Coating Thermal Noise: Research Directions

Gregg Harry
March 15, 2010
Optics Parallel Session
LIGO-Virgo Collaboration Meeting

Coating Thermal Noise Theory

- Effect of coating penetration solved by Yanbei et al.
 - Roughly a 5% effect, no major concerns

- Paper/tech note
- Deviation from standard theory for aLIGO coatings
- Included in GWINC model

$$S_{x}(f) = k_{B} T(d) Y_{coat} \phi / (\pi^{2} f \omega^{2} Y_{sub}^{2})$$

Torsional ϕ_{coat} Measurement

- Standard theory ignores second loss angle in amorphous materials
- Coating design from Chen et al includes possible thermal noise reduction from including torsional loss
- Need experimental values: Si, Ta, Ti-Ta, etc
- Capital "I" like design
 - ATF approached about coating
- Need FEA models of normal modes

Change in Wavelength

- Shorter wavelength
 - Smaller coating, direct thermal noise reduction
 - More problems with color centers; greater absorption, scatter? Needs study
- Longer wavelength
 - Wavelengths up to ~3 μm seem realistic
 - New possibilities for materials; silicon
 - Need a study of realistic wavelengths and materials with indices, scatter, absorption
 - Measure loss angles

Reflection by Doublet

- Standard theory:
 All light reflected at coating face
- Reality: Some light penetrates into coating to various depths

$$S_{x}(f) = k_{B} T(d) Y_{coat} \phi / (\pi^{2} f \omega^{2} Y_{sub}^{2})$$

Calculation of Light Penetration

$$P_{trans} = \alpha_n P_n$$

$$P_{trans} = \alpha_{n-1} P_{n-1}$$

$$P_{trans} = \alpha_{n-1} P_{n-1}$$

$$P_{n-1}/P_n = \alpha_n/\alpha_{n-1}$$

- P_{n-1} / P_n is what we want
- Can calculate α's

Reflected Light by Doublet

- α's from coating modeling code
 - -From Andri
- Calculate relative amount of optical power in each doublet

-Used 20 doublet, 1/4 wave stack

Doublet Number	Amount of
Number	Reflected Light
20	51%
19	25%
18	12%
17	6%
16	3.1%
15	1.5%
14	0.7%

Effective Doublet Number

 Assume thermal noise seen by each beam depends on the amount of coating between beam and substrate

- = 19 effective doublets
- Traditional theory uses 20 doublets
- Effective number is 19 doublets
- Traditional theory overstates coating
 Brownian thermal noise by 1:20, 5%

Issues and Questions

- Is this a (somewhat?) accurate optical model?
 - Difficult to localize optical power in coating?
- Is optical power the correct weighting?
- Redo with actual aLIGO coating
 - Optimized layers
 - Actual coating models for ITM and ETM
- How does this effect thermo-optic noise?