FEA Results: BSC ISI Spring, 0-1

large displacement flag enabled in SolidWorks Simulation

Spring material: Maraging 300

Ex	189.6	GPa	Young's Modulus
Gxy	80	GPa	Shear Modulus
nu	0.3		Poisson's Ratio

 ${\bf Z}$ axis: in-plane, parallel to Spring's long axis

Y axis: out-of-plane

force applied to "Dummy Flexure Mount" mated to top of Spring tip, concentric with the Flexure's axis

Dummy Flexure Mount material... custom very-high-stiffness

Ex	6.89E+04	GPa	Young's Modulus
Gxy	2.28E+04	GPa	Shear Modulus
nu	0.33		Poisson's Ratio

Study Name	"Equ Flex"				
F	orce 2750	lb this i	s the expec	ted load per 0-1 Spr	ing
Angle of Force, from Tip no	rmal 13.18	deg this v	value taken	from geometry of A	SI's curved Spring model
mesh	size 0.175	in			
results:					
Node Number	Node Position		Displacer	nent (in)	Tip Angle (Deg)
#	Z		ΔY	ΔZ	
109844	-16.188		-1.983	5.435E-02	-
109852	-17.813		-2.369	1.007E-01	13.74
		resultant displa	cement	2.18 in	referenced to undeformed shape

Displacements are recorded at two points on the infinitely stiff "dummy flexure mount." Typical location of these points (or "nodes") are shown in the following two SolidWorks Simulation screen captures. Knowing the distance between the nodes and the displacements predicted there, we can estimate the angle of the Spring tip when the given load is applied.

Study Name	"Equ+ Flex"			
Force	2800 lb	50 lbs more th	an the equilibrium load	
Angle of Force, from Tip normal	13.18 deg			
mesh size	0.175 in			
results:				
Node Number	Node Position	Displace	ement (in)	Tip Angle (Deg)
#	Z	ΔY	ΔZ	
109844	-16.188	-2.020	5.837E-02	-
109852	-17.813	-2.412	1.064E-01	13.96
	resultar	t displacement	0.0403 in	referenced to "Equ Flex" deformed shape
	linear stiffness, ne	ear equilibrium	1241 lb/in	1.24 lb per .001"
			4.448 N/lb	
			3.94E-05 in/um	Per Blade - for stiffness of entire
				Stage, multiply by 3x
			0.217 N/um	

0 in

Re-running the "Equ Flex" study for the 0-1 Spring, this time using the slightly larger angle for the force line, as evaluated in the initial study above: Study Name "Equ Flex" 2750 lb this is the expected load per 0-1 Spring Force Angle of Force, from Tip normal 13.74 deg mesh size 0.175 in results: **Displacement (in)** Node Number **Node Position** Tip Angle (Deg) # Ζ ΔY ΔZ 111011 -16.188 5.410E-02 -1.981

 111011
 10.100
 1.001
 0.4101 02

 111019
 -17.813
 -2.366
 1.003E-01
 13.71

 resultant displacement
 2.17 in
 referenced to undeformed shape

conclusion: no significant effect from re-aligning force line to equilibrium tip angle.

Re-running the "Equ Flex" study for the 0-1 Spring, again. We now use the tip angle evaluated in the above study, and the "correct" value for the Maraging 300's Shear Modulus (Gxy). Also, the mesh density is slightly higher than in all the previous 0-1 Spring FEAs:

Study Name		"Equ Flex"				
	Force	2750 lb		Maraging 300 pro	operties:	
Angle of Force, from	Tip normal	13.71 deg		Ex	189.6	GPa
	mesh size	0.150 in		Gxy	73	GPa
				nu	0.3	
results:						
Node Number		Node Position	Displac	ement (in)		Tip Angle (Deg)
#		Z	ΔY	ΔZ		
176382		-16.188	-1.982	5.423E-02		-
176402		-17.813	-2.367	1.005E-01		13.71
		rocult	nt displacement	2 10	in	referenced to undeformed shar

conclusion: There is almost no difference between these results and the results listed directly above it. Sensitivity to mesh size and value of Gxy appear to be low enough to give good confidence in the results.

Re-running the "Equ+ Flex" study for	the 0-1 Spring, to re-evaluation and the Maraging 200's	ate the Spring's sti	iffness. We now	use the ti	ip angle evaluated i	n the initial
Study Name	"Equ+ Flex"		σχγ].			
Force	e 2800 lb	2800 lb <i>Maraging 300 properties:</i>				
Angle of Force, from Tip norma	l 13.90 deg	E	Ex	189.6	GPa	
mesh size	e 0.175 in	C	Эху	73	GPa	
		r	าน	0.3		
results:						
Node Number	Node Position	Displace	ement (in)		Tip Angle (Deg)	
#	Z	ΔY	ΔZ			
111011	-16.188	-2.017	5.805E-02		-	
111019	-17.813	-2.408	1.059E-01		13.92	
	resulta	nt displacement	0.0383	in	referenced to "Equ shape	ı Flex" deformed
	linear stiffness, n	ear equilibrium	1306	lb/in	1.31	lb per .001"
			4.448	N/lb		
			3.94E-05	in/um	Per Blade - for st Stage, mul	tiffness of entire tiplv bv 3x
			0.229	N/um		

conclusion: We see a small change in the evaluated stiffness.

New study named "Equ- Flex." using a	force 50 lbs less than th	ne nominal Spring lo	ad:			
Study Name	"Equ- Flex"					
Force	2700 lb	I	Maraging 300 pr	operties:		
Angle of Force, from Tip normal	13.45 deg	ł	Ξx	189.6	6 GPa	
mesh size	0.175 in	(Gxy	73	GPa	
		1	าน	0.3	3	
results:						
Node Number	Node Position	Displace	ement (in)		Tip Angle (Deg)	
#	Z	ΔY	ΔZ			
111011	-16.188	-1.946	5.031E-02		-	
111019	-17.813	-2.324	9.489E-02		13.45	
	resul	tant displacement	0.0398	in	referenced to "Equ Fle shape	x" deformed
	linear stiffness,	near equilibrium	1257	lb/in	1.26 lb p	er .001"
			4.448	N/lb		
			3.94E-05	in/um	Per Blade - for stiffn	ess of entire
		_			Stage, multiply	by 3x
			0.220	N/um		

conclusion: The stiffness calculated in this direction (subtracting from, rather than adding to the nominal force) is very similar to that calculated directly above, adding to our confidence in the previous results.

FEA Results: BSC ISI Spring, 1-2

large displacement flag enabled in SolidWorks Simulation

Spring material: Maraging 300

Ex	189.6	GPa	Young's Modulus
Gxy	80	GPa	Shear Modulus
nu	0.3		Poisson's Ratio

 ${\bf Z}$ axis: in-plane, parallel to Spring's long axis

Y axis: out-of-plane

force applied to "Dummy Flexure Mount" mated to top of Spring tip, concentric with the Flexure's axis

Dummy Flexure Mount material... custom very-high-stiffness

Ex	6.89E+04	GPa	Young's Modulus
Gxy	2.28E+04	GPa	Shear Modulus
nu	0.33		Poisson's Ratio

Study Name	"Equ Flex"				
Force	2080 lb	this is the expect	ted load per 1-2 Sp	pring	
Angle of Force, from Tip	11.04 deg	this value taken from geometry of ASI's curved Spring model			
mesh size	0.15 in				
results:					
Node Number	Node Position	Displacem	nent (in)	Tip Angle (Deg)	
#	Z	ΔY	ΔZ		
96825	-11.938	-1.227	1.408E-03	-	
96845	-13.563	-1.547	3.324E-02	11.36	
	resulta	nt displacement	1.39 in	referenced to undeformed shape	

Displacements are recorded at two points on the infinitely stiff "dummy flexure mount." Typical location of these points (or "nodes") are shown in the following two SolidWorks Simulation screen captures. Knowing the distance between the nodes and the displacements predicted there, we can estimate the angle of the Spring tip when the given load is applied.

Study Name	"Equ+ Flex"				
Force	2130 lb	50 lbs more t	han the equilibriu	m load	
Angle of Force, from Tip	11.04 deg				
mesh size	0.15 in				
results:					
Node Number	Node Position	Displac	ement (in)		Tip Angle (Deg)
#	Z	ΔY	ΔZ		
96825	-11.938	-1.257	3.509E-03		-
96845	-13.563	-1.585	3.691E-02		11.64
resultant displacement		0.0341	in	referenced to "Equ Flex" deformed shape	
	linear stiffness, n	ear equilibrium	1465	lb/in	1.47 lb per .001"
			4.448 3.94E-05	N/lb in/um	Per Blade - for stiffness of entire
					Stage, multiply by 3x
			0.257	N/um	

1-2 Spring: FEA Setup

1-2 Spring: After Meshing

1-2 Spring: "Equ Flex" Stress Results

max value173525 psimin value0 psi

1-2 Spring:	
"Equ Flex" ∆Z Results	

max value	1.576E-01 in
min value	-1.482E-02 in

Advancede BIC IT Sprang PAA Built more Table displacement To The type: Table displacement To displacement To BIC IT Sprang PAA IT Sprang PAA I	1-2 Spring: "Equ+ Flex" ∆Y Results	
4 Add 4 Add Add 4 Add Add 4 Add Add Add Add Add Add Add Add	max value min value	0 in -1.585 in

1-2 Spring:		
"Equ+ Flex" ΔZ Results		

max value	1.643E-01 in
min value	-1.501E-02 in

Re-running the "Equ Flex" study for the 1-2 Spring, this time using the correct value for the Shear Modulus (Gxy) and the slightly larger angle for the force line, as evaluated in the initial study above: Study Name "Equ Flex" 2080 lb Maraging 300 material properties: Force Angle of Force, from Tip normal 11.36 deg 189.6 GPa Ex 0.15 in Gxy 73 GPa mesh size 0.3 nu results: Node **Displacement (in)** Tip Angle (Deg) Node Number Position Ζ ΔZ # ΔY 96825 -11.938 -1.227 1.367E-03 -13.563 -1.546 3.315E-02 11.32 96845 resultant displacement 1.39 in referenced to undeformed shape

conclusion: the minor "corrections" to the model result in almost no change to the results, which is a welcome result.

A. Stein SEI Team