Gravitational Waves

Precision Measurements

Mike Smith

10-20 m

HOW SMALL IS THAT?

Einstein1 meter

1,000,000 smaller

Wavelength of light 10⁻⁶ meters

10,000 smaller

100,000 smaller

100,000 smaller than the proton 10⁻²⁰ meters

LIGO Observatories

Hanford Nuclear Reservation, Eastern WA (H1 4km, H2 2km)

- Interferometers are aligned to be as close to parallel to each other as possible

- Observing signals in coincidence increases the detection confidence

- Determine source location on the sky, propagation speed and polarization of the gravity wave

Livingston, LA (L1 4km)

Vacuum Equipment

LIGO Beam Tube

 1.2 m diameter stainless tubing, pumps only every 2 km

•Aligned to within mm over km (corrected for curvature of the earth)

• Total of 16km fabricated with no leaks

• Cover needed (stray bullets, stray cars...)

What and why?

Gravitational waves are ripples in space-time – stretching and compressing space itself
A good source: two stars orbiting around each other near the speed of light (a 'neutron star binary')
Signal carries information about very extreme conditions of matter, space, and gravitation

It's a brand new way of seeing the Universe

Will be used with other astronomical tools – Optical and radio telescopes, neutrino and gamma ray detectors – to build a more complete picture of what's out there

How to detect them?

Passing wave distorts space – changes distances along vertical and horizontal paths

Michelson interferometers can measure these distortions by comparing light along two arms at right angles

Longer arms → bigger signals (like radio waves), but still very very small length changes: 0.00000000000000001 inch (ouch) over 2.5 miles for the strongest sources -- a strain sensitivity of one part in 10²¹

LIGO: a precision instrument **Opto/Mechanical Engineer's dream**

Seismic Motion Of Vacuum Chamber Walls, m/rtHz

Quadruple Mirror Suspension

Super Polished Fused Silica Mirrors

Metrology of LIGO Optics using Fizeau Interferometry

 $\sigma_{\rm rms}$ < 0.8 nm over the central 80 mm dia Surface height repeatability < 5 nm Accuracy < 10 nm

Low Noise Coatings

Thermal Noise

thermal fluctuations of a system (atomic motion in this case) results in energy losses for any forced motion *of* the system, or forced motion *through* the system. Turning this around, if there is more mechanical loss (lower Q, higher φ), there must be more statistical fluctuation from the thermally activated motion of atoms, resulting in displacement of the mirror surfaces, and therefore, more *noise*. "fluctuation-dissipation"

Add heat to erase the thermal gradient in the ITM, leaving a uniformly hot, flat temperature profile mirror. Use ring heater around ITM and ETM to change radius of curvature

LIGO CO₂ Laser Thermal Compensator

•Heating the TM limits the effect of diffraction spreading of cavity beam

•Modeling suggests a centering tolerance of 10 mm is required

Mirror Heating Patterns

Annulus Mask

Central Heat Mask

•Annular and Central heating patterns used in Initial LIGO

Heating ITM: Power-Recycled Michelson Heterodyne detection between PR beam and ARM beam

Hartmann Sensor to Measure Wavefront Correction

Hartmann sensor has a shot-to-shot reproducibility of $\lambda/580$ at 635 nm, which can be improved to $\lambda/16000$ precision with averaging, and with an overall accuracy of $\lambda/6800$.

Scattered Light: Apparent Displacement Noise

 $V_{signal} := DARM \cdot L \cdot h_{min} \cdot \sqrt{P_0}$ Min Gravity Wave Signal: □ Scattered Light: $V_{noise} := SNXXX \cdot \delta_{SN} \cdot \sqrt{P_{SNi}}$ > Noise $\delta_{SNi} := \frac{4 \cdot \pi \cdot x_s}{\lambda}$ Phase Shift due to motion of surface $\text{SNXXX} \cdot \delta_{\text{SN}} \cdot \sqrt{P_{\text{SNi}}} < \frac{1}{10} \cdot \text{DARM} \cdot \text{L} \cdot h_{\text{min}} \cdot \sqrt{P_0}$ **Requirement:** $P_{SNi} := P_{in} \cdot BRDF \Delta \Omega \cdot \frac{W_{IFO}}{2} \cdot T$ □ Scattered Light Power: ^WSN

Measuring BRDF

Scattered Light Control Suspended Output Faraday Isolator

Putting It All Together Scattered Light Meets Requirement!!

Advanced LIGO

- Factor 10 improvement in sensitivity
- Better low frequency response
- Reach 1000 times more sources
- Signal predictions from ~1 per 10 years (iLIGO) to ~1 per week (aLIGO) G1000029

Is He Right?

Acknowledgement

United States National Science Foundation
Contributions by LIGO-VIRGO Collaboration