.
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bottom panel shows the same data, but without the normal-
ization factor. Norms are taken only in the regions outside
apparent horizons.

In the lower two panels of Fig. 5 there is a signifi-
cant amount of noise near the beginning of the run, at
t < 250m. This noise is barely evident in the top panel
of Fig. 5 as well. The noise is a manifestation of ‘junk ra-
diation’, a pulse of radiation often seen at the beginning
of numerical relativity simulations, and is caused by the
initial data not being precisely a snapshot of an evolution
that has been running for a long time. Among the effects
that produce junk radiation are incorrect initial distor-
tions of the individual holes, so that each hole radiates
as it relaxes to its correct quasi-equilibrium shape.

Our evolution code does not explicitly enforce either
the Einstein constraints or the secondary constraints that
arise from writing the system in first-order form. There-
fore, examining how well these constraints are satisfied
provides a useful consistency check. Figure 6 shows the
constraint violations for run 30c-1. The top panel shows
the L2 norm of all the constraint fields of our first or-
der generalized harmonic system, normalized by the L2

norm of the spatial gradients of the dynamical fields (see
Eq. (71) of Ref. [67]). The bottom panel shows the same
quantity, but without the normalization factor (i.e., just
the numerator of Eq. (71) of Ref. [67]). The L2 norms
are taken over the entire computational volume that lies
outside of apparent horizons. At early times, t < 500m,
the constraints converge rather slowly with resolution be-
cause the junk radiation contains high frequencies. Con-
vergence is more rapid during the smooth inspiral phase,
after the junk radiation has exited through the outer
boundary. The constraints increase around t ∼ 3900m
as the code begins to fail near the two merging holes,
but then the constraints decrease again after the failing

region is excised for wave escorting. The normalized con-
straint violations are less than 10−4 until just before the
peak (which occurs at t = 3930m for all but the lowest
resolutions). The size of the peak causes some concern
that the waveforms at late times may be contaminated
by constraint violations to a non-negligible degree. How-
ever, near the peak, the constraint violations are large
only in the inner regions of the domain near the black
holes (note that the curves in Fig. 6 decrease by two or-
ders of magnitude immediately after these inner regions
are excised at t = 3930m). Because all constraint quan-
tities propagate at the speed of light or slower for the
formulation of Einstein’s equations that we use, any in-
fluence that the constraint peak has on the extracted
waveform occurs after the constraint violations have had
time to propagate out to the wave extraction zone. This
is very late in the waveform, well after the gravitational
wave frequency reaches mω = 0.1, as can be seen from
the right panel of the spacetime diagram in Fig. 2.

D. Waveform extraction

Gravitational waves are extracted using the Newman-
Penrose scalar Ψ4, using the same procedure as in [36].
To summarize, given a spatial hypersurface with timelike
unit normal nµ, and given a spatial unit vector rµ in the
direction of wave propagation, the standard definition
of Ψ4 is the following component of the Weyl curvature
tensor,

Ψ4 = −Cαµβν`µ`νm̄αm̄β , (11)

where `µ ≡ 1√
2
(nµ−rµ), and mµ is a complex null vector

(satisfying mµm̄µ = 1) that is orthogonal to rµ and nµ.
Here an overbar denotes complex conjugation.

For (perturbations of) flat spacetime, Ψ4 is typically
evaluated on coordinate spheres, and in this case the
usual choices for nµ, rµ and mµ are

nµ =

(

∂

∂t

)µ

, (12a)

rµ =

(

∂

∂r

)µ

, (12b)

mµ =
1√
2r

(

∂

∂θ
+ i

1

sin θ

∂

∂φ

)µ

, (12c)

where (r, θ, φ) denote the standard spherical coordinates.
With this choice, Ψ4 can be expanded in terms of spin-
weighted spherical harmonics of weight −2:

Ψ4(t, r, θ, φ) =
∑

lm

Ψlm
4 (t, r)−2Ylm(θ, φ), (13)

where the Ψlm
4 are expansion coefficients defined by this

equation.
For curved spacetime, there is considerable freedom in

the choice of the vectors rµ and mµ, and different re-
searchers have made different choices [5, 32, 90–94] that
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are all equivalent in the r → ∞ limit. We choose these
vectors by first picking an extraction two-surface E that
is a coordinate sphere (r2 = x2 +y2+z2) centered on the
center of mass of the binary system (using the global
asymptotically Cartesian coordinates employed in our
code). We choose rµ to be the outward-pointing spa-
tial unit normal to E (that is, we choose ri proportional
to ∇ir and raise the index with the spatial metric). Then
we choose mµ according to Eq. (12c), using the standard
spherical coordinates θ and φ defined on these coordinate
spheres. Finally we use Eqs. (11) and (13) to define the
Ψlm

4 coefficients.
Note that the mµ vector used here is not exactly null

nor exactly of unit magnitude at finite r. The resulting
Ψlm

4 at finite r will disagree with the waveforms observed
at infinity. Our definition does, however, agree with the
standard definition given in Eqs. (11)–(13) as r → ∞.
Because we extrapolate the extracted waves to find the
asymptotic radiation field (see Section II F), these effects
should not play a role in our PN comparisons: Relative
errors in Ψlm

4 introduced by using the simple coordinate
tetrad fall off like 1/r, and thus should vanish after ex-
trapolating to obtain the asymptotic behavior. While
more careful treatment of the extraction method—such
as those discussed in [95–97]—may improve the quality of
extrapolation and would be interesting to explore in the
future, the naive choice made here should be sufficient to
ensure that the waveform after extrapolation is correct
to the accuracy needed for these simulations.

In this paper, we focus on the l = 2, m = 2 coefficient.
Following common practice (see e.g. [5, 11]), we split the
extracted waveform into real phase φ and real amplitude
A, defined by

Ψ22
4 (r, t) = A(r, t)e−iφ(r,t). (14)

The gravitational-wave frequency is given by

ω =
dφ

dt
(15)

The minus sign in the definition of φ is chosen so that the
phase increases in time and ω is positive. Equation (14)
defines φ only up to multiples of 2π. These multiples of
2π are chosen to make φ continuous through each evolu-
tion, still leaving an overall multiple of 2π undetermined.
We will consider only phase differences in this paper, so
the choice of this overall phase offset is irrelevant.

E. Convergence of extracted waveforms

In this section we examine the convergence of the grav-
itational waveforms extracted at fixed radius, without
extrapolation to infinity. This allows us to study the
behavior of our code without the complications of ex-
trapolation. The extrapolation process and the resulting
extrapolated waveforms are discussed in Sec. II F.

The top panel of Fig. 7 shows the convergence of the
gravitational wave phase φ with numerical resolution for
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FIG. 7: Convergence of the gravitational wave phase ex-
tracted at radius R = 77m. All lines show differences with re-
spect to our highest resolution run, 30c-1/N6. The top panel
shows different resolutions of the same run 30c-1; no time or
phase shifts have been performed. The bottom panel com-
pares different runs, aligning the runs at mω = 0.1 by a time
and phase shift. The thin vertical line indicates the time at
which mω = 0.1 for 30c-1/N6.

the run 30c-1. For this plot, the waveform is extracted at
a fixed radius R = 77m. Each line shows the difference
between φ computed at some particular resolution and
φ computed from our highest-resolution run 30c-1/N6.
When subtracting results at different resolutions, no time
or phase adjustment has been performed. The difference
in φ between the two highest-resolution runs is smaller
than 0.03 radians throughout the run, and it is smaller
than 0.02 radians between t = 1000m and the point at
which mω = 0.1.

At times before 1000m, the phase convergence of our
simulation is limited to about 0.05 radians because of
effects of junk radiation (described at the end of Sec-
tion II C). The sharp pulse of junk radiation has com-
paratively large numerical truncation error, and excites
all characteristic modes at truncation-error level, includ-
ing waves that propagate back toward the origin. Gen-
eration of these secondary waves stops when the pulse of
junk radiation leaves through the outer boundary (i.e.,
after one light-crossing time). Because we use the im-
proved outer boundary conditions of Rinne et al. [72],
there are no significant reflections when the junk radia-
tion passes through the outer boundary. However, the
waves produced before the junk radiation leaves remain
in the computational domain for two additional light-
crossing times, until they eventually leave through the
outer boundary.

The bottom panel of Fig. 7 shows phase comparisons
between different waveforms after we perform a time shift
and phase shift so that the waveforms agree at mω = 0.1.
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Our procedure for time shifting and phase shifting is the
same as the shifting procedure we use to compare NR
with PN waveforms (see Sec. IVB), so that the error
estimates we extract from the bottom panel of Fig. 7 are
relevant for our later NR-PN comparison.

There are three different types of comparisons shown
in the bottom panel of Fig. 7: Phase differences between
runs with the same initial data but with different outer
boundary locations, phase differences between runs with
different initial data, and phase differences between dif-
ferent numerical resolutions of the same run (this last
comparison is the same as what is shown in the top panel,
except in the bottom panel the waveforms are time and
phase shifted). We will discuss all three of these in turn.

First, we compare the phase difference of 30c-1/N6
with runs that have different outer boundary locations.
Run 30c-2 (with more distant outer boundary) agrees to
within 0.002 radians with run 30c-1, but run 30c-3 (with
closer outer boundary), has a much larger phase differ-
ence with 30c-1. We believe that this is because run 30c-
3 has a very small ratio of outer boundary location to
gravitational wavelength: R/λ is about 1.1 for the first
two-thirds of the run, and remains less than 2 for the
entire run.

We can explain the order of magnitude of these phase
differences using the analysis of Buchman & Sarbach [80].
Our outer boundary conditions are not perfectly absorb-
ing, but instead they reflect some fraction of the outgoing
radiation.6 The ratio of the amplitude of curvature per-
turbations (i.e. Ψ4) of the reflected wave to that of the
outgoing wave is

q ≈ 3

2(2π)4

(

λ

R

)4

. (16)

Although this fraction is computed at the outer bound-
ary, the ratio of reflected to outgoing amplitudes is also
approximately q near the black holes because the incom-
ing reflected waves grow like 1/r as they travel inward
just like the outgoing waves decrease by 1/r as they prop-
agate outward. Now consider the second time derivative
of the gravitational wave phase, φ̈; this is nonzero only
because of gravitational wave emission, so φ̈ is propor-
tional to some power of the outgoing wave amplitude.
To get the correct power, we can use Eq. (45) to find

ẋ ∼ x5, so Eq. (36) yields φ̈ ∼ x11/2 (we assume gravita-
tional wave phase is twice the orbital phase). The ampli-

tude of Ψ4 scales like x4, so φ̈ ∼ A11/8. Let us assume for
the sake of this rough error estimate that the change in
φ̈ due to the ingoing reflected wave scales similarly with
amplitude, φ̈ ∼ Ā11/8, where Ā = qA is the amplitude of
the reflected ingoing wave. Therefore the unphysical GW

6 However, in a comparison of various boundary conditions [72],
the boundary conditions we use produced smaller reflections than
other boundary conditions commonly used in numerical relativ-
ity.

force acting back on the system due to boundary reflec-
tions will cause fractional errors in the second derivative
of the phase of about q11/8. That is, the error δφ caused
by the improper boundary condition will be given by

d2δφ

dt2
= q11/8 d2φ

dt2
. (17)

Integrating this yields δφ = q11/8φ, where φ is the total
gravitational wave phase accumulated during the evolu-
tion. For 30c-3, λ/R ∼ 0.9, so q ∼ 6×10−4, which yields
δφ ∼ 0.08 radians for an accumulated gravitational wave
phase of about 200 radians. This rough estimate agrees
in order of magnitude with the phase difference between
30c-3 and 30c-1 as shown in the bottom panel of Fig-
ure 7. The run 30c-1 has an outer boundary about 2.5
farther away, reducing the reflection coefficient by a fac-
tor 2.54 ≈ 40, so for 30c-1 this estimate of the phase error
gives δφ = 5×10−4 radians. Therefore, we expect reflec-
tion of the outgoing radiation at the outer boundary to
be insignificant for 30c-1. This is confirmed by the excel-
lent agreement between runs 30c-1 and 30c-2 (the latter
having even larger outer boundary).

The second comparison shown in the lower panel of
Fig. 7 is the phase difference between 30c-1/N6 and 24b-
1/N4, a shorter 8-orbit evolution started from a sepa-
rate initial data set (set 24b in Table I) with a separate
eccentricity-reduction procedure. The phase agreement
between these two runs (including an overall time shift
and phase shift) is better than 0.01 radians for a total
accumulated phase of ∼ 100 radians of the 8-orbit run,
i.e. better than one part in 104. Run 24b-1 has a similar
outer boundary location as run 30c-3, and indeed both
of these runs show similar phase differences from 30c-1.

Finally, the third comparison shown in the lower panel
of Fig. 7 is the the phase difference between the two high-
est resolutions of the run 30c-1 when a time shift is ap-
plied. For t >∼ 1000m the agreement is much better than
without the time shift (see upper panel), indicating that
the dominant error is a small difference in the overall
evolution time. For the post-Newtonian comparisons we
perform in the second part of this paper, waveforms are
always aligned at specific frequencies by applying time
and phase shifts. Therefore, the time-shifted phase dif-
ference as displayed in the lower panel is the most appro-
priate measure of numerical truncation error for these
PN comparisons. This difference is less than 0.003 ra-
dians after t = 1000m but is larger, about 0.02 radians,
at early times where the waveforms are noisy because of
junk radiation.

We now compare the gravitational wave amplitudes
of different runs in the same manner as we compared the
gravitational wave phases. Figure 8 presents convergence
data for the amplitude of the gravitational waves for the
same runs as shown in Fig. 7. Spatial truncation error
for the amplitude is less then 0.1 percent for t/m > 1000,
and earlier then this it is limited by residual noise from
the junk radiation. Differences (including time shifts)
between runs of different lengths are shown in the lower
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FIG. 8: Convergence of the gravitational wave amplitude ex-
tracted at radius R = 77m. This plot corresponds to Fig. (7),
except that relative amplitude differences are shown. The
thin vertical line indicates the time at which mω = 0.1 for
30c-1/N6.

panel of Fig. 8. These differences are even smaller, but
because of their small size, they are dominated by noise
for about the first half of the run. The oscillations appar-
ent in the comparison to 24b-1 are caused by the larger
orbital eccentricity of 24b-1 (cf. Tab. I).

F. Extrapolation to infinity

The quantity of interest to gravitational wave detec-
tors is the gravitational waveform as seen by an observer
effectively infinitely far from the source. Our numeri-
cal simulations, in contrast, cover only a region of finite
volume around the source, and our numerical waveforms
are extracted at a finite radius. Waveforms extracted at
a finite radius can differ from those extracted at infinity
because of effects discussed in Section II D; these effects
can lead to phase errors of several tenths of a radian and
relative amplitude errors of several percent. To avoid
such errors we extrapolate to infinite extraction radius
as follows.

We extract data for Ψ4 on coordinate spheres of coordi-
nate radii r/m = 75, 80, 85, . . . , 240, as described in Sec-
tion II D. These extracted waveforms are shifted in time
relative to one another because of the finite light-travel
time between these extraction surfaces. We correct for
this by shifting each waveform by the tortoise-coordinate
radius at that extraction point [90]

r∗ = rareal + 2MADM ln

(

rareal

2MADM
− 1

)

. (18)

Here MADM is the ADM mass of the initial data, and
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FIG. 9: Difference between areal radius rareal and coordinate
radius of select extraction surfaces. rareal remains constant to
within 0.01m during the evolution. The diamond indicates
MADM/m of the initial data.

rareal =
√

A/4π, where A is the area of the extrac-
tion sphere. This is not the only possible choice for
the retarded time—for example, the waveforms could be
shifted so that the maxima of the amplitude align [39].
It has also been suggested [98] that the time shift should
change with the amount of radiated energy—essentially,
that the factor of MADM should be replaced by the
amount of mass interior to the extraction radius at each
time. We leave investigation of other choices of retarded
time for future work.

Figure 9 presents the areal radius during the evolu-
tion at several typical extraction radii. The areal radius
of these extraction surfaces is constant to within about
0.01m, and to the same precision, rareal = r + MADM.
This relationship is not surprising, because the initial
data is conformally flat, so that for coordinate spheres
rareal = r + MADM + O(MADM/r). For convenience, we
simply set rareal = r + MADM in Eq. (18), rather than
explicitly integrating to find the area of each extraction
sphere.

After the time shift, each waveform is a function of re-
tarded time, t−r∗. At a given value of retarded time, we
have a series of data points—one for each extraction ra-
dius. We fit phase and amplitude of these data separately
to a polynomial in 1/r,

φ(t − r∗, r) = φ(0)(t − r∗) +

n
∑

k=1

φ(k)(t − r∗)

rk
, (19)

rA(t − r∗, r) = A(0)(t − r∗) +
n

∑

k=1

A(k)(t − r∗)

rk
. (20)

The leading-order term of each polynomial, as a function
of retarded time, is then the desired asymptotic wave-
form:

φ(t − r∗) = φ(0)(t − r∗), (21)

rA(t − r∗) = A(0)(t − r∗). (22)

We find good convergence of this method as we increase
the order n of the extrapolating polynomial. Figure 10
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FIG. 10: Error of phase extrapolation to infinity for extrapo-
lation of order n, cf. Eq. (19). Plotted are absolute differences
between extrapolation with order n and n+1. Increasing the
order of the polynomial increases accuracy, but also amplifies
noise.

shows the difference in phase between waveforms extrap-
olated using successively higher-order polynomials. We
see a broad improvement in the accuracy of the phase
with increasing order, but unfortunately, higher order
extrapolations tend to amplify the noise. Our preferred
choice is n = 3 extrapolation, resulting in extrapolation
errors of <∼ 0.003 radians for t − r∗ >∼ 1000m.

Figure 11 is analogous to Fig. 10, except that it shows
relative differences in the extrapolated amplitudes. The
basic picture agrees with the phase extrapolation: Higher
order extrapolation reduces the errors, but amplifies
noise. Our preferred choice n = 3 gives a relative am-
plitude error of <∼ 0.002 for t − r∗ >∼ 1000m, dropping to
less than 0.001 for t − r∗ >∼ 2000m.

Phase and amplitude extrapolation become increas-
ingly more accurate at late times. The main obstacle
to accuracy seems to be near-zone effects scaling with
powers of (λ/r), where λ is the wavelength of the grav-
itational wave. The wavelength is quite large at the be-
ginning of the simulation (λ ≈ 180m, cf. Fig. 5), but
becomes shorter during the evolution, so that even low-
order extrapolation is quite accurate at late times. Al-
ternatively, near-zone effects can be mitigated by using
data extracted at large values of r. It is precisely be-
cause of these near-zone effects that we have chosen to
ignore data extracted at r < 75m when we extrapolate
to infinity.

In Figs. 12 and 13, we show the effects of extrapola-
tion using different ranges of extracted data. Using data
extracted every 5m in the range r=50m–90m results in
noticeable differences early in the run—though it is ad-
equate later in the run. For ranges at higher radii (e.g.
[75m, 150m] or [150m, 240m]), the accuracy is not highly
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FIG. 11: Error of amplitude extrapolation to infinity for ex-
trapolation with order n, cf. Eq. (20). Plotted are relative
amplitude differences between extrapolation with orders n
and n + 1. The inset is an enlargement for t − r∗ ≥ 1000m.

variable, though we find that noise is increased when us-
ing data from such a smaller range of extraction radii.

To estimate the errors generated by not extrapolat-
ing waveforms to infinity at all, Fig. 12 contains also the
phase difference between wave extraction at two finite
radii (90m and 240m) and our preferred extrapolated
phase at infinity. The dotted lines show such phase dif-
ferences when only a time shift by the tortoise-coordinate
radius of the extraction sphere is applied. The errors are
dramatic, tenths of radians or more, even very late in the
run. When matching to post-Newtonian waveforms, we
are free to add an overall time and phase shift (cf. Sec-
tion IVB). Therefore, the dashed lines in Fig. 12 show
phase differences with the same unextrapolated wave-
forms as shown by the dotted lines, except that a phase
and time shift has been applied so that the φ and φ̇
agree with those of the extrapolated waveform late in
the run (where mω = 0.1), where the wavelengths are
shortest and wave extraction is expected to work best.
Even with such an adjustment, the gravitational wave
phase extracted at r = 90m differs by about 0.1 radian
at t ∼ 1000m before coalescence, with this difference
growing to 0.3 radians at the start of our simulation.

Figure 13 makes the same comparison for the gravi-
tational wave amplitude. Wave extraction at r = 90m
results in relative amplitude errors of up to 8 per cent,
and of about 2 per cent even in the last 1000m of our sim-
ulation. We also point out that the errors due to finite ex-
traction radius decay approximately as the inverse of the
extraction radius: For waves extracted at r = 240m the
errors are smaller than for waves extracted at r = 90m
by about a factor of three, as can be seen in Figs. 12
and 13; for wave extraction at r = 45m, the errors would
be approximately twice as large as the r = 90m case.
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extraction radii. The curves labeled “240m” and “90m” rep-
resent differences from waves extracted at these two radii,
without any extrapolation, for two cases: time and phase
shifted so that φ and φ̇ match at mω = 0.1 (dashed), and
without these shifts (dotted).
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FIG. 13: Effect of choice of wave extraction radii on extrap-
olated amplitude. Each curve represents the (relative) am-
plitude difference to our preferred wave extrapolation using
r ∈ [75m, 240m]. The three solid curves represent extrapo-
lation from different intervals of extraction radii. The curves
labeled “240m” and “90m” represent differences from waves
extracted at these two radii, without any extrapolation, for
two cases: time and phase shifted so that φ and φ̇ match at
mω = 0.1 (dashed), and without these shifts (dotted).

The errors introduced by using a finite extraction radius
are significantly larger than our truncation error (even
at extraction radius 240m). Therefore extrapolation to
infinity is essential to realize the full accuracy of our sim-
ulations.

III. GENERATION OF POST-NEWTONIAN
WAVEFORMS

It is not our intention to review all of post-Newtonian
(PN) theory, but to summarize the important points that
go into the construction of the post-Newtonian wave-
forms that we will compare to our numerical simulation.
For a complete review of post-Newtonian methods ap-
plied to inspiralling compact binaries, see the review ar-
ticle by Blanchet[99].

The post-Newtonian approximation is a slow-motion,
weak-field approximation to general relativity with an
expansion parameter ε ∼ (v/c)2 ∼ (Gm/rc2). For a bi-
nary system of two point masses m1 and m2, v is the
magnitude of the relative velocity, m is the total mass,
and r is the separation. In order to produce a post-
Newtonian waveform, it is necessary to solve both the
post-Newtonian equations of motion describing the bi-
nary, and the post-Newtonian equations describing the
generation of gravitational waves.

Solving the equations of motion yields explicit expres-
sions for the accelerations of each body in terms of the
positions and velocities of the two bodies[100–110]. The
two-body equations of motion can then be reduced to
relative equations of motion in the center-of-mass frame
in terms of the relative position and velocity[111]. The
relative acceleration is currently known through 3.5PN
order, where 0PN order for the equations of motion cor-
responds to Newtonian gravity. The effects of radiation
reaction (due to the emission of gravitational waves) en-
ters the relative acceleration starting at 2.5PN order.
The relativistic corrections to the relative acceleration at
1PN, 2PN and 3PN order (ignoring the radiation reac-
tion terms at 2.5PN and 3.5PN order) admit a conserved
center of mass binding energy through 3PN order[112].
There is no 2.5PN or 3.5PN order contribution to the
energy.

Solving the post-Newtonian wave generation problem
yields expressions for the gravitational waveform hij and
gravitational wave flux L in terms of radiative multipole
moments[113]. These radiative multipole moments are in
turn related to the source multipole moments, which can
be given in terms of the relative position and relative
velocity of the binary[114]. For the gravitational wave
generation problem, PN orders are named with respect
to the leading order waveform and flux, which are given
by the quadrupole formalism. Thus, for example, 1.5PN
order in the wave generation problem represents terms of
order (v/c)3 beyond quadrupole. Higher order effects en-
ter both through post-Newtonian corrections to the mass
quadrupole, as well as effects due to higher multipole mo-
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ments. Starting at 1.5PN order the radiative multipole
moments include non-linear and non-instantaneous (i.e.
depend upon the past history of the binary) interactions
among the source multipole moments (e.g. gravitational
wave tails)[114–117].

It was recognized early that simply plugging in the
orbital evolution predicted by the equations of motion
into the expressions for the waveform would not gener-
ate templates accurate enough for matched filtering in
detecting gravitational waves[118]. This is because radi-
ation reaction enters the equations of motion only at the
2.5PN order; hence computing a waveform to k PN order
beyond the quadrupole formalism would require 2.5 + k
PN orders in the equations of motion. In order to ob-
tain as accurate a post-Newtonian waveform as possible
it is thus necessary to introduce the assumption of an
adiabatic inspiral of a quasi-circular orbit, as well as the
assumption of energy balance between the orbital bind-
ing energy and the energy emitted by the gravitational
waves.

A. Adiabatic inspiral of quasi-circular orbits

The emission of gravitational radiation causes the or-
bits of an isolated binary system to circularize [48]. Thus
it is a reasonable assumption to model the orbital evolu-
tion of the binary as a slow adiabatic inspiral of a quasi-
circular orbit. With this assumption, post-Newtonian
expressions for the orbital energy E and gravitational
energy flux L are currently known through 3.5PN order
[119–123]. These expressions can be given in terms of a
parameter related to either the harmonic coordinate sep-
aration r, or to the orbital frequency Ω. We choose to
use the expressions given in terms of a frequency-related
parameter

x ≡
(

GmΩ

c3

)2/3

(23)

rather than a coordinate-related parameter, because the
coordinate relationship between the numerical simulation
and the harmonic coordinates used in post-Newtonian
approximations is unknown. The orbital energy for an
equal mass system is given by[99]

E = −mc2

8
x

[

1 − 37

48
x − 1069

384
x2

+

(

1427365

331776
− 205

384
π2

)

x3

]

, (24)

and the gravitational wave flux for an equal mass system
is given by [99]

L =
2c5

5G
x5

{

1 − 373

84
x + 4πx3/2 − 59

567
x2 − 767

42
πx5/2

+

[

18608019757

209563200
+

355

64
π2 − 1712

105
γ

−856

105
ln (16x)

]

x3 +
16655

6048
πx7/2

}

, (25)

where γ = 0.577216 . . . is Euler’s constant.

B. Polarization Waveforms

The gravitational polarization waveforms for a quasi-
circular orbit in the x − y plane, as measured by an ob-

server at spherical coordinates (R, θ̂, φ̂), are given by

h+ =
2Gµ

c2R
x

{

−(1 + cos θ̂) cos 2(Φ − φ̂) + · · ·
}

(26)

h× =
2Gµ

c2R
x

{

−2 cos θ̂ sin 2(Φ − φ̂) + · · ·
}

, (27)

where Φ is the orbital phase (measured from the x-axis)
and µ = m1m2/m is the reduced mass. The polarization
waveforms are currently known through 2.5PN order[124,
125].

1. Optimally oriented observer

For an equal-mass binary the polarization waveforms
along the z-axis (i.e. the optimally oriented observer
along the normal to the orbital plane) are given by
[124, 125]
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h
(z)
+ =

Gm

2c2R
x

(

cos 2Φ

{

−2 +
17

4
x − 4πx3/2 +

15917

2880
x2 + 9πx5/2

}

+ sin 2Φ

{

−12 ln

(

x

x0

)

x3/2 +

[

59

5
+ 27 ln

(

x

x0

)]

x5/2

})

(28)

h
(z)
× =

Gm

2c2R
x

(

sin 2Φ

{

−2 +
17

4
x − 4πx3/2 +

15917

2880
x2 + 9πx5/2

}

+ cos 2Φ

{

12 ln

(

x

x0

)

x3/2 −
[

59

5
+ 27 ln

(

x

x0

)]

x5/2

})

, (29)

where

lnx0 ≡ 11

18
− 2

3
γ +

2

3
ln

(

Gm

4bc3

)

(30)

is a constant frequency scale that depends upon the con-
stant time scale b entering the gravitational wave tail con-
tribution to the polarization waveforms [126, 127]. The
freely-specifiable constant b corresponds to a choice of
the origin of radiative time T with respect to harmonic
time t, and enters the relation between the retarded time
TR = T − R/c in radiative coordinates (the coordinates
in which the waveform is given) and the retarded time
t−r/c in harmonic coordinates (the coordinates in which
the equations of motion are given) [126, 127]:

TR = t − r

c
− 2GMADM

c3
ln

( r

bc

)

. (31)

Here MADM is the ADM mass (mass monopole) of the
binary system.

2. The (2,2) mode

When comparing a post-Newtonian waveform with
data from a physical gravitational wave detector, it is
necessary to compare waves emitted in a certain direction

(θ̂, φ̂) with respect to the source. However, comparing
waveforms between PN and numerical simulations can
be done in all directions simultaneously by decomposing
the waveforms in terms of spherical harmonics and then
comparing different spherical harmonic modes. Since the
power in each spherical harmonic mode decreases rapidly
with spherical harmonic index, with the (2, 2) mode dom-
inating (for an equal-mass non-spinning binary), it is pos-
sible to do a very accurate comparison that is valid for
all angles by using only a few modes. In addition, as
pointed out by Kidder [60], the dominant (2,2) mode can
be computed to 3PN order. For an equal-mass binary,
the (2,2) mode is

h(2,2) = −2

√

π

5

Gm

c2R
e−2iΦx

{

1 − 373

168
x +

[

2π + 6i ln

(

x

x0

)]

x3/2 − 62653

24192
x2 −

[

197

42
π +

197i

14
ln

(

x

x0

)

+ 6i

]

x5/2

+

[

43876092677

1117670400
+

99

128
π2 − 428

105
lnx − 856

105
γ − 1712

105
ln 2 − 18

[

ln

(

x

x0

)]2

+
428

105
iπ + 12iπ ln

(

x

x0

)

]

x3

}

. (32)

Since the (2,2) mode of the numerical waveforms is less
noisy than the waveform measured along the z-axis, and
since we have access to the 3PN amplitude correction of
the (2,2) mode, we will use the (2,2) waveforms rather
than the z-axis waveforms for our comparisons between
NR and PN in Sec. VI. We have verified (for all compar-
isons using post-Newtonian waveforms of ≤ 2.5PN order
in amplitude) that our results do not change significantly
when we use z-axis waveforms instead of (2,2) waveforms.

C. Absorbing amplitude terms into a redefinition
of the phase

The logarithms of the orbital frequency parameter x
(as well as the constant frequency scale x0) that appear
in the amplitude expressions (28), (29), and (32) can be
absorbed into a redefinition of the phase by introducing
an auxiliary phase variable Ψ = Φ + δ. Noting that the
lnx terms first enter at 1.5 PN order, it is straightforward
to show that choosing [60, 124, 128]

δ = −3
MADM

m
x3/2 ln

(

x

x0

)

, (33)
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where MADM/m = 1 − x/8 + O(x2) for an equal mass
system, will eliminate the ln x terms from both the (2,2)
mode as well as for the polarization waveforms. This
follows from

h(2,2) = Ae−2iΨ

= Ae−2iΦe−2iδ

= Ae−2iΦ(1 − 2iδ − 2δ2 + O(x9/2)),

and similarly for the polarization waveforms. Further-
more, since the orbital phase as a function of frequency
goes as x−5/2 at leading order (see Eq. (40) below), the
lnx terms, which were 1.5PN, 2.5PN, and 3PN order in
the original amplitude expressions, now appear as phase
corrections at relative order 4PN, 5PN, and 5.5PN. As
these terms are beyond the order to which the orbital
phase evolution is known (3.5PN order), it can be argued
that these terms can be ignored. Note that the choices
of x0 in Eq. (30) and δ in Eq. (33) are not unique; they
were made to gather all logarithmic terms into one term,
as well as to simplify the waveform [128].

D. Energy balance

The second assumption that goes into making as ac-
curate a post-Newtonian waveform as possible is that of
energy balance. It is assumed that the energy carried
away by the emission of gravitational waves is balanced
by the change in the orbital binding energy of the binary,

dE

dt
= −L. (34)

While this is extremely plausible, it has only been con-
firmed through 1.5 PN order[129].

Given the above expressions for the energy, flux, and
waveform amplitude, there is still a set of choices that
must be made in order to produce a post-Newtonian
waveform that can be compared to our numerical wave-
form. These include

1. The PN order through which terms in the orbital
energy and luminosity are retained.

2. The procedure by which the energy balance equa-
tion is used to obtain x(t) and Φ(t).

3. The PN order through which terms in the waveform
amplitude are kept.

4. The treatment of the lnx terms. These terms can
be included in the amplitude or included in the or-
bital phase via the auxiliary phase Ψ ≡ Φ + δ. If
the latter is chosen, these terms can be retained
or ignored; ignoring them can be justified because
they occur at higher order than all known terms in
the orbital phase.

Unless explicitly stated otherwise, we will choose to
retain terms through 3.5PN order in the orbital energy
and luminosity, to retain terms through 2.5PN order in
the waveform amplitude, and will ignore the lnx terms
in the amplitude by absorbing them into the phase and
dropping them because of their high PN order. In the
next section we describe several choices for obtaining x(t)
and Φ(t) from the energy balance equation.

E. Taylor approximants: Computing Φ(t)

In this section we describe how to obtain the orbital
phase as a function of time, Φ(t), using the energy bal-
ance equation (34). Different methods of doing this ex-
ist; here we follow the naming convention of [52]. These
methods, and variations of them, are called Taylor ap-
proximants, and all formally agree to a given PN order
but differ in how higher-order terms are truncated. We
discuss four time-domain approximants here, but more
can be defined.

1. TaylorT1

The TaylorT1 approximant is obtained by numerically
integrating the ODEs

dx

dt
= − L

(dE/dx)
(35)

dΦ

dt
=

c3

Gm
x3/2, (36)

to produce Φ(t). The fraction on the right side of Eq (35)
is retained as a ratio of post-Newtonian expansions, and
is not expanded further before numerical integration.
This is the approximant used in the NR-PN comparisons
in [33, 39].

2. TaylorT2

The TaylorT2 approximant is obtained by starting
with the parametric solution of the energy balance equa-
tion:

t(x) = t0 +

∫ x0

x

dx
(dE/dx)

L (37)

Φ(x) = Φ0 +

∫ x0

x

dx
x3/2c3

Gm

(dE/dx)

L . (38)

The integrand of each expression is re-expanded as a sin-
gle post-Newtonian expansion in x and truncated at the
appropriate PN-order; these integrals are then evaluated
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analytically to obtain for an equal-mass binary [52, 53]:

t = t0 −
5Gm

64c3
x−4

{

1 +
487

126
x − 32

5
πx3/2 +

2349439

254016
x2

−1864

63
πx5/2 +

[

−999777207379

5867769600
+

1597

48
π2

+
6848

105
γ +

3424

105
ln (16x)

]

x3 − 571496

3969
πx7/2

}

(39)

Φ = Φ0 −
1

8
x−5/2

{

1 +
2435

504
x − 10πx3/2 +

11747195

508032
x2

+
1165

42
πx5/2 lnx +

[

1573812724819

4694215680
− 7985

192
π2

−1712

21
γ − 856

21
ln (16x)

]

x3 +
357185

7938
πx7/2

}

. (40)

3. TaylorT3

The TaylorT3 approximant is closely related to Tay-
lorT2. It is obtained by introducing the dimensionless
time variable

τ ≡ νc3

5Gm
(t0 − t), (41)

where τ−1/4 = O(ε). The TaylorT2 expression t(x) is
inverted to obtain x(τ), and truncated at the desired PN
order. Then x(τ) is integrated to obtain

Φ(τ) = Φ0 −
∫ τ

τ0

dτ
5x3/2

ν
. (42)

This procedure yields for an equal-mass binary [99]:

x =
1

4
τ−1/4

{

1 +
487

2016
τ−1/4 − 1

5
πτ−3/8

+
1875101

16257024
τ−1/2 − 1391

6720
πτ−5/8

+

[

− 999777207379

1502149017600
+

1597

12288
π2 +

107

420
γ

− 107

3360
ln

( τ

256

)

]

τ−3/4 − 88451

282240
πτ−7/8

}

(43)

Φ = Φ0 − 4τ5/8

{

1 +
2435

4032
τ−1/4 − 3

4
πτ−3/8

+
1760225

1806336
τ−1/2 − 1165

5376
πτ−5/8 ln τ

+

[

24523613019127

3605157642240
− 42997

40960
π2 − 107

56
γ

+
107

448
ln

( τ

256

)

]

τ−3/4 +
28325105

21676032
πτ−7/8

}

(44)

This is the post-Newtonian approximant used in visual
comparisons by [32] at 3PN order in phase.

4. TaylorT4

In addition to simply numerically integrating the flux-
energy equation (35), as is done for TaylorT1, one may
instead re-expand the right side of (35) as a single series
and truncate at the appropriate PN order before doing
the integration. The phase evolution Φ(t) can thus be
obtained by numerically integrating the ODEs

dx

dt
=

16c3

5Gm
x5

{

1 − 487

168
x + 4πx3/2 +

274229

72576
x2

− 254

21
πx5/2 +

[

178384023737

3353011200
+

1475

192
π2 − 1712

105
γ

− 856

105
ln (16x)

]

x3 +
3310

189
πx7/2

}

(45)

dΦ

dt
=

x3/2c3

Gm
. (46)

This approximant was not considered in [52], however
for consistency with their notation, we call it TaylorT4.
TaylorT4 is the primary approximant used in the NR-PN
comparisons in [37, 38], and one of the several approx-
imants considered in the NR-PN comparisons in [33].
Ref.[32] pointed out that TaylorT4 at 3.5PN order in
phase is close to TaylorT3 at 3PN order in phase, and
therefore should give similar agreement with numerical
results.

IV. PN-NR COMPARISON PROCEDURE

A. What to compare?

There are many ways to compare numerical relativ-
ity and post-Newtonian results. For example, the post-
Newtonian orbital phase Φ(t) could be compared with
the coordinate phase of the black hole trajectories. How-
ever, this and many other comparisons are difficult to
make in a coordinate-independent manner without ex-
pending significant effort to understand the relationship
between the gauge choices used in post-Newtonian theory
and in the NR simulations. Therefore, in order to obtain
the most meaningful comparison possible, we attempt to
minimize gauge effects by comparing gravitational wave-
forms as seen by an observer at infinity. The waveform
quantity most easily obtained from the numerical relativ-
ity code is the Newman-Penrose quantity Ψ4, and we will
predominantly compare its l = 2, m = 2 component [cf.
Eq. (13)], split into phase φ and amplitude A according
to Eq. (14) and extrapolated to infinite extraction radius.

The post-Newtonian formulae in Section III yield the
metric perturbation components h+ and h×, which—for
a gravitational wave at infinity—are related to Ψ4 by

Ψ4 =
∂2

∂t2
(h+ − ih×) . (47)

We numerically differentiate the post-Newtonian expres-
sions for h+ and h× twice before computing amplitude
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and phase using Eq. (14). Note that φ(t) will differ
slightly from the phase computed from the metric per-
turbation directly, as tan−1(h×/h+), because both the
amplitude and phase of the metric perturbation are time
dependent. For the same reason, φ(t) is not precisely
equal to twice the orbital phase.

As in Ref. [39], we compare Ψ4 rather than h+,×
to avoid difficulties arising with fixing the integration
constants when integrating the numerically obtained Ψ4

(see [36] for more details). Both Ψ4 and h+,× contain
the same information, so differences between both proce-
dures should be minimal.

B. Matching procedure

Each of the post-Newtonian waveforms has an arbi-
trary time offset t0 and an arbitrary phase offset φ0.
These constants can be thought of as representing the
absolute time of merger and the orientation of the bi-
nary at merger, and we are free to adjust them in order
to match NR and PN waveforms. Following [37, 39], we
choose these constants by demanding that the PN and
NR gravitational wave phase and gravitational wave fre-
quency agree at some fiducial frequency ωm. Specifically,
we proceed as follows: We start with a NR waveform
ΨNR

4 (t) and an unshifted PN waveform ΨPN′

4 (t) that has
an arbitrary time and phase shift. After selecting the
matching frequency ωm, we can find (to essentially un-
limited accuracy) the time tc such that the derivative of

the PN phase satisfies φ̇PN′(tc) = ωm, where φPN′(t) is

the phase associated with ΨPN′

4 (t). Similarly, we find the

time tm such that φ̇NR(tm) = ωm. The time tm cannot be
found to unlimited accuracy, and the uncertainty in tm is
due mainly to residual eccentricity of the NR waveform,
as discussed in Section V E. Once we have tm and tc, we
leave the NR waveform untouched, but we construct a
new, shifted, PN waveform

ΨPN
4 (t) = ΨPN′

4 (t + tc − tm)ei(φ
PN′ (tc)−φNR(tm)). (48)

The phase of this new PN waveform is therefore

φPN(t) = φPN′(t + tc − tm) − φPN′(tc) + φNR(tm), (49)

which satisfies φPN(tm) = φNR(tm) and φ̇PN(tm) = ωm

as desired. All our comparisons are then made using the
new shifted waveform ΨPN

4 (t) rather than the unshifted

waveform ΨPN′

4 (t).

C. Choice of Masses

The post-Newtonian expressions as written in Sec-
tion III involve the total mass m, which corresponds to
the the sum of the bare masses of the point particles in
post-Newtonian theory. When comparing PN to NR, the
question then arises as to which of the many definitions of

the mass of a numerically-generated binary black hole so-
lution should correspond to the post-Newtonian param-
eter m. For non-spinning black holes at very large sepa-
ration, m reduces to the sum of the irreducible masses of
the two holes. Neglecting tidal heating, the irreducible
masses should be conserved during the inspiral, so that
we identify m with the sum of the irreducible masses of
the initial data 30c. As discussed in Sec. V the black
hole spins are sufficiently small so that there is no dis-
cernible difference between irreducible mass of the black
holes and the Christoudoulou mass, Eq. (3). Of course,
the latter would be more appropriate for spinning black
holes.

V. ESTIMATION OF UNCERTAINTIES

To make precise statements about agreement or dis-
agreement between numerical and post-Newtonian wave-
forms, it is essential to know the size of the uncertainties
in this comparison. When discussing these uncertainties,
we must strive to include all effects that may cause our
numerical waveform to differ from the post-Newtonian
waveforms we compare to. For instance, in addition to
considering effects such as numerical truncation error,
we also account for the fact that NR and PN waveforms
correspond to slightly different physical scenarios: The
PN waveforms have identically zero spin and eccentric-
ity, whereas the numerical simulations have some small
residual spin and eccentricity. Table III lists all effects we
have considered; we discuss these in detail below start-
ing in Sec. VA). All uncertainties are quoted in terms of
phase and amplitude differences, and apply to waveform
comparisons via matching at a fixed ωm according to the
procedure in Sec. IVB.

Most of the effects responsible for our uncertainties are
time dependent, so that it is difficult to arrive at a single
number describing each effect. For simplicity, the error
bounds in Table III ignore the junk-radiation noise that
occurs in the numerical waveform for t − r∗ <∼ 1000m.
The extent to which this noise affects the PN-NR com-
parisons presented below in Sections VI A and VI B will
be evident from the noise in the graphs in these sections.
Note that all four matching frequencies ωm occur after
the noise disappears at t − r∗ ∼ 1000m. Furthermore,
the post-Newtonian waveforms end at different times de-
pending on the PN order and on which particular post-
Newtonian approximant is used. Therefore, in order to
produce a single number for each effect listed in Table III,
we consider only the part of the waveform prior to some
cutoff time, which we choose to be the time at which the
numerical waveform reaches gravitational wave frequency
mω = 0.1.
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TABLE III: Summary of uncertainties in the comparison be-
tween numerical relativity and post-Newtonian expansions.
Quoted error estimates ignore the junk-radiation noise at
t <
∼ 1000m and apply to times before the numerical waveform

reaches gravitational wave frequency mω = 0.1. Uncertainties
apply to waveform comparisons via matching at a fixed ωm

according to the procedure in Sec. IVB, and represent the
maximum values for all four different matching frequencies
ωm that we consider, unless noted otherwise.

Effect δφ (radians) δA/A

Numerical truncation error 0.003 0.001

Finite outer boundary 0.005 0.002

Extrapolation r → ∞ 0.005 0.002

GW extraction at rareal=const? 0.002 10−4

Drift of mass m 0.002 10−4

Coordinate time = proper time? 0.002 10−4

Lapse spherically symmetric? 0.01 4 × 10−4

residual eccentricity 0.02a 0.004

residual spins 0.03 0.001

root-mean-square sum 0.04a 0.005
aFor the case of matching at mωm = 0.04, the phase uncertainty

due to residual eccentricity increases to 0.05 radians, thus increas-
ing the root-mean-square sum to 0.06 radians.

A. Errors in numerical approximations

The first three error sources listed in Table III have al-
ready been discussed in detail in Section II. We estimate
numerical truncation error using the difference between
the two highest resolution runs after the waveforms have
been shifted to agree at some matching frequency ωm.
For mωm = 0.1 this difference is shown as the curves la-
beled ’30c-1/N5’ in the lower panels of Figs. 7 and 8, and
corresponds to a phase difference of 0.003 radians and a
relative amplitude difference of 0.001. For other values
of ωm the differences are similar. The effect of the outer
boundary is estimated by the difference between the runs
30c-1/N6 and 30c-2/N6, which for mωm = 0.1 is shown
as the curves labeled ’30c-2/N6’ in the lower panels of
Figs. 7 and 8, and amount to phase differences of 0.005
radians and relative amplitude differences of 0.002. Er-
rors associated with extrapolation to infinity have been
discussed in detail in Figs. 10 and 12. Specifically, Fig. 10
shows that increasing the extrapolation order between 3
and 4 changes the extrapolated phase by less than 0.005
radians, and Fig. 12 confirms that the extrapolated result
is robust under changes of extraction radii.

B. Constancy of extraction radii

If the physical locations of the coordinate-stationary
extraction radii happen to change during the evolution,
then the extracted gravitational waves will accrue a tim-
ing error equal to the light-travel time between the orig-
inal location and the final location. From Fig. 9, we see

that the drift in areal radius is less than 0.02m, resulting
in a time uncertainty of δt = 0.02m. This time uncer-
tainty translates into a phase uncertainty via

δφ = mω × (δt/m) (50)

which yields δφ ≈ 0.002, when mω = 0.1 (the value at
the end of the PN comparison) was used.

To estimate the effect of this time uncertainty on the
amplitude, we first note that to lowest order in the post-
Newtonian parameter x (defined in Eq. (23)), the wave
amplitude of Ψ4 scales like x4. Also, from Eq. (45), we
have dx/dt = 16/(5m)x5. Therefore,

δA

A
∼ d ln A

dx

dx

dt
δt ∼ 64

5
(mω/2)8/3 δt

m
, (51)

where we have used the fact that the gravitational wave
frequency ω is approximately twice the orbital frequency.
For a time uncertainty δt = 0.02m, Eq. (51) gives
δA/A ≈ 10−4 for mω = 0.1.

C. Constancy of mass

Our comparisons with post-Newtonian formulae as-
sume a constant post-Newtonian mass parameter m,
which we set equal to the total irreducible mass of the
black holes in the numerical simulation. If the total mass
of the numerical simulation is not constant, this will lead
to errors in the comparison. For example, changes in
t/m caused by a changing mass will lead to phase differ-
ences. Figure 4 demonstrates that the irreducible mass
is conserved to a fractional accuracy of about δm/m ≈
5×10−6. For t/m = 4000, this gives an uncertainty in the
overall time interval of δ(t/m) = (t/m)×(δm/m) ≈ 0.02.
This time uncertainty translates into a phase uncertainty
of δφ ≈ 0.002, using Eq. (50) for mω = 0.1. Note that
the effect of the black-hole spins on the mass is negligible
relative to the numerical drift of 5×10−6. This is because
the spins of the holes are bounded by S/Mirr < 2× 10−4

and the spin enters quadratically into the Christoudoulou
formula (3). The error in the gravitational wave ampli-
tude caused by time uncertainties due to varying mass
is δA/A ≈ 10−4 using Eq. (51) for mω = 0.1. An error
in the mass will affect the amplitude not only via a time
offset, but also because the amplitude is proportional to
(ωm/2)8/3 (to lowest PN order). However, this addi-
tional error is very small, δA/A ≈ (8/3)δm/m ≈ 10−5.

D. Time coordinate ambiguity

We now turn to two possible sources of error that have
not yet been discussed, both of which are related to am-
biguity in the time coordinate. The basic issue is that
the time variable t in post-Newtonian expansions cor-
responds to proper time in the asymptotically flat re-
gion, but the time t in numerical simulations is coordi-
nate time. These two quantities agree only if the lapse
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FIG. 14: Asymptotic behavior of the lapse at large radii for
times t/m = 0, 1900, 3800. The top figure displays the an-
gular average of the lapse as a function of radius at t =
0, 1900m, 7800m. The bottom figure shows the dominant
higher multipole moments of the lapse. Both horizontal axes
are spaced in 1/r.

function N approaches unity at large distances. To verify
this, we decompose N in spherical harmonics centered on
the center of mass of the system,

N(r, θ, ϕ) =

∞
∑

l=0

l
∑

m=−l

Nlm(r)Ylm(θ, ϕ). (52)

The angular average of the lapse function, N̄(r) ≡√
4πN00 should then approach unity for r → ∞, and

all other modes Nlm(r) should decay to zero. The top
panel of Fig. 14 plots N̄(r) − 1 vs. m/r for three differ-
ent evolution times. Fitting N̄(r) − 1 for r > 100m to
a polynomial in m/r gives a y-intercept of < 5 × 10−6

for all three times, and for polynomial orders of two
through five. Therefore, the coordinate time of the evo-
lution agrees with proper time at infinity to better than
δt/m = t/m × 5 × 10−6 ≈ 0.02, which induces a phase
error of at most δφ ≈ 0.002 and an amplitude error of
δA/A ≈ 10−4.

The second source of error related to the lapse is shown
in the lower panel of Fig. 14, which presents the three
dominant higher order moments Nlm(r). All these modes
decay to zero as r → ∞, except, perhaps, the real part
of the N22 mode at t/m = 3800. This mode seems to
approach a value of about 5 × 10−5. At t = 1900m,
this mode still decays nicely to zero, hence the maximum
time uncertainty introduced by this effect at late times
is δt = 1900m×5×10−5 ≈ 0.1m, resulting in a potential
phase uncertainty of δφ ≈ 0.01 and a potential amplitude
uncertainty of δA/A ≈ 4 × 10−4.

E. Eccentricity

We estimated the eccentricity during the numerical
simulation with several of the methods described in
[32, 36, 59], and have found consistently e <∼ 6 × 10−5.
This eccentricity can affect our comparison to a post-
Newtonian waveform of a quasi-circular (i.e. zero eccen-
tricity) inspiral in three ways.

1. Change in rate of inspiral

The first effect arises because an eccentric binary has a
different inspiral rate than a non-eccentric binary; physi-
cally, this can be understood by noting that the gravita-
tional flux and orbital energy depend upon the eccentric-
ity, and therefore modify the rate at which the orbital fre-
quency evolves assuming energy balance. Reference [130]
has derived the first-order correction in the phase of the
gravitational wave due to this effect. Converting their
result to our notation and restricting to the equal mass
case yields

1

(dx/dt)
=

5Gm

16c3x5

(

1 − 157

24
e2

i

(xi

x

)19/6
)

, (53)

where ei is the initial eccentricity and xi is the initial
value of the orbital frequency parameter. Substituting
this into Eq. (38) yields

Φ = Φ0 −
1

8
x−5/2 +

785

2176
e2

i x
19/6
i x−17/3. (54)

Using ei = 6 × 10−5 and integrating over the frequency
range from the start of our simulation to the matching
frequency of mω = 0.1 yields a phase shift of ∼ −2×10−6,
which is dwarfed by many other error sources, such as the
uncertainity in the numerical mass m, cf. Sec. VC.

2. Uncertainty in matching time

The second way in which eccentricity affects our com-
parison is by introducing errors in our procedure for
matching the PN and NR waveforms. Recall that our
matching procedure involves determining the time tm at
which the gravitational wave frequency ω takes a cer-
tain value mωm; eccentricity modulates the instanta-
neous gravitational wave frequency ω(t) via

ω(t) = ω̄(t)
[

1 + 2e cos(Ωrt)
]

, (55)

where ω̄(t) represents the averaged “non-eccentric” evo-
lution of the gravitational wave frequency, and Ωr is the
frequency of radial oscillations, which is approximately
the orbital frequency. We see that ω can differ from ω̄
by as much as 2eω̄ ≈ 2eω. This could induce an error in
determination of tm by as much as

|δtm| =
|δω|
ω̇

≈ 2eω

ω̇
(56)
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We can simplify this expression by using Eq. (45) to low-
est order, and by noting that the gravitational wave fre-
quency is approximately twice the orbital frequency. We
find

|δtm| ≤ e
5m

12

(mω

2

)−8/3

. (57)

This uncertainty is largest at small frequencies, because
the frequency changes much more slowly. For mω = 0.04,
we find |δtm| <∼ 0.9m, and for mω = 0.1, we find |δtm| <∼
0.1m.

To determine how uncertainties in tm translate into
phase differences, recall that in the matching procedure
described in Section IVB, tm enters into the phase of the
shifted PN waveform according to Eq. (49). Therefore
the phase difference that we compute between the PN
and NR waveforms is

∆φ(t) = φPN(t) − φNR(t)

= φPN′(t+tc−tm) − φNR(t) + φNR(tm) − φPN′(tc).
(58)

Then the error in ∆φ is found by Taylor expanding
Eq. (58):

δφ ≡ δ(∆φ(t)) =
(

φ̇PN′(t + tc − tm) − φ̇NR(tm)
)

δtm

=
(

φ̇PN(t) − ωm

)

δtm. (59)

Our simulations (and therefore the comparisons to
post-Newtonian theory) start at mω ≈ 0.033, therefore,
the maximal error δφ within our comparison at times
before the matching frequency will be

|δφbefore| ≤ |0.033 − ωm| |δtm| (60)

Combining Eqs. (60) and (56), and using e ≈ 6 × 10−5,
we find that δφbefore < 0.01 radians for all four of our
matching frequencies mωm = 0.04, 0.05, 0.063, 0.1. The
maximum error δφ within our comparison at times after

the matching frequency is

|δφafter| ≤ |0.1 − ωm| |δtm|, (61)

because we end our comparisons to post-Newtonian the-
ory at mω = 0.1. Eq. (61) evaluates to 0.05 radians for
mωm = 0.04, and is less than about 0.02 radians for the
three higher matching frequencies.

The error in the gravitational wave amplitude caused
by an error in tm can be estimated by Eq. (51). A conser-
vative estimate using δt = 0.9m still gives a small error,
δA/A ≈ 0.004.

3. Periodic modulation of phase and amplitude

The third effect of orbital eccentricity is a periodic
modulation of the gravitational wave phase and ampli-
tude. If we assume that ω̄(t) varies on much longer time

scales than 1/Ωr (which is true at large separation) then
time integration of Eq. (55) yields

φ(t) = φ̄(t) + 2e
ω̄

Ωr
sin(Ωrt). (62)

Because Ωr ≈ Ω ≈ ω̄/2, we therefore find that the grav-
itational wave phase consists of the sum of the desired
“circular” phase, φ̄(t), plus a oscillatory component with
amplitude 4e ≈ 2 × 10−4. This oscillatory component,
however, is much smaller than other uncertainties of the
comparison, for instance the uncertainity in determina-
tion of tm.

Residual eccentricity will also cause a modulation of
the gravitational wave amplitude in a manner similar
to that of the phase. This is because eccentricity ex-
plicitly enters the post-Newtonian amplitude formula at
0PN order [131]. This term is proportional to e, and since
e <∼ 6 × 10−5 its contribution to the amplitude error is
small compared to the effect due to uncertainty in tm.

While oscillations in phase and amplitude due to ec-
centricity are tiny and dwarfed by other uncertainties in
the PN-NR comparison, their characteristic oscillatory
behavior makes them nevertheless visible on some of the
graphs we present below, for instance, both panels of
Fig. 18.

F. Spin

We now turn our attention to effects of the small resid-
ual spins of the black holes. References [132, 133] com-
pute spin-orbit coupling up to 2.5 post-Newtonian order,
and find that the orbital phase, Eq. (40), acquires the
following spin contributions

ΦS(x) = − 1

32ν

∑

i=1,2

χi

{(

565

24

m2
i

m2
+

125ν

8

)

x−1

−
[

(

681145

4032
+

965ν

28

)

m2
i

m2

+
37265ν

448
+

1735ν2

56

]

lnx

}

, (63)

where χi = Si · L̂/m2
i is the projection of the dimension-

less spin of the i-th hole onto the orbital angular momen-
tum. For equal-mass binaries with spins χ1 = χ2 ≡ χ,
this reduces to

ΦS(x) = − χ

(

235

96
x−1 − 270625

16128
lnx

)

. (64)

Our comparisons to post-Newtonian theory are per-
formed over the orbital frequency range of 0.0167 ≤
mΩ ≤ 0.05, corresponding to 0.065 ≤ x ≤ 0.136. The
gravitational wave phase is approximately twice the or-
bital phase, so that the spin-orbit coupling contributes

δφS = 2
[

ΦS(0.065)− ΦS(0.136)
]

≈ −64 χ (65)
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FIG. 15: Comparison of numerical simulation with TaylorT1 3.5/2.5 waveforms. Left: Difference in gravitational wave phase.
Right: Relative amplitude difference. Plotted are comparisons for four values of ωm. The filled diamond on each curve shows
the point at which φ̇ = ωm, and the open circle denotes the point where the post-Newtonian frequency reaches ISCO for a
Schwarzschild black hole. The insets show enlargements for small differences and early times. Also shown is the difference
between the numerical and restricted (i.e. 3.5PN phase, 0PN amplitude) Taylor T1 for mωm = 0.1.

to the gravitational wave phase. In Sec. II B we estimated
|S|/M2

irr < 5×10−4, where Mirr is the irreducible mass of
either black hole. Because χ ≤ |S|/M2

irr ≈ 5 × 10−4, the
residual black hole spins contribute less than 0.03 radians
to the overall gravitational wave phase.

We now turn to errors in the amplitude comparison
caused by residual spin. From Eq. (64) we can compute
the error in orbital frequency as

δΩ = Φ̇s = χ
ẋ

x

(

235

96
x−1 +

270625

16128

)

= χx4 16

5m

(

235

96
x−1 +

270625

16128

)

, (66)

where we have used Eq. (45). Because the amplitude of
Ψ4 scales like Ω8/3, we arrive at

δA

A
=

8

3

δΩ

Ω
= χx5/2 128

15

(

235

96
x−1 +

270625

16128

)

, (67)

which for mωm = 0.1 (i.e. x = 0.136) gives δA/A =
2.0χ ∼ 1.0 × 10−3.

Spin-orbit terms also contribute directly to the ampli-
tude [134, 135]. The leading order contribution (for an
equal-mass binary with equal spins) contributes a term
δA/A ∼ (4/3)χx3/2, which is the same order of magni-
tude as the previous error, 10−3.

VI. RESULTS

A. Comparison with individual post-Newtonian
approximants

We compare our simulations with three different post-
Newtonian approximants: the TaylorT1, TaylorT3, and
TaylorT4 waveforms. These three waveforms agree with
each other up to their respective post-Newtonian expan-
sion orders, but they differ in the way that the uncon-
trolled higher order terms enter. We start with the com-
parison to TaylorT1.

1. TaylorT1 (3.5PN phase, 2.5PN amplitude)

Figure 15 compares the numerical simulation to Tay-
lorT1 3.5/2.5 waveforms (i.e. expansion order 3.5PN in
phase and 2.5PN in amplitude, the highest expansion or-
ders currently available for generic direction, cf. III B).
The left panel shows the phase difference, where we find
differences of more than a radian for all four matching
frequencies we consider: ωm = 0.04, 0.05, 0.063, and
0.01.

For our largest matching frequency, mωm = 0.1, the
phase differences are small toward the end of the run by
construction. Nevertheless, a phase difference of more
than 0.5 radians builds up in the ∼ 1.5 cycles after the
matching point before the TaylorT1 template generation
fails. Recall that mωm = 0.1 occurs about 2.2 gravita-
tional wave cycles before our simulations fail, which is
still about 1.5 cycles before merger. However, the largest
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FIG. 16: Numerical and TaylorT1 3.5/2.5 waveforms. The
PN waveform is matched to the numerical one at mωm = 0.04,
indicated by the small circle. The lower panel shows a detailed
view of the last 10 gravitational wave cycles.

phase disagreement for mωm = 0.1 builds up at early
times, reaching 1.5 radians at the beginning of our simu-
lation, about 28 cycles before the matching (∼ 30 cycles
before the end of the simulation), and still showing no
sign of flattening even at the start of our simulation.

To achieve phase coherence with the early inspiral
waveform, it is therefore necessary to match earlier than
mωm = 0.1. The left panel of Fig. 15 clearly shows that
phase differences at earlier times become smaller when
the matching point itself is moved to earlier time. For
instance, mωm = 0.063 (about eight gravitational wave
cycles before the end of our simulation), results in phase
differences less than 0.5 radians during the 22 earlier
cycles of our evolution. However, the phase difference
φPN − φNR does not level off at early times within the
length of our simulation, so it seems quite possible that
the phase difference may grow to a full radian or more
if the numerical simulations could cover many more cy-
cles. We thus estimate that for TaylorT1, to achieve
1-radian phase coherence with the early inspiral may re-
quire matching more than 10 cycles before merger. To
achieve more stringent error bounds in phase coherence
will require matching even earlier: for instance it appears
one needs to use mωm = 0.04 (about 20 cycles before the
end of our simulation) for a phase error of less than <∼ 0.1
radians.

While matching at small ωm yields good phase coher-
ence early in the run, it produces much larger phase
differences late in the run. For example, matching at
mωm = 0.04 results in a phase difference of almost 2
radians at frequency mω = 0.1. This rather dramatic
disagreement is illustrated in Fig. 16, which plots both

the numerical and the TaylorT1 waveform, matched at
mωm = 0.04.

The left panel of Fig. 15 also includes a comparison to
the so-called restricted TaylorT1 template, where only
the leading order amplitude terms are used (i.e. 0PN
in amplitude). The reason that higher-order amplitude
terms affect the phase differences at all is because we
are plotting gravitational-wave phase, not orbital phase.
However, we see that the effect of these higher-order am-
plitude terms on the phase difference is small.

We now turn our attention to comparing the ampli-
tudes of the post-Newtonian and numerical waveforms.
The right panel of Fig. 15 shows relative amplitude differ-
ences between TaylorT1 3.5/2.5 and the numerical wave-
forms. At early times, the amplitudes agree to within 2
or 3 per cent, the agreement being somewhat better when
the matching is performed at early times. At late times,
the amplitudes disagree dramatically; a large fraction
of this disagreement lies probably in the fact the post-
Newtonian point of merger (i.e. the point at which the
amplitude diverges) occurs at a different time than the
numerical point of merger. We also plot the amplitude
of the restricted TaylorT1 template. The disagreement
between restricted TaylorT1 and the numerical result is
much larger, about 5 per cent.

Our comparison with the restricted TaylorT1 wave-
form (i.e. 3.5/0.0) does not agree with the similar com-
parison of Hannam et al. [39]. Ref. [39] finds much
smaller phase differences when comparing against wave-
forms computed with the TaylorT1 implementation in
the LIGO Scientific Collaboration Algorithm Library
(LAL) [136]. However, at the time the comparison in
Ref. [39] was performed the LAL TaylorT1 routine con-
tained several errors which affect the phase of the wave-
form.7 While Ref. [39] states they fixed errors in the post-
Newtonian phasing constants due to the errata [119, 120],
there were additional errors that may not have been fixed
in their code causing discrepancy between their results
and ours. All our PN waveforms have been computed us-
ing two independent implementations; we have checked
that these agree with each other for all post-Newtonian
approximants and PN orders we use here, and that our
TaylorT1 waveforms agree with the implementation of
TaylorT1 in the LAL library, after all LAL code fixes
have been implemented.

2. TaylorT3 (3.5PN phase, 2.5PN amplitude)

Figure 17 is the same as Fig.15 except it compares
numerical simulations to the TaylorT3 family of wave-

7 We have notified the LAL authors of these errors and fixed the
code in the LAL software repository on July 7, 2007. We have
also confirmed that this subroutine has not been used to generate
templates for LSC gravitational wave searches.
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FIG. 17: Comparison of numerical simulation with TaylorT3 3.5/2.5 waveforms. Left: Difference in gravitational wave phase.
Right: Relative amplitude difference. Plotted are comparisons for three values ωm. The filled diamond on each curve shows
the point at which φ̇ = ωm. The lines end when the frequency of the TaylorT3 waveform reaches its maximum, which happens
before mω = 0.1, so that the matching frequency mωm = 0.1 is absent. The left plot also contains TaylorT3 3.0/3.0, matched
at mωm = 0.1. The insets show enlargements for small differences.

forms. Two differences between TaylorT1 and TaylorT3
are readily apparent from comparing these two figures.
The first is that we do not match TaylorT3 3.5/2.5 wave-
forms at mωm = 0.1. This is because the frequency of
TaylorT3 3.5/2.5 waveforms reaches a maximum shortly
before the formal coalescence time of the post-Newtonian
template, and then decreases. The maximal frequency is
less than 0.1, so that matching at mωm = 0.1 is not pos-
sible. For this reason, we have also shown in Fig. 17 a
comparison with a TaylorT3 3.0/3.0 waveform matched
at mωm = 0.1. The other major difference between
the TaylorT3 3.5/2.5 and TaylorT1 3.5/2.5 comparison is
that the phase difference, φPN−φNR, has a different sign.
While TaylorT1 3.5/2.5 spirals in more rapidly than the
numerical simulation, TaylorT3 3.5/2.5 lags behind. In-
terestingly, the phase differences from the numerical sim-
ulation for both TaylorT1 3.5/2.5 and TaylorT3 3.5/2.5
are of about equal magnitude (but opposite sign). The
TaylorT3 3.0/3.0 comparison matched at mωm = 0.1 has
smaller phase differences than does the TaylorT3 3.5/2.5
comparison, but the slope of the 3.0/3.0 curve in Fig. 17
is nonzero at early times, so it appears that Taylor T3
3.0/3.0 will accumulate significant phase differences at
even earlier times, times prior to the start of our simu-
lation. In Fig. 21 it can be seen that matching TaylorT3
3.0/3.0 at mωm = 0.04 leads to a good match early, but
leads to a phase difference of 0.6 radians by mω = 0.1.

3. TaylorT4 (3.5PN phase, 2.5PN amplitude)

Figure 18 is the same as Figs. 15 and 17 except it com-
pares numerical simulations to the TaylorT4 PN wave-

forms. The agreement between TaylorT4 waveforms and
the numerical results is astonishingly good, far better
than the agreement between NR and either TaylorT1 or
TaylorT3. The gravitational wave phase difference lies
within our error bounds for the entire comparison region
mω ≤ 0.1, agreeing to 0.05 radians or better over 29
of 30 gravitational wave cycles. Ref. [37] found agree-
ment between TaylorT4 and their numerical simulation
to the level of their numerical accuracy (∼ 2 radians),
agreeing to roughly 0.5 radians in the gravitational fre-
quency range of 0.054 ≤ mω ≤ 0.1. Ref. [33] found that
NR agrees better with TaylorT4 than with TaylorT1, but
the larger numerical errors of these studies did not allow
them to see the surprising degree to which NR and Tay-
lorT4 agree. The gravitational wave amplitude of Tay-
lorT4 agrees with the NR waveform to about 1–2 percent
at early times, and 8 percent at late times. In Fig. 19
we plot the NR and TaylorT4 waveforms; the two wave-
forms are visually indistinguishable on the plot, except
for small amplitude differences in the final cycles.

On the left panel of Fig. 18 we also show phase com-
parisons using PN waveforms computed to 3.5PN order
in phase but to 0PN and 3.0PN orders in amplitude,
for the case mωm = 0.1. The PN order of the ampli-
tude expansion affects the phase comparison because we
are plotting differences in gravitational-wave phase and
not orbital phase. The differences between using 0PN,
2.5PN, and 3.0PN amplitude expansions are evident on
the scale of the graph, but because these differences are
smaller than our estimated uncertainties (see Table III),
we cannot reliably conclude which of these most closely
agrees with the true waveform.

Figure 19 shows the waveforms for TaylorT4 3.5/3.0
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shows the point at which φ̇ = ωm. The left plot also includes two phase comparisons with expansions of different PN order in
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FIG. 19: Numerical and TaylorT4 3.5/3.0 waveforms. The
PN waveform is matched to the numerical one at mωm = 0.04,
indicated by the small circle. The lower panel shows a detailed
view of the end of the waveform.

and for the numerical simulation. The curves agree to
better than the line thickness everywhere, except in the
last two cycles.

Figure 20 presents amplitude differences between NR
and TaylorT4 as the post-Newtonian order of the am-
plitude expansion is varied, but the phase expansion re-
mains at 3.5PN. The 2.5PN amplitude curve was already
included in the right panel of Fig. 18. We see clearly
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FIG. 20: TaylorT4 amplitude comparison for different PN
orders. Shown is the relative difference in gravitational wave
amplitude between TaylorT4 and numerical Y22 waveforms
as a function of time. Matching is performed at mωm = 0.04
(indicated by the left vertical grey line, whereas the right
vertical grey line indicates mω = 0.1). All curves use 3.5PN
order in phase but different PN orders (as labeled) in the
amplitude expansion.

that higher order amplitude corrections generally result
in smaller differences. The 3PN amplitude correction to
the l = 2, m = 2 term recently derived by Kidder [60]
improves agreement dramatically over the widely known
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FIG. 21: Phase comparison for different PN approximants
at different PN orders, matched at mωm = 0.04. Shown is
the difference in gravitational wave phase between each post-
Newtonian approximant and the numerical Y22 waveforms as
a function of time. The two vertical grey lines indicate when
the numerical simulation reaches mω = 0.063 and 0.1, re-
spectively; the labels along the top horizontal axes give the
number of GW-cyles before mω = 0.1.

2.5PN amplitude formulae. Unfortunately, the 3PN am-
plitude correction to the entire waveform, including all
Ylm modes, is not known.8

B. Comparing different post-Newtonian
approximants

The previous section presented detailed comparisons
of our numerical waveforms with three different post-
Newtonian approximants. We now turn our attention to
some comparisons between these approximants. In this
section we also explore further how the post-Newtonian
order influences agreement between numerical and post-
Newtonian waveforms.

Figure 21 presents phase differences as a function of
time for all three PN approximants we consider here and
for different PN orders. The post-Newtonian and nu-
merical waveforms are matched at mωm = 0.04, about
9 cycles after the beginning of the numerical waveform,
and about 21 cycles before its end. We find that some
PN approximants at some particular orders agree exceed-

8 To get the complete waveform to 3PN order, only the (2, 2) mode
must be known to 3PN order; other modes must be known to
smaller PN orders. For an equal mass, non-spinning binary, all
modes except the (3, 2) mode are currently known to sufficient
order to get a complete 3PN waveform [60].
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FIG. 22: Phase differences between numerical and post-
Newtonian waveforms at two selected times close to merger.
Waveforms are matched at mωm = 0.04, and phase differ-
ences are computed at the time when the numerical simulation
reaches mω = 0.063 (left panel) and mω = 0.1 (right panel).
Differences are plotted versus PN order (equal order in phase
and amplitude, except the ’3.5 PN’ points are 3.5/3.0). The
1PN data points are off scale, clustering at −5.5 radians (left
panel) and −15 radians (right panel). The thin black bands
indicate upper bounds on the uncertainty of the comparison
as discussed in Sec. VA.

ingly well with the numerical results. The best match
is easily TaylorT4 at 3.5PN order, and the next best
match is TaylorT4 at 2.0PN order. Some approximants
behave significantly worse, such as the TaylorT1 and Tay-
lorT4 waveforms at 2.5PN order. The 2.5PN and 3PN
TaylorT3 waveforms agree very well with the numerical
waveform at early times, but at late times they accumu-
late a large phase difference; the 2.5PN TaylorT3 wave-
form ends even before the numerical waveform reaches
mω = 0.1 (the rightmost vertical grey line in Fig. 21).

We also find that all three PN approximants, when
computed to 3PN order or higher, match the numerical
waveform (and each other) quite closely at early times,
when all PN approximants are expected to be accurate.
However, at late times, t − r∗ > 2500m, the three PN
approximants begin to diverge, indicating that PN is be-
ginning to break down.

Figure 22 presents similar results in a different format.
We compute the phase differences between the numerical
waveform and the various post-Newtonian approximants
at the times when the numerical waveform reaches gravi-
tational wave frequencies mω = 0.063 and mω = 0.1 (the
times corresponding to these frequencies are also indi-
cated by grey lines in Fig. 21). We then plot these phase
differences as a function of the post-Newtonian order (us-
ing equal order in phase and amplitude, except for 3.5PN
order, where we use 3.0PN in amplitude). The 2.5PN and
3.5PN TaylorT3 and the 2PN TaylorT1 waveforms end
before t0.1, so these data points cannot be included in
the right panel of Fig. 22.

The general trend seen in Fig. 22 is that the phase dif-
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ference decreases with increasing PN order. However,
this convergence is not monotonic, and the scatter in
Fig. 22 can be larger than the phase differences them-
selves. For example, the 0PN waveforms are about as
good as the 2.5PN waveforms for TaylorT1 and Tay-
lorT4, and the 2.5PN TaylorT4 waveform agrees with
the numerical results much better than do either the
2PN or 3PN TaylorT4 waveforms. Considering Fig. 22, it
seems difficult to make statements about the convergence
with PN order for any particular PN approximant, or
statements about which PN orders are generally “good”.
Given that at fixed PN order the different approximants
differ merely by the treatment of uncontrolled higher-
order terms, the scatter in Fig. 22 in some sense rep-
resents the truncation error at each PN order. While
some PN approximants at certain orders may show bet-
ter agreement with the numerical simulation, we are not
aware of any means to predict this besides direct compar-
isons to numerical simulations (as is done here). In par-
ticular, Fig. 22 suggests that the remarkable agreement
between our numerical results and the 3.5PN TaylorT4
approximant may be simply due to luck; clearly, more
PN-NR comparisons are needed, with different mass ra-
tios and spins, to see if this is the case.

VII. CONCLUSIONS

We have described numerical simulations of an equal
mass, non-spinning binary black hole spacetime cover-
ing 15 orbits of inspiral just prior to the merger of the
two black holes. Using a multi-domain pseudospectral
method we are able to extract the gravitational wave
content measured by a distant observer with a phase ac-
curacy of better than 0.02 radians over the roughly 30 cy-
cles of gravitational radiation observed. We demonstrate
that in order to achieve this accuracy it is necessary to
accurately extrapolate the waveform from data obtained
at extraction surfaces sufficiently far from the center of
mass of the system. When comparing to zero-spin, zero-
eccentricity PN formulae, our phase uncertainty increases
to 0.05 radians because the numerical simulation has
a small but nonzero orbital eccentricity and small but
nonzero spins on the holes.

Judging from the case in which we match at mωm =
0.04, our numerical simulations are consistent (within our
estimated phase uncertainty) with all PN approximants
(at the highest PN order) from the beginning of our in-
spiral until about 15 gravitational wave cycles prior to
the merger of the binary. After this point, the various
PN approximants begin to diverge, suggesting that the
approximation is beginning to break down. Since there
are many different PN approximants (including Padé [52]
and effective-one-body [34, 50, 56, 57] which were not dis-
cussed in this paper) it may be possible to find a clever
way to push the PN expansion beyond its breaking point.

Indeed, we find that one approximant, TaylorT4 at
3.5PN in phase, works astonishingly well, agreeing with

our numerical waveforms for almost the entire 30-cycle
length of our runs. Given the wide scatter plot of pre-
dictions by various PN approximants, it is likely that
TaylorT4 3.5/2.5 simply got lucky for the equal mass
non-spinning black hole binary. In fact, the assumption
of adiabaticity (i.e., circular orbits) is known to lead to
much larger phase differences relative to a non-adiabatic
inspiral (see Fig. 4 of [54] and [137]) than the phase dif-
ferences between NR and TaylorT4 we find in Fig. 18.
Thus it seems that the uncontrolled higher order terms
of TaylorT4 3.5/2.5 balance the error introduced by the
adiabaticity assumption to a remarkable degree. It re-
mains to be determined whether similar cancellations oc-
cur when the black hole masses are unequal or when the
holes have nonzero spin.

Regardless of the robustness of TaylorT4, it seems ev-
ident that numerical simulations are needed in order to
know which, if any, PN approximant yields the correct
waveform after the various approximants begin to di-
verge. For there is no a priori reason why TaylorT4
should be a better choice than TaylorT1 as they differ
only in whether the ratio of gravitational wave flux to
the derivative of the orbital energy with respect to fre-
quency is left as a ratio of post-Newtonian expansions or
re-expanded as a single post-Newtonian expansion.

The surprising accuracy of TaylorT4 in the gravita-
tional frequency range from mω = 0.035 through mω =
0.15, for the equal mass, non-spinning inspiral of two
black holes, in principle could form a basis for evaluating
the errors of numerical simulations. Instead of worrying
about errors due to different formulations, initial data,
boundary conditions, extraction methods, etc., perhaps
a long inspiral simulation could be compared with Tay-
lorT4 3.5/3.0 in order to get a direct estimate of the phase
error.

We find that the 3PN contributions to the amplitude
of the (2, 2) modes improve their accuracy with respect to
the numerical waveforms. This suggests that for accurate
parameter estimation, it may be desirable to compute the
full 3PN amplitude for the polarization waveforms.

Much work still needs to be done to improve the com-
parison between NR and PN. Our primary goal is to push
our simulations through merger and ringdown so that we
may compare various resummed PN approximants and
the effective-one-body approximants during the last cy-
cle of inspiral and merger, as well as test TaylorT4 3.5/3.0
closer to merger. We also intend to do long inspirals with
arbitrary masses and spins in order to test the robustness
of PN over a range of these parameters.

Furthermore we wish to improve our initial data.
There is a large amount of ’junk radiation’ present in the
initial data that limits how early we can match PN and
NR waveforms. Reduction of this junk radiation [138]
would improve the accuracy of our simulations as well.

Finally, we have done just a simple comparison be-
tween NR and PN, without including any treatment of
effects that are important for real gravitational wave de-
tectors such as limited bandwidth and detector noise. In
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order to more directly address the suitability of PN for-
mulae for analyzing data from gravitational wave detec-
tors, it will be necessary to fold in the properties of the
detector, to consider specific values for the total mass of
the binary, and to fit for the mass from the waveforms
rather than assuming that the PN and NR waveforms
correspond to the same mass. We leave this for future
work.
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Iyer, Phys. Rev. D 71, 124004 (2005).

[124] K. Arun, L. Blanchet, B. Iyer, and M. Qusailah, Class.
Quantum Grav. 21, 3771 (2004), erratum-ibid. 22,
3115–3117 (2005).

[125] L. E. Kidder, L. Blanchet, and B. R. Iyer,
arXiv:0706.0726 [gr-qc] (2007).

[126] A. G. Wiseman, Phys. Rev. D 48, 4757 (1993).
[127] L. Blanchet and G. Schäfer, Class. Quant. Grav. 10,
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