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“Interference phenomena permit us to refer determinations of

length to a very small unit (of the order of 1/2 micron), the wave-

length of a luminous radiation; for this reason the use of these

phenomena it is at once suggested when it is a question of mea-

suring very small thicknesses or very small changes or differences

in thickness.”

- A. Perot and C. Fabry (1899)



Abstract

Direct detection of gravitational radiation, predicted by Einstein’s general theory of

relativity, remains one of the most exciting challenges in experimental physics. Due

to their relatively weak interaction with matter, gravitational waves promise to allow

exploration of hitherto inaccessible objects and epochs. Unfortunately, this weak cou-

pling also hinders detection with strain amplitudes at the Earth estimated to be of

order 10−21.

Due to their wide bandwidth and theoretical sensitivity, kilometre-scale Michelson

style interferometers have become the preferred instrument with which to attempt

ground based detection. A worldwide network of first generation instruments has

been constructed and prodigious volumes of data recorded. Despite each instrument

approaching or having reached its design sensitivity, a confirmed detection remains

elusive.

Planned upgrades to these instruments aim to increase strain sensitivity by an order of

magnitude, commencing the era of second generation detectors. Entry into this regime

will be accompanied by an entirely new set of challenges, two of which are addressed

in this work.

As advanced interferometers are commissioned, instrumental artifacts will give way to

fundamental noise sources. In the region of peak sensitivity it is expected that thermal

noise in the interferometers’ dielectric mirror coatings will be the principal source of

displacement noise. Theory suggests that increasing the spot size of laser light incident

on these mirrors will reduce the measured thermal noise. In the first part of this work
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we examine one method of realising larger spots.

By adopting non-spherical mirrors in the interferometers’ arms it is possible to create

resonators which support a wide, flat-topped field known as the mesa beam. This beam

has been shown to theoretically reduce all forms of mirror thermal noise without being

significantly more difficult to control. In this work we investigate these claims using a

bespoke prototype mirror. The first results regarding a non-Gaussian beam created in

a manner applicable to a gravitational wave interferometer are presented.

A common theme among all second generation interferometer designs is the desire to

maximise circulating power. This increased power is partnered by commensurately

increased thermal perturbations. Since the attractive properties of the mesa beam

are produced by the fine structure of its supporting mirrors, it is important that we

understand the effects absorption of stored optical power could have on mesa fields. In

the second part of this work we report on numerical evaluations of measured thermal

noise and mesa beam intensity profile as a function of absorbed power.

Increased optical power also has less obvious consequences. As a result of radiation

pressure, there exists a pathway between optical energy stored in an interferometer’s

arms and mechanical energy stored in the acoustic modes of its test masses. Under

appropriate conditions, this coupling can excite one or more test masses to such a

degree that interferometer operation becomes impossible. In the final part of this work

we determine whether it is possible to mitigate these parametric instabilities using

electrostatic actuators originally designed to control the position and orientation of

the test masses.
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Preface

In Chapter 1 we introduce the concept of the gravitational wave via linearised theory

and examine what are thought to be the most promising sources for a ground based

detection. Interferometric gravitational wave detectors are subsequently examined,

together with the noise sources which limit their sensitivity. The properties of optical

resonators are then reviewed, followed by the numerical techniques we have employed

to model their behaviour.

In Chapter 2 we commence study of the non-Gaussian mesa beam predicted to re-

duce measured thermal noise in interferometric gravitational wave detectors. After

reviewing the theory underlying this alternative optical mode, we present our origi-

nal contribution, an experimental study of the mesa beam. The design, construction

and commissioning of a 7 m optical resonator supporting a mesa beam as its funda-

mental eigenmode are described, as is the manufacture of the unique, non-spherical,

Mexican hat mirror. Experimentally measured intensity profiles are then compared

to theoretical predictions, taking measured mirror imperfections into account. This

investigation would not have been possible without the preliminary work undertaken

by Marco Tarallo and Barbara Simoni.

Mesa beam interferometers are predicted to be moderately more sensitive to mirror

tilts than the equivalent Gaussian instrument. In Chapter 3 we experimentally in-

vestigate this prediction. A study of the mesa beam intensity profile as a function

of mirror tilts is first made, before the possibility of closed loop alignment control is

evaluated. The auto-alignment effort focuses on the extension of differential wavefront



xxvii

sensing, a technique widely applied to Gaussian modes, to mesa beams. The analytical

description of wavefront sensing with Gaussian beams is recounted before a new model

to predict mesa beam alignment signals is developed. A comparison between modelled

and experimentally measured alignment control signals is then made.

Chapter 4 presents results of a numerical investigation into thermal effects with mesa

beams. In particular, it seeks to understand the consequences of absorption in the

coatings of non-spherical mirrors. The chapter begins by summarising known methods

for the analytical calculation of mirror thermal noise and the thermoelastic deforma-

tion resulting from absorbed optical power. The models developed for this work and

used to obtain the steady state eigenmodes of a thermally perturbed cavity are then

described. Using these techniques, the losses, intensity profiles and measured thermal

noise, associated with both Gaussian and mesa beams, are given as a function of ab-

sorbed power. Thermal lensing and possible methods of thermal compensation with

mesa beams are also considered.

In Chapter 5 we discontinue the study of mesa beams to focus on mitigation of para-

metric instabilities. After reviewing techniques considered for this role in the past,

we outline our proposal to damp acoustic modes of the test masses using the electro-

static actuators designed to control their position and angular orientation. Extensive

finite element modelling was used to determine the frequencies and forms of the test

mass eigenmodes and the force distribution of the electrostatic drive. Using this infor-

mation, the force required to damp each acoustic mode to a safe level is determined.

The predictions of this theoretical work are then tested experimentally using prototype

Advanced LIGO hardware. This work was carried out in collaboration with Matthew

Evans and Lisa Barsotti.

So that the results presented in this work might be verified or extended, the material

parameters used in all calculations are tabulated in Appendix A.

In Appendix B we include technical drawings giving the dimensions of the electro-

static drive pattern used in our analysis of parametric instabilities.
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Chapter 1

Introduction

Over the following pages we introduce those fundamental concepts required to fully

understand the original part of this work. The level of discussion has been tailored

to provide a basic working knowledge with adequate references provided for the more

enthusiastic reader.

We begin in section 1.1 by introducing gravitational waves themselves, along with their

putative sources. Considering only linearised theory, we show how interferometric de-

tectors are ideally suited to detect this radiation. In section 1.2 we go on to examine

the basic design of a contemporary gravitational wave detector, introducing more ad-

vanced material as appropriate in the coming chapters. In order to fully appreciate

interferometer design and to understand later material, selected ideas in optics are

also reviewed (see §1.5). After detailing the major noise sources that limit ground

based gravitational wave interferometers in section §1.4, we conclude by discussing the

simulation tools used in our work (see §1.6).
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1.1 Gravitational radiation

In this section we describe the theory underlying the production of gravitational ra-

diation. We could not hope to approach the expositions found in the many excellent

textbooks covering the subject, instead we provide a readable treatment of the basic

concepts and direct the reader to the literature for deeper insight [1, 2].

After introducing the idea of the gravitational wave, we discuss a selection of candidate

sources for ground based interferometric detectors.

1.1.1 General relativity

Unlike Jansky’s chance discovery of radio signals emanating from the centre of the

Galaxy in the 1930s [3], the existence of gravitational radiation and the possibility of

studying astrophysical objects in a new way has long been predicted [4].

One of the more exotic products of Einstein’s general relativity [5], gravitational waves

are small disturbances in the very fabric of space-time caused by accelerating aspherical

mass distributions. Due to the relatively low strength of the gravitational interaction,

matter does not impede gravitational waves in the same way as it does electromagnetic

waves. Hence this radiation promises to reveal hitherto obscured information about

the Universe.

1.1.1.1 Linear approximation

In Einstein’s general theory, the four dimensional proper distance ds between points

xµ and xµ + dxµ is given by

ds2 = gµνdx
µdxν , (1.1)
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where gµν is the metric tensor. The nature of the metric is determined through the

Einstein field equations

Rµν −
1

2
gµνR =

8πG

c4
Tµν , (1.2)

where Rµν is the Ricci tensor, R = gµνRµν is the scalar curvature, G is the gravitational

constant and Tµν is the energy-momentum tensor.

It is often difficult, if not impossible, to solve (1.2) analytically, due to the inherent non-

linearities involved. However when operating in a weak field, where space-time is nearly

flat, the equations can be linearised.1 Under these conditions, following [1, 6, 7], the

metric may be written as the Minkowski metric ηµν augmented by a small perturbation

hµν

gµν ≃ ηµν + hµν . (1.3)

For a suitable gauge choice2 the Einstein field equations in vacuum3 then reduce to

(

∇2 − 1

c2
∂2

∂t2

)

hµν = 0, (1.4)

where we have introduced the trace reverse tensor4 hµν . This equation clearly has

wave-like solutions

hµν = h0Aµν exp(ikµx
µ), (1.5)

which under our gauge choice are transverse waves5 propagating at the speed of light6

– gravitational waves.

By operating in the transverse-traceless gauge,7 Aµν is tightly constrained. For a wave

1Fields may be considered ‘weak’ except in the close proximity of compact objects or cosmological
singularities.

2Lorenz gauge condition hµν
,ν = 0.

3i.e. Tµν = 0.
4hµν = hµν − 1/2ηµνh where h = hµ

µ.
5Aµνk

ν = 0.
6kνk

ν = 0.
7Imposing additional constraints Aµ

µ = 0 and AµνU
ν = 0, where Uν is any constant timelike unit

vector.



1.1 Gravitational radiation 4

travelling in the z direction we may write

hTT

µν = hTT

µν = h0A
TT

µν exp(jk(ct− z)), (1.6)

where

ATT

µν =











0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0











. (1.7)

Here we have taken k = k0, Axx = h+ and Axy = h×. Since we have introduced the

parameter h0 to characterise the strength of the gravitational wave, we restrict the

values of ATT

µν to be 0 or 1.

To compute the effect of a gravitational wave on free masses, we consider the proper

distance8 between two particles, one located at the origin and the other located at

(x0, 0, 0), both initially at rest. In this case, for h+ = 1,

∆l =

∫

|ds2|1/2 =
x0∫

0

|gxx|1/2 dx ≃
[

1 +
1

2
h0

]

x0. (1.8)

The effect of the gravitational wave is to produce a ‘displacement’, i.e. change in the

proper distance, between the particles which is proportional to their initial separation.

Since hTT

yy = −hTT

xx , an analogous argument shows that the proper distance between a

particle at the origin and one at (0, y0, 0) is

∆l ≃
[

1− 1

2
h0

]

y0. (1.9)

Aµν has only two independent components, h+ and h×, corresponding to two different

polarisation states. The ‘+’ state for h+ 6= 0, h× = 0 and the ‘×’ state for h× 6= 0, h+ =

0. These states are termed plus and cross respectively. The effect of gravitational waves

having each of these polarisations on a ring of free particles is shown in fig. 1.1.

8In the transverse-traceless gauge the coordinate distance between two particles is not changed by
a gravitational wave.
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ωt = 0, π ωt = 3π/2 ωt = π/2 

x 

y 

Figure 1.1: The effect of a gravitational wave with plus (top) and cross (bottom)
polarisations on a ring of free particles in terms of proper distance from the central
particle.

The effects of a gravitational wave may also be considered in a ‘rigid’ coordinate system

which remains unaffected by the incident wave. In this case, for a ‘+’ wave propagat-

ing in the z direction, our particle at (x0, 0, 0) will experience a displacement, in the

commonly understood sense, of ∆x = (1/2)h0x0.

So in either representation the ‘displacement’ between the particles is proportional to

their original separation. It is hence common to regard h as a strain.

1.1.2 Sources

Gravitational waves are produced by accelerating mass distributions. Due to mass-

energy and momentum conservation, the lowest order multipole which can contribute

to Gravitational Wave (GW) emission is the quadrupole moment Q.
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Dimensional analysis gives that the magnitude of the strain produced by a gravitational

wave is

h ∼ G

c4
Q̈

r
∼ G(Ens

kin/c
2)

c2r
, (1.10)

where Ens
kin is the non-symmetric part of the kinetic energy. Setting Ens

kin/c
2 =M⊙ and

considering sources in the Virgo cluster,9 yields strains of order h . 10−21.

We may thus conclude that only energetic astrophysical events produce terrestrially

measurable GW signals. In the following section we summarise likely sources based

on their time evolution. We do, of course, concede that the most interesting detected

signals will likely be of unknown origin.

1.1.2.1 Burst

Supernovae in which initial conditions allow an asymmetric collapse are ideal GW

candidates as they involve large masses and high accelerations [8]. Stellar collapses are

typically short lived emitting broadband radiation down to a few Hz.

Compact binary coalescences, involving any combination of black holes and neutron

stars, are another archetypal source of short-lived10 GWs [9]. As the two massive bodies

orbit one another they continually lose energy to gravitational radiation, reducing their

orbital radius and period. In the final minutes of their lives the resulting GW signal

enters the terrestrial detection band.11 Moving ever closer, the efficiency of energy

loss improves12 and the signal rapidly increases in frequency and amplitude in what is

known as a chirp. Eventually the bodies merge, form an excited state and decay to

equilibrium.

Coalescent binaries are thought to be one of the most promising sources of gravitational

wave signals for ground based detection as it is possible to predict the waveform of the

9r ≃ 20 Mpc.
10At least for ground based detectors.
11& 10 Hz.
12A system separated by ∼100 km can lose all of its energy to gravitational radiation in a matter

of seconds.
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emitted signal to high accuracy and search for it in the detector output via matched

filtering [10].

1.1.2.2 Periodic

A spinning neutron star with asymmetry13 about its rotation axis should emit gravi-

tational radiation at twice the rotation frequency. Known pulsars [11] thus provide an

enticing target for gravitational wave searches.

To date more than one hundred such stars have been investigated. For the famous

Crab pulsar it has been shown that the power radiated by gravitational waves does not

exceed 2% of the available spin-down power [12].

1.1.2.3 Stochastic

One of the most exciting sources of gravitational waves is that due to density fluctu-

ations immediately following the Big Bang.14 Investigating radiation from this epoch

would allow one to discriminate between various cosmological models and probe the

early Universe, inaccessible by other means. Strain levels currently predicted by stan-

dard inflation models are likely beyond the capability of even second generation inter-

ferometers,15 although correlating the output of multiple detectors does allow useful

limits to be set [13].

1.1.3 PSR1913+16

At the time of writing the direct detection of gravitational radiation remains an out-

standing goal. However strong evidence for their existence has been found in the

13Neutron stars cannot be perfectly axisymmetric. Mechanisms for creating such asymmetries
include deformation by magnetic fields and accretion of matter from a nearby object.

14Similar to the cosmic microwave background.
15Alternative models suggest detectable signals.
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behaviour of the binary neutron star system PSR1913+16 [14].

Since one of the stars in this system is a radio pulsar, the orbital parameters of the

binary can be determined to high precision.16 Recording these values as a function of

time showed that the orbit was decaying17 exactly as if it were radiating energy in the

form of gravitational waves in accordance with general relativity [15] (see fig. 1.2).

General Relativity prediction
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Figure 1.2: The orbit of the binary system PSR1913+16 decays exactly as if it is
emitting energy in the form of gravitational waves at the level predicted by general
relativity. Here the change in periastron epoch is shown as a function of time (blue)
together with the general relativistic prediction (red). The orbital period of the system
is ∼0.323 days. Adapted from [15].

16Better than one percent.
17By about 3 mm per cycle.
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1.2 Interferometric gravitational wave detectors

In this section we describe the design of contemporary interferometric gravitational

wave detectors. We start with the basic detection principle (§1.2.1) before moving on

to describe more advanced light recycling techniques in sections 1.2.3 and 1.2.4. We

finish our review by discussing future prospects for long baseline interferometers and

introducing other detector types.

Although the existence of gravitational waves was predicted in 1916 [5] it was not

until the 1960s that serious attempts to detect them began. This effort originated

with Joseph Weber’s room temperature acoustic detectors [16, 17]. Such instruments

operate by measuring the effects a gravitational wave has on the fundamental resonant

mode of a large aluminium bar [18, 19]. Following the lack of a confirmed detection,

bar detectors operating at and below the boiling point of liquid helium with improved

transducers were constructed. Work in this field continued, with modern resonant

detectors achieving strain sensitivities of h ∼ 10−21 Hz−1/2 over a few Hz bandwidth [20,

21, 22, 23]. Acoustic detectors have recently fallen out of favour but some interesting

new projects have been funded (e.g. [24, 25]).18

The narrow detection bandwidth of resonant detectors is a severe constraint. A more

promising design of gravitational wave detector, offering the possibility of high sensi-

tivity over a wide frequency band, uses laser interferometry to interrogate the positions

of widely separated test masses freely suspended as pendulums.

The study of ground based detectors of this type was pioneered in the 1970s by Forward,

Weiss, Drever and Billing [26, 27, 28, 29]. Their work outlined the specifications which

must be met in order for an interferometer to be astrophysically sensitive. These

guidelines continue to shape the design of gravitational wave interferometers today. We

now sketch the conceptual design of such detectors, introducing limiting fundamental

noise sources and resulting modifications to the ideal detector in §1.4 below.

18These acoustic detectors use spherical, rather than bar-shaped, resonators. Appropriately instru-
mented, this construction allows both the direction and polarisation of incident gravitational waves
to be determined using a single detector.
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1.2.1 Michelson

ωt = 0, π ωt = 3π/2 ωt = π/2 
Figure 1.3: The effect of a plus-polarised gravitational wave on a Michelson interfer-
ometer with suspended mirrors.

The quadrupolar nature of gravitational waves makes a Michelson interferometer an

ideal device with which to attempt detection. Imagine replacing two of the ring of free

particles shown in fig. 1.1 with mirrors and the central particle with a beamsplitter

(see fig. 1.3).

If the mirrors are suspended from pendulums they will respond just as the free particles

in fig. 1.1 and an appropriately polarised gravitational wave will alternately stretch and

contract the space separating the mirrors of each arm. This ‘displacement’ will impart

a phase shift on the injected laser light, evidenced by a changing interference pattern

at the output of the interferometer.

Consider a low frequency, plus-polarised gravitational wave. As we saw in §1.1, this
radiation will, for one particular phase, cause displacements of ∆x = (1/2)hLarm and

∆y = −(1/2)hLarm in the x and y arms respectively. Thus the total path length

change in each arm is hLarm and the total phase difference of the interfering beams is

∆φGW = 2khLarm, where k is the wavenumber.

For mirrors with a reflectivity of unity and a beamsplitter which is perfectly 50-50, the

power output at the anti-symmetric port of a Michelson interferometer may be written
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as

Pout =
1

2
PBS[1 + cos(∆φ)], (1.11)

where ∆φ is the differential phase between the beams returning from each arm and

PBS is the power on the beamsplitter.19 Thus the response to our gravitational wave

signal is

Pout =
1

2
PBS[1 + cos(∆φ+ 2khLarm)]. (1.12)

1.2.2 Arm cavities

From (1.12) we see that the sensitivity to gravitational wave signals improves with arm

length. The frequency dependent peak response is achieved when Larm = c/4fGW. For

signals with a frequency of 1 kHz this optimal length is around 75 km.

Realising an interferometer with 75 km arms poses significant technical challenges,

mainly due to the large beam spots which result and the curvature of the surface of the

Earth. A number of alternative solutions, which increase the phase shift effected by a

gravitational wave without changing the physical length of the arm, have been found.

The first involves repeatedly bouncing the light back and forth between two mirrors,

forming what is known as a delay line [30]. In this configuration the effective phase

shift is increased by a factor approximately equal to the number of bounces.

A second, currently more popular, approach is to allow the multiple beams of a delay

line to converge, forming a Fabry-Perot resonator (see §1.5.2). Including Fabry-Perot

cavities in the arms increases their effective length by a factor of 2F/π, where F is the

arm cavity finesse. Fig. 1.4 shows a Michelson interferometer with Fabry-Perot arms

(circled).

19The port of the Michelson where the laser light is injected is known as the symmetric port; the
port where the photodiode resides is known as the anti-symmetric port.
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ITMi

ETMp

ITMp

ETMiBS

Figure 1.4: A Fabry-Perot Michelson interferometer - input laser, beam splitter (BS),
input mirrors (ITMi and ITMp), end mirrors (ETMi and ETMp) and readout photo-
diode. Suffixes i and p denote the in-line and perpendicular cavities respectively.

1.2.3 Power recycling

In order to reduce shot noise20 (see §1.4) the output of the Michelson interferometer is

generally held at a dark fringe.21 In this condition the majority of the incident laser

power22 is reflected back toward the laser. By appropriately positioning a partially

transmissive power recycling mirror between the interferometer and the laser source,

the reflected light can be made to interfere constructively with the incoming field,

resonantly enhancing input power [31].

The analysis of a power-recycled system can be treated similarly to that of a two

mirror Fabry-Perot resonator, where the role of the input mirror is played by the

20Which scales with the square root of incident power.
21Light returning from both arms toward the anti-symmetric port interferes destructively.
22In a lossless interferometer this would be all of the incident power.
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Power Recycling (PR) mirror and the end mirror is assigned the complex reflectivity of

the Fabry-Perot Michelson (FPM). Working in this way, one finds that the maximum

power recycling gain23 is inversely proportional to the total loss AFPM in the FPM

GPR ≃ 1

AFPM

. (1.13)

In addition to increasing the effective laser power, the introduction of a power recy-

cling mirror also reduces the interferometer bandwidth for common mode signals. This

reduction in linewidth provides an additional level of filtration for noise in the car-

rier light without affecting differential signals, i.e. gravitational waves, which are not

recycled.

Power recycling is currently utilised in all operating detectors, with gain factors ranging

from about 30 to ∼2000.

1.2.4 Signal recycling

Just as the power recycling mirror is able to return reflected laser light into the inter-

ferometer, so it is also possible to control light exiting the anti-symmetric port of the

interferometer with the addition of a signal recycling mirror.

In an ideal interferometer, the only field exiting the anti-symmetric port is due to

differential arm motion. Thus the addition of a signal recycling mirror between the

beamsplitter and detection optics (see fig. 1.5) modifies the response of the instrument

to gravitational waves [32, 33]. Considering the cavity formed by the FPM and the

Signal Recycling (SR) mirror, the detuning from resonance24 determines the frequency

of gravitational wave sideband which is enhanced and the reflectivity of the SR mirror

determines the bandwidth and enhancement factor.

Currently the only long-baseline detector employing signal recycling is GEO600 [34].

23i.e. the maximum enhancement of the input laser power.
24Controlled by the microscopic position of the SR mirror (see §1.5.2).
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ITMi

ETMp

ITMp

ETMi

SRM

PRM
BS

Figure 1.5: A dual-recycled Fabry-Perot Michelson interferometer. The additional
vertex optics are necessary for the advanced techniques of power (PRM) and signal
(SRM) recycling.

However, in future upgrades other detectors such as LIGO [35] and VIRGO [36] will

adopt this advanced technique.

1.2.5 Detector projects

Around the world the effort to detect gravitational waves via interferometric means

continues apace.

The British-German GEO600 collaboration operates a 600 m detector near Hannover

[37]. GEO600 has pioneered the use of many technologies which will be implemented

by other detectors in coming upgrades, such as monolithic suspensions and signal
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recycling. In the future GEO600 will increase its input power and incorporate squeezed

light [38] to focus on high frequency sensitivity [39].

In contrast, the 3 km French-Italian VIRGO detector [36], located near Pisa, has

achieved greater sensitivity than any other instrument at low frequencies thanks to its

multi-stage vibration isolation systems which filter seismic noise [40].

The LIGO project, overseen jointly by Caltech and MIT, consists of three detectors25

distributed over two sites and has led the way in producing astrophysically relevant

data. The LIGO interferometers are the most sensitive of the currently operating

detectors [35].

Although currently operating the 300 m TAMA detector [41], the thrust of research

in Japan is toward the proposed cryogenic detector LCGT [42]. To this end, a proto-

type low temperature detector, CLIO [43], has been constructed underground in the

Kamioka mine to demonstrate the reduction of mirror thermal noise through cooling.

Both LIGO and VIRGO are preparing for major upgrades to become second generation

instruments, Advanced LIGO and Advanced VIRGO respectively. These upgrades

involve comprehensive modifications of almost every interferometer subsystem.

Input power will be increased from ∼10 W to ∼100 W. Beam spots on the optics will

grow by factor of ∼2 to around 6 cm. The test masses themselves will increase in

mass from 10 kg or 20 kg to approximately 40 kg. Signal recycling and DC readout

[44, 45] will be adopted. Suspension systems will abandon metal wires to suspend

fused silica masses from fused silica fibres in a quasi-monolithic fashion. In the case of

LIGO, passive seismic isolation stacks will be replaced by actively damped platforms

and the place of simple wire-loop suspensions will be taken by multi-stage pendulums

with suspended actuators.

With these changes it is hoped that mid-band strain sensitivity will improve by an order

of magnitude. Both detectors performed intermediate upgrades, Enhanced LIGO and

25Two 4 km in length and one 2 km.



1.3 Test masses 16

Virgo+, as a stepping stone toward Advanced status [46, 36].

Although the construction of Advanced LIGO is expected to continue until ∼2015, a

design study of third generation detectors is currently being made [47]. Funded by

the European Union, the goal of this project is to provide an interferometer design

which offers 100 times better sensitivity than current detectors. No firm results have

been published but it seems likely that the resulting design will incorporate some of the

following ideas: longer arms, ∼ 10 km; increased input laser power, ∼ 500 W; squeezing

[38], ∼10 dB at all frequencies; larger beams,26 ω ∼ 10 cm; cryogenic temperatures;

underground construction; complex multi-stage seismic isolation and larger test masses,

∼100 kg.

Given the work of this thesis, we naturally focus on ground based interferometric

gravitational wave detectors. However there exist a number of other detection methods

currently being researched. Examples include the space-borne interferometer project

LISA [48], pulsar timing [49], spacecraft Doppler tracking [50] and atom interferometry

[51].

1.3 Test masses

Central to the operation of an interferometer are the test masses which form its arms,

either as the end mirrors of a Michelson or as the boundaries of resonant cavities.27

Suspended so that they are freely falling, the test masses respond to the passage of

gravitational waves; the highly reflective coatings deposited on their surfaces allow one

to measure this response. In this section we briefly describe the design of a test mass

appropriate for Advanced LIGO (AdvLIGO) as a way of introducing features common

to the test masses of all second generation interferometers.

26Gaussian or otherwise
27The two mirrors of the Fabry-Perot arm cavities are usually called the Input Test Mass (ITM)

and End Test Mass (ETM).
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1.3.1 Substrate

The test mass substrate is constructed from a cylinder of high quality fused silica,28

chosen for its mechanical and optical properties.29 The substrate has a diameter of

34 cm and a thickness of 20 cm, its plane faces have an angle of∼ 0.1◦ between them and

all corners have a 2 mm, 45◦ chamfer. The size of the substrate is chosen considering the

capabilities of the suspension system and future manufacturing processes. In general

the substrate should be as large as possible.

A flat surface is machined on either side of the substrate at a distance of ∼163 mm from

the optic’s centre line. Silica ‘ears’ are hydroxy-catalysis bonded [53] onto each flat to

provide an attachment point for the fused silica fibres which suspend the optic (see

fig. 1.6).30 More information on the AdvLIGO suspension system is given in section

5.3.1.1.

All surfaces of the optic are polished to a five micrometre grit finish. Further attention

is paid to the optical surfaces and to the regions where ears will be bonded. For the

front surface of the optic, the allowable radius of curvature error is of order 10 m or

0.5%.

In addition to the ears, other items may be attached to the test masses. If the orien-

tation and position of the masses is to be controlled using coil-magnet actuators, four

small magnets will be fixed their rear surfaces. AdvLIGO will instead use electrostatic

drives (see §5.1.5). To mitigate parametric instabilities, lossy materials or dampers can

be attached to the barrels of the masses. AdvLIGO will likely employ acoustic mode

dampers (see §5.1.4.4).
28Low temperature experiments currently favour sapphire [42] and in the future may adopt silicon

[52].
29Quantities such as mechanical loss, the coefficient of thermal expansion, the thermo-optic coeffi-

cient dn/dT and optical absorption are key drivers.
30For more traditional wire suspensions, stand-offs or clamps will be attached in similar positions

using e.g. epoxy.
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Figure 1.6: Left: Image of the penultimate mass and test mass hanging in the lower
suspension structure. Right: Test mass flat and bonded ear. Adapted from [54].

1.3.2 Optical coatings

Since the laser light in the interferometer contains a very narrow range of frequencies,

the high reflectivity required of the test masses can be realised by depositing a Bragg

mirror on the surface of the substrate. A Bragg mirror consists of a series of thin

layers of dielectric material with varying refractive indices. At each interface between

materials, part of the incident light undergoes Fresnel reflection. By controlling the

thickness of each layer the reflected beams can be made to interfere constructively,

resulting in a strong reflection.

One common configuration utilises alternating layers of two materials, one high index,

one low (see fig. 1.7). For a given number of layers optimal reflectivity is obtained

when the thickness of each layer is λ/4.31 As the number of layers increases, so does

the reflectivity.

31These are the wavelengths in the medium. Such a configuration is often called a quarter wave
stack.
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nH nL nsub nH nL nH nLn0 

... 

Figure 1.7: The optimal reflectivity Bragg mirror consists of alternating layers of high
(nH) and low (nL) refractive index material where each layer has a thickness of λ/4.
The refractive indices of the substrate and surroundings are denoted by nsub and n0

respectively.

The reflectivity of such mirrors may easily be calculated [55]. For each layer we con-

struct a transfer matrix given by

Mi =




cos(kili) − j

ni
sin(kili)

−jni sin(kili) cos(kili)



 , (1.14)

where ni is the refractive index of layer i, ki = 2π/λi = 2πni/λ0 is its wavenumber

and li is its thickness. Normal incidence is assumed. The transfer matrix of the entire

stack is got by matrix multiplication

Mstack =M1M2 · · ·MN =




A B

C D



 . (1.15)

Writing the matrix of the system in this way, the amplitude reflectivity and transmis-

sivity of the mirror are

r =
An0 +Bn0nsub − C −Dnsub

An0 +Bn0nsub + C +Dnsub

, (1.16)

t =
2n0

An0 +Bn0nsub + C +Dnsub

, (1.17)

where n0 and nsub are the refractive indices of the surroundings and mirror substrate
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respectively.32 The power reflectivity of mirrors with 16 and 32 layers are plotted, as

a function of wavelength, in fig. 1.8.
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Figure 1.8: Power reflectivity of multilayer dielectric mirrors with 15 and 31 λ/4 layers
and a λ/2 low index cap layer (nH = 2.12, nL = 1.46). T denotes power transmission.

For AdvLIGO the end mirror transmission is to be below 20 ppm, for the input mirror

the current design value is 1.4%. However these are not the only constraints. Other

qualities such as absorption, scattering and thermal noise also influence the coating

design.

1.3.2.1 Optimised coatings

In future gravitational wave detectors Brownian thermal noise in the test masses’ highly

reflective coatings is expected to be a significant source of displacement noise (see

§4.2.6). Realisation that this thermal noise contribution is dominated by the high

32All of the above applies equally to the anti-reflective coatings applied to the rear faces of the test
masses. In this case the optimal layer thickness is λ/2.
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index material33 prompted investigations into the structure of the coating.

Numerical optimisation revealed that by deviating from the standard quarter wave

stack thermal noise could be reduced by approximately 20% [57]. The final design

used high-low index pairs with a total thickness of λ/2 as before but instead of two

λ/4 layers the high index layer was made thinner, reducing the total amount of the

noisy material. The specified reflectivity of the coating was maintained by adding more

layers.

By moving away from quarter wave stacks it is also possible to achieve good reflectivity

at more than one wavelength. Such coatings will be used to accommodate deterministic

locking schemes employing multiple laser frequencies [58].34

1.4 Noise

In this section we present some of the major limiting noise sources which have guided

interferometer design or impacted detector operations. We focus mainly on fundamen-

tal noise sources,35 introducing technical noise sources36 only as applicable to our work.

We consider arms of length 4 km and assume no correlation between the noise observed

at opposite ends of each arm.

Since interferometers are designed to detect gravitational wave strain amplitudes, it is

often convenient to discuss noise sources in terms of equivalent strain noise, i.e. the

amplitude of gravitational wave strain which would produce the same measured signal

at the output of the interferometer. This idea is utilised even when the noise source

33The high and low index materials favoured by the Laser Interferometer Gravitational wave Ob-
servatory (LIGO) collaboration are silica and titania-doped tantala [56].

34The requirements at the second wavelength are not as stringent as those for the main interferom-
eter beam.

35 Fundamental noise sources are driven by the underlying laws of physics and cannot be removed.
We can however, by clever design of our instruments reduce the impact of these effects. Thermal noise
would be a good example of this type of noise.

36Technical noise arises due to ‘real-world’ effects, the kind that are never discussed in the classroom.
A good example of technical noise would be RF oscillator phase noise. Identifying and controlling
technical noise occupies much of the detector commissioning time.
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under consideration is in no sense a strain e.g. mirror thermal noise (see fig. 1.9).
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Figure 1.9: Noise from selected sources described in terms of equivalent strain noise.
Quantum noise encompasses both radiation pressure noise and shot noise.

1.4.1 Seismic noise

For terrestrial gravitational wave detectors one of the principal limits to low frequency

sensitivity is imposed by seismic motion. This noise comes from a variety of sources –

ocean waves, human activity and all the pumps, fans and air conditioning equipment

necessary at any large scale laboratory.

This noise is strongly site dependent but even at the quietest of locations the motion is

several orders of magnitude greater than that expected from gravitational waves. For

frequencies above ∼1 Hz

hseismic(f) ∼
10−8

f 2

[
1√
Hz

]

. (1.18)

In order to isolate the interferometer’s mirrors from ground motion multi-stage iso-
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lation systems are used.37 For a discussion of the solutions employed by the Laser

Interferometer Gravitational wave Observatory (LIGO) collaboration see §5.3.1.1.

1.4.1.1 Gravity gradient noise

Newtonian or gravity gradient noise (see e.g. [59]) is a related noise source which cannot

be isolated against by traditional methods. This noise emerges when fluctuations in the

local gravitational field act on the test masses to produce a measurable displacement.

Such fluctuations can arise due to passing seismic waves changing the local density of

the earth [60] or by anthropogenic means [61].

The transfer function T (f) from the spectrum of rms seismic displacements averaged

over horizontal and vertical directions W (f) to the spectrum of differential test mass

motion x(f) has form

T (f) =
x(f)

W (f)
=

4πGρ
√

(ω − ω0)2 + ω2/τ 2
β(f), (1.19)

where G is the gravitational constant, ρ is the density of the earth near the test

mass, ω is the angular frequency of the seismic waves38 and ω0 and τ are the resonant

frequency and damping time of the test mass pendulums. The parameter β(f) is a

model dependent dimensionless parameter in the range ∼0.1-1 (see [59, 60]). One

estimate of the resulting strain noise is approximately

h(f) ∼ 5× 10−23

√
Hz

×







(
10 Hz

f

)2

: 3 Hz . f < 10 Hz
(
10 Hz

f

)4

: 10 Hz < f . 30 Hz

(1.20)

This noise is not of an immediately concerning level but it could be meaningful in

second generation instruments around 10 Hz.

Strategies for mitigating gravity gradient noise include active correction using seis-

37Pendulums, mass-spring stacks, active hydraulic platforms etc.
38And the resulting fluctuating forces.
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mometer arrays and underground operation with the test masses housed in spherical

caverns [62].

1.4.2 Radiation pressure noise

In order to reduce shot noise (see §1.4.4) scientists continually strive to increase the

circulating power in their interferometers. One of the undesirable consequences of this

increased power is radiation pressure noise due to fluctuations in the vacuum field

entering the anti-symmetric port of the interferometer [63]. The amplitude spectral

density of displacement noise arising from these fluctuations is given by [64]

δx(f) =

√

Pcirch

2m2π4f 4cλ

[
m√
Hz

]

, (1.21)

where m is the mass of an interferometer optic.

This displacement noise may prove troublesome at low frequencies in future interfer-

ometers. It may be suppressed either by using more massive optics or by sacrificing

high frequency sensitivity through a reduction in laser power.

1.4.3 Test mass thermal noise

One of the principal goals of this work is to investigate the feasibility of using a non-

Gaussian optical field in long baseline interferometers. This new mode is of interest as

it is predicted to reduce measured test mass thermal noise. Appropriately, a thorough

introduction to the principal forms of thermal noise, including an indication of how

to quantify their magnitudes, is presented later in §4.2. In this section we provide a

concise summary.

The different forms of thermal noise are generally associated with some form of dissi-

pation via the Fluctuation Dissipation Theorem (FDT) (see §4.2). Before discussing
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each of these different mechanisms it is important to understand that modern methods

of calculating thermal noise, which allow for inhomogeneous loss, have revealed that

the physical distribution of dissipation throughout the test mass is important [65, 66].

Loss located closest to the incident laser beam which probes the test mass’s position

is most important. Hence dissipation mechanisms active in the test masses’ dielectric

coatings are the leading sources of interferometer displacement noise.

1.4.3.1 Brownian thermal noise

Brownian thermal noise may be thought of as a variation in the position of the mirror’s

surface due to fluctuations induced by internal friction [67].

Brownian noise is quantified by the introduction of a complex elastic modulus,

Y → Y (1 + jφ), the imaginary part of which is known as the loss angle [68]. The loss

angle is a function of the material in use and is related to its quality factor by Q = 1/φ.

The magnitude of Brownian thermal noise is directly related to this material loss.

Continuing efforts to measure φ (e.g. [69, 70, 71, 72]) have revealed that the dominant

contribution to thermal noise comes from the high index layer39 in the mirror’s dielectric

coating.

1.4.3.2 Thermoelastic noise

Despite being in equilibrium with an external reservoir, the test mass continually ex-

changes energy with its surroundings. Although not strictly correct, it is convenient

to regard these energy fluctuations as fluctuations in temperature. For test mass ma-

terials with non-negligible coefficients of thermal expansion these fluctuations will give

rise to motion.

Alternatively, one can view thermoelastic noise as a result of a thermoelastic damping

process. Braginsky et al. [73] showed that the application of a periodic pressure to the

39Ta2O5.
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surface of the test mass induces heat flux and therefore energy dissipation.

Concern regarding thermoelastic noise originally motivated the switch to non-Gaussian

beams. In current interferometer designs thermoelastic noise is no longer the chief con-

cern but it may be important in future interferometers employing test mass substrate

materials such as sapphire.

1.4.3.3 Thermorefractive noise

Just as non-null coefficients of thermal expansion give rise to measured displacement

noise, so too do non-null thermo-optic coefficients,40 through changes in the phase of

the reflected light. This noise is particularly important in transmissive optics [74] and

in the highly reflective coatings applied to the test masses, as materials in thin film

form can have much larger values of β [75, 76].

Recent research efforts [77] have shown that, since they are driven by the same tem-

perature fluctuations, thermoelastic and thermorefractive noises in dielectric coatings

may be treated as a single thermo-optic noise. This coherent treatment revealed that

the two mechanisms appear with a relative negative sign so that their combined con-

tribution has previously been overestimated. Including the cancellation effect, this

noise becomes insignificant in comparison to coating Brownian noise and should not be

considered a key driving force in coating design for second generation interferometers.

Direct measurement of test mass thermal noise is an extremely difficult task requiring

highly specialised apparatus. One such setup, known as the Thermal Noise Interferom-

eter (TNI), has been constructed at the California Institute of Technology [78, 79, 80].

This device, modelled after the initial LIGO interferometers, is used to test the prop-

erties of mirrors destined for full scale detectors.

Methods being explored for the reduction of test mass thermal noise include operation

at cryogenic temperatures [43, 42], modifications to the optical modes used in the

40β = dn/dT .



1.4 Noise 27

interferometer (see §2.1) and implementation of improved materials.

Prospects for the first two methods seem bright. Although experimentally challeng-

ing, there exist known pathways toward reduced thermal noise. However, the search

for improved materials is a more difficult task as the mechanisms which give rise to

mechanical loss, and therefore thermal noise, are just beginning to be understood.

1.4.4 Shot noise

A fundamental limit to the sensitivity of optical readout in gravitational wave inter-

ferometers is set by shot noise in the detected light power. The detection process is

assumed to obey Poisson statistics, so that the amplitude spectral density of noise

associated with Pdc watts of detected power is

δP (f) =

√

2Pdchf

η

[
W√
Hz

]

, (1.22)

where η is the quantum efficiency of the photodiode and h is Planck’s constant.

The equivalent strain noise introduced by photon shot noise is dependent on both the

optical configuration of the interferometer and the particular scheme used to read out

differential arm motion.

Consider the case of a Michelson interferometer (see §1.2.1) operating at half-fringe, the
point where differential arm motion produces the largest response. In this configuration

∆φ = π/2 (see (1.11)). Detecting signals at both the symmetric and anti-symmetric

ports, the total dc power recorded and dPdc/d∆φ are both equal to PBS. The resulting

shot noise limited phase sensitivity is

δφ(f) =
d∆φ

dPdc

∣
∣
∣
∣
∆φ=π/2

δPdc(f) =

√

2hf

PBSη

[
rad√
Hz

]

, (1.23)
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or in terms of strain

δh(f) =
dh

dPdc

∣
∣
∣
∣
∆φ=π/2

δPdc(f) =
1

πL

√

hλc

8PBSη

[
1√
Hz

]

. (1.24)

In reality, due to power recycling, long baseline gravitational wave interferometers do

not operate at half fringe. Maximising the signal to shot noise ratio in a power recycled

interferometer, one finds that the optimal working point is in fact just a small offset

from the dark fringe. In such instruments shot noise is usually the dominant noise

source above a few hundred Hz.

1.4.5 Residual gas noise

The sensitivity of modern interferometers is such that even statistical fluctuations in

the density of residual gas in the vacuum enclosure is of concern. These effects were

a strong influence on the design and cost of first generation interferometer facilities.

Taking account of the variation in spot size ω(z) along the length of the arm, one model

[81] predicts the power spectral density of optical path length variation to be

SL(f) =
4ρ(2πα)2

v0

Larm∫

0

exp[−2πfω(z)/v0]

ω(z)
dz (1.25)

for a particular molecule with number density ρ, most probable speed v0 and polaris-

ability α. The amplitude spectral density of differential arm length variations will be
√

2SL(f).

Formulae such as this provide maximum allowable pressures for each type of gas and

inform the design of vacuum systems. For example, the LIGO detector does not allow

residual gas phase noise above the h ∼ 10−24 level at 100 Hz. For hydrogen this

limits the pressure to a maximum of 10−6 torr throughout a 20,000 m3 envelope. Such

specifications have been met but as we progress toward third generation detectors

facility limits will likely be tested.
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The direct interaction of residual gas with the interferometer’s suspended test masses

can also introduce measurable noise. This noise source has recently become an issue of

concern for the AdvLIGO detectors. In these instruments a second cylinder of fused

silica is suspended directly behind each test mass at a nominal separation of 5 mm (see

fig. 5.12). This reaction mass accommodates actuators which control the position and

orientation of the test mass (see §5.1.5). Recent findings indicate that the narrow gap

between the two masses will lead to enhanced gas damping, even when pressures are

low enough such that collisions between the gas molecules themselves may be ignored

[82].

Estimates of the displacement noise resulting from gas damping are a strong function

of the gas pressure achieved in the vacuum system. Current estimates suggest that

gas damping noise will be comparable to radiation pressure noise at low frequencies41

[83, 84, 85], making it one of the principal components of the interferometer noise

budget.

Possible methods of reducing gas damping noise include: increasing the separation be-

tween the two masses, modifying the reaction mass so that gas flow is less constrained42

or working to reduce the residual gas pressure. Whichever scheme is chosen many prac-

tical issues remain to be overcome [83] and any modifications may be implemented as

a retrofit after AdvLIGO has already commenced operation.

1.4.6 Laser frequency noise

For a single Fabry-Perot cavity, fluctuations in laser frequency are indistinguishable

from cavity length variations. The spectral density of fundamental frequency noise43

is given by [86]

fnoise = ∆fFWHM

√

2hf

Plaser

[
Hz√
Hz

]

, (1.26)

41∼ 10 Hz to ∼ 40 Hz.
42For example machining channels in its surface.
43The Schawlow-Townes limit.
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where ∆fFWHM is the cold laser cavity linewidth. This noise level is independent of

frequency and is due to perturbations of the carrier field via spontaneous emission and

linear losses in the laser resonator.

The output frequency noise of real lasers is more usually dominated by other noise

sources which vary the path length in the laser resonator. These effects give the spectral

density of noise a 1/fn dependence, particularly at low frequencies.

Gravitational wave detectors go to great lengths to stabilise the frequency of their laser

light, locking it to a series of stable resonators and finally to the common mode of the

interferometer itself (see e.g. §5.1.4 of [87]).

1.5 Optics

Below we introduce the key ideas in optics necessary to understand both the design of

gravitational wave detectors and the results of the coming sections. We begin by in-

troducing the Gaussian beam and describing its properties before moving on to optical

resonators.

1.5.1 Gaussian beams

Our work concerns the interaction of coherent, monochromatic laser light with struc-

tures far larger than the laser wavelength. Under these conditions Maxwell’s equations

for beam propagation can be replaced with the Helmholtz equation

(∇2 + k2)Ψ(x, y, z) = 0, (1.27)

where k = 2π/λ is the wavenumber and Ψ(x, y, z) is the complex electric field. For

a beam propagating in the z direction, with only slow variation in the transverse

dimensions, we write Ψ(x, y, z) = ψ(x, y, z) exp(−jkz), where ψ(x, y, z) is a slowly
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varying complex function which describes the differences between a laser beam and a

plane wave. We then assume paraxial behaviour ∂2ψ/∂z2 ≃ 0 so that (1.27) becomes

(
∂2

∂x2
+

∂2

∂y2
− 2jk

∂

∂z

)

ψ = 0, (1.28)

the paraxial wave equation.

The paraxial wave equation supports an infinite number of solutions, one of which is

the Gaussian beam. Use of this particular solution is widespread as it is an eigenmode

of free space,44 it remains Gaussian upon propagation through optical systems,45 it is

the lowest order resonant mode in spherical mirror cavities and the output mode of

most laser systems is Gaussian. This mode may be expressed as

Ψ(x, y, z) =

√

2

πω2(z)
exp

[

− x2 + y2

ω2(z)
− jk(x2 + y2)

2R(z)
− j(kz −G(z))

]

. (1.29)

The Gaussian beam can be characterised at all points along its propagation axis by

two parameters – the radius of curvature of its wavefront R(z) and the radius ω(z) at

which the beam intensity drops to Imax/e
2, often called the spot size. The minimum

value of the spot size,46 known as the waist, is denoted by ω0. Defining a characteristic

length scale zR known as the Rayleigh range

zR =
πω2

0

λ
, (1.30)

R(z) and ω(z) are given by

R(z) = z

[

1 +

(
zR
z

)2]

and ω(z) = ω0

√

1 +

(
z

zR

)2

. (1.31)

The behaviour of these quantities on propagation is shown in figures 1.10 and 1.11.

At the waist the Gaussian beam wavefront is flat; at z = zR it achieves its minimum

44As it propagates a Gaussian beam remains Gaussian, only the beam width varies.
45Ideal lenses, mirrors etc.
46Which must be large in comparison to λ under the paraxial approximation.
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Figure 1.10: Wavefront curvature of a Gaussian beam upon propagation.

radius of 2zR. On propagation beyond the Rayleigh range the wavefront curvature

approximates that of a spherical wave R(z) ≃ z. Propagating from the waist to zR the

beam’s spot size grows by a factor of
√
2 in radius and 2 in area. Thereafter growth is

quasi-linear with ω(z) ≃ ω0z/zR.
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Figure 1.11: Spot size of a Gaussian beam upon propagation.
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The term G(z) is known as the Gouy phase and represents the retardation of our

Gaussian beam solution relative to an equivalent plane wave [88]. This phase may be

written

G(z) = arctan

(
z

zR

)

. (1.32)

The overall Gouy phase shift propagating from far field to far field through a focus

is π (see fig. 1.12). This additional phase breaks the degeneracy of optical resonators

(see §1.5.2) and plays a crucial role in the separation of differential wavefront sensing

signals (see §3.2.1.1).
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Figure 1.12: Gouy phase of a Gaussian beam upon propagation.

1.5.1.1 Higher order modes

The Gaussian beam is only one solution of the paraxial wave equation (1.28) with

special properties. In this section we address two solution families, called modes of

propagation, which form complete sets of basis functions Ψmn. Any optical mode can

be expressed as a linear combination of these modes Ψ′ =
∑

m,n cmnΨmn.
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Hermite-Gaussian modes In standard Cartesian coordinates the propagation modes

may be written

Ψmn(x, y, z) =

√

2

2m+nm!n!πω2(z)
Hm

(√
2x

ω(z)

)

Hn

(√
2y

ω(z)

)

× exp

[

− x2 + y2

ω2(z)
− jk(x2 + y2)

2R(z)
− j(kz − (m+ n+ 1)G(z))

]

,

(1.33)

where Hi(x) denotes a Hermite polynomial of order i in x and all other parameters are

as before.

The first few Hermite polynomials are

H0(x) = 1,

H1(x) = 2x, (1.34)

H2(x) = 4x2 − 2.

The intensity profiles of the lowest order Hermite-Gaussian modes are plotted in

fig. 1.13. Notice that the mode Ψmn has m nodes in the x direction and n nodes

in the y direction. Also note that Ψ00 is nothing other than the standard Gaussian

beam described above. For this reason, the Gaussian beam is often called the funda-

mental or lowest order mode. Modal expansions in the Hermite-Gauss (HG) basis are

often used when modelling spherical mirror resonators. These modes are particularly

adept in describing beams propagating along an axis which is tilted or translated with

respect to the fiducial frame (see §3.2.1.1).

Laguerre-Gaussian modes The propagation modes may also be expressed in cylin-

drical coordinates (r, φ, z) as

Ψmn(r, φ, z) =

√

4

(1 + δn0)πω2(z)

m!

(m+ n)!

(√
2r

ω(z)

)n

Ln
m

(
2r2

ω2(z)

)

cos(nφ)

× exp

[

− r2

ω2(z)
− jkr2

2R(z)
− j(kz − (2m+ n+ 1)G(z))

]

,

(1.35)
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Figure 1.13: The intensity profiles of low order Hermite-Gaussian modes. The Ψmn

mode has m nodes in the x direction and n in the y direction.

where Ln
m(x) are the generalised Laguerre polynomials

Ln
m(x) =

ex

m!xn

(
d

dx

)m

(xn+me−x). (1.36)

The definition of angle is arbitrary, we may replace the cos(nφ) term with sin(nφ),

preserving a solution. We may also replace it with exp(jnφ) to obtain modes exhibiting

an axially symmetric intensity profile. Such modes are known as a helical Laguerre-

Gauss (LG) modes due to the shape of their phasefronts. Helical LG modes can be

written

Ψmn(r, φ, z) =

√

2

πω2(z)

m!

(m+ n)!

(√
2r

ω(z)

)n

Ln
m

(
2r2

ω2(z)

)

exp(jnφ)

× exp

[

− r2

ω2(z)
− jkr2

2R(z)
− j(kz − (2m+ n+ 1)G(z))

]

.

(1.37)

This axial symmetry is particularly useful when working with symmetric models during

thermal noise or thermal deformation calculations. Modal expansions in the LG basis
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Figure 1.14: Intensity profiles of low order sinusoidal Laguerre-Gaussian modes. The
Ψmn mode has m nodes in the radial direction and n in the azimuthal direction.

are often used in describing mode mismatches between beams due to incorrect waist

sizes or positions. The intensity profiles of low order helical and sinusoidal LG modes

are shown in figures 1.14 and 1.15. Notice again that Ψ00 is a standard Gaussian mode.

1.5.2 Resonators

In gravitational wave interferometers optical resonators are used to filter amplitude

and frequency noise, to remove spurious higher order modes and to enhance the phase

response to differential arm motion.47 Optical resonators were also used extensively

in our experimental work. In this section we outline the properties of these devices,

examining resonator modes, stability and frequency response. In §1.5.2.5 we describe

the standard technique used to lock a laser source to an optical resonator – Pound-

Drever-Hall reflection locking. For concreteness we limit our discussion to a simple two

47i.e to increase the effective arm length as discussed in §1.2.2.
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Figure 1.15: Intensity profiles of low order helical Laguerre-Gaussian modes. These
modes exhibit useful radial symmetry.

mirror resonator in vacuum. Throughout this section and the rest of this document

the terms resonator, cavity and (Fabry-Perot) interferometer are used interchangeably.

1.5.2.1 Modes

In the form applicable to gravitational wave interferometers, the optical resonator, first

investigated at the end of the 19th century by Fabry and Perot [89, 90], usually consists

of a pair of partially reflective spherical48 mirrors arranged such that light bouncing

back and forth between them may form a standing wave. In this configuration, only a

field pattern which reproduces itself upon each cavity round trip has the chance to be

resonantly enhanced. Such fields are called resonator modes.

In a spherical mirror cavity the resonator modes must have wavefront curvatures at

each mirror position which match that mirror’s figure. For a cavity of length L, formed

48Including the limit of infinite radius of curvature.
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by mirrors with radii of curvature R1 and R2, the waist of such a mode is given by

ω2
0 =

Lλ

π

√

g1g2(1− g1g2)

(g1 + g2 − 2g1g2)2
, (1.38)

where

g1 = 1− L

R1

and g2 = 1− L

R2

(1.39)

are the cavity g factors. The positions of each mirror relative to this waist, taken to

be at z = 0, are

z1 =
g2(1− g1)

g1 + g2 − 2g1g2
L and z2 =

g1(1− g2)

g1 + g2 − 2g1g2
L. (1.40)

A cavity is said to be mode matched if the waist size and position of the input light

field match those of the cavity mode.

The bulk of this thesis is concerned with the relationship between mirror shapes and

cavity modes. Specifically, we seek to create a non-spherical cavity whose fundamental

mode has a predominantly flat topped intensity distribution (see §2.1).

1.5.2.2 Resonant frequencies

For a resonator with spherical mirrors every member of the HG and LG families (see

§1.5.1) is a cavity mode. However they are not all resonant simultaneously. In order

for a cavity mode to be resonantly enhanced the intracavity field must interfere con-

structively with the input field. This condition corresponds to the cavity round trip

phase φrt being an integer multiple of 2π. For a HG mode we have

φrt = 2

(
2πf

c
L− (m+ n+ 1)[G(z2)−G(z1)]

)

= a2π, a ∈ Z. (1.41)

Using equations (1.38) and (1.40), [G(z2)−G(z1)] may be replaced by arccos[±√
g1g2],

where the plus sign is taken for g1, g2 > 0 and the negative for g1, g2 < 0. Solving for
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f gives an expression for the resonant frequencies of HG modes

fHG

mn =
c

2L

(

a− (m+ n+ 1)
arccos[±√

g1g2]

π

)

. (1.42)

In the same way an equivalent expression for LG modes may be found

fLG

mn =
c

2L

(

a− (2m+ n+ 1)
arccos[±√

g1g2]

π

)

. (1.43)

Thus by choosing the cavity geometry carefully the degeneracy of the higher order

modes may be controlled. This is crucial in gravitational wave interferometers where

it is important that only a single cavity mode is resonant.49 In §2.3.2 we study the

resonant frequencies of higher order modes in a non-Gaussian resonator.

The cavity geometry also influences the spot size on each of the cavity mirrors. This

has a direct effect on the measured thermal noise. Since the End Test Mass (ETM)

has more coating layers than the Input Test Mass (ITM), thermal noise is minimised

by having a bigger spot on the ETM and the cavity waist slightly closer to the ITM.

This has the added benefit of reducing the beam’s spot size in the recycling cavities.

1.5.2.3 Stability

Not all cavity geometries are useful. In order for a cavity to be stable its optics must

periodically focus paraxial rays. This occurs when the cavity g factors satisfy the

following criterion

0 6 g1g2 6 1. (1.44)

This idea may be represented graphically on a cavity stability diagram (see fig. 1.16).

All cavity configurations falling within the shaded area are said to be stable.

We now discuss certain special cavity types and nomenclature used in our work. These

cavity configurations are marked on fig. 1.16.

49For alignment purposes the resonant properties of higher order modes are also important [91].
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Figure 1.16: Cavity stability diagram.

A symmetric resonator is one with g1 = g2. These cavities lie along the dashed red line

in fig. 1.16. A half-symmetric resonator has one plane mirror and one curved mirror.

Such a resonator is equivalent to half of a symmetric system which is twice as long.50

A confocal resonator has R1 = R2 = L and therefore g1 = g2 = 0. The confocal

resonator has the smallest average spot size along its length of any stable configuration.

The degeneracy of confocal resonators is useful in the construction of devices such as

optical spectrum analysers.

Nearly flat resonators have R1 ≃ R2 ≃ ∞ and g1 ≃ g2 ≃ 1. Thus they are on the edge

of stability and are very difficult to align. Our experimental non-Gaussian cavity falls

into this category (see §2.2).
50Our experimental mesa beam cavity utilised this property to limit its length to a reasonable value.
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A 

B 

C 

Figure 1.17: Radiation pattern of special cavity types. A - Flat, B - Confocal, C -
Concentric.

Nearly concentric resonators are also marginally stable, having R1 ≃ R2 ≃ L/2 and

g1 ≃ g2 ≃ −1. The cavities of AdvLIGO and AdvVIRGO are expected to be of nearly

concentric construction to increase the spot size on the cavity mirrors.

Fig. 1.17 presents the radiation pattern inside each of these cavity types.

1.5.2.4 Longitudinal response

We now investigate the response of the cavity fields to longitudinal mirror motions.51

For clarity we assume that the input laser field consists of a fundamental Gaussian

mode, perfectly matched to a lossless cavity. Under these assumptions our analysis is

51In all studies of Fabry-Perot cavities there is an equivalence between cavity length changes and
laser frequency modulations.
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similar to that of a plane wave incident on a plane-plane cavity.

1 2 3 4

567 

Mirror A Mirror B 

L 

Figure 1.18: Enumeration of cavity fields for the calculation of longitudinal response.

With reference to fig. 1.18, the cavity fields are

Ψ2 = jtAΨ1 + rAΨ6,

Ψ3 = Ψ2 exp(−jφ),

Ψ4 = jtBΨ3, (1.45)

Ψ5 = rBΨ3,

Ψ6 = Ψ5 exp(−jφ).

Ψ7 = rAΨ1 + jtAΨ6.

where rA, rB and tA, tB are the amplitude reflectivities and transmissivities of mirrors

A and B, φ = kL is the one way cavity phase and we have adopted the sign convention

that a beam transmitted by a mirror acquires a phase shift of π/2.

Solving (1.45) the complex amplitude reflectivity, transmissivity and gain of the cavity

are found:

r(φ) =
Ψ7

Ψ1

= rA − t2ArB exp(−j2φ)
1− rArB exp(−j2φ) , (1.46)

t(φ) =
Ψ4

Ψ1

= − tAtB exp(−jφ)
1− rArB exp(−j2φ) , (1.47)

g(φ) =
Ψ2

Ψ1

=
jtA

1− rArB exp(−j2φ) . (1.48)

We say that the cavity is resonant when φ = aπ; a ∈ Z. In this state both the



1.5 Optics 43

circulating and transmitted powers are maximised.
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Figure 1.19: The phase and power in the field reflected from a Fabry-Perot cavity with
r2A = 0.95, r2B = 0.99 and no losses. Mirrors A and B are swapped to investigate
undercoupled cavities.

Figures 1.19 and 1.20 plot the power and phase of the reflected and transmitted cavity

fields as a function of φ. Notice that the phase of the reflected field depends on the

mirror reflectivities. For r1 < r2 the field reflected at resonance is π out of phase

with the incoming field, whereas for r2 < r1 there is no phase shift. This is due to

the relative strengths of the field promptly reflected by the input mirror and the field

leaking out of the cavity.52

When r1 < r2 the reflected field is dominated by cavity leakage. In this case the cavity

is called overcoupled. Conversely, when r2 < r1, the promptly reflected field dominates

and the cavity is said to be undercoupled. Optimal coupling occurs when r1 = r2. An

optimally coupled cavity transmits all light incident upon it.53

Notice also that the reflected phase is extremely sensitive to small changes in cavity

52The first and second terms of (1.46) respectively.
53In reality the losses also play a role in determining the cavity coupling but these have been

neglected here.
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Figure 1.20: The phase and power in the field transmitted by a Fabry-Perot cavity
with r2A = 0.95, r2B = 0.99 and no losses.

tuning about resonance, explaining why resonant cavities are used in the arms of most

gravitational wave interferometers.

Writing the intracavity power Pcirc as

Pcirc = |Ψ2|2 =
t2A

(1− rArB)2
1

[

1 + 4rArB
(1−rArB)2

sin2(φ)
]P1 (1.49)

we see that it is a periodic function of φ with period π. In terms of frequency this

period is known as the free spectral range and is given by

fFSR =
c

2L
. (1.50)

The free spectral range is the inverse of the cavity round trip propagation time.

From (1.49) the full width at half maximum of the resonance peak is found to be

∆fFWHM = fFSR
1− rArB
π
√
rArB

. (1.51)
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The sharpness of the peak is given by the ratio of the free spectral range to the

linewidth. Let us introduce the finesse F to describe this quantity:

F =
fFSR

∆fFWHM

=
π
√
rArB

1− rArB
. (1.52)

Using our new parameters (1.49) may be expressed in a more compact form

Pcirc =
GP1

1 + (2F/π)2 sin2(2πfL/c)
, (1.53)

where G = g2 is the power gain of the cavity.

Due to interference effects within it, a cavity filters low54 frequency modulations of its

length or input laser frequency like a single pole low pass filter. This filter, known as

the cavity pole, has 3 dB frequency

fc =
1

2πτsto
=
fFSR
2F . (1.54)

Here τsto = F/(πfFSR) is the average storage time of light in the cavity, from which

the average number of bounces is easily derived:

Nbounce =
cτsto
L

=
2F
π
. (1.55)

1.5.2.5 Pound-Drever-Hall reflection locking

In order to take advantage of the Fabry-Perot cavity’s sharp phase response it must

be held on resonance, either by stabilising a laser source to the resonator length or

vice versa.55 This is most often achieved using one of the most elegant techniques in

the gravitational wave field – Pound-Drever-Hall reflection locking [92]. This scheme

exploits the change in phase experienced by reflected light as the cavity passes through

resonance to derive a signal which is linearly proportional to the detuning from reso-

nance.

54f < fFSR.
55Sometimes both techniques are used simultaneously in different frequency bands.
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In order to measure the phase of the reflected light a stable reference is required. Phase

modulating56 the input laser light produces radio frequency sidebands about the main

carrier frequency. Near the carrier resonance these sidebands are not affected by the

state of the cavity57 and thus are a suitable phase reference. In the remainder of

this section we show how the phase difference between these spectral components is

measured and converted into a useful correction signal.

For small modulation indices Γ, the field incident on the cavity58 may be written as

[94]

E1 = Einc(J0(Γ) + jJ1(Γ) exp(jΩt) + jJ1(Γ) exp(−jΩt)), (1.56)

where Ω is our modulation frequency. The output of an RF photodiode in reflection

will be proportional to

Spd = |E0|2 + |E+|2 + |E−|2 + 2ℜ[(E∗
−E0 + E∗

0E+) exp(jΩt)] + 2ℜ[(E∗
−E+) exp(j2Ωt)],

(1.57)

where E0 = r(0)J0(Γ)Einc, E± = r(±Ω)jJ1(Γ)Einc and r(f) is the complex cavity

reflectivity.

Three frequency components are apparent in the detected power – one at DC, one at

Ω and one at 2Ω. The component which carries the information we seek is that at

Ω. This signal is due to the beat between the carrier and sidebands and thus contains

information about the phase difference between them.59 We extract the component at

Ω via coherent demodulation60 as follows:

Sdemod =
1

t1− t0

t1∫

t0

Spd cos(Ωt
′ + φdemod)dt

′

= ℜ[(E∗
−E0 + E∗

0E+)e
−iφdemod ], (1.58)

56Other schemes exist which rely on amplitude or complex modulation [93].
57This is only strictly true if the modulation frequency is outside of the cavity bandwidth. At lower

modulation frequencies the cavity has a differential effect on the sidebands and carrier. The technique
is still applicable but produces weaker signals.

58Omitting spatial dependence and the overall exp(jωt) term.
59The component at 2Ω is due to the beat between the two sidebands.
60i.e. mixing and low pass filtering.
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where we have assumed that T = t1 − t0 ≫ 1/Ω so that only the lowest frequency

terms survive integration. Notice that the size of the signal has been halved. This is

due to equal amounts of signal being upconverted and downconverted by Ω.

In fig. 1.21 we plot the in phase and quadrature components of Sdemod along with the

cavity transmission. About resonance, the in phase signal is linear with cavity detuning

and is therefore a good error signal for close loop control.
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Figure 1.21: Pound Drever Hall reflection locking. Top: In phase demodulated error
signal for over and undercoupled cavities. Middle: Quadrature phase error signals.
Bottom: DC cavity transmission. As desired the PDH error signal is linear and bi-
polar about resonance. The secondary features at ∼ ±0.25π arise when the sidebands
themselves become resonant and the carrier acts as the phase reference.

1.6 SIS – Static Interferometer Simulation

In the numerical study of optical systems two techniques are prevalent – modal anal-

ysis (e.g. [95]) and Fast Fourier Transform (FFT) based methods. Modal analysis

operates by describing fields in a complete basis of optical modes, for example the HG



1.6 SIS – Static Interferometer Simulation 48

or LG families (see §1.5.1.1). The properties of these modes are well-known and any

interaction, such as reflection from a mirror, may be characterised by its mode-mode

coupling coefficients [96]. System output is obtained through summation over all basis

functions.

Modal analysis is well-suited to the study of spherical mirror interferometers. Unper-

turbed, such instruments support fundamental Gaussian beams which may be described

by a single term in a modal expansion and for small perturbations only scattering into

the first few excited modes is significant (see e.g. §3.2.1.1). Hence the behaviour of

these systems can be accurately captured by a series containing few terms, making

modal approaches very efficient.

However, if one desires to investigate non-Gaussian beams or realistically flawed optics,

modal analysis quickly becomes computationally expensive, requiring many modes if

it is able to be used at all. In these cases FFT based approaches are more suitable.

1.6.1 The FFT method

In this section we outline the theory behind FFT based simulation methods, examining

how the propagation of an optical field can be reduced to a pair of two dimensional

Fourier transforms. We subsequently show how the FFT approach can be used to study

complex interferometer configurations with imperfect optics. For a more comprehensive

treatment see e.g. [97] from where much of the present discussion was derived.

Under the paraxial approximation propagation of an arbitrary optical field can be

performed using the following three steps:

a) The input light field Ψ(x, y, 0) is first transformed into the spatial frequency domain

via a two dimensional Fourier transform

Ψ̃(kx, ky, 0) =
x

R2

Ψ(x, y, 0) exp(j(kxx+ kyy)) dx dy, (1.59)
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where ki is the wave number in the i direction and k2 = k2x + k2y + k2z . This step

may be thought of as decomposing the field into a superposition of plane waves.

b) Each of these plane waves is then propagated in the positive z direction. Under the

paraxial approximation k2x + k2y ≪ k2 so that

kz =
√

k2 − (k2x + k2y)

≃ k −
k2x + k2y

2k
. (1.60)

Propagation over distance L is thus equivalent to a phase shift in k-space

Ψ̃(kx, ky, L) = Ψ̃(kx, ky, 0) exp

[

− j

(

k −
k2x + k2y

2k

)

L

]

. (1.61)

c) Finally the propagated field in position space is recovered via a second Fourier

transform

Ψ(x, y, L) =

(
1

2π

)2 x

R2

Ψ̃(kx, ky, L) exp(−j(kxx+ kyy)) dkx dky. (1.62)

In order to extend the FFT approach beyond simple propagation we must also include

optical elements. Vinet showed that mirrors suitable for use in gravitational wave

interferometers may be described by reflection and transmission operators in coordinate

space [98]. With reference to fig. 1.22, these operators are

top(x, y) = jtejkDejk(n−1)f(x,y)a(x, y) (1.63)

for transmission from z = 0 to z = D,

rlop(x, y) = re2jknf(x,y)a(x, y) (1.64)

for a beam starting from z = 0 and returning to z = 0 via reflection at z = f(x, y) and

rrop(x, y) = re2jkDe−2jkf(x,y)a(x, y) (1.65)
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z
D0 

z = f(x,y) 

Figure 1.22: FFT based simulation methods are able to include mirrors having com-
plicated profiles z = f(x, y).

for a beam starting at z = D and returning to z = D via reflection at z = f(x, y).

Here n is the refractive index of the substrate, r and t are the amplitude reflectivity

and transmissivity of the coating and a(x, y) is an aperture function, taking value 1

inside the mirror radius and 0 outside. Using the above examples as a guide, operators

treating other optical components, such as beamsplitters, may be formed.

The true utility of the FFT approach lies in its ability to incorporate almost arbi-

trary mirror profiles by appropriately defining f(x, y). These definitions may simply

describe the shape of the mirror’s surface61 or be expanded to include tilts, surface

roughness, perturbations due to absorption of optical power etc. Spatial variation in

other parameters such as reflectivity or transmission is also easily included.

In practice all of the operations described above are carried out using a computer and

therefore all quantities must be described by a finite set of values. This is generally

achieved by sampling over a uniform two dimensional grid normal to the beam’s propa-

gation direction. In the interests of computational efficiency this grid is usually square

and of dimension 2n × 2n for some n ∈ N. Each grid square is known as a pixel.

Using discrete grids the above integrals become finite sums and the transforms nec-

61Spherical or otherwise.
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essary for propagation may be carried out using fast Fourier transform algorithms,

reducing computation time by orders of magnitude.62 The application of phase fac-

tors, during propagation and on interaction with a mirror, amount to pixel by pixel

multiplication.

Care must be taken to choose both the physical extent and resolution of the grid

appropriately. The overall size of the grid should be large enough so that

- all of the optical power is captured,

- sufficient resolution is available in k-space and

- large angle scattering from adjacent Fourier cells does not introduce spurious

optical power [97].

In all our work the total width of the grid was equal to twice the mirror diameter.

The resolution of the grid must be

- appropriately matched to the physical scale of interest,

- high enough to avoid aliasing and

- such that the optical path difference between neighbouring pixels is strictly less

than λ/2.63

The minimum number of grid squares used in our work was 128×128.

Having dealt with propagation and interaction with mirrors it is easy to see how inter-

ferometer configurations may be constructed. For example, denoting the three-stage

propagation described above as pop, we may write the equation for the steady state

circulating field Ψss in a Fabry-Perot cavity as

Ψss = top,itmΨinput + rrop,itmpopr
l
op,etmpope

jϕΨss, (1.66)

62The speed of the FFT approach goes as Npixels log(Npixels) as opposed to N2
pixels for standard

techniques.
63This path difference gives rise to a phase of 2π on reflection which cannot be observed. For our

mesa cavity this limits us to tilts below 1.5 mrad.
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where ϕ represents a tuning phase which can be modified to maximise the circulating

power.64 Iteratively solving this equation (see e.g. [97]) the steady state field distribu-

tion in the cavity may be found. This process remains the same regardless of whether

we are considering a basic spherical mirror or the measured phase map of an exotic

profile supporting non-Gaussian beams.

As a result of their wide-ranging capabilities and ease of use, FFT simulations were

used extensively throughout this work. The particular program employed is discussed

in the following section.

1.6.2 Description of SIS

Static Interferometer Simulation or SIS [99] is a program developed at Caltech’s LIGO

Laboratory65 in order to study, in detail, the optical aspects of the Advanced LIGO

interferometer. SIS operates via the principles described in the preceding section, using

an iterative procedure to find the stationary fields for a given optical configuration and

input field spectrum. The mirrors’ positions can be ‘locked’ to the appropriate fraction

of an optical fringe by applying error signals which approximate those of standard

heterodyne techniques. SIS is capable of calculating the signal sidebands induced by

small mirror motions and can include surface deformations due to thermal absorption,66

measured aberrations, randomly generated figure error and micro-roughness.

At the time of writing SIS cannot simulate a full interferometer and does not incorpo-

rate phase modulation, quantum effects or radiation pressure. Despite these shortcom-

ings SIS is an extremely versatile and accurate tool which has proven indispensable in

this work.

64Mirror imperfections may shift the resonance frequency of a spherical mirror cavity; for non-
spherical cavities the resonance frequency may not be known.

65In an effort led by Hiroaki Yamamoto.
66Using the Hello-Vinet approximation [100].



Chapter 2

Mesa beams

It is anticipated that the second generation of earthbound gravitational wave detectors

will be limited in their most sensitive region by mirror thermal noise. The impact of

this noise may be reduced by switching from standard optical modes to non-Gaussian

mesa beams. In this chapter we present a theoretical description of the mesa beam

and its competitors before documenting results of experimental work.

We begin by discussing the motivation and conceptual ideas behind the mesa beam

prior to introducing its mathematical construction. With a solid theoretical foundation

we continue by describing, in detail, the design of apparatus constructed to verify the

properties of this beam.

The second portion of the chapter describes the investigations made with this appara-

tus, culminating in the first ever experimental realisation of a flat-topped non-Gaussian

mode in a manner applicable to interferometric gravitational wave detectors.
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2.1 Theory

In advance of recounting the experimental work that is the main focus of this thesis we

present an overview of the non-Gaussian beams considered for use in kilometre scale

detectors, paying particular attention to the mesa beam.

2.1.1 Motivation

The majority of interferometric gravitational wave detectors operate by measuring

the variations in phase between light beams resonating in two perpendicular optical

cavities caused by the passage of gravitational waves. Any physical displacement of the

mirrors forming these cavities also creates phase variations and thus contributes noise

to the measurement. In particular, random displacements of the test masses’ reflective

surfaces due to thermodynamical fluctuations are expected to be a major source of

noise in future interferometers.

As in currently operating detectors, it is anticipated that the optical mode used to probe

mirror positions in future interferometers will be Gaussian. Gaussian beams which

meet strict diffraction loss requirements are narrow and have steeply sloping intensity

profiles. Such beams perform a poor spatial average of thermodynamic fluctuations

leading to a high level of measured thermal noise.

It is possible to significantly reduce the measured test mass thermal noise by using

modified cavity optics which reshape the incident Gaussian mode into a beam with a

more uniform intensity profile. Heuristically, the ideal mode for mitigating the effects

of thermal noise should have equal intensity across the entire mirror1 - a top hat beam.

Unfortunately such ideal beams are not physically realisable.

In 2003 O’Shaughnessy and Thorne conceived a more realistic mode with the following

reasoning [101]. The top hat beam may be considered as a superposition of Dirac

1To provide the best spatial average of thermodynamical fluctuations.
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δ functions or, equivalently, infinitely narrow Gaussian beams. Upon propagation

these narrow beams quickly diverge, giving rise to large diffraction losses. Increasing

the width of each constituent Gaussian moderates diffraction loss at the expense of

intensity profile uniformity (see fig. 2.1). Balancing the competing demands of thermal

noise mitigation and diffraction loss defines the optimal width of component Gaussian

and thus our new mode.

Top hat

Mesa

Figure 2.1: Heuristically the ideal mode for mitigating the effects of thermal noise
would be a top hat beam (purple). This mode can be considered as a superposition of
infinitely narrow Gaussian beams. The mesa beam (orange) is a physically realisable
approximation to this mode created by broadening each constituent Gaussian.

2.1.2 Intensity/Mirror profiles

In this subsection we define the optimal width of a component Gaussian and present

the mathematical formulae describing the mesa beam fields and mirror profiles. We

also explain the origins of the terms mesa and Mexican hat.

2.1.2.1 Flat mesa beams

The Gaussian beams which sum to form the mesa mode are known as minimal Gaus-

sians and are, for a given wavelength λ and cavity length L, the fundamental Gaussian
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mode with the smallest possible spot size on the cavity mirrors. A minimal Gaussian

has a waist2 given by

ω0 =

√

Lλ

2π
(2.1)

and a Rayleigh range zR of L/2, so that the beam width at the mirror position is
√
2ω0.

In its original form,3 the mesa beam consists of a superposition of minimal Gaussians

whose optical axes are parallel to the cavity axis and distributed uniformly over a disc

of radius D centred on it (see fig. 2.7). In the literature D is typically taken to be

four times the waist of the minimal Gaussian, D = 4ω0. For such a construction the

unnormalised field at the mirror position is given by

ΨFM(r, L/2) ∝
∫

~r ′≤D

exp

[

− (~r − ~r ′)2(1− j)

2ω2
0

]

d2~r′,

= 2π

D∫

0

exp

[

− (r2 + r′ 2)(1− j)

2ω2
0

]

I0

(
rr′(1− j)

ω2
0

)

r′dr′, (2.2)

where I0(x) is a zeroth order modified Bessel function of the first kind.

In order for this field to be a cavity eigenmode, the shapes of the cavity mirrors must

match the phase fronts of the beam. Therefore the mirrors must have profiles given by

z = ±L/2∓ zHR where

zHR(r) =
Arg[ΨFM(r, L/2)]− Arg[ΨFM(0, L/2)]

k
(2.3)

is the height of the mirror’s Highly Reflective (HR) surface4 and k = 2π/λ is the

wavenumber.5

2We define the waist size as the radius at which the beam intensity falls to 1/e2 times its peak
value.

3i.e. for nearly flat cavities.
4Later the same notation will be used to denote the height of the mirror’s HR profile above the

fiducial surface.
5Strictly speaking this mirror does not have the exact profile we desire as we have calculated its

shape from the field at z = L/2 whilst the mirror’s surface sits at z = L/2 − zHR. The effect of this
error is negligible, the difference being a phase ∼ kzHR. Thus we assume the intensity on the mirror
to be equal to that at z = L/2. Similar arguments apply in the concentric and hyperboloidal cases
below.
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Although (2.2) clearly demonstrates how the mesa beam was devised and assists in

determining the appropriate mirror figure, it is not the most useful form of the mesa

beam field. Thanks to Agresti and Vinet [102, 103] a more general expression exists,

giving the normalised mesa field as a function of propagation distance z from the waist:

ΨFM(r, z) = N

D/ω∫

0

exp[−Z(ρ− ρ0)
2] exp(−2Zρρ0)I0(2Zρρ0)ρ0 dρ0, (2.4)

where N(z) =
2ω

Dω0

√
πℵ

,

and ℵ = 1− exp(−D2/ω2
0)[I0(D

2/ω2
0) + I1(D

2/ω2
0)].

Here ω(z) is the spot size of the minimal Gaussians ω(z) = ω0

√

1 + (z/zR)2, ρ(z) =

r/ω(z) and Z(z) = 1− jz/zR. N is a normalisation factor found in the Fourier domain

via Hankel transforms.

Fig. 2.2 illustrates how the mesa intensity and mirror profiles vary as a function of

beam parameters. Choosing D and w0 without restriction, a good approximation to

a top hat beam may be achieved. However the corresponding mirrors are unphysical.

With sensible parameter choices a reasonable, physically realisable solution may be

found.

Using minimal Gaussians, our only free parameter is D. The standard D = 4ω0 value

was chosen to comply with the 10 ppm per bounce diffraction loss requirement in the

AdvLIGO design of the time. This design has naturally evolved and currently permits a

loss of only 1ppm, i.e. diffraction loss should be negligible by design. With this in mind

and in the interests of a fair comparison, we reduce the radius of the disc over which we

integrate to be D = 3.55ω0. This choice gives a simulated7 round trip diffraction loss

in the AdvLIGO arm cavity of approximately 0.5 ppm, equal to that of the equivalent

Gaussian cavity. The resulting intensity profile on the mirror is predominantly flat

topped, providing a good spatial average of thermal fluctuations, with an edge that

6Eschewing the more obvious and less captivating Sombrero mirror.
7The analytical clipping approximation was not used as this generally underestimates diffraction

loss.
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Figure 2.2: The mesa beam as a function of its parameters. In this figure primed
variables denoted standard values. Upper plots: Mirror and intensity profiles (at mirror
position) as a function of D for fixed ω0. Lower plots: Mirror and intensity profiles (at
mirror position) as a function of ω0 for fixed D. Studying the nominal intensity profile
one understands why Willems coined the term mesa beam in reference to the landform
of the same name common in the southwestern United States. Owing to their unique
shape, the mesa beam mirrors have earned their own moniker. With their steep outer
brim and central crown they are known as Mexican hat mirrors.6

falls off like a Gaussian with waist ω0.

2.1.2.2 Concentric mesa beams

Mesa beams realised in the manner described above shall be known here and henceforth

as flat mesa beams, since the mirrors which support them are but a small perturbation

from flat optics. These beams were extensively studied both theoretically [104, 105, 106]

and experimentally [107] before a possible problem was uncovered.
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Angular test mass motions cause the arm cavity’s optical axis to deviate from its

nominal centred position. With the beam spots no longer symmetric about the centres

of the test masses, radiation pressure can exert non-negligible torques on the cavity

optics. In 2006 Sidles and Sigg showed that, in future high power interferometers, such

optically-generated torques could drive angular mirror motions to become unstable

[108]. Furthermore, their geometric approach revealed that the severity of such tilt

instabilities for Gaussian beams is proportional to the spot size on the mirrors raised

to the fourth power, a worrying prospect for the wide mesa beam.

A 

B 

Figure 2.3: A: Lateral displacement of the optical axis gives rise to a statically unstable
configuration. B: A configuration with a tilted optical axis is statically stable. The
broken line represents the nominal cavity axis. The mirrors’ centres of curvature are
marked with filled circles.

Sidles and Sigg concluded that switching from nearly flat to nearly concentric cavities

should mitigate the instability for Gaussian beams. Although both cavities are very

sensitive to misalignment, their response to mirror tilts differs in a useful way. In the

nearly flat case the optic axis predominantly shifts whereas in the nearly concentric

case it tilts. A simple geometric picture reveals a cavity with a tilted optical axis to

be more robust (see fig. 2.3 or §3.2.1.1 for a more mathematical approach). On the

strength of this work the fiducial AdvLIGO cavity geometry was modified from a nearly
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flat to nearly concentric configuration.

Our standard mesa beam is supported by a nearly flat cavity and should therefore be

equally susceptible to tilt instabilities at high power, if not more so due to its greater

width. This realisation motivated Bondarescu and Thorne to devise nearly concentric

mirrors supporting mesa beams [109].

Recall that our flat mesa beam was generated as a superposition of minimal Gaussians

with optical axes parallel to the cavity axis and uniformly distributed throughout a

cylinder of radiusD centred on it. Taking inspiration from geometric optics, we suppose

that the equivalent nearly concentric beam may be constructed as a superposition of

minimal Gaussians whose optical axes all pass through the centre of the cavity and

are uniformly distributed inside a right circular cone centred on the cavity axis with

aperture angle 4D/L (see fig. 2.7).

Evaluating the superposition of minimal Gaussians on the concentric sphere z = S =
√

(L/2)2 − r2 ≃ L/2− r2/L we find the concentric mesa field to be

ΨCM(r) ∝
∫

~r ′≤D

exp

[

− (~r − ~r ′)2(1 + j)

2ω2
0

]

d2~r′,

= 2π

D∫

0

exp

[

− (r2 + r′ 2)(1 + j)

2ω2
0

]

I0

(
rr′(1 + j)

ω2
0

)

r′dr′. (2.5)

The above is simply the complex conjugate of the flat mesa field, one demonstration

of the more general duality relation discovered by Agresti [110]. As a result of this

similarity we know that the intensity profile of the concentric mode will be equal to

that of the flat mesa beam and will thus possess the same properties desirable from a

thermal noise standpoint. We can also state that the phase front of the concentric beam

will simply be −zHR (see (2.3)) and the mirror profiles will be given by z = ±S ± zHR.

Again a more useful expression exists for the normalised field as a function of propa-
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gation distance [102]:

ΨCM(r, z) =
jke−jkz

z
√
πℵ

∞∫

0

exp

[

− ρ20
ω2
0

− jk

2z
(ρ20 + r2)

]

J1

(
2ρ0D

ω2
0

)

J0

(
kρ0r

z

)

dρ0. (2.6)

Subsequent analysis of this new mode by Savov and Vyatchanin confirmed expectations

[111]. The flat mesa beam was indeed more susceptible to tilt instabilities than the flat

Gaussian due to the mesa beam’s greater width and concentric cavities were in general

more stable. This work also revealed that the concentric mesa cavity has a weaker tilt

instability than any other configuration. Table 2.1 presents a quantitative comparison

of optical torques in the various cavities.

Table 2.1: Quantitative comparison of optical torques for various cavity configura-
tions. Values are normalised such that the torque in the currently favoured concentric
Gaussian cavity is unity.

Nearly flat cavity Nearly concentric cavity

Gaussian beam 26.2 1
Mesa beam 96 0.91

Figure 2.4 compares the mirror and intensity profiles of the concentric mesa beam to

those of comparable Gaussian and flat mesa modes.

2.1.3 Expected gains

Mesa beams were originally conceived to combat the problem of thermoelastic noise in

second generation interferometers employing sapphire test masses. As time progressed

most collaborations made the decision to retain fused silica as the material of choice

for future optics (see e.g. [112]). With this change the most worrisome form of thermal

disturbance became coating Brownian thermal noise [113]. In this section we compare

the thermal noise measured by Gaussian and mesa beams, showing that the mesa

beam remains effective in improving detector sensitivity. We then provide context

by explaining how this reduced thermal noise impacts some well-known metrics of

interferometer performance.
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Figure 2.4: A comparison of mesa and Gaussian beams and the mirrors which support
them. Left: Intensity profiles normalised to have equal power. The spot size of the
Gaussian beam (the radius at which the intensity falls by 1/e2) is 6 cm, while that of the
mesa beam is ≃ 12 cm; i.e. at FWHM the Gaussian beam samples ∼4% of the mirror’s
surface whereas the mesa beam samples over 27%. Right: Nominal mirror figures for
a symmetric 4 km cavity. The flat mesa beam mirror profile has been expanded by a
factor of ten to better show its structure. The concentric mesa mirror profile is realised
by subtracting the flat mesa profile from a concentric sphere with R = Lcavity/2. The
abscissa extends to 0.17 m, the baseline mirror radius for AdvLIGO.

Table 2.2 presents the reductions in thermal noise expected on switching to mesa beams.

The ratio of total interferometer strain noise considering all mechanisms is 0.64. These

Table 2.2: Thermal displacement noise of mesa beams relative to equivalent Gaussians
for a single test mass. The ratio of total interferometer strain noise considering all
mechanisms is 0.64. All quantities are evaluated at 100 Hz.

Brownian Thermoelastic

Coating 0.62 0.62
Substrate 0.70 0.54

values were calculated using intensity profiles obtained from FFT based simulations.

Hence we are using a mesa mode affected by finite mirror effects (see §2.1.6 below)

and diffraction losses. We believe this approach yields a more realistic estimate of the
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gains which may be realised experimentally than would be obtained using a theoretical

profile. For details of the thermal noise calculations and material parameters used

please see §4.2 and Appendix A.

While these gains are smaller than those quoted in the past, due to the change in sub-

strate material,8 their astrophysical significance is still great. Using the Gravitational

Wave Interferometer Noise Calculator (GWINC) tool [114] developed by the LIGO

Scientific Collaboration (LSC) the impact of the reduced thermal noise associated with

mesa beams was estimated.9 Fig. 2.5 shows the strain sensitivity of AdvLIGO one

might obtain on switching to mesa beams.10 This improvement results in:

- An increase in binary neutron star inspiral range [115] from 198 Mpc to 238 Mpc

- An increase in binary black hole inspiral range [115] from 1690 Mpc to 2022 Mpc

- An improvement in the sensitivity to the stochastic gravitational wave back-

ground [13] from ΩGW = 2× 10−9 to ΩGW = 1.7× 10−9

- An event rate11 increased by a factor of 1.7

There are of course numerous caveats associated with these values, perhaps foremost

among these is the non-ideal coupling between Gaussian and mesa beams.

2.1.4 Coupling to Gaussian beams

We envisage that mesa beams will be created by injecting a Gaussian mode into a cavity

formed by Mexican hat mirrors.12 One popular scheme involves modifying the arm

cavities to support mesa beams while the other interferometer optics remain spherical.

8And to a lesser extent the more stringent diffraction loss requirements.
9Values were obtained by appropriately modifying the thermal noise source terms in the GWINC

code. The interferometer parameters were optimised for NS-NS binary inspirals. Hence the numbers
quoted for black holes and the stochastic background can be improved upon.

10Similar improvements are expected for other second generation interferometers.
11Assuming event rate scales as the cube of NS-NS binary inspiral range.
12This cavity could be internal to the laser system, a preliminary mode cleaner or the arm cavities

themselves.
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In this case the Gaussian-mesa coupling has ramifications for RF reflection locking

schemes and optical gain in the recycling cavities.

Regardless of the exact interferometer design, it is crucial to identify the Gaussian

beam with the strongest coupling to any mesa cavity. The quantity we seek may easily

be found from the inner product of normalised Gaussian and mesa fields

C = 〈Ψgauss|Ψmesa〉. (2.7)

For flat mesa beams we have

CFM =
ωg

D

√

2

ℵ

(

1− exp

[

− D2

ω2
0 + ω2

g

])

. (2.8)

Maximising this function we are able to find an equation for the waist of the optimally

coupled Gaussian beam ωg [106, 102],

1− exp

[

− D2

ω2
0 + ω2

g

](

1 +
2ω2

g

ω2
0 + ω2

g

D2

ω2
0 + ω2

g

)

= 0. (2.9)

The corresponding coupling for concentric mesa beams is

CCM =
ω2
0

ωgD

√

2

ℵ

(

1− exp

[

−
ω2
g

ω2
0

D2

ω2
0 + ω2

g

])

(2.10)

which is greatest for the Gaussian beam with waist ωg solving

1− exp

[

−
ω2
g

ω2
0

D2

ω2
0 + ω2

g

](

1 +
2ω2

g

ω2
0 + ω2

g

D2

ω2
0 + ω2

g

)

= 0. (2.11)

For both beam configurations ℵ is as defined in (2.4).

These relationships are represented graphically in fig. 2.6. In both cases the optimal

power coupling is around 95%. Such a strong overlap indicates that any additional

shot noise due to reduced circulating power should be negligible.13 However, the 5%

of light rejected by each arm cavity may lead to elevated readout noise as inevitable

13Shot noise scales as the square root of power.
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Figure 2.6: Power coupling |C|2 between Gaussian and mesa beams as a function of
Gaussian waist size ωg. The mesa beams are formed from minimal Gaussians of waist
ω0. The optimal coupling occurs when ωg ≃ 3.6ω0 for flat mesa beams and when
ωg ≃ 0.28ω0 for concentric modes.

differences between the arms will prevent it interfering perfectly at the beam splitter.

2.1.5 Possible alternatives

Although this thesis focuses on the mesa beam, several other modes aiming to reduce

measured test mass thermal noise have been proposed. In this section we introduce

these alternatives.

2.1.5.1 Hyperboloidal beams

As an extension of their work on concentric mesa beams, Bondarescu and Thorne

also devised an entire continuum of modes spanning nearly flat to nearly concentric

configurations [109]. These beams appear particularly promising once finite mirror
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effects are taken into account (see §2.1.6).

Flat mesa beams are created by superposing minimal Gaussians whose optical axes form

a cylinder; for the concentric beam these axes instead form a cone. The generators of a

cylinder of height L radius r are the lines joining the points (r, φ,−L/2) to the points

(r, φ, L/2). The generators of a cone of height L and radius r are the lines joining the

points (r, φ,−L/2) to points (r, φ+ π, L/2). A smooth interpolation from the cylinder

to the cone is given by the set of hyperboloids generated by lines joining the points

(r, φ,−L/2) to the points (r, φ + α, L/2).14 Minimal Gaussians distributed with axes

along these lines superpose to form a new family of beams ranging from nearly flat to

nearly concentric.

Figure 2.7: Construction of mesa and hyperboloidal modes. The optical axes of selected
minimal Gaussians are shown to illustrate the differences between flat, concentric and
hyperboloidal mesa beams. The minimal Gaussians of the flat mesa beam are spread
uniformly over a cylinder of radius D (purple) whereas those of the concentric mesa
beam form a cone with aperture angle 4D/Lcavity (orange). Exploiting a smooth map-
ping between these shapes one is able to generate a family of hyperboloidal beams
spanning the space from flat, through Gaussian, to concentric mesa beams (blue).

The mirror figures which support mesa beams were obtained through evaluation of

the appropriate optical field over flat and concentric fiducial surfaces. These surfaces

were found by truncating the axis of each minimal Gaussian after it had propagated a

14With α = 0 giving the cylinder and α = π the cone (see fig. 2.7).
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distance L/2. For our new beams the surface formed is given by

z = Sα(r) =
√

(L/2)2 − r2 sin2(α/2) ≃ L

2
− r2 sin2(α/2)

L
. (2.12)

Evaluating the field on this surface we find

Ψα(r, α,D) =

D∫

0

2π∫

0

exp

[

j
rr0
ω2
0

sinφ0 sinα−
r2 + r20 − 2rr0 cosφ0

2ω2
0

(1−j cosα)
]

r0 dφ0dr0.

(2.13)

As before, adding the phase front of Ψα at z = L/2 to our fiducial surface Sα we

obtain the complete mirror figure z = ±Sα ∓ zHR(α). Selected hyperboloidal mirrors

and intensity profiles are shown in fig. 2.8. The full range of modes is explored for

α ∈ [0, π].15
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Figure 2.8: Left: Normalised intensity profiles of various hyperboloidal modes. The
Gaussian α = 0.5π mode has been reduced by a factor of two for ease of comparison.
Right: The correction to the fiducial surface for each of the intensity profiles. Notice
that the correction for the α = 0.5π mode is null i.e. the mirror is spherical.

In addition to the flat and concentric configurations given by α = 0 and π, one other

twist angle has special properties. In the α = π/2 case S becomes a spherical surface

with R = L and the resulting cavity eigenmode is our minimal Gaussian.16

15Or over half this interval if use is made of the duality relations [110].
16Also, in the limit D → ∞ all hyperboloidal beams become Gaussian [116].
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Compared to standard mesa modes, hyperboloidal beams provide another degree of

freedom α, allowing better optimisation of cavity design to meet diffraction and tilt

instability requirements while still reducing the measured thermal noise.

2.1.5.2 Higher order LG beams

All of the non-Gaussian beams discussed above demand specially made phase-graded

optics. Concerns over the production of these mirrors17 and the control of non-Gaussian

modes has led to another proposal.

It has been shown that high order LG modes (see fig. 2.9 and §1.5.1.1) are able to

produce reductions in substrate Brownian noise comparable to those seen with mesa

beams while allowing standard spherical optics to be retained [117]. More recent work

at the University of Birmingham concluded that, in all aspects of interferometer control,

the behaviour of high order LG modes18 is similar if not preferable to the standard LG00

[118]. The idea of LG modes therefore seems promising and experimental investigations

are now in progress.

As with mesa beams, a number of issues must be resolved before high order LG modes

can be considered a credible alternative to the standard Gaussian. Foremost amongst

these is the initial creation of the mode. Solutions involving spatial light modulators

and diffractive optics have great potential, as do approaches based on bespoke optical

fibres. Such fibres could be used to drive mode cleaner cavities or as mode cleaners

themselves. Of course, efficiency and noise implications will ultimately distinguish the

best technique.

There are also a number of other concerns surrounding these modes. The nodes of

LG beams impose large thermal gradients near the surface of the test mass, elevating

thermoelastic noise levels above those of even the LG00. Although overall noise is

reduced this effect should be borne in mind where absorption is unknown or alternative

17Although the required technology has been proven (see §2.2.2.2).
18They specifically studied LG33 modes.
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Figure 2.9: Comparison of LG and mesa modes of equal diffraction loss.

substrate materials are used.

Perhaps the key benefit of high order LG beams is their ability to resonate in spherical

mirror cavities, allowing one to exploit all the manufacturing nous obtained to date.

However, one must always remain mindful that, where one Higher Order Mode (HOM)

is resonant, all modes of the same order are also resonant – a degeneracy not exhibited

by the other candidate modes.

Another troublesome issue associated with the proposed helical LG modes is the 180◦

phase shift experienced by the cavity-plane field distribution in resonators with an

odd number of reflections. Such resonators are widely used as mode cleaners in grav-

itational wave interferometers. Switching to bow-tie cavities or sinusoidal LG modes

eliminates this problem at the expense of increased development time and thermal

noise respectively.
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2.1.5.3 Optimal beams

The variety of modes discussed above leads one to wonder what the optimal beam

shape for reducing thermal noise would be. Efforts in this direction were greatly expe-

dited by two publications. The first by Lovelace [119] developed scaling laws for four

principal sources of thermal noise in the infinite test mass limit. Significantly, these

laws are applicable to arbitrary beam shapes. The second key development was led by

Galdi and collaborators [120] who found a computationally efficient parameterisation

of arbitrary beam profiles and their supporting mirrors in terms of rapidly converging

LG expansions. Building on this work it was finally possible to begin defining a min-

imisation function and investigating whether physical solutions were available, subject

to the given constraints.

Galdi et al. continued their work in this field, contributing several interesting results

[121]. Ignoring diffraction loss, it was discovered that the ideal beam for mitigating

coating thermal noise is indeed the top hat mode discussed above. This conclusion

confirmed the intuitive approach which led to the creation of the mesa beam. However,

approximations to the optimal beam which included diffraction loss revealed that beams

with large ripples in their radial profiles could outperform flat topped mesa modes.

Overall it was estimated that optimised beams might surpass mesa beams by a factor

of ∼2.5.

Unbeknownst to Galdi, Caltech’s Bondarescu and Chen were simultaneously creating

their own algorithms built on the same foundations. Optimising for coating noise alone

they were able to extract a mode shape and mirror profile promising significant noise

benefits over Gaussian and mesa beams [122]. This work provided an independent cor-

roboration of Galdi’s results, with Bondarescu’s optimised conical beam (see fig. 2.10)

yielding an improvement factor of 2.32 over mesa beams, approaching the predicted

value of 2.5. This beam also exhibited the large scale ripples in its intensity profile

which Galdi had anticipated.

Bondarescu also studied the practical performance of his new mode revealing it to
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Figure 2.10: Bondarescu’s conical beam. Left: Intensity of conical (blue) and mesa
(purple) modes. Right: Mirror profiles in units of λ for the conical beam (blue), flat
mesa beam (purple) and concentric mesa beam (orange). Plots adapted from [122].

be significantly more sensitive to all perturbations (mirror figure errors, tilts, trans-

verse translations) than the equivalent mesa beam and to have almost no coupling to

Gaussian fields. Although these issues will likely prohibit the use of such beams in

future detectors, we hope that this seminal result will stimulate work toward a full

optimisation including all noise sources and finite mirror effects simultaneously.

2.1.6 Finite mirror effects

Above we saw how mesa and hyperboloidal mirrors were constructed by truncating the

phase front of the infinite theoretical field at the mirror radius. In reality the cavity

mode is finite and the phase front of this finite beam fails to match the mirror surface

leading to increased loss. Lundgren et al. came to the same realisation and began

investigating finite mirror effects numerically [116].

They discovered that diffraction loss is not a monotonic function of beam radius. For

beam sizes comparable to the mirror dimension local minima exist. Exploiting this

new understanding, larger beams giving greater reductions in measured thermal noise

can be used without breaching the 1 ppm diffraction loss limit. Limiting study to

the family of hyperboloidal beams (§2.1.5.1), which includes flat and concentric mesa

beams, it was found that a reduction in coating thermal noise of 12% was available
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using an α = 0.91π beam broadened such that D = 4.2ω0.

Further reductions are available if one iteratively shapes the mirror surface so that

its profile matches the phase front of the finite eigenmode. In this case the optimal

starting point is a concentric mesa beam with D = 4.36ω0.
19 The resulting mirror and

intensity profiles remain very close to their non-optimised counterparts but provide a

reduction in coating thermal noise of 28%. The corrections applied to the optimised

mirror do not present any manufacturing difficulties beyond those imposed by standard

mesa modes.

These gains strengthen the argument for further investigation of mesa beams and

suggest another effect which must be included if truly optimal beams are to be found.

2.1.7 Summary

In this section we have presented a basic introduction to the mesa beam. Theoretical

expressions for its fields and mirror profiles have been given while more realistic modes

from numerical simulation were used to estimate thermal noise reductions and their as-

trophysical significance. Competing non-Gaussian modes currently under investigation

and the state of efforts to find optimal beams have also been discussed.

When searching for an alternative to the fundamental Gaussian beam, with a view to

reducing measured thermal noise, it is important to remember that candidate modes

must be suitable for use in a real interferometer.20 At the time of writing, the mode

accompanied by the most mature theoretical study and thought most likely to operate

successfully in an kilometre-scale detector was the mesa beam. Hence this was the

mode preferred for our experimental investigations.

19Recall that we are using D = 3.55ω0 to match the diffraction loss of the Gaussian beam.
20i.e. the mode can be excited by a Gaussian beam, techniques are available which can realise

the appropriate mirror profiles, sensitivity to mirror figure errors and angular perturbations is not
prohibitive etc.
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2.2 Apparatus

With the theoretical benefits of switching to mesa beams well established, complemen-

tary experimental work began. This effort was intended to investigate practical aspects

of the mesa beam’s control rather than measure thermal noise suppression directly.21

In this section we describe the apparatus which was built with this goal in mind.

2.2.1 Non-spherical optics

We begin by detailing the construction of our Mexican hat mirror, it is the unique

feature of our experiment and its properties drove the design of our entire apparatus.

Prior to the realisation that tilt instabilities would be a major problem in future in-

terferometers (see §2.1.2.2) only nearly flat cavity configurations were discussed in the

context of mesa beams. Thus we desired to construct a mirror profile similar to those

shown in fig. 2.2.

Due to the unusual profile of this mirror it was not possible to utilise standard polishing

techniques. To circumvent this problem collaborators at Laboratoire des Matériaux

Avancés (LMA) [123] developed an innovative two-step deposition process to shape the

mirror substrate. Upon its completion highly reflective mirror coatings were applied in

the usual way.

2.2.1.1 Deposition process

Starting from a micro-polished substrate, the initial deposition is effected through a

large mask with the substrate in rotation (see fig. 2.11). The mask aperture is shaped

to deposit the gross features of the desired profile, accounting for the angular velocity

of the substrate (see fig. 2.12). This first stage has a precision of ∼60 nm and is able

21It was thought to manufacture a Mexican hat optic for Caltech’s TNI. However, as discussed in
§2.2.1.1, such small optics (the TNI cavities are ∼1 cm long) are extremely difficult to realise.
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Figure 2.11: The first step in the manufacture of a MH mirror. Using a specially
tapered mask (fig. 2.12) the gross features of the mirror profile are deposited with the
substrate in rotation.

Figure 2.12: The mask used in the first step of MH mirror construction is specially
tapered to account for the mirror’s angular velocity.

to deposit a coating with a thickness of order 1 µm. Upon completion, the achieved

figure is evaluated using a Fizeau interferometer and compared to the ideal profile.

This process creates a correction map which is used as input for the second deposition

step.

For the second deposition stage the large aperture mask is replaced with a small pinhole

(see fig. 2.13). Using data from the correction map, the mirror substrate is translated

across the narrow sputtered beam to add small amounts of material where necessary

(see fig. 2.14). The fine structure of the mirror profile is created by adjusting the dwell
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Figure 2.13: The second stage of MH mirror construction. With the substrate in
translation a narrow atomic beam deposits a corrective coating to realise the fine
features of the profile .

Figure 2.14: Calibration measurements for the second stage of mirror construction.
Small amounts of material are deposited at regular intervals to allow characterisation
of the robotic arm and corrective beam. Substrate diameter is 50 mm, the same as our
experimental optic.
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time of the beam in each location. The precision of this technique is around 2 nm.

Due to the slow rate of material deposition it is impractical to deposit layers more than

100 nm thick.

Factors limiting the accuracy of this technique include the precision of the robotic

arm used to manoeuvre the substrate (0.2 mm) and the sharpness of the atomic beam

passed by the pinhole. However the principal constraint is imposed by the transverse

resolution of the interferometric correction map (0.35 mm).

Figure 2.15: The first tests of the new deposition technique were made on opposite sides
of the same substrate. Flat (upper) and MH (lower) profiles were attempted. The left
hand column shows the profiles after the first deposition stage while the right shows the
same surfaces after corrective coating. Both tests were successful. The small defects
near the centres of both mirrors were caused by a known problem with the computer
controlled translation stage. This problem was fixed before production mirrors were
attempted.

Initial tests of this technique were made on opposite sides of the same 156 mm �×
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100 mm tk. substrate.22 Both spherical and Mexican Hat (MH) profiles were deposited

successfully (see fig. 2.15) and the decision to proceed with production was made.

2.2.2 Our mirror

2.2.2.1 Cavity length

It was originally envisioned that the practical investigation of mesa beams would entail

a ‘table top’ experiment with a cavity length of around 1 m. Unfortunately such a

compact setup proved unfeasible.

For standard mesa modes, beam size is related to cavity length through

D = 4ω0 = 4×
√

λL

2π
. (2.14)

Consider now the case of fixed diffraction loss. Under this assumption the mirror radius

is proportional to the square root of the cavity length23 and, for mesa beams, the height

of the mirror profile is independent of cavity length. Hence shorter cavities demand

smaller mirrors with larger gradients in their figures.

The interferometric measurement performed between the two deposition stages detailed

above was able to resolve a maximum slope of 500 nm/mm. Moving to shorter cavities

one quickly becomes metrology limited. This limit defined the smallest mirror which

we were able to construct with confidence and thus the shortest feasible cavity length.

Allowing a reasonable margin this shortest length was 16 m.

Unable to accommodate such a long resonator in our laboratory, the decision was made

to build a folded half-symmetric cavity. By placing one flat mirror at what would have

been the mid point of the full cavity and a second internal to the new cavity, the total

length of the mechanical structure could be reduced to a more manageable 4 m (see

22The aspect ratio of the optic must be small as coating stresses can lead to deformations of the
substrate beyond our allowed tolerances.

23Ignoring the finite mirror effects discussed above.



2.2 Apparatus 79

fig. 2.21).

Aiming for a 4 m structure we began sourcing equipment. Working in the United

States, many materials were only available in imperial lengths. In particular the rods

chosen to form our cavity (see §2.2.3) could only be sourced in lengths of 12 feet or

3.658 m. Thus was defined the length of our cavity.

Taking L = 4LINVAR = 14.632 m in (2.1),24 gives mesa beam parameters ω0 = 1.57 mm

and D = 6.30 mm. Allowing 1 ppm diffraction losses then fixes the mirror radius at

13 mm.25 With the desired MH profile now fully defined the design was relayed to

LMA.

Unfortunately, when calculating the mirror profile, the true cavity construction was

not accounted for. The cavity length is not given by 2LINVAR. Including the separation

of the input and MH mirrors (60 mm) and the distance each HR surface encroaches

into the cavity structure (&30 mm), the true cavity length is 7.195 m not 7.315 m as

assumed. This error was not appreciated in time to correct the profile given to LMA

resulting in a subtle mismatch between the received MH mirror and our experimental

apparatus. The effects of this misunderstanding are tacitly accounted for in each of

the following analyses.

2.2.2.2 Construction

Before construction of our MH mirror could commence a substrate had to be cho-

sen. Development work with thin substrates had revealed that warping due to coating

stresses had the potential to ruin the figure of our mirror. Hence the final article was

deposited on a stout 50 mm �× 30 mm tk. substrate, despite our mirror having a

diameter of just 26 mm.

Initially there was some indecision regarding the polish which should be applied to this

24To account for the folded, half symmetric construction of our resonator.
25The maximum slope of our MH mirror is thus ∼460nm/mm, safely below the 500nm/mm metrol-

ogy limit.
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substrate. A flat polish would require the deposition of more than 1 µm of material

to achieve the MH profile; for a substrate having a commercial spherical polish26 this

number could almost be halved (see fig. 2.16). Ultimately a flat polish was chosen.

This approach was thought more conservative as it limits the amount of additional

material applied in the mirror’s central region where defects are most problematic.
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Figure 2.16: A spherical polish was considered for the MH substrate as it could re-
duce the volume of deposited material. The left hand axes display the profiles of the
MH mirror and the optimal spherical polish. The right hand axes show the depth
of deposited material required to produce our mirror starting from flat and spherical
substrates.

Despite prototyping, the challenging nature of producing Mexican hat optics for lab-

scale experiments resulted in the realisation of a mirror with significant figure error.

Fig. 2.17 compares the achieved profile with its theoretical counterpart.

Deviations from the specified profile are clearly apparent, with the errors in the mirror’s

central region most concerning. In addition to random anomalies of amplitude ∼5 nm,

there exists a global tilt of the central bump with respect the mirror’s fiducial plane

26For our purposes R≃100 m.
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Figure 2.17: Comparison between experimental and theoretical mirrors across orthog-
onal profiles.
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(see fig. 2.18).

Figure 2.18: The central bump of the experimental MH mirror is tilted ≤1 µrad with
respect to the steep brim.

In order to determine whether the achieved profile was acceptable for our work it was

implemented in the numerical simulation of a Fabry-Perot resonator. A malformed

eigenmode resulted. However, it was quickly found that a reasonable mode shape

could be recovered by applying a compensating tilt of order 0.9 µrad (see fig. 2.19).

Adjusting our expectations and goals accordingly we proceeded.

2.2.2.3 Optical properties

Curious to understand the optical properties of a mirror generated by the new deposi-

tion technique a suite of measurements was made.

The prototype mirrors were found to exhibit large scattering losses (∼150 ppm). This
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Figure 2.19: Applying a corrective tilt of order 0.9 µrad mitigated manufacturing errors
which left the central area of the MH optic tilted with respect to the mirror’s fiducial
plane (see fig. 2.18).

problem is believed to be due to nucleation centres created through the transfer of mask

material to the substrate by the deposition beam. It is expected that this issue could

be resolved by pre-coating the edges of the mask with silica before use. Unfortunately

resources were not available to investigate this effect at the time our mirrors were being

manufactured.

The absorption of the prototype mirrors was also anomalously high at ∼5 ppm. This

excess was traced to the quality of fused silica deposited in pre-production runs. The

absorption of the delivered MH mirror was below 0.5 ppm.

The average transmission of the final MH mirror was found to be in good agreement

with the desired specification. However, on mapping this quantity as a function of

position, spatial inhomogeneity was significant. The measured transmission was found

to vary by 700 ppm over the central region of the mirror with a form parallelling the

mirror’s figure error (see fig. 2.20). The mechanism behind this error remains unknown.
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Figure 2.20: Transmission map of production MH mirror’s central region. Average
transmission is 996 ppm.

2.2.2.4 Summary

Taking into account all known defects, the production MH mirror was adjudged ade-

quate for our purposes, noting that producing a perfect mesa beam was no longer an

achievable goal.

The difficulties experienced during the production of our MH mirror may all be traced

to the small size and intricate features of our optic. Such problems should not arise in

the construction of full size mirrors as the height of the Mexican hat profile is indepen-

dent of cavity length. Further, the relative transverse resolution of the interferometric

map, atomic correction beam and robotic arm will be greater and will thus introduce

correspondingly smaller errors.

The preceding discussions assume that any MH mirror will be constructed using the de-

position process described in §2.2.1.1. Other possible options include diamond machin-
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ing of aluminium substrates and magnetorheological finishing [124]. Neither process

is immediately preferable. The magnetorheological technique suffers from metrology

limits similar to those highlighted above, meaning small optics are still beyond reach.

Diamond machining should allow smaller mirrors to be produced but only if one is

willing to forgo transmission of light through the substrate, perhaps a manageable im-

pediment in our work but entirely unfeasible in a full size gravitational wave detector.

2.2.3 Mechanical structure

 

3.658 m 
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Figure 2.21: A Schematic of the prototype cavity. The entire rigid system is suspended
inside a vacuum tank from four pairs of geometric anti-springs to provide environmental
isolation. A - Flat input mirror, B - Mexican hat mirror, C - Heat shield, D - Vacuum
tank, E - Spacer plate, F - INVAR rod, G - Flat folding mirror. The alignment of
each mirror is controlled by a triplet of PZTs mounted at 120o intervals around the
periphery of the mirror. Each PZT is mounted in series with a micrometric screw to
allow coarse adjustment. Items A, B and G correspond to U, W and V in fig. 2.30.
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2.2.3.1 Cavity and vacuum tank

In the interests of simplicity, a rigid cavity structure was selected over a more com-

plicated independently suspended design. This structure was formed from three solid

metal rods 31.75 mm in diameter and 3.658 m in length fixed together by five triangu-

lar bracing plates, each 25 mm thick. The cavity optics were mounted on the bracing

plates at the extremities of this structure (see fig. 2.21).

Longitudinal stability is of key importance to any resonator. In order for a cav-

ity to remain passively locked its length must be stabilised to around one linewidth

∆LFWHM = λ/2F . For our cavity this corresponds to27 ∼2.7 nm. Achieving such

length stability in a 4 m structure would be unlikely.

Low thermal expansion material was sought for the cavity construction. ULE (αth =

3 × 10−9 K−1) and Zerodur (1 × 10−7) were considered but available lengths, ease of

machining, lead time and cost forced the use of INVAR. An iron-nickel alloy, INVAR has

a specified linear coefficient of thermal expansion of αth = 1.2×10−6 K−1. Experimental

measurements of the delivered material came acceptably close to this value at αth =

1.9×10−6 K−1. Achieving the required length stability with INVAR thus demands that

temperature fluctuations not exceed 3 × 10−4 K. Knowing that thermal drifts would

be problematic the cavity was encased in an aluminium heat shield.

In addition to longitudinal stability, the structure was also designed to have high me-

chanical impedance, obviating the need for an active alignment system and confining

any resonances to high frequency. This effort was stymied by the immutable cavity

length requirement. An approximate finite element analysis revealed several low fre-

quency eigenmodes (see table 2.3). These resonances were detected experimentally28

but did not significantly hinder progress.

To allow for vacuum operation the entire cavity structure and thermal shield were

27Remembering an extra factor of two in the denominator to account for our folded construction of
the cavity.

28Particularly the torsional mode at ∼60 Hz (see §2.2.4.4).
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Figure 2.22: Image of cavity structure during construction. A - Suspension system, B
- INVAR rods, C - Cavity end plate housing input and MH mirrors, D - Intracavity
bracing plate.

Table 2.3: Mechanical resonances of the cavity’s supporting structure from finite ele-
ment analysis.

Frequency [Hz] Description

0.1272 See saw
2.2027 Yaw
21.707 Snake - 1st bending mode
31.872 Torsion about third bracing plate
32.045 Snake - 2nd bending mode
41.042 Snake - 3rd bending mode
60.358 Torsional about second and fourth bracing plates
84.04 Second torsional about third bracing plate
93.74 INVAR rods
93.812 INVAR rods
96.503 INVAR rods
99.222 INVAR rods
99.31 INVAR rods
100.71 INVAR rods
105.36 INVAR rods
105.45 INVAR rods
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Figure 2.23: Image of cavity apparatus during operation. The thermal shield can be
seen protruding from the main vacuum tank.

mounted inside a pressure vessel. This feature was never employed. Figures 2.22 and

2.23 present images of our apparatus during construction and operation.

2.2.3.2 Suspension

Figure 2.24: The entire cavity assembly weighing 80 kg was suspended from four pairs
of geometric anti-springs (two shown). The horizontal and vertical resonant frequencies
were 400 and 500 mHz respectively.
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To further isolate the mesa beam cavity from environmental disturbances it was sus-

pended from two pairs of Geometric Anti-Springs (GASs) [125]. The simplest GAS

consists of two opposing cantilever blades with their suspension points fixed to a com-

mon keystone. Unstressed, these blades are flat; in the GAS, under radial compression

with an inclined launch angle, they become bowed. The radial compression of the

blades generates a force opposing that due to the suspended load, lowering the effec-

tive stiffness and therefore resonant frequency of the spring. Through careful tuning

one can produce an extremely soft spring capable of suspending large loads.

M

θ 
ly 

ky ; y0

kx ; x0 kx ; x0 

y 

Figure 2.25: Toy model of a GAS.

This concept is demonstrated in the following simple model [126]. A mass M is sus-

pended by one vertical spring and two radial springs, all massless (see fig. 2.25). The

vertical spring has spring constant ky and unstressed length y0. The radial springs

have identical spring constants and lengths kx and x0 respectively. The angle the

radial springs make with the horizontal is denoted θ. With the mass suspended at

equilibrium, θ = 0, the vertical spring has length ly and each radial spring has length
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lx. The equation of motion of this system is

Mÿ = ky(ly − y − y0) + 2kx

(
√

y2 + l2x − x0

)

sin θ −Mg. (2.15)

Assuming small departures from equilibrium, so that sin θ ≃ tan θ = −y/lx and terms

quadratic in y may be neglected, we find

Mÿ = ky(ly − y − y0)− 2kx

(

1− x0
lx

)

y −Mg,

= −keffy + ky(ly − y0)−Mg, (2.16)

where keff = ky + 2kx −
2kxx0
lx

, (2.17)

the equation of an harmonic oscillator with effective spring constant keff . The third

term of keff has opposite sign and is known as the anti-spring term. This expression

clearly shows how adjusting the radial compression of the GAS modifies the stiffness

and resonant frequency of the system. A more complete model is discussed in [127].

Our system was slightly more complicated, involving two pairs of springs operating

in parallel, with suspension wires attaching to the 2nd and 4th intracavity bracing

plates (see figures 2.24 and 2.26). Other novel features were also included. A LVDT-

stepper motor pair were connected to the suspension point of each GAS allowing the

equilibrium height of the keystone to be sensed and altered. This capability allowed one

to compensate thermal drifts and finely adjust the resonant frequency of the system.

The vertical resonances of the blades were generally tuned to ∼800 mHz to avoid bi-

stability although resonances as low as 400 mHz were achieved. Horizontal attenuation

was provided by the long cavity suspension wires. This pendulum had a ∼500 mHz res-

onance. The entire suspension system was controlled using six eddy current dampers.

Both the GASs and suspension wires were manufactured using maraging steel for its

high Young’s modulus, temperature stability and yield strength. The total suspended

mass was greater than 80 kg.29

29Approximately 79 kg for the cavity structure plus the ballast mass used in tuning the working
point of the system.
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Figure 2.26: Schematic of the cavity suspension system viewed along orthogonal axes.

2.2.3.3 Mirror mounts and actuators

The three mirrors forming our resonator were fixed to the cavity support in two mounts,

one on each of the triangular cavity end plates. The input and MH mirrors shared

the same mounting with the folding mirror at the opposite end of the structure (see

fig. 2.21). Fig. 2.27 show two aspects of the plate housing the input and MH mirrors;

the plate supporting the folding mirror was simply a reduced version of this design.
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Figure 2.27: The input and MH mirrors were housed in a single mount on the first
triangular bracing plate. Here we present schematics showing the cavity (upper) and
external (lower) sides of this structure. A - Side spring, pin and compression screw, B
- Annular copper beryllium spring, C - Return pin, D - Vertical locating screw , E -
Mounting for micrometric screw.
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The mirrors were constrained in the plane transverse to the cavity by means of three

screws positioned at 120◦ intervals around the barrel of each optic. One screw per optic

was arranged in series with a coil spring and metal pin (A in fig. 2.27, C in fig. 2.28).

A

B

E

D

C

Figure 2.28: Schematic of mirror mounts and actuators. A - Annular copper beryllium
spring, B - Return pin, C - Side spring and pin, D - PZT actuator, E - Micrometric
screw. Each optic was endowed with three return pins, PZTs and micrometric screws.
For clarity only one of each is shown.

Longitudinal and angular control was provided by a triplet of PZTs, equidistant from

one another around the periphery of the optic. Opposing these PZTs were three metal

pins, one coaxial with each PZT, acted upon by a single copper beryllium spring (B &

C fig. 2.27; A & B fig. 2.28).

The PZTs were driven by a ten channel,30 dual stage amplifier. This amplifier per-

formed two functions: It provided a finely adjustable DC bias, enabling bi-polar actu-

ation and precise control of the PZTs. It also accepted low voltage AC signals which

were amplified and superimposed onto the DC level. This facility was used to modulate

the angular and longitudinal positions of the mirrors for alignment purposes or when

making transfer function measurements. The low gain summing stage was constructed

around basic OP27s [128] while the high gain stage used the APEX PA 82 [129]. The

30Three channels per mirror plus one spare.
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maximum gain and output of the circuit were tailored to match the range of the PZTs.

The PZT used was a PI-810.10 [130], providing a verified displacement of 150 nm/V up

to a maximum of 15 µm. This PZT has a resolution <0.2 nm and its first resonance at

22 kHz.31 The PZTs were connected to the driver electronics via vacuum compatible,

kapton coated, twisted pairs. Fine wires were used to avoid seismic shorts. As with

all PZTs, our units exhibited noticeable hysteresis and push/pull imbalance. These

effects hampered many of our measurements but were ultimately unimportant. Trans-

fer function measurements from PZT drive to angular mirror motion revealed that all

channels exhibited uniform response below ∼1 kHz with their first resonances around

2 kHz.

In order to preserve the dynamic range of the PZTs and permit the large manual

adjustments necessary to align the cavity, micrometric screws with a pitch of 254 µm

[131] were placed in series with each PZT (E in fig. 2.28).

2.2.4 Optics

2.2.4.1 Other mirrors and cavity

Having written at length about the construction and attributes of the MH mirror in

§2.2.2, this section is devoted to the remaining mirrors and resulting cavity properties.

The Input Mirror (IM) is positioned at the cavity waist (see §2.2.2) while the Folding

Mirror’s (FM’s) role is simply to relay the cavity beam. Hence both mirrors were flat

i.e.R = ∞ and no deposition process was applied after the initial polish. The substrates

of all three cavity mirrors were identical, their properties are listed in table 2.4.

31This resonant frequency is for an unloaded PZT, the first resonance of the combined PZT, mirror
and mount is far below this.
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Table 2.4: All three mirror substrates display the following properties. An image of
one substrate is shown in fig. 2.29. A scratch/dig specification of 10-5 means that
the maximum permissible scratch width is 10 µm and the maximum permissible dig
diameter is 50 µm.

Property Value

Material 7980 Fused silica (Corning)
Overall dimension 50 mm �× 30 mm tk.
Chamfer 3 mm × 3 mm @ 45◦

Roughness <1 Å rms
Flatness 1/10 wave @ 6328 Å
Scratch/Dig 10-5

Figure 2.29: All three cavity optics had identical substrates.

For a three mirror cavity in our configuration the finesse is given by

F =
π
√

rIMrMHr2FM
1− rIMrMHr2FM

. (2.18)

With mirror profiles selected this finesse had to be determined.

Our cavity may be thought of as a mode cleaner, accepting a Gaussian input and

transforming it into a flat topped mesa beam. This description argues in favour of high

finesse. However we had to remain mindful that this was a prototype interferometer

and cavity control could be an issue, suggesting the use of a lower reflectivities.



2.2 Apparatus 96

Numerical simulations revealed that for F & 100 the remnant Gaussian field circulating

in the cavity was negligible. Such a finesse was also acceptable from a lock acquisition

viewpoint. The coating transmission specifications were thus set to give a finesse of

∼110 (see table 2.5).

Table 2.5: Measured optical properties of cavity mirrors. Power loss due to various
mechanisms in parts per million. Blank entries denote unmeasured quantities.

Optic
Specified

Transmission Scatter† Absorption AR reflectivity
Transmission

IM 50000 49400 5.343 0.60 28
FM 3000 3068 5.190 0.55 24
MH 1000 996 1350 — —

† Integrated over 1.5◦ ≤ θ ≤ 78◦.

Including measured losses the theoretical finesse was ∼103, with experimental mea-

surements coming exquisitely close to this value. The unusually high transmission of

the folding mirror was chosen to provide an extra port for our control and readout sys-

tem. With limited experience of non-Gaussian interferometry it was thought prudent

to maximise the flexibility of our apparatus.

2.2.4.2 Laser table

The following sections describe the optical layout of our experiment, fig. 2.30 provides

a pictorial companion.

The cavity is driven by a 1064 nm NPRO with a maximum output power of 800 mW

[132]. Following the beam path from the laser (A) we have: B - an iris to remove pump

light, C - a λ/4 plate to linearise the polarisation, D - a Faraday isolator to protect the

laser and mitigate instabilities caused by retro reflected light, E - a λ/2 plate to rotate

the polarisation, F - a pair of cylindrical lenses to remove astigmatism from the beam,

G - a resonant electro-optic modulator to imprint the laser light with phase sidebands,

I - a λ/4 plate to create circular polarisation, J,K,M - steering mirrors to align the

input beam to the cavity axis and L - a mode matching lens.
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Figure 2.30: The mesa beam experiment optical layout. A - 800 mW 1064 nm NPRO,
B - Iris, C - λ/4 plate, D - Faraday isolator, E - λ/2 plate, F - Cylindrical lenses,
G - Electro-optic modulator, H - Polarising beam splitter, I - λ/4 plate, J - Steering
mirror, K - Steering mirror, L - Mode matching lens, M - Steering mirror, N - Radio
frequency photodiode, O - Reflected DC photodiode, P - Reflected beam camera, Q -
Gouy phase telescope, R - Wavefront sensor head, S - Transmitted beam camera, T
- Transmitted DC photodiode, U - Input mirror (IM), V - Folding mirror (FM), W -
Mexican hat (MH) mirror, X - CCD camera.
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The light returning from the cavity is selected by a polarising beamsplitter (H) and

split between: N - an RF photodiode used for Pound Drever Hall (PDH) reflection

locking, O - a DC photodiode, P - a CCD camera and Q,R - a Gouy phase telescope

and differential wavefront sensor.

Light transmitted by the cavity is sampled by a CCD camera (S) and DC photodiode

(T) while the radiation leaking through the folding mirror is attenuated and passed

through a telescope before being sampled by a high-resolution CCD camera (X).

The folded cavity is formed by the three mirrors U,V,W.

One of the attributes which distinguishes the mesa beam from competing modes is its

strong coupling to Gaussian fields. In order to realise this coupling experimentally,

great care was taken over mode matching the Gaussian input beam to the cavity.32

According to (2.9) the optimal cavity input beam has a waist of size ωg ≃ 3.62ω0 =

5.70 mm located on the surface of the IM (see fig. 2.31). Using this information our

mode matching problem is no different to that of a standard Gaussian cavity, the only

possible peculiarity of our setup being the large ratio of waist sizes.33

Having fully characterised the laser’s output mode and surveyed the applicable con-

straints, the first matching design investigated was a simple one lens solution. Two

waists ω1 and ω2 may be appropriately matched by a single lens of focal length f if the

distances from each waist to the lens (d1, d2) are arranged according to

(d1, d2) =

(

f ± ω1

ω2

√

f 2 − f 2
0 , f ± ω2

ω1

√

f 2 − f 2
0

)

(2.19)

and f is strictly greater than the characteristic focal length of the system f0 = πω1ω2/λ

[134]. Selecting the most suitable focal length from readily available lenses, we found

for our parameters that (d1, d2) ≃ (2, 36) m, not an entirely feasible solution.

Given the layout of our apparatus the maximum practicable telescope length was

32For a summary of the possible mismatches see [133].
33The laser waist is some 50 times smaller than that of the cavity.
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Figure 2.31: Normalised intensity profiles of the ideal Gaussian injection beam and
mesa cavity eigenmode at the input mirror.

around 3 m. Exploring single lens solutions with this limitation an interesting con-

figuration was found. Using our chosen lens to ‘collimate’ the beam i.e. setting d1 = f

a good approximation to the exact solution could be achieved. The resulting beam

parameters at the input mirror were ωIM ≃ 6.1 mm and |RIM| ≃ 2.9 km.

Investigating this solution analytically, the discrepancy in coupled power with respect

to the ideal beam was found to be . 1%. This result was confirmed in numerical

simulations incorporating the phase profile of the real MH mirror. These simulations

also satisfied us that this solution would not cause unforeseen excitation of Higher

Order Modes (HOMs).

As anticipated, subsequent investigations of multiple lens telescopes revealed that more

efficient solutions were available. However using standard commercial optics these ar-

rangements were dramatically more sensitive to variations in focal length and lens

placement. Hence the one lens solution was chosen for initial commissioning of the

experiment and was eventually retained throughout.34 A peak mode matching effi-

34Two lens solutions were implemented later in the life of the experiment but never offered significant
advantages over the simpler one lens design.
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ciency of 88.4% was recorded.35 This number should be compared to the theoretical

maximum of ∼94% and the predicited matching with our solution of ∼93%. A typical

transverse mode spectrum is shown in fig. 2.32.
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Figure 2.32: Experimentally measured mesa beam transverse mode spectrum. Cavity
transmission is shown on both linear (purple) and logarithmic (blue) axes as a function
of the actuation signal controlling the input laser’s frequency.

2.2.4.3 Beam capture

The main goal of our work was to test whether non-Gaussian mesa beams were exper-

imentally realisable. It was thus essential to have an accurate means of recording the

transverse intensity distribution of the cavity field. This was achieved with the help of

a high resolution CCD camera.

The chosen camera was a Coherent LaserCam IIID 1/2 in. [135]. This device has an

active area of approximately 4.1 × 4.7 mm2 with a pixel size of 17.05 × 19.69 µm. It

possesses a dynamic range greater than 900 to 1, may be locally or externally triggered

35Based on the relative intensities of peaks in the transverse mode spectrum (see fig. 2.32). More
typical mode matching efficiency was around 85%
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Figure 2.33: Optical layout of components used to condition and capture the mesa
beam profile. A - Lens, B - steering mirror, C - Wedge, D - Lens, E - High resolution
CCD camera.

and has a saturation level of 0.8 mW/cm2. Preliminary characterisation of the CCD

and acquisition electronics found the gain uniformity to be better than 1.5%.

The camera was positioned at the opposite end of the cavity from the input and MH

mirrors, utilising the high transmission of the folding mirror to observe the profile of

the resonating mode. Before capture, the beam was pre-conditioned by attenuators

and a two lens telescope. Reflective attenuation was used to avoid creation of spurious

interference patterns and to mitigate thermal distortion during long lock stretches.

Here and throughout the experiment large optics were used where appropriate to avoid

vignetting and spherical aberration. Fig. 2.33 shows an image of the profile readout

bench.



2.2 Apparatus 102

2.2.4.4 Commissioning and control

In this section we describe how the cavity was brought to a state in which meaningful

data could be recorded.

Alignment of the cavity consisted of three basic steps: preparatory work with a visible

laser, alignment of the injection beam using steering mirrors on the input bench (J,K,M

in fig. 2.30) and final cavity alignment, using first the micrometric screws and later the

PZTs.

This terse summary disguises what proved to be the most challenging aspect of our

experimental work.

- The physical size of our apparatus meant that it was, prior to resonance, impos-

sible to observe the effect of any alignment changes while making them, forcing

one to continuously shuttle between actuator and beam spot.

- The heat shield enshrouded the mirrors, limiting both physical and visual access,

making it difficult to centre beam spots on the mirror substrates.

- Several PZTs could produce the same effect on the cavity mode often leading to

false maxima in the circulating power and sub-optimal cavity alignment.

- Due to mode matching constraints a lens was interposed between our steering

mirrors, hampering translation of the input beam.

These issues were compounded by the optical properties of the mesa beam resonator.

In a spherical mirror cavity small tilts of the optics merely shift the optical axis so

that it remains perpendicular the mirror surfaces; the phase front presented to the

beam remains spherical and the eigenmode remains Gaussian. By contrast a tilted

MH mirror36 presents a radically altered figure to the cavity with strong consequences

for the resonant field.

36Or analogously a perturbed optical axis.
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With experience and subtle additions to the apparatus37 our endeavours ultimately

prevailed. What initially took two people several hours to achieve with variable success

could be accomplished alone in less than one. With the cavity in a well aligned state

attention was diverted to longitudinal control.

After preliminary work with offset and dither locking schemes, PDH reflection locking

was investigated (see §1.5.2.5). Use of this technique is so widespread in gravitational

wave interferometers that its failure with mesa beams would likely prohibit their use.

Proceeding as for a spherical mirror cavity, an Electro-Optic Modulator (EOM), optical

diode, RF photodiode and appropriate demodulation electronics were prepared. The

EOM [136] impressed 81 MHz phase sidebands38 with a modulation index of Γ = 0.33

upon the carrier light. This modulation frequency encouraged the use of a small, low

capacitance photodiode with an active area of just 1 mm2 [138]. Controlling the spot

size on and alignment to this diode was crucial in removing spurious offsets from the

longitudinal control loop. Sweeping the system about resonance, the dispersion-like

error signals characteristic of the PDH technique were witnessed (see fig. 2.34).

For small deviations ∆f about resonance, the signal voltage at the output of a PDH

mixer VPDH is given by [139]

VPDH =
∆f

fFSR

8F2T1
πr1r2

MJ0(Γ)J1(Γ)GImax, (2.20)

where fFSR is the cavity free spectral range, M is the fraction of incident light coupled

into the cavity’s fundamental mode, Γ is the sideband modulation index, G is the net

gain of the detection photodiode and mixer in Volts per Ampere and Imax is the DC

photocurrent recorded far from resonance.

Calibrating our demodulation chain using a well characterised AM laser and adapting

(2.20) to a three mirror resonator, the measured PDH discriminant was found to be in

37 ‘Targets’ mounted to the cavity end plates (internal and external to the cavity) were greatly
beneficial to initial alignment. The addition of a projector made diagnostic signals visible throughout
the lab.

38The choice of such a high modulation frequency was motivated by available equipment (perhaps
originally purchased by Mason [137, 94]) rather than optical constraints.
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Figure 2.34: Experimental PDH signals with the mesa beam.

excellent agreement with the expected value

(
VPDH

∆f

)

meas

= 3.07± 0.34× 10−5 VHz−1,

(
VPDH

∆f

)

theory

= 3.02× 10−5 VHz−1.

Once it had been demonstrated that the novel feature of our cavity would cause no

control issues, a simple servo was designed around the measured error signal.

Due to stiction in their mountings and non-uniform gain it was time consuming to

extract purely longitudinal mirror motion from our PZT triplets. The decision was

made to actuate instead on the laser frequency.

A blended loop driving the laser’s PZT39 above ∼ 0.1 Hz and its temperature controller

below was commissioned, latterly achieving a unity gain of 7 kHz with a 40◦ phase

margin. Fig. 2.35 show the residual length noise of our system.

39Early in the experiment a laser without a PZT was used. During these times high frequency
corrections were applied to the diode pump current [140, 141].
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Figure 2.35: Residual length noise in mesa beam cavity. The total rms displacement
is 1.55× 10−6 m.

The rms residual motion is dominated by a strong feature at 60 Hz. This is not standard

power line coupling40 but the nefarious interaction of ambient noise with a mechanical

mode of our cavity structure.

During the lifetime of our experiment a new HVAC system serving our group’s labora-

tories was installed.41 The chiller itself was placed in the room adjacent to ours, routing

all ducts through our workspace. This led to increased acoustic noise and vibration,

particularly at the ∼59.5 Hz fan frequency. Unfortunately our cavity structure had a

low Q resonance at around 60 Hz – a torsional mode about the 2nd and 4th intracavity

bracing plates (see §2.2.3.1 and fig. 2.21) – which became excited by this acoustic noise.

Shaping the loop to provide greater low frequency gain42 compensated for this coupling

and robust locking resumed.

40Experimental work on the mesa beam cavity was carried out in the United States where the line
frequency is 60 Hz rather than 50 Hz.

41Closing our laboratory for 12 months.
42Two low frequency gain boosts were implemented - simple pole zero pairs at fp = 30, 150 Hz,

fz = 1.5, 1.5 kHz. In general these boosts were not used in tandem.
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In its final state the PDH based longitudinal control loop was able to preserve the

cavity in a resonant state for several hours at a time. This stability allowed the results

of long series of measurements to be safely compared and combined. Further it al-

lowed alignment and mode matching to be slowly optimised leading to vastly improved

visibility.

2.3 Results

2.3.1 The fundamental mode

With good alignment, efficient mode matching and robust laser frequency control it was

possible to stably lock the cavity to its fundamental mode. While recorded intensity

profiles showed the resonant field to be clearly non-Gaussian and of considerable width,

the mesa beam’s characteristic flat top was absent (see Fig. 2.36).

We had been previously alerted to this possibility by FFT based simulations including

measured defects of the MH mirror. This numerical work produced similarly perturbed

mode shapes even after the application of corrective tilts (see §2.2.2.2). Fig. 2.37 super-
imposes the intensity profiles of one such simulated field with those of an experimental

mode. To ensure fair comparison the simulated beam was propagated from the MH

mirror to the image plane of our readout telescope.

The agreement between numerical and experimental modes is striking, indicating that

deviations from the theoretical profile are likely dominated by mirror defects rather

than misalignments or other effects omitted from our simulations.

Having confirmed the observed mode to be consistent with the best achievable given

our apparatus, we measured it against the nominal mesa beam by means of a least

squares fit (see fig. 2.38). One will notice that the fit function differs from previously

shown mesa beams. The readout optics were designed to image the folding mirror of

the cavity, hence our fit function was evaluated at this point and thus lacks the central
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Figure 2.36: Intensity profile of a typical mesa mode realised in our prototype cavity.
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Figure 2.37: Comparison between a typical experimental mesa beam and a mode ob-
tained through an FFT simulation taking account of measured mirror imperfections.

‘dip’ in its intensity profile which one finds in mesa beams at the MH mirror position.

Assuming D = 4ω0 our only fit parameter was ω0, the width of the minimal Gaus-

sian. So that we might extract useful beam parameters, the theoretical magnification

of the readout telescope was applied to the experimental mode prior to fitting. Un-

fortunately uncertainties in lens positions and focal lengths placed an error of 12% on

this parameter, an uncertainty which must be applied directly to our estimated beam

widths. The extracted values were ωx
0 = 1.52 mm and ωy

0 = 1.61 mm with an average

of ω0 = 1.57 mm, in exact agreement with theory.

The observed ellipticity may have arisen through poor beam alignment in the read-

out telescope or in the cavity itself. Early work revealed that the design of our mirror

mounts, with forces applied directly to the substrate, had a tendency to induce astigma-

tism in the cavity optics, a realisation which forced us to use identical thick substrates

for all mirrors.43 This modification was thought to have eliminated any warping but

43The MH substrate was initially the only thick optic (to mitigate coating stresses).
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Figure 2.38: Least squares fit of theoretical mesa beam profile to experimental data.
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imperceptible deformations of the new optics could explain the observed ellipticity.

The average deviations from flat and the power not fitted by the mesa mode are both

around 10%.

2.3.2 Higher order mode spectrum

During characterisation of the fundamental mesa beam a brief investigation was made

into its excited transverse modes (see fig. 2.39). These modes bear a superficial re-

Figure 2.39: A selection of mesa beam transverse modes. These images were taken
opportunistically during a period of poor input mode coupling efficiency. A complete
catalogue of well formed higher order modes does not exist as efforts in this direction
directly conflicted with our primary goal of maintaining good mode matching and
alignment for the fundamental beam.

semblance to the excited modes of a spherical mirror resonator, however quantitative

investigation reveals notable differences [107].

With cavity alignment and mode matching purposely degraded, the laser’s frequency
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was slowly modulated, tracing out the mesa beam cavity’s HOM spectrum. The equiv-

alent operation was subsequently performed in FFT simulation, first for a spherical

mirror cavity, to verify that HOMs were found in the expected positions with the cor-

rect intensity distributions, then for a mesa beam cavity using the phase map of the

experimental mirror. In this instance no corrective tilt was applied in hopes of increas-

ing the coupling to HOMs. Fig. 2.40 presents the results of this work. Notice that the

mesa beam HOMs are no longer regularly spaced as they are in Gaussian resonators

(see §1.5.2.2).
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Figure 2.40: Comparison of experimental and numerical mesa beam transverse mode
spectra. Notice that HOMs are not regularly spaced as with Gaussian resonators. The
mesa spectrum can be compared to that shown in fig. 2.32 taken during a period of
good alignment and input matching.

The intensity of each mode is a function of the particular cavity mismatch. Hence

the relative amplitude of each peak is not expected to agree between spectra and

some modes are not excited at all. Nevertheless the accord between experimental and

numerical data is impressive. For modes observed in both spectra the average difference

in frequency is just 46 kHz or 0.2% of a free spectral range.
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2.3.3 Summary

Above we have demonstrated, for the first time, creation of a non-Gaussian flat topped

beam in a manner applicable to gravitational wave interferometers. This mode is of

particular interest as it is predicted to reduce measured thermal noise. Experimental

results closely followed theoretical predictions with departures from the ideal intensity

distribution well explained by known mirror imperfections.

These imperfections are the result of manufacturing constraints imposed by our ex-

perimental infrastructure and are of little consequence for future work. Large optics

suitable for astrophysically sensitive interferometers should be easier to produce.

Our investigations have further illustrated the utility and accuracy of FFT based sim-

ulations, suggesting that these techniques may be used with confidence to study mesa

beams in more complex interferometer topologies.



Chapter 3

Angular alignment

Mesa beam cavities are expected to be more sensitive to angular misalignments of their

optics than equivalent spherical mirror resonators. In this chapter we explore two issues

related to this prediction.

We first examine how the fundamental resonant mode of a mesa beam cavity is per-

turbed by errors in angular alignment. This is of crucial importance as the advantages

offered by mesa beams are due to their unique shape. If small mirror misalignments

were to destroy the uniformity of the mesa beam’s intensity profile it would likely

prevent their use in future interferometric gravitational wave detectors.

We subsequently consider methods of controlling the alignment of a mesa beam cavity,

focusing heavily on the extension of differential wavefront sensing to non-Gaussian

modes.

Prior to commencing we must stress that the work discussed in this chapter was mo-

tivated by theoretical work concerning the flat mesa beam. Nearly concentric mesa

cavities were devised several years later and hence remain to be studied in depth.

Since our apparatus is of nearly flat construction and thus allows us to test predictions

for flat beams by experiment, we limit our discussion to these modes.
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3.1 Tilt sensitivity

Following the initial proposal of mesa beams, experimentalists became concerned that

the flatness of the MH mirror in its central region, where optical intensity is greatest,

would make mesa beam interferometers substantially more sensitive to errors in the

positions, figures and orientations of their mirrors.

Subsequent theoretical investigation did not confirm these suspicions, concluding that

mesa beam interferometers offer significant advantages over Gaussian beam designs1

without being substantially more sensitive to mirror errors [104, 106, 105]. In particu-

lar, it was found that the mesa beam interferometer was, at most, a factor of 4 more

sensitive to mirror tilts than the equivalent Gaussian.2 Further, the absolute alignment

sensitivity required with mesa beams3 was similar to that already achieved in the first

generation of detectors [142].

Having already witnessed the effects of mirror misalignment in our own apparatus, we

decided to conduct a more quantitative investigation to validate the numerical methods

used in the literature.

3.1.1 Experiment

In order to verify the tools which predicted the properties of mesa beams in a full

interferometer we would apply them to our cavity, recording the intensity profile of the

fundamental mesa mode as a function of MH mirror tilt and comparing the results to

numerical data.

In our prototype cavity, just as in a long baseline interferometer, the fundamental cavity

mode was strongly perturbed by even the smallest mirror tilts. Accurately measuring

the magnitude of these tilts was the most challenging aspect of this investigation.

1These works compared nearly flat mesa beam cavities to equivalent nearly flat Gaussian cavities.
2The metric used in these analyses was the coupling of light into parasitic modes.
3This sensitivity was driven by the properties of the marginally stable recycling cavities. With the

switch to stable cavities this requirement can likely be relaxed.
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Nonlinearities and variability in the mirror actuators obliged us to measure mirror tilt

directly, rather than inferring it from applied signals. Fig. 3.1 shows how this was

achieved.

f  x 10 Signal 
Generator

Lock In 
Amplifier 

A 

G 

F 

E 

D 

C 
B 

Figure 3.1: Apparatus used to measure the tilt sensitivity of the mesa beam cavity. A
- He-Ne optical lever laser, B - Quadrant photodiode, C - PZT, D - DC photodiode, E
- High resolution CCD camera, F - Optical chopper, G - He-Ne laser.

Applying a sinusoidal excitation to the MHmirror alignment PZTs, the resultant mirror

motion was recorded using a well calibrated optical lever. The output of the optical

lever was subsequently relayed to a lock-in detector where the beam motion and thus

mirror tilt at the excitation frequency were calculated. This approach was adopted

to mitigate low frequency beam jitter in the optical lever which had contaminated

previous measurements. The resulting precision of our angle measurement is estimated

to be 0.05 µrad.

The oscillating alignment of the MH mirror meant it was important to have an accurate

means of recording the intensity profile of the cavity mode with the mirror at its

maximum angular deviation. This was accomplished by interposing an optical chopper

wheel between the cavity leakage beam and the CCD camera, triggering beam capture

only when the CCD camera was exposed. The phase of the chopper wheel was measured

using a second additional laser and diode as shown in fig. 3.1.
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3.1.2 Results
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Figure 3.2: Mesa beam intensity profiles as a function of MH mirror tilt. Comparison
between experimental results (solid lines) and numerical simulation (dashed lines).

After the tilt at which each profile was recorded had been calculated, FFT simulations

incorporating the same perturbations were carried out.4 The scale factors, in both

width and integrated power, which best matched the unperturbed beams of the nu-

merical and experimental data were found. The same factors were then applied to all

numerical modes. Fig. 3.2 compares the two data sets.

3.1.3 Discussion

The sensitivity of the fundamental mesa beam’s intensity profile to mirror tilt is in

qualitative agreement with numerical predictions, supporting the conclusion that mesa

beam interferometers will not be significantly more sensitive to tilt errors. However

this assertion does not mean that mesa beam interferometers will not be significantly

more difficult to control.

4These measured tilts were added to the baseline corrective tilt of the real MH mirror phase map.
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Experience in the first generation of gravitational wave detectors has shown that align-

ment of the cavity optics can be controlled to a level acceptable for mesa beams us-

ing differential wavefront sensing [142]. This technique remained untested with mesa

beams although theoretical work [104, 106] suggested that since the field excited by

small mirror tilts has the same geometrical asymmetry about the rotation axis of the

tilted mirror, the physical principles and control system that work for Gaussian beams

should also work well for the mesa beam. In the remainder of this chapter we explore

this idea, examining differential wavefront sensing with mesa beams.

3.2 Differential wavefront sensing

PDH techniques are well proven in controlling cavity lengths (see §1.5.2.5) but they

have no effect on angular stability. If a resonator is misaligned, even by small amounts,

the optical gain of the cavity is diminished and the shot noise of the gravitational wave

readout channel is increased. Consider that just to have the beam reflecting from

a mirror 4 km away return within one spot diameter requires a pointing precision

of ∼10−5 radians. If we impose the constraint that angular alignment should not

significantly degrade the sensitivity of the instrument to gravitational waves5 then we

must maintain alignment at the ∼10−8 radian level [143].

For Gaussian resonators, an extension of PDH locking to angular control known as

differential wavefront sensing [144, 145] can help us maintain alignment within these

stringent bounds. This technique relies on the detection of higher order modes which

are excited by cavity misalignments [146, 133]. In the following sections we consider

whether similar techniques can be usefully applied to mesa beam resonators, our in-

vestigations culminating in an experimental test.

5< 5% effect.
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3.2.1 WFS with Gaussian beams

Before discussing Wavefront Sensing (WFS) schemes as applied to mesa beams, we

first describe how such a system operates with well-understood Gaussian modes. We

show how cavity misalignments scatter light into HOMs (Higher Order Modes), how

these HOMs are detected and how clever manipulation of Gouy phase allows one to

distinguish between misalignment of the front and rear cavity mirrors. Although WFS

schemes can also detect mode matching errors [147] we assume perfect matching and

limit ourselves to angular misalignments.

Rather than presenting a general formalism for the calculation of WFS signals in arbi-

trary topologies [148], we instead develop a single instructive example illustrating the

key physical principles of the scheme. Following the approaches of Heinzel and Matone

[149, 150], we derive an analytical expression for the WFS error signal in a simple and

easily understood Fabry-Perot cavity.

3.2.1.1 Scattering into HOMs

To demonstrate how misalignments result in the excitation of higher order modes we

shall consider the concrete example of a single Fabry-Perot resonator. In order to

efficiently discuss misalignment in this context we introduce two bases and coordinate

systems: the unprimed system of the perfectly aligned input beam and the primed

system which follows the cavity axis as the mirrors tilt (see fig. 3.3). In the absence of

any perturbation these two systems overlap and the input beam is perfectly matched to

the cavity. Equivalently, any error in the orientation of the cavity optics will displace

the cavity axis from its nominal position and excite higher order modes.

We demonstrate this idea using a plano-spherical cavity as it is the most basic non-

trivial example and because it is the configuration closest to that of our mesa beam

resonator. In our arguments we shall assume that all departures from the ideal align-

ment are small, so that only quantities up to first order in tilt need be retained.
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Figure 3.3: Motion of the cavity axis with mirror tilts. The unprimed system represents
ideal alignment whilst the primed system follows the cavity axis as mirrors tilt. A -
Tilts of the spherical mirror translate the cavity axis, B - Tilts of the plane mirror give
rise to tilts and translations.

Tilts of the spherical mirror are most easily analysed (see fig. 3.3). Since the cavity

axis must pass through the centre of curvature of this optic, any tilt results in a simple

translation ∆x of the cavity axis in direct proportion to the applied tilt θetm

∆xetm ≃ Retmθetm. (3.1)

Geometric arguments also assist our consideration of the flat mirror. The cavity axis

must always be normal to this optic, so that mirror tilts introduce an equivalent ro-

tation6 in the cavity axis θaxis = θitm. In addition there is a small translation given

6In this work we use ‘rotation’ to refer to angular movements of the cavity axis whereas ‘tilt’ refers
to angular movements of mirrors.
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by

∆xitm ≃ (Retm − Lcav)θitm. (3.2)

Both tilts also change the cavity length by a small amount. However this length change

is of order θ2 and can thus be ignored in our analysis. Moreover, any cavity control

loop should have ample gain at frequencies where angular motion is seismically excited

to quash such length noise.

We now show how this motion of the cavity axis results in excitation of HOMs, using

the completeness of the HG basis (see §1.5.1.1) to express the input beam in the basis

of cavity modes.

The electric field of a Gaussian beam propagating in the z direction may be written as

(see §1.5.1)

Ψmn(x, y, z) = E0
ω0

ω(z)
Um(x, z)Un(y, z)

× exp

(

j(ωt− kz) + j(m+ n+ 1)G(z)− jk
x2 + y2

2R(z)

)

, (3.3)

= E0e
jωtUmUnAmn.

The most lucid explanation of the scattering process is provided by considering only a

single transverse dimension and focusing attention on the transverse mode functions7

U0(x, z) =

(
2

π

)1/4(
1

ω(z)

)1/2

exp

( −x2
ω2(z)

)

, (3.4)

U1(x, z) =

(
2

π

)1/4(
1

ω(z)

)1/2(
2x

ω(z)

)

exp

( −x2
ω2(z)

)

. (3.5)

For small misalignments only scattering into the first excited mode is relevant.

We have seen that mirror tilts give rise to two classes of perturbation of the cavity

axis, rotations and translations. We now consider each case separately starting with

pure translation by ∆x. Our arguments may be adapted to any longitudinal position

7Of the many permissible normalisations we have chosen to impose that
∫∞

−∞
|Ui(x, z)|2dx = 1.
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[149] but for clarity we work at the waist.

In the unprimed frame the input beam is simply

Ψinput(x, 0) = Ψ0(x, 0) = E0e
jωtU0(x, 0). (3.6)

In the primed cavity axis frame this mode is

Ψinput(x
′, 0) = Ψ0(x

′ −∆x, 0),

= E0e
jωtU0(x

′ −∆x, 0),

= E0e
jωt

(
2

π

)1/4(
1

ω0

)1/2

exp

(−(x′ −∆x)2

ω2
0

)

, (3.7)

= E0e
jωt

(
2

π

)1/4(
1

ω0

)1/2

exp

(−x′2
ω2
0

)

exp

(
2x′∆x

ω2
0

)

exp

(−∆x2

ω2
0

)

.

Under our assumption of small tilts we may neglect the term in ∆x2 and expand the

second exponential to first order. We find that translations of the cavity axis scatter

light into the Ψ1 mode in phase with a coupling coefficient ∆x/ω0

Ψinput(x
′, 0) ≃ E0e

jωt

(
2

π

)1/4(
1

ω0

)1/2

exp

(−x′2
ω2
0

)[

1 +
2x′∆x

ω2
0

]

,

= E0e
jωt

[

U0(x
′, 0) +

∆x

ω0

U1(x
′, 0)

]

, (3.8)

= Ψ0(x
′, 0) +

∆x

ω0

Ψ1(x
′, 0).

We now examine a pure rotation of the optical axis by angle θ. In this case the input

beam (3.6) in the cavity frame acquires an extra phase8 given by φ(x′) = kx′ sin θ ≃
8In general one also needs to consider the projection of amplitude onto the new transverse cavity

plane. This second order effect is ignored in our analysis.
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kx′θ. Hence

Ψinput(x
′, 0) = Ψ0(x

′, 0) exp(jkx′θ),

= E0e
jωtU0(x

′, 0) exp(jkx′θ),

≃ E0e
jωtU0(x

′, 0)

[

1 + jkx′θ

]

,

= E0e
jωtU0(x

′, 0)

[

1 + jθ
πω0

λ

2x′

ω0

]

, (3.9)

= E0e
jωt

[

U0(x
′, 0) + jθ

πω0

λ
U1(x

′, 0)

]

,

= Ψ0(x
′, 0) + jθ

πω0

λ
Ψ1(x

′, 0).

Rotations of the cavity axis scatter light into the Ψ1 mode in quadrature with coupling

coefficient θπω0/λ.

General misalignments entail both transverse displacements and rotations of the cavity

axis. At the waist this combination can be written as

Ψinput(x
′, 0) ≃ Ψ0(x

′, 0) +

(
∆x

ω0

+ j
θ

λ/(πω0)

)

Ψ1(x
′, 0). (3.10)

3.2.1.2 Detection of misalignments

Cavity misalignments may be detected in reflection [144] or transmission [133], each

style having its own merits. We describe the case of signal extraction in reflection as

this is the technique employed in the mesa beam experiment and the majority of long

baseline interferometers.

Consider a phase modulated input beam of form

Ψinput(x, z) = E0A0e
jωtU0(J0(Γ) + jJ1(Γ)e

jΩt + jJ1(Γ)e
−jΩt), (3.11)

where Ω is the modulation frequency and Γ the modulation index.9 For compactness we

9Notice that this is the same input beam as was discussed in §1.5.2.5. When signals are detected
in reflection the same phase sidebands may be used for both longitudinal and angular control.
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shall henceforth suppress the A0 phase term, reintroducing its constituents as necessary.

For the same reason we also omit function arguments, Ji(Γ) becoming Ji for example.

With this notation the input beam in the cavity frame may be described at its waist

position by

Ψ′
input = E0e

jωt(U ′
0 + CU ′

1)(J0 + jJ1e
jΩt + jJ1e

−jΩt),

= E0e
jωt

[

J0(U
′
0 + CU ′

1) + jJ1e
jΩt(U ′

0 + CU ′
1) + jJ1e

−jΩt(U ′
0 + CU ′

1)

]

, (3.12)

where C = ℜ(C) + jℑ(C) = ∆x/ω0 + jθπω0/λ.

To find the reflected field we must apply the complex reflectivity of the cavity

rmn
cpt (f) = r1 −

t21r2 exp(−j2πf2L/c)
1− r1r2 exp(−j2πf2L/c)

(3.13)

where f is the detuning in Hz from resonance, mn are mode indices and cpt represents

a spectral component, e.g. CR or SB+ for carrier or upper sideband respectively.

The reflected field in the primed cavity frame is thus

Ψ′
refl = E0

[

J0(r
00
CRU

′
0 + r10CRCU

′
1)e

jωt

+ jJ1((r
00
SB+U

′
0 + r10SB+CU

′
1)e

j(ω+Ω)t) (3.14)

+ jJ1((r
00
SB−U

′
0 + r10SB−CU

′
1)e

j(ω−Ω)t)

]

.

To convert back to the input frame for detection we must recognise that the U ′
0 mode

will be affected by a misalignment −ℜ(C) + jℑ(C) = −C∗ so that

Ψrefl = E0

[

J0

(

r00CR(U0 − C∗U1) + r10CRCU1

)

ejωt

+ jJ1

(

(r00SB+(U0 − C∗U1) + r10SB+CU1)e
j(ω+Ω)t

)

(3.15)

+ jJ1

(

(r00SB−(U0 − C∗U1) + r10SB−CU1)e
j(ω−Ω)t

)]

.
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Let us separate this field into spectral components by expressing it as

Ψrefl = ejωt(a0 + a1e
jΩt + a−1e

−jΩt) where

a0 = E0J0

(

r00CR(U0 − C∗U1e
jG) + r10CRCU1e

jG

)

,

a1 = jE0J1

(

r00SB+(U0 − C∗U1e
jG) + r10SB+CU1e

jG

)

, (3.16)

a−1 = jE0J1

(

r00SB−(U0 − C∗U1e
jG) + r10SB−CU1e

jG

)

.

Here we have also reintroduced the additional Gouy phase G which the U1 mode will

acquire with respect to the fundamental upon any propagation away from the waist.

This Gouy phase will prove crucial in identifying misalignments of specific optical

components (see §3.2.1.3).

This representation allows us to easily compute the voltage signal Spd from any pho-

todetector in reflection

Spd = GpdRpd|(a0 + a1e
jΩt + a−1e

−jΩt)ejωt|2,

= GpdRpd

[

|a0|2 + |a1|2 + |a−1|2
︸ ︷︷ ︸

dc components

+2ℜ[(a∗−1a0 + a∗0a1)e
jΩt]

︸ ︷︷ ︸

components atΩ

+ O(2Ω)
︸ ︷︷ ︸

components at 2Ω

]

,

(3.17)

where Rpd is the responsivity of the photodiode in amperes per watt and Gpd is the

transimpedance gain in volts per ampere.

We have seen above that mirror tilts are evidenced by the excitation of higher order

modes. In order to detect the presence of the U1 mode the orthogonality of the basis

functions (
∫∞

−∞
U0(x, z)U1(x, z) dx = 0) demands that we employ a split photodetector,

subtracting its outputs.10 Hence the true signal of interest is

Ssplit
pd =

∞∫

0

Spd dx−
0∫

−∞

Spd dx. (3.18)

10In practice, when dealing with two transverse dimensions a quadrant detector is used.
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We may simplify the calculation of our error signal by noting that

∞∫

0

U0(x, z)U0(x, z) dx−
0∫

−∞

U0(x, z)U0(x, z) dx = 0 (3.19)

and

∞∫

0

U0(x, z)U1(x, z) dx−
0∫

−∞

U0(x, z)U1(x, z) dx =

√

2

π
. (3.20)

With this information we may proceed under the assumption of an infinite, single

element detector11 and make the following substitutions in our final answer

U0U0 → 0, (3.21)

U0U1 →
√

2/π.

The most useful component of Spd is that at the modulation frequency Ω. This signal

is extracted via coherent demodulation (see §1.5.2.5)

Sdemod = κℜ[(a∗−1a0 + a∗0a1)e
−jφdemod ], (3.22)

where the term κ = MlossGpdRpd includes the responsivity and transimpedance of the

photodiode and any mixer lossMloss. Notice that the size of the signal has been halved

with respect to (3.17), this is due to equal amounts of signal being upconverted and

downconverted by Ω.

Using the aj values given in (3.16) and applying the replacement rules (3.21) to account

11Here we have assumed the beams to be perfectly aligned on the photodetector, a non-trivial issue.
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for diode geometry, the resulting in-phase WFS error signal is

Sdemod = κ

√

2

π

(

ℑ
[

e−jGE2
0J0J1ℜ(C)(r00SB−r

00∗
CR − r00CRr

00
SB+

+ e2jG((r00SB− − r10SB−)r
00∗
CR + (r10CR − r00CR)r

00∗
SB+)− r00SB−r

10∗
CR + r00CRr

10∗
SB+)

]

−ℜ
[

e−jGE2
0ℑ(C)J0J1(r00CRr

00∗
SB+ − r00SB−r

00∗
CR

+ e2jG((r00SB− + r10SB−)r
00∗
CR − (r00CR + r10CR)r

00∗
SB+)− r00SB−r

10∗
CR + r00CRr

10∗
SB+)

])

.

Assuming that all fields are perfectly reflected, with the carrier in anti-phase, this

expression can be simplified to

Sdemod = 4κE2
0J0J1

√

2

π
(ℜ(C) sin(G) + ℑ(C) cos(G)). (3.23)

Further, if we utilise the properties of our plano-spherical cavity we can write the error

signal in terms of mirror misalignments as

Sdemod = 4κE2
0J0J1

√

2

π

[(
RETM

w0

sin(G)

)

θETM

+

(
πw0

λ
cos(G)− RETM − Lcav

w0

sin(G)

)

θITM

]

. (3.24)

3.2.1.3 Isolating individual components

Perhaps the most useful feature of the WFS scheme is its ability to distinguish simul-

taneous misalignments of the two cavity optics through clever manipulation of Gouy

phase. We demonstrate this point using the above example.

Equation (3.24) shows that when G = nπ, n ∈ Z the signal due to the end mirror is

null and we are purely sensitive to tilts of the input mirror. To similarly null input

mirror signals and detect only tilts of the end mirror, algebraic manipulation shows

that we require

G = atan

[
πw2

0

λ(RETM − Lcav)

]

. (3.25)
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Thus by positioning two split photodetectors at these Gouy phases one can construct

a diagonal alignment control system.

The apposite Gouy phase advance may be introduced by simple propagation but is

more often realised using a system of lenses known as a Gouy phase telescope. This

approach is preferred as it also allows the spot size at the diode position to be controlled.

If the beam spot is too large it will be apertured; too small and beam centring on the

WFS diode will be difficult.

To calculate the Gouy phase at the detector position after propagation through the

telescope it is useful to introduce the complex beam parameter

q = z + jzR, (3.26)

where z and zR are the propagation distance from the waist and Rayleigh range re-

spectively. The spot size of the Gaussian beam and its Gouy phase12 are found from q

as

ω(z) =

√

λℑ(q)
π

[

1 +

(ℜ(q)
ℑ(q)

)2]

and G(z) = atan

[ℜ(q)
ℑ(q)

]

, (3.27)

adaptations of the more familiar (1.31) and (1.32).

The transformation of q on propagation through any telescope may be found using

using ray transfer matrices [146]. The action of the matrix




A B

C D





being

qout =
Aqin +B

Cqin +D
. (3.28)

12Which is equal to the Gouy phase difference between the fundamental and first excited modes.
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The transfer matrices for propagation over distance d through material with refractive

index n and for a thin lens of focal length f are13




A B

C D





prop

=




1 L/n

0 1



 , (3.29)

and




A B

C D





lens

=




1 0

−1/f 1



 . (3.30)

In general the great utility of matrix methods is that, through multiplication, they

allow a complex system to be represented by a single matrix. Using the matrix repre-

sentation of a Gouy phase telescope for example, the spot size at the detector position

is easily found from the properties of the input beam without having to evaluate beam

parameters at any intermediate stage (see also §1.3.2). Unfortunately such an approach

is not applicable in calculating the Gouy phase itself.

The expression for Gouy phase (3.27) gives the phase gained on propagation from the

beam’s waist position. Passing through any focusing element creates a field with a new

waist position so that blind application of the above formulae results in unphysical

discontinuities in Gouy phase across a lens.

To calculate the true Gouy phase at the output of our telescope we adopt the following

approach. For propagation up to the first lens G(z) is calculated as normal. Then for

each additional propagation, from zm to zm + d say, we add to G(z) only the Gouy

phase accumulated propagating over distance d i.e. G(zm + d) − G(zm), taking care

to use the correct beam parameter for each distinct propagation section. In this way

Gouy phase is continuous throughout any telescope and the advance of the first excited

mode with respect to the fundamental is accurately determined.

Real Gouy phase telescopes typically consist of a converging and diverging lens sep-

arated by d ≃ f1 + f2. When a Gaussian beam passes through its waist it acquires

an additional 180◦ of Gouy phase (see fig. 1.12). By positioning the second lens near

the focal plane of the first, the desired Gouy phase at the detector position may be

13The transformation due to propagation may also be found trivially by addition (see (3.26)).
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extracted. Since the second lens is near a focus it is usually strongly diverging, ex-

panding the beam to the required size. Good control of the separation between the

lenses is essential when using this telescope configuration14 while the resultant Gouy

phase is more robust with respect to the positioning of the first lens and detector.

Telescope layouts are usually found via numerical optimisation routines to minimise

sensitivity to variation in focal lengths and lens positioning. A typical design is shown

in fig. 3.4.
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Figure 3.4: Gouy phase telescopes allow phase and spot size at the detector position
to be controlled simultaneously. Here we show a design providing approximately 90◦ of
Gouy phase and a spot size of 3 mm. The lens separation is 1480 mm, ω0 = 1.66 mm,
f1 = 1500 mm and f2 = −25 mm.

In practice it can be difficult to achieve perfect signal separation for a number of reasons.

For example, if a cavity is close to degenerate there will be appreciable mixing of the

signals from each optic unless those due to misalignments of one mirror are perfectly

nulled; if the cavity is degenerate uncontaminated signals cannot be produced.15

14Although experimentally challenging this sensitivity to lens separation allows the Gouy phase at
the WFS to be tuned over a wide range.

15However, in the normal application of wavefront sensing within servo loops, all the signals are
driven to zero, so unless the cross terms actually dominate over the diagonal terms the servos should
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Further, it is often not necessary to create independent error signals for each mirror

optically. So long as angular motions of one mirror can be well distinguished, electronic

subtraction can be used to obtain uncorrupted information about the other optic [145].

3.3 WFS with mesa beams

Similarly to PDH reflection locking (see sections 1.5.2.5 and 2.2.4.4), differential wave-

front sensing has become an indispensable technique in the control of gravitational

wave interferometers employing Gaussian beams. Hence it is important that WFS

translate effectively to non-Gaussian mesa beams if they are to be considered a serious

option for future detectors.

An analytical expression for the excited modes of a mesa beam resonator remains to be

found, making it difficult to investigate WFS with mesa beams theoretically. However,

work by D’Ambrosio [104] and O’Shaughnessy [106], based around FFT simulation

and perturbation of an integral eigenequation [105] respectively, has shown that WFS

is likely to operate successfully with mesa beams. Their work investigated the field

resonating in a misaligned mesa cavity, showing that tilts of the MH mirror through

angle θ excite an odd mode in proportion to θ and an even mode in proportion to

θ2 – exactly the behaviour exhibited by a spherical cavity.16 Fig. 3.5 shows the odd

contribution.

This result suggests that useful error signals for the angular control of a mesa beam

resonator can be produced via a differential wavefront sensing scheme analogous to

that of a Gaussian cavity.

find the correct alignment.
16Although the mode shapes are quite different.
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Figure 3.5: Tilts of the Mexican hat mirror in a Fabry-Perot cavity excite an odd mode
in proportion to the applied tilt. Here we show the intensity distribution of this mode
found via FFT simulation (left) and perturbation theory (right). Figures adapted from
the work of D’Ambrosio and O’Shaughnessy [104, 106].

3.3.1 Modelling

Since analytical arguments similar to those presented for Gaussian beams in §3.2.1.1
were not able to be developed, an accurate model capable of predicting mesa beam

WFS signals was required. Problems such as this are often tackled using modal expan-

sion [148] since for Gaussian beams only the first few excited modes need be considered.

Unfortunately, working with mesa beams, this approach becomes computationally ex-

pensive, as even the description of a perfectly aligned cavity demands ∼20 terms.17

[120] Again an FFT based simulation was the obvious choice.

Having already developed a comprehensive model of our prototype cavity in SIS (see

1.6.2), only slight modifications were required to generate the cavity fields as a function

of mirror tilt. In our simulations, Gouy phase was controlled by simple propagation

i.e. no Gouy phase telescopes were considered. This propagation was performed exter-

nal to SIS using an FFT tool developed in Matlab [151].

17Compared to 1 for the Gaussian case.
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3.3.2 Calculation of error signals

Since SIS does not incorporate phase modulation, the sidebands (SB) and carrier (CR)

were derived from the available fields as

CR = J0(m) · Total reflected field; SB = jJ1(m) · Promptly reflected field.

With this notation the WFS error signals in watts were then calculated as

WFS = ∆x∆y

Nx/2∑

1

Ny∑

1

Err−∆x∆y

Nx∑

Nx/2+1

Ny∑

1

Err, (3.31)

where Err = ℜ[CR(SB exp(jφ) + SB exp(−jφ))∗].

Here φ is the demodulation phase and ∆i is the size of one of the Ni FFT grid squares in

the i direction. In the mesa beam calculations done here, the grid was 128×128 pixels

on a 5.2 cm square.

3.3.3 Verification of model

To test the accuracy of our FFT methods, we simulated a well understood Gaussian

cavity, comparing output to the theory of section 3.2.1.1 and the extensively tested

Finesse program developed by Freise [95].

The first investigation studied error signals as a function of mirror tilt at two fixed

Gouy phases (see fig. 3.6). Aside from comparing our simulation techniques to other

methods, this work also confirmed that signals were linear and became null at the

predicted Gouy phases. We subsequently verified that our propagation of the reflected

cavity fields was accurate by considering the WFS error signals as a function of Gouy

phase for fixed mirror tilts (see fig. 3.7).

Extremely strong agreement between all three methods is observed, both in the mag-

nitude of the signals and in their behaviour as a function of Gouy phase. The results
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Figure 3.6: WFS error signals as a function of mirror tilt calculated in three different
ways – analytically, using Finesse and via the FFT methods which we hope to extend
to mesa beams. Near field and far field detector positions are those calculated to null
the end and input mirror respectively.
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Figure 3.7: WFS error signals as a function of Gouy phase for fixed mirror tilts.
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from Finesse and theory are in perfect agreement while those from FFT simulation dif-

fer slightly. These differences can be attributed to finite mirror effects and diffraction

losses which are not included in the other models.

3.3.4 Predictions for mesa beams

Confident that our simulation technique was sound, we began to investigate the differ-

ential wavefront sensing signals expected from our mesa beam cavity.

WFS error signals arising from tilts of each mirror were first calculated as a function

of Gouy phase in order to determine where they vanished (see fig. 3.8). It was found
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Figure 3.8: Simulated WFS error signals for our prototype cavity as a function of Gouy
phase.

that the optimal detector positions were separated by just 2.3◦. This suggested that

the fundamental and first excited modes of our cavity were near degenerate and that

separation of signals due to input and end mirror tilts would be extremely taxing.
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Fig. 3.9 shows signals as a function of mirror tilt at the cavity waist (near field) and

at the position where input mirror tilts remain undetected (far field). Although it is
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Figure 3.9: Predicted WFS error signals in our prototype cavity as a function of mirror
tilt. The near field detector is located at the cavity waist whilst the far field diode is
positioned to null input mirror signals.

of course possible to achieve independent sensing, as was done for the spherical mirror

cavity, we studied signals at these positions to emphasise the differences between our

plano-Mexican hat resonator and the plano-spherical cavity investigated in the previous

section.18

Using the predictions of simulation to guide design, experimental work commenced.

3.4 Experiment

In this section we detail the approach and findings of an experimental investigation

into differential wavefront sensing with mesa beams carried out using our prototype

cavity. The principal goals of this work were to validate our modelling tools19 and

to study the error signals themselves rather than develop a functional auto-alignment

18In a plano-spherical cavity ETM signals are null at the cavity waist.
19So that they might be applied to future gravitational wave interferometer designs utilising mesa

beams.
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system. This strategy was adopted as the true vagaries of designing a robust alignment

control scheme are related to dynamical thermal and radiation pressure effects which

could not be recreated in our low power apparatus.

3.4.1 Apparatus and method

A comprehensive discussion of the prototype mesa beam cavity was presented in §2.2.
In this section we discuss only those elements unique to the WFS experiment, beginning

with the split photodetector.

The wavefront sensor itself was constructed from an EG&G YAG-444-4A quadrant

photodiode.20 The properties of this diode are listed in table 3.1.

Table 3.1: Attributes of wavefront sensor quadrant photodiode.

Property Value

Diameter 11.4 mm
Optimal spot size ∼3 mm
Reverse bias 100 V
Responsivity 0.4 A/W
Capacitance per quadrant 9 pF
Forward resistance 100 Ω
Interchannel cross coupling -25 dB
Dark current ∼100 nA

A tunable inductor was placed in parallel with each quadrant to form a circuit resonant

at the modulation frequency. To suppress harmonics of the modulation frequency two

notch filters were also included. In operation the output of each diode quadrant was

divided into AC and DC components, with the DC outputs being used to centre the

incident beam. No active beam steering servo was employed.

The RF photodiode signals were demodulated individually and appropriately combined

using analogue electronics to construct the WFS error signals. The unique demodula-

20The diode was oriented like this
⊕

as opposed to this
⊗

. The relative merits of each configuration
are discussed in [152].
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tion phase of each quadrant was set by introducing the electronic delay which minimised

evidence of a high frequency cavity length excitation in the Q quadrature.

The WFS head21 was positioned as shown in fig. 2.30. Using the results of our sim-

ulation work, a flexible two lens Gouy telescope of the type discussed in §3.2.1.3 was

designed. The detector and each lens were mounted atop high-performance linear trans-

lation stages so that their location could be accurately determined and controlled. By

carefully tuning the lens spacing and the position of the WFS head, the Gouy phase at

the detector position could be varied over a large range whilst preserving an acceptable

spot size.

Great care was taken to ensure that our design encompassed the phases where signals

due to tilts of the input and Mexican hat mirrors were predicted to be null, at 15.8◦

and 13.5◦ respectively. With this setup we hoped to create an experimental analogue

of fig. 3.8.

Measurements were made at AC using the following procedure. The cavity was locked

using PDH techniques and aligned to simultaneously maximise transmitted power and

minimise evidence of angular excitations in the PDH error signal. The cavity was left

in this state for some time to allow thermal transients, particularly in the laser, to

subside. After this period, if necessary, alignment was once more optimised.

A study of the cavity’s residual length fluctuations was then made to select a low noise

band, where the longitudinal loop also had high gain,22 in which to operate. The region

around 100 Hz was found to be suitable.

Due to the layout of the PZT actuators (see §2.2.3.3) analogue electronics were required
to convert applied excitations into pitch and yaw motion. This circuit also allowed the

relative gains of each PZT channel to be adjusted by hand, using audio feedback,23 to

eliminate any angle to length coupling. Previous checks had confirmed that the first

21The quadrant photodiode and associated electronics (filters, gain stages) were packaged as a single
unit known as the WFS ‘head’.

22To suppress any residual angle to length couplings.
23Cordless headphones monitoring the cavity’s longitudinal error signal.
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angular resonance of the PZT-mirror mount combination was well out of band.

Modulating the angular orientations of the input and end mirrors at distinct frequen-

cies across the 100 Hz octave, the transfer function between applied excitation and

the appropriate WFS error signal was then measured. The magnitude of the applied

excitations was varied but always chosen to ensure operation in the linear regime (see

fig. 3.10). For clarity pitch and yaw were studied separately.
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Figure 3.10: The magnitudes of angular excitations applied to the mesa beam cavity
were chosen to ensure linear operation. Applied voltages were strictly below 0.01 Vpp.

This process was repeated a number of times for each telescope configuration to test

consistency of results over time, between locks and as a function of tilt. A sketch of

the experimental set up is shown in fig. 3.11.

3.4.2 Calibration

In order to express experimental data in useful units and facilitate comparison with

simulation a thorough calibration was performed.
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Figure 3.11: Mesa WFS experimental apparatus configured for pitch measurements.
Both mirrors were excited simultaneously. Only excitations of the cavity end mirror
are shown. A - Laser, B - Mixer, C - Electro-optic modulator, D - RF photodiode, E
- Gouy phase telescope, F - WFS quadrant photodiode, G - Mixer, H - PZT triplet
(input mirror PZTs not shown), I - Summing junction, J - Spectrum analyser.

The response of the optical detection chain was studied using a diode laser operating

at 1064 nm. By inserting a bias tee between the diode and its current source, radio

frequency amplitude modulation could be impressed upon the laser’s output. The

resulting modulation index around our experiment’s sideband frequency was calculated

using a fast commercial photodiode with known responsivity and gain [138].

In this way a laser beam with well characterised RF amplitude modulation could be

applied to each quadrant of our split photodiode. Subsequently recording the output

of each mixer allowed us to fully calibrate the WFS head and associated demodulation

electronics.

The PZT tilt actuators (see §2.2.3.3) were calibrated using a long arm optical lever. A

He-Ne laser positioned on the input bench was oriented such that its beam was incident

on the rear surface of the input or MH mirror. The reflected beam was then relayed

to the beam capture table at the opposite end of the cavity and back toward the laser,

giving a total arm length >14 m. Measurements taken as a function of frequency and

amplitude were found to give consistent results.
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3.4.3 Results and discussion
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Figure 3.12: Experimental WFS signals as a function of Gouy phase. These results
should be compared to those of fig. 3.8. Errors are dominated by uncertainties in the
layout of the Gouy phase telescope and in the calibration of the tilt induced by our
excitations.

Fig. 3.12 shows differential wavefront sensing signals measured using our prototype

mesa beam cavity. These signals are linear for small excursions from the optimal

alignment and bi-polar about it, indicating that closed loop control is feasible. To our

knowledge these results are the first experimental demonstration of the WFS technique

in a non-Gaussian interferometer.

Comparing our measurements to model prediction (see fig. 3.8) we see that the overall

form, trends and relative magnitudes are well respected. The absolute size of the

experimental signals falls short of expectation, suggesting a neglected systematic effect.

Despite ardent investigation the source of this discrepancy remains unknown.24

24The beam parameters and focal lengths used in the design of our Gouy phase telescopes were
experimentally measured on a number of occasions. Exhaustive calibration of mirror actuators, photo-
diodes and demodulation circuits produced consistent results. Varying laser power, phase modulation
index and angular excitation levels across numerous data taking runs showed that signals scaled as
expected. All electronics were found to perform as designed with no hidden saturations or oscillations.
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The recorded data shows that signals from the input and MH mirrors become null

at 10.62◦ and 0.80◦ respectively compared to the predicted values of 15.8◦ and 13.5◦.

Subsequent study revealed that including the measured imperfections of the MH mir-

ror modifies the predicted WFS signals, shifting the optimal detector positions (see

fig. 3.13).
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Figure 3.13: Predicted mesa WFS signals including measured mirror imperfections.
Signals were found to vary greatly as a function of rotation axis and corrective tilt.

The orientation of the experimental MH mirror with respect to its measured phase map

is unknown. It is also uncertain whether the corrective tilt applied in simulation accu-

rately matches that used in the real interferometer. Utilising this freedom it is possible

to shift the null positions over a wide range which includes the experimentally mea-

sured values. However there is no evidence to suggest that such configurations should

be preferred over any other. Experimental measurements tilting about an orthogonal

axis found both null positions close to 19◦.

Future continuation of this work should endeavour to explore these issues with a view

to defining manufacturing tolerances for the construction of MH mirrors. However,
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as stated previously, large optics suitable for gravitational wave detectors should be

significantly easier to produce, meaning that the interesting features of the reported

results are peculiar to our apparatus.

In extending our work to create a full auto-alignment system a number of differences

between Gaussian and mesa beams may prove significant. Even in the presence of opti-

mal input mode coupling and perfect alignment, excited transverse modes are present

in the mesa cavity. With our imperfect MH mirror it was observed that even the low-

est order transverse mode,25 whose presence we relate to angular misalignments, was

excited. This effect is shown in fig. 3.14 where we also see that mirror imperfections

shift the locations of HOM resonances. The mesa modes are shifted in a complex,

non-uniform way; polishing errors of a spherical mirror would simply modify the HOM

spacing.
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Figure 3.14: Simulated transverse mode spectra of our prototype resonator using ideal
and measured MH mirror phase maps.

A second issue of interest is the shift in the resonant frequency of mesa HOMs as

a function of tilt (see fig. 3.15). Such effects are not witnessed in spherical mirror

25Excluding the fundamental mesa beam itself.



3.5 Summary 143

resonators and may make the construction of independent sensing signals difficult in

near degenerate cavities. The frequency shift is non-linear going approximately as θ3.
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Figure 3.15: Position of the first excited transverse mode as a function of end mir-
ror tilt in Gaussian (right) and mesa beam (left) resonators. The shift in resonant
frequency with tilt observed for mesa beams may be significant for future auto align-
ment schemes in non-Gaussian interferometers. Mesa beam results use the ideal mirror
profile. Vertical lines in the Gaussian plot indicate theoretical resonance frequencies.

3.5 Summary

During the initial work which led to mesa beams being proposed as an alternative to

Gaussian modes for AdvLIGO it was discovered that mesa beam interferometers were

moderately more sensitive to angular misalignments of their optics. This realisation

prompted the experimental study of angular misalignments in our prototype cavity.

Our first investigation focused on the changes in the mesa beam intensity profile as

the Mexican hat end mirror was misaligned. The results of this work confirmed that

mesa beams were slightly more sensitive to mirror tilts than the equivalent Gaussian

and showed that our FFT based simulation methods were able to accurately reproduce

the eigenmodes of a misaligned resonator.
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Extending these simulation tools we began to investigate whether differential wave-

front sensing, the standard technique employed to control interferometer alignment

with Gaussian beams, could be usefully applied to mesa beam instruments. We first

presented the theory behind WFS before testing our model using well understood and

theoretically manageable spherical mirror resonators. Encouraged by the similarity

between numerical output and theory, we designed an experiment based around the

predictions of our simulations with mesa beams.

Agreement between the resulting data and our expectations was excellent, with the

trends, relative magnitudes and overall behaviour of input and end mirror signals

well anticipated. All signals were found to be linear with tilt and zero at optimal

alignment. Furthermore, the possibility of differentiating between misalignments of

longitudinally separated optical components was demonstrated. These results represent

an important step toward closed loop alignment control of non-spherical mirrors for

future gravitational wave detectors.



Chapter 4

Thermal effects

Thermal effects are already important in currently operating interferometric gravita-

tional wave detectors.1 Planned upgrades of these interferometers involve increasing

optical power to combat quantum shot noise, leading to commensurately increased

thermal perturbations. Absorbed heat will distort the mirror surfaces, changing the

structure of the resonant electromagnetic field. In turn this will change the measured

thermal noise and potentially reduce the stored power due to scattering of light out of

the fundamental arm cavity mode or by degrading the coupling to the injected beam.

In this chapter we consider the ramifications of such thermal effects for the mesa beams

described in §2.1.

In sections 4.1 and 4.2 we outline the theory underpinning our investigation prior

to introducing the simulation methods used in section 4.3. We subsequently study

thermally induced perturbations of a single Fabry-Perot cavity in the presence of high

circulating power, considering how a thermoelastically distorted test mass affects the

intensity profile of the resonant optical mode (§4.4.1). We then evaluate the thermal

noise performance of the new eigenmode in section 4.4.3 before discussing possible

methods of compensating for the deformed test masses in section 4.5. At each stage

we contrast our results with those of a comparable Gaussian cavity.

1The LIGO and VIRGO detectors already employ thermal compensation systems to correct some
mirrors’ radial profiles against thermal effects arising from absorption of stored optical power [153, 154].
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4.1 Thermoelastic deformation

We begin our investigation by considering the thermal deformation of the test masses’

highly reflective surfaces due to absorption in their dielectric coatings. This calcu-

lation may be divided neatly into two parts, the evaluation of the temperature field

throughout the test mass arising from absorbed optical power and the determination

of the resulting surface displacement. In both cases we follow a well-known approach

[100, 155].

Absorption in the input mirror substrates is also generally present and also contributes

to the thermoelastic deformation, however this effect is negligible due to the high arm

cavity finesse and weak coupling between substrate and coating deformations [156].

4.1.1 Temperature field

In this section we consider the heating of a cylindrical test mass by absorption of laser

radiation in its reflective coating. Taking advantage of the problem’s axial symmetry

we are able to construct an analytical expression for the temperature field T in the

test mass bulk.

Fourier’s equation for heat transfer is written in cylindrical coordinates (r, φ, z) as

ρC
∂T (t, r, φ, z)

∂t
−Kth∇2T (t, r, φ, z) = ς(r), (4.1)

where ρ is the mass density, C is the specific heat capacity, Kth is the thermal conduc-

tivity and ς(r) is the density of power deposited in the material. We seek equilibrium

solutions (∂T /∂t = 0) for a system with no internal heat sources (ς = 0). For an

axially symmetric beam (4.1) becomes

∇2T (r, z) = 0, (4.2)

a Laplace equation.
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For our purposes the important mechanism of heat transfer is radiation. Conduction

through the thin suspension fibres is limited and there is no appreciable convection in

vacuum. Thus our boundary conditions are defined by balance of heat fluxes on the

test mass surfaces i.e.

~n · [~F +Kth∇T ] = 0, (4.3)

where ~F is the outward flux, −Kth∇T is the inward flux and ~n is the outward pointing

surface normal. For thermal radiation alone we have

~F = σ′[T 4 − T 4
0 ], (4.4)

where σ′ is the Stefan-Boltzmann constant corrected for emissivity2 and T0 is the am-

bient temperature. In practice the deposited power is small compared to the radiative

heat exchange with the thermal bath and the temperature of the test mass does not rise

significantly above T0 (∆T ∼ 10 K). We may thus linearise (4.4) via series expansion

about T0. In this way we obtain

~F ≃ σ′[4T 3
0 (T − T0)] = 4σ′T 3

0 T, (4.5)

where we have defined T = (T − T0). We proceed to solve for T , the temperature rise

caused by the beam, knowing that T may be easily recovered.

For easy comparison with the literature we allow our test mass to occupy the region

r ∈ [0, a], z ∈ [−h/2, h/2], with the coated surface at z = −h/2. With this notation

our boundary conditions must be

z = h/2 : −Kth
∂T

∂z
(r, h/2) = 4σ′T 3

0 T (r, h/2), (4.6)

z = −h/2 : −Kth
∂T

∂z
(r,−h/2) = ǫ|Ψ(r)|2 − 4σ′T 3

0 T (r,−h/2), (4.7)

r = a : −Kth
∂T

∂r
(a, z) = 4σ′T 3

0 T (a, z), (4.8)

where ǫ is the absorption rate of the coating and |Ψ(r)|2 is the intensity profile of the

2Our chosen correction factor is 0.9.
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incident optical beam.

We now assume an harmonic ansatz of form

T (r, z) = J0(kr)[C1e
kz + C2e

−kz], (4.9)

where k and the Ci are arbitrary constants and Ji is a Bessel function of the first kind

of order i. In attempting to satisfy our final boundary condition (4.8) we find that we

must have3

kaJ1(ka)− χJ0(ka) = 0, (4.10)

where χ is the reduced radiation constant χ = 4σ′T 3
0 a/Kth. Equations of this form

have an infinite number of distinct solutions. Let us define the values of k which yield

solutions as members of the set {km : m ∈ N
+}. Knowing that k takes discrete values

we modify our proposed solution to become the series expansion.

T (r, z) =
∑

m

[C1,me
kmz + C2,me

−kmz]J0(kmr). (4.11)

It may be shown that the J0(kmr) form a complete set. Exploiting this property we can

also express our incident beam as a series expansion. Denoting the integrated power

in our incident beam by P0 we may write

|Ψ|2 = P0

∑

m

pmJ0(kmr), (4.12)

where pm =
1

P0

2k2m
(χ2 + k2ma

2)J2
0 (kma)

a∫

0

|Ψ(r)|2J0(kmr)r dr. (4.13)

Considering the incident beam in this way allows our remaining boundary conditions

(4.6) and (4.7) to be set down as purely algebraic expressions for each m

(kma+ χ)C1,m − (kma− χ)e−kmhC2,m = 0, (4.14)

(kma− χ)e−kmhC1,m − (kma+ χ)C2,m = −ǫpmP0ae
−kmh/2/Kth, (4.15)

3It may be useful to recall ∂J0(x)/∂x = −J1(x) and ∂J1(x)/∂x+ J1(x)/x = J0(x).
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which are simply solved for C1,m and C1,m. Our final solution is given by

T (r, z) =
∑

m

θm(z)J0(kmr), (4.16)

where θm(z) =
ǫP0a

Kth

pm exp(−kmh/2) (4.17)

× (kma− χ) exp(km(z − h))− (kma+ χ) exp(−kmz)
(kma+ χ)2 − (kma− χ)2 exp(−2kmh)

.

The total power absorbed in the coating is ǫP0, expected to be of order 1 W for second

generation interferometers.

4.1.2 Dini series

This solution in terms of Dini series is particularly well suited to numerical imple-

mentation. Our (4.10) may be rapidly solved to find the km using Newton’s method,

as there exists a recurrence relation for finding good initial guesses. Once the first

few solutions x1, x2, x3,. . . have been found, an increasingly accurate initial guess for

subsequent solutions xi is xi−1 + π.

The Dini expansion is also incredibly efficient in reconstructing our incident beam,

figures 4.1 and 4.2 demonstrate that excellent fidelity is achieved with few terms. This

reconstruction can provide useful guidance in determining how many terms must be

considered for the series in (4.16) to converge. In our analysis we took a different

approach, unconditionally implementing the first ten terms and adding subsequent

terms only if their expansion coefficient was within a factor of 10−6 of p1, the coefficient

of the principal term. For unperturbed beams this corresponds to over 80 terms (see

fig. 4.3).
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Figure 4.1: Much of the work described herein relies on Dini expansions. Here we show
how efficiently the Dini expansion is able to approximate a Gaussian beam. Left: A
series representation of the true intensity profile (crosses) using 5 and 10 terms. Right:
Absolute error on the reconstruction.
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Figure 4.2: The Dini expansion is also able to accurately approximate a mesa beam.
Left: A series representation of the true intensity profile (crosses) using 5 and 10 terms.
Right: Absolute error on the reconstruction.
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Figure 4.3: Dini expansions are able to reconstruct the incident optical intensity profile
with a minimum of terms. In our analysis we incorporate all terms with expansion
coefficients greater than 10−6 times the first term p1. For nominal mode shapes this
corresponds to more than 80 terms.

4.1.3 Surface displacement

Above we calculated the temperature field throughout the test mass caused by heat

absorbed in the mirror’s high reflectivity coating. Under the influence of this temper-

ature field the test mass will expand thermoelastically, altering its surface figure. It is

important to understand such effects as even small changes to the mirror’s shape can

have significant consequences for interferometer operations.

The form of Hooke’s law applicable in an isotropic solid, such as fused silica, experi-

encing an additional temperature based stress is [157]

Θij = δij(λE − νT ) + 2µEij, (4.18)

where λ and µ are the Lamé coefficients, Θij is the stress tensor, Eij is the strain

tensor with trace E and ν is the stress temperature modulus.4 The Lamé coefficients

4The stress temperature modulus is related to the linear thermal expansion coefficient αth by
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are given by

λ =
Y σ

(1 + σ)(1− 2σ)
, (4.19)

µ =
Y

2(1 + σ)
, (4.20)

where Y is Young’s modulus and σ is Poisson’s ratio.

In the absence of any external applied forces we must solve the equilibrium equation

∂jΘij = 0 (4.21)

in cylindrical polar coordinates subject to boundary conditions

Θrr(a, z) = 0, Θrz(a, z) = 0,

Θrz(r,±h/2) = 0, Θzz(r,±h/2) = 0,

representing the absence of net forces or torques on the test mass surface. Gravity and

forces from the suspension are neglected.

We begin by assuming a solution for the displacement vector ~u of form

ur(r, z) =
ν

2(λ+ µ)

1

r

r∫

0

T (r′, z)r′ dr′, (4.22)

uz(r, z) =
ν

2(λ+ µ)






z∫

−h/2

T (r, z′) dz′ + Φ(r)




 , (4.23)

where Φ(r) is some unknown function.5 From this proposed solution we may readily

ν = αth(3λ+ 2µ).
5On inspection one sees that Φ(r) is indeed our goal, the displacement of the mirror’s surface at

z = −h/2.
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calculate the stresses and strains,

Err(r, z) =
∂

∂r
ur(r, z),

Eφφ(r, z) =
ur(r, z)

r
,

Ezz(r, z) =
∂

∂z
uz(r, z),

Erz(r, z) =
1

2

(
∂

∂z
ur(r, z) +

∂

∂r
uz(r, z)

)

,

Θrr(r, z) = λE(r, z) + 2µErr(r, z)− νT (r, z), (4.24)

Θφφ(r, z) = λE(r, z) + 2µEφφ(r, z)− νT (r, z),

Θzz(r, z) = λE(r, z) + 2µEzz(r, z)− νT (r, z),

Θrz(r, z) = 2µErz(r, z),

each of which has only 4 components due to our cylindrical symmetry, and substitute

them into (4.21) to find Φ. The harmonic nature of T (see (4.2)) is beneficial throughout

this process, allowing great simplifications to be made.

Subsequently applying our boundary conditions, we find that all but Θrr(a, z) = 0

are immediately satisfied. Closer scrutiny reveals that, for our putative solution, the

dependence of Θrr(a, z) with z is almost linear. Hence the addition of a supplementary

stress of form Θrr = C3 + C4z will allow almost perfect cancellation.

The corrective displacement

δur(r, z) =
λ+ 2µ

2µ(3λ+ 2µ)
(C3r + C4rz), (4.25)

δuz(r, z) = − λ

µ(3λ+ 2µ)
(C3z + C4z

2/2)− λ+ 2µ

4µ(3λ+ 2µ)
(C4r

2), (4.26)

where C3 and C4 are arbitrary constants, satisfies the equilibrium equation and gives

Θrr = C3 + C4z as desired. It may also be shown that Θrz = Θzz = 0. So by

appropriately choosing the constants C3 and C4 and adding the correction δ~u to ~u

we can construct a displacement which satisfies our governing equation and boundary
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conditions. By Saint-Venant’s principle6 we can conclude that this displacement well

approximates the exact solution everywhere except close to the boundary r = a where

we introduced our fictitious additional strain. Since the optical field near this boundary

is negligible by design, a solution formed in this way is valid for our purposes.

Our total displacement ~U = ~u+ δ~u is now completely defined up to a constant vector,

historically chosen such that ~U(0,−h/2) = 0. Switching from the Lamé coefficients λ

and µ to the more intuitive Young’s modulus Y and Poisson’s ratio σ the final result

for the displacement of the mirror’s highly reflective surface is

Uz(r,−h/2) =
∑

m

[

um(1− J0(kmr))

]

− 1− σ

2Y
C4r

2, (4.27)

where the second term is the Saint-Venant correction7 and the coefficients um are given

by

um =
αth(1 + σ)ǫP0a

Kth

pm
km

kma+ χ− (kma− χ) exp(−2kmh)

(kma+ χ)2 − (kma− χ)2 exp(−2kmh)
(4.28)

Our constant C4 is found by minimising
∫ h/2

−h/2
(Θrr(a, z) + C3 + C4z)

2 dz. Whence

C3 = −1

h

h/2∫

−h/2

Θrr(a, z) dz, (4.29)

C4 = −12

h3

h/2∫

−h/2

Θrr(a, z)z dz,

= −12αthY χ

h3
ǫP0

Ktha

∑

m

pmJ0(kma)

k4m

1− kmh/2− (1 + kmh/2) exp(−kmh)
kma− χ+ (kma+ χ) exp(−kmh)

. (4.30)

This series expansion solution provides an economical way of including thermoelastic

deformations in our later simulation work (see §4.3). These deformations will alter the

intensity profile of the cavity eigenmode, leading to changes in the observed thermal

6Quoting [157], “. . . if the forces acting on a small portion of the surface of an elastic body are
replaced by another statically equivalent system of forces acting on the same portion of the surface,
this redistribution of loading produces substantial changes in the stresses locally but has a negligible
effect on the stresses at distances which are large in comparison with the linear dimensions of the
surface on which the forces are changed.”

7The Saint-Venant correction term was applied with incorrect sign in Vinet’s original publication
[100].
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noise. In the following section we describe how the thermal noise from various sources

may be calculated.

4.2 Thermal noise

As discussed previously, test mass thermal noise is expected to limit terrestrial gravita-

tional wave detectors in the frequency band where they are most sensitive. This noise

arises through a number of mechanisms and is evident in both the test mass substrates

and their highly reflective coatings. In this section we outline how thermal noise in its

various forms may be calculated. The approach used is applicable to any azimuthally

symmetric beam allowing us to consider both nominal beam shapes and those which

have been thermally perturbed.

In the following subsection we show how thermal noise calculations can be distilled

into evaluation of the power dissipated in response to an applied oscillatory pressure.

This pressure is distinguished by having the same form as the incident beam under

study. We subsequently solve the elastic problem to find the test mass’s response to

this applied pressure, the first step toward quantifying the dissipated power.

The remaining subsections build on these preliminary results, considering the thermal

noise resulting from four principal mechanisms. For each mechanism we endeavour

to give a readable account of the calculation, presenting governing equations, overall

strategies, boundary conditions and complete solutions without labouring the details

of each step.

4.2.1 Fluctuation-Dissipation theorem

The Fluctuation Dissipation Theorem (FDT) is a fundamental law of great utility and

generality in statistical mechanics which relates the spectra of dissipation and thermal

noise in linear systems at equilibrium. By the principle of microscopic reversibility, any
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pathway permitting energy to escape from a system must equally provide a route for

energy to enter the system. The FDT describes the equilibrium level of this exchange

process and thus the average energy in the thermalised system. A form of the theorem

was first published by Nyquist in 1928 [158] during his work on electrical systems but

it was not until 1951 that Callen and Welton [159] presented the first general proof.

Subsequent extensions by Callen himself [160, 161] and Kubo [162] form what we know

as the theory today.

For our purposes, the most useful formulation of the theorem is [163]

Sq(f) =
kBT0
π2f 2

ℜ[Y (f)], (4.31)

where Sq(f) is the spectral density of thermal fluctuations in the variable q, kB is Boltz-

mann’s constant, T0 is the ambient temperature and Y (f) = 1/Z(f) is the complex

admittance associated with q.

In [65] Levin developed a new formalism for calculating test mass thermal noise by

applying the FDT directly to the quantity sensed by the interferometer

x(t) =

∫

f(r, φ)Uz(r, φ, t) drdφ. (4.32)

Here f(r, φ) = |Ψ(r, φ)|2/P0 is the normalised intensity profile of the incident optical

mode in m−2 and Uz(r, φ, t) is the displacement of the mirror’s reflective surface. In

order to determine the spectrum of thermal fluctuations in x we evaluate ℜ[Y (f)] as

follows.

Consider applying a generalised force F (t) to the test mass which drives the momentum

conjugate to x but no other generalised momenta. The corresponding Hamiltonian is

Hint = −F (t)x. (4.33)

The physical distribution of this force may be deduced by substituting (4.32) into (4.33)
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to find

Hint = −
∫

F (t)f(r, φ)Uz(r, φ, t) drdφ, (4.34)

clearly the Hamiltonian of a force F (t), with pressure profile f(r, φ), acting on a mirror

with surface displacement Uz(r, φ, t).

In order to evaluate the coupling between test mass dissipation and our observable x,

we apply the generalised force F (t) = F0 cos(2πft). This corresponds to applying the

physical oscillatory pressure

P (r, φ, t) = F0 cos(2πft)f(r, φ) (4.35)

to the reflective surface of the test mass. Our original Hamiltonian (4.33) still holds,

hence the average powerWdiss dissipated in the test mass by our force can be calculated

in the usual way

Wdiss = 〈ℜ[F ]ℜ[ẋ]〉 = 〈ℜ[F ]ℜ[F/Z]〉 = 〈F 2
0 cos

2(2πft)ℜ[1/Z]〉 = 1

2
F 2
0ℜ[Y ], (4.36)

where 〈·〉 denotes a time average. Substituting this expression into (4.31) to eliminate

ℜ[Y ], we obtain the following result for the spectral density of thermal displacement

noise associated with a single test mass

Sx(f) =
2kBT0
π2f 2

Wdiss

F 2
0

. (4.37)

Levin’s direct approach represents a huge advance over previous techniques based on

expansions in the space of test mass eigenmodes (e.g. [164, 165]). Foremost it is able to

accommodate inhomogeneous loss due to coatings, magnets, suspension wire stand-offs,

acoustic mode dampers etc. The addition of such items to the test mass can have a

large impact on modal Qs but their effect on test mass thermal noise is strongly location

dependent, with the noise generally increasing as one moves closer to the incident beam.

Estimates based on modal expansion will overestimate dissipation far from the beam

spot e.g. magnets glued to the rear surface of the test mass and underestimate loss
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close to the beam spot e.g. dielectric coatings.

Modal expansion methods are also computationally taxing. In order to achieve good

precision one must determine the Q, frequency and effective mass of ∼100 test mass

eigenmodes. As we shall endeavour to show in the following section, direct approaches

are generally more efficient.

4.2.2 Stresses and strains

Levin [65] informs us that to quantify the spectral density of thermal displacement

noise we must simply calculate the average8 power dissipated Wdiss in response to an

applied oscillatory pressure P (r, φ, t) with the same spatial distribution f(r, φ) as the

beam under study

P (r, φ, t) = F0 cos(2πft)f(r, φ). (4.38)

Thus our task is to quantify Wdiss for each of the dissipative mechanisms in which we

are interested.

In this section, before examining dissipation, we first investigate the stresses and strains

in the test mass substrate induced by our applied force. Here we adopt the techniques

of Bondu, Hello and Vinet (BHV) [166] subsequently corrected by Liu and Thorne [68].

To facilitate comparison with these publications, our test mass now occupies the region

r ∈ [0, a], z ∈ [0, h], with the coated surface at z = 0. Note that this construction

differs from that used previously in §4.1.

In our work we make two approximations:

Quasi-static We immediately ignore the temporal dependence of the oscillatory ap-

plied force as the oscillation period of the gravitational wave signals in which we

are interested (& 1 ms) is far greater than the time taken for a pressure wave to

propagate across the test mass (∼ h/csound ≈ 30µs).

Adiabatic Since the characteristic time scale of diffusive heat flow is several orders of
8Over the period 1/f .
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magnitude longer than the pressure-oscillation period, we approximate the oscil-

lations of stress, strain and temperature as adiabatic. n.b. This approximation

does not hold for coating thermoelastic noise – there can be substantial heat flow

through the thin coating over time scales comparable to the oscillation period.

Under these assumptions we must again solve the equilibrium equation

∂jΘij = 0, (4.39)

subject to the following boundary conditions, representing balance of internal stresses

and external pressures at the test mass boundaries,

Θrr(a, z) = 0 Θrz(a, z) = 0,

Θzz(r, h) = 0 Θrz(r, h) = 0, (4.40)

Θrz(r, 0) = 0 Θzz(r, 0) = −f(r),

where f(r) is the form factor of our incident light beam. In what follows we sketch the

solution procedure and present important results without dwelling on the minutiae of

the calculation.

Excepting two changes, namely the modified boundary condition introduced by our

applied pressure and the use of a more familiar form of Hooke’s law

Θij = δijλE + 2µEij, (4.41)

this problem parallels the calculation of thermoelastic deformations in §4.1. This sim-

ilarity encourages us to adopt a similar solution strategy.



4.2 Thermal noise 160

Again we seek a solution in terms of Dini expansions. i.e. we propose solutions of form

ur(r, z) =
∑

m

Am(z)J1(ηmr), (4.42)

uφ(r, z) = 0, (4.43)

uz(r, z) =
∑

m

Bm(z)J0(ηmr), (4.44)

where Am and Bm are arbitrary functions of z and the ηm are arbitrary constants.

From our supposed solution the stresses and strains may be found using the standard

relations in cylindrical coordinates

Err(r, z) =
∂

∂r
ur(r, z),

Eφφ(r, z) =
ur(r, z)

r
,

Ezz(r, z) =
∂

∂z
uz(r, z),

Erz(r, z) =
1

2

(
∂

∂z
ur(r, z) +

∂

∂r
uz(r, z)

)

, (4.45)

Θrr(r, z) = λE(r, z) + 2µErr(r, z),

Θφφ(r, z) = λE(r, z) + 2µEφφ(r, z),

Θzz(r, z) = λE(r, z) + 2µEzz(r, z),

Θrz(r, z) = 2µErz(r, z).

Substituting the appropriate quantities into (4.39), the equilibrium equation collapses

into a pair of coupled ODEs in Am and Bm. With the introduction of four new series

of arbitrary constants αm, βm, γm, δm this system is easily solved, giving expressions for
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Am and Bm

Am(z) = γm exp(−ηmz) + δm exp(ηmz)

+
λ+ µ

2(λ+ 2µ)
ηmz(αm exp(−ηmz) + βm exp(ηmz)),

(4.46)

Bm(z) =

(
λ+ 3µ

2(λ+ 2µ)
αm + γm

)

exp(−ηmz) +
(

λ+ 3µ

2(λ+ 2µ)
βm − δm

)

exp(ηmz)

+
λ+ µ

2(λ+ 2µ)
ηmz(αm exp(−ηmz)− βm exp(ηmz)),

(4.47)

We now apply the boundary conditions (4.40), expanding our pressure/intensity dis-

tribution function f(r) in a Dini series as before

f(r) =
∑

m

̺mJ0(ηmr) (4.48)

where ̺m =
2

a2J2
0 (ηma)

a∫

0

f(r)J0(ηmr)rdr. (4.49)

The absence of shear on the test mass barrel Θrz(a, z) = 0 implies that J1(ηma) = 0,

defining our ηm. The remaining five boundary conditions combine to provide four addi-

tional equations, allowing our four new constants αm, βm, γm, δm to be found. Writing

xm = ηmh and qm = exp(−2xm), we have

αm =
̺m(λ+ 2µ)

ηmµ(λ+ µ)

1− qm + 2qmxm
(1− qm)2 − 4qmx2m

, βm =
̺m(λ+ 2µ)

ηmµ(λ+ µ)

qm(1− qm + 2xm)

(1− qm)2 − 4qmx2m
,

γm = − ̺m
2ηmµ

2qmx
2
m + µ

λ+µ
(1− qm + 2xm)

(1− qm)2 − 4qmx2m
, δm = −̺mqm

2ηmµ

2x2m − µ
λ+µ

(1− qm + 2xm)

(1− qm)2 − 4qmx2m
.

If not for a necessary but insignificant correction our solution would now be completely

constrained; as it stands our work is incomplete.

The BHV paper had been used to guide the design of advanced gravitational wave

detectors for more than two years before Liu and Thorne discovered a subtle error (see

section A of [68]). To facilitate a solution BHV expanded the applied pressure as a

Dini series. In doing so they neglected to include a uniform pressure term in the sum.9

9The sum is from m = 1 to ∞.
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Consequently the applied pressure has zero average over the surface of the test mass.

To remedy this situation we must add an additional displacement to our proposed

solution – that caused by the uniform pressure F0/πa
2.

This pressure integrates over the test mass surface to give a force F0 in the ẑ di-

rection. Liu and Thorne noted that such an additional force creates an acceleration

~a = (F0/M)ẑ. In the frame of the accelerating test mass all parts of the test mass

feel an acceleration equal and opposite to ~a, ~g say. Hence the resulting displacement

is equivalent to that experienced by a test mass residing in the field gẑ with a uni-

form pressure on its face to counteract the force due to ~g. Solutions to such problems

were found [167] and adapted to this situation. Here and henceforth we assume an

integrated force of F0 = 1 N, in this case the appropriate corrective displacements are

given by

∆ur =
λ̺0r

2µ(3λ+ 2µ)

(

1− z

h

)

(4.50)

∆uφ = 0 (4.51)

∆uz =
λ̺0r

2

4µh(3λ+ 2µ)
− (λ+ µ)̺0
µ(3λ+ 2µ)

(

z − z2

2h

)

(4.52)

where ̺0 = 1/πa2.

With the addition of this displacement our solution satisfies the equilibrium equation

and all of our boundary conditions except that of vanishing radial stress on the barrel

Θrr(a, z) = 0. Inspection reveals that the radial stress is pseudo-linear with zero

average. Thus, in the same manner as above (see §4.1.3), it can be almost totally

cancelled by the addition of a second displacement δ~u

δur =
λ+ 2µ

2µ(3λ+ 2µ)
(C5r + C6rz), (4.53)

δuφ = 0, (4.54)

δuz = − λ

µ(3λ+ 2µ)
(C5z + C6z

2/2)− (λ+ 2µ)

4µ(3λ+ 2µ)
C6r

2, (4.55)

whose only effect is to produce an extra radial stress δΘrr(z) = C5+C6z. By minimising
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the integral
h∫

0

[Θrr(a, z) + δΘrr(z)]
2 dz, (4.56)

appropriate values for C5 and C6 may be found

C5 = 6
a2

h2

∑

m

̺mJ0(ηma)

η2ma
2

, (4.57)

C6 =
−2C5

h
. (4.58)

In this way our final boundary condition is satisfied and by Saint-Venant’s principle

our displacement approximates the exact solution in all areas of interest.

Having highlighted the key features in our approach above, we present the final solution

for the displacement in its entirety

Ur(r, z) = ur +∆ur + δur

=
∑

m

Am(z)J1(ηmr) +
λ̺0r

2µ(3λ+ 2µ)

(

1− z

h

)

+
λ+ 2µ

2µ(3λ+ 2µ)
(C5r + C6rz),

(4.59)

Uφ(r, z) = 0, (4.60)

Uz(r, z) = uz +∆uz + δuz

=
∑

m

Bm(z)J0(ηmr) +
λ̺0r

2

4µh(3λ+ 2µ)
− (λ+ µ)̺0
µ(3λ+ 2µ)

(

z − z2

2h

)

− λ

µ(3λ+ 2µ)

(

C5z +
C6z

2

2

)

− λ+ 2µ

4µ(3λ+ 2µ)
C6r

2.

(4.61)

Substituting this solution into (4.45), the stresses and strains throughout the test mass

may be found. With this information we can begin to investigate the dissipation

associated with various forms of thermal noise.
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4.2.3 Substrate Brownian noise

Noise from internal friction, often called Brownian noise, in solids is the thermally

excited motion associated with intrinsic internal damping. It manifests itself as a

phase shift between applied stress and resultant strain. This effect is quantised by the

introduction of a complex elastic modulus Y = Y0[1+ jΦ(f)]. The key to reducing this

internal damping is to choose a substrate material having a small loss angle Φ(f) or

equivalently a high mechanical quality factor.

The time averaged10 dissipation associated with the imaginary part of the Young’s

modulus is [68]

Wdiss = 4πfΦ(f)〈U〉 = 2πfΦ(f)U. (4.62)

We utilise the usual expression for the energy density per unit volume [167], ρE =

1
2
EijΘij, so that the total elastic strain energy U is

U = 2π

h∫

0

a∫

0

ρE(r, z)r dr dz (4.63)

where ρE(r, z) =
1

2

(

Err(r, z)Θrr(r, z) + Eφφ(r, z)Θφφ(r, z)

+ Ezz(r, z)Θzz(r, z) + 2Erz(r, z)Erz(r, z)

)

.

This integral is easily evaluated using the stresses and strains found above. Ignoring

any frequency dependence of Φ,11 (4.37) gives that the spectral density of substrate

Brownian noise is:

SSB
x (f) =

√

4kBT0
πf

ΦU

[
m√
Hz

]

(4.64)

10 〈X〉 is always equal to 1
2
X for our sinusoidal forces.

11In any case changes will likely be small across the terrestrial gravitational wave detection band.
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4.2.4 Substrate thermoelastic noise

Although the test mass is in thermal equilibrium, energy is continually exchanged be-

tween it and its surroundings. It is convenient to interpret this fluctuation in energy

as a fluctuation in temperature. Since test mass materials exhibit non-vanishing coeffi-

cients of thermal expansion, these energy fluctuations give rise to displacements which

can dominate the thermal noise for certain substrate materials (e.g. sapphire) [168].

To calculate the impact of this thermoelastic noise we again employ Levin’s direct

method. The period of the fictitious pressure applied to the test mass is significantly

shorter than the characteristic timescale for heat flow in the substrate, so we may

assume a quasistatic system in which the temperature evolves adiabatically. Under

this condition the standard expression [167] for the rate of thermoelastic dissipation is

Wdiss =

〈 ∫

testmass

Kth

T0
(∇T )2dV

〉

, (4.65)

where Kth is the thermal conductivity, T0 is the ambient temperature and T is the

deviation of the test mass temperature from T0.

In calculating T (r, z) we exploit the adiabatic and quasistatic approximations outlined

above, allowing us to write [167]

T = − αthY T0
Cv(1− 2σ)

Ω, (4.66)

where Ω = ∇ · ~u = Err(r, z) + Eφφ(r, z) + Ezz(r, z). Upon substitution (4.65) becomes

Wdiss = 2πKthT0

(
Y αth

(1− 2σ)Cv

)2
1

2

h∫

0

a∫

0

(∇Ω)2rdrdz (4.67)

and ∴ SST
x (f) =

√

2kBT0Wdiss

π2f 2

[
m√
Hz

]

(4.68)
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4.2.5 Stresses in the coating

We began our consideration of thermal noise by examining the test mass substrate,

however, as we shall soon see, the most significant contribution to displacement noise

arises in the test masses’ reflective coatings. In order to treat these sources we must

understand the stresses and strains in the coating. Fortunately these quantities are

simply related to those calculated above [169].

The mirror coatings are comprised of alternating layers of high and low refractive index

materials, forming a Bragg reflector. To account for this structure we use compound

values for material properties, found using the volumetric averaging operator of Fejer

et al. [170]. The average value of the quantity X is given by

[X]avg =

(
dhighn

dhighn + dlown

)

Xhighn +

(
dlown

dhighn + dlown

)

Xlown, (4.69)

where dlown and dhighn are the thicknesses of the high and low index materials respec-

tively. The Lamé parameters in the coating, λc and µc are calculated in this way from

(4.19) and (4.20) using compound values for Y and σ.

With the additional subscript c denoting a quantity evaluated in the coating we have

Errc(r, z) = Err(r, z),

Eφφc(r, z) = Eφφ(r, z),

Ezzc(r, z) =
λ− λc
λc + 2µc

(Err(r, z) + Eφφ) +
λ+ 2µ

λc + 2µc

Ezz(r, z),

Erzc(r, z) = Erz(r, z),

Θrrc(r, z) = (λc + 2µc)Err(r, z) + λcEφφ(r, z) + λcEzzc(r, z), (4.70)

Θφφc(r, z) = λcErr(r, z) + (λc + 2µc)Eφφ(r, z) + λcEzzc(r, z),

Θzzc(r, z) = Θzz(r, z),

Θrzc(r, z) = Erz(r, z).
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4.2.6 Coating Brownian noise

We evaluate the Brownian noise contribution in the coating using a model developed by

Harry et al. [169]. This approach assumes that losses occur inside the coating materials

themselves, neglecting any contribution from friction between the dielectric layers. As

stated for Brownian noise in the substrate, the loss angle is of critical importance.

This model allows for the anisotropic layered structure of the coating by defining an

equivalent loss angle Φreadout which treats strains parallel and perpendicular to the

coating separately.12 Assuming that the total energy stored in the test mass under

the influence of Levin’s applied pressure is approximately equal to that stored in the

substrate U (see (4.63)), Φreadout is given by

Φreadout = Φsubstrate +
δU||d

U
Φ|| +

δU⊥d

U
Φ⊥, (4.71)

where only the second and third terms pertain to the coating noise. Here d is the total

coating thickness and Φ|| & Φ⊥ are the loss angles associated with strains parallel and

perpendicular to the test mass surface. δU|| & δU⊥ are the linear energy densities in

the coating at its interface with the substrate and are given by

δU|| = 2π

a∫

0

rρE,||(r)dr, (4.72)

δU⊥ = 2π

a∫

0

rρE,⊥(r)dr, (4.73)

where ρE,||(r) =
1

2

(

Errc(r, 0)Θrrc(r, 0) + Eφφc(r, 0)Θφφc(r, 0)

)

,

ρE,⊥(r) =
1

2
Ezzc(r, 0)Θzzc(r, 0).

Recalling that d is the total coating thickness, one sees that we assume constant lin-

ear energy density throughout the coating and evaluate the total energy stored via

expressions of form Ucoating = δUcoatingd.

12Recent work by Ting Hong at Caltech suggests that alternative representations may be preferable.
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As before, Wdiss = 2πfΦreadoutU , so that substitution into (4.37) gives the Brownian

dissipation in the entire test mass – coating and substrate. The noise due to internal

friction in the coating alone is

SCB
x (f) =

√

4kBT0
πf

d(δU||Φ|| + δU⊥Φ⊥)

[
m√
Hz

]

. (4.74)

In the following calculations we take Φ|| = Φ⊥, giving the general formula for com-

pleteness only.

4.2.7 Coating thermoelastic noise

As with Brownian noise, thermoelastic noise is present in both the substrate and

the coating. If we write the characteristic thermal diffusion length as Ldiffusion =
√

Kth/2πfρC we have

d . Ldiffusion ≪ a, w, (4.75)

where d is the coating thickness, a is the test mass radius and w is the spot size of the

incident beam. These relationships allow one to make two useful simplifications.

The first inequality tells us that inter-layer diffusion effects are only important at

frequencies outside the detection band of ground-based interferometers, so that the

coating may be well-approximated by a uniform layer having appropriately averaged

properties (see (4.69)); the second implies that we only need consider heat flow normal

to the coated surface i.e. heat flow is adiabatic in the transverse dimension. In this

situation a perturbative approach is useful, we follow the methods of Fejer et al. [170].

We embark on our analysis from a one dimensional (that dimension normal to the

coated surface) thermal conductivity equation [171], our goal is to find the thermal

field T (z, t) satisfying
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∂Tl

∂t
− κl

∂2Tl

∂z2
= − Ylαth,lT0

(1− 2σl)Cv,l

∂

∂t

3∑

i=1

E0,ii,l, (4.76)

where κl = Kth,l/Cv,l is the thermal diffusivity and E0,ii,l is the zeroth order, i-polarised

compressional strain.13 The subscript l denotes either s or c, meaning substrate or

coating – we must solve this equation in both regions. Assuming sinusoidal time

dependence we may more elegantly write

jωTl(z)− κl
∂2Tl

∂z2
= −jωΓl, (4.77)

where Γl =
Ylαth,lT0
Cv,l

El

1− 2σl
,

and El =
3∑

i=1

E0,ii,l.

As we are averaging the layered structure of the coating we must also devise an average

heat equation for the propagation of Tc(z). Multiplying through (4.77) by Cv,l we obtain

jωCv,qTq(z)−
∂

∂z

(

Kth,q
∂Tq

∂z

)

= −jωCv,qΓq. (4.78)

In this instance the subscript q = high, low denotes a quantity evaluated in a high or

low index layer. Averaging the first term is trivial; the second and final terms demand

deeper thought.

To ensure continuity of heat flux we must have Kth,low∂Tlow/∂z = Kth,high∂Thigh/∂z =

[Kth∂T /∂z]avg. Defining the average thermal conductivity Kth,c by writing the average

heat flux as

Kth,c

[
∂Tc

∂z

]

avg

=

[

Kth
∂T
∂z

]

avg

(4.79)

and solving for Kth,c, we discover

K−1
th,c = [K−1

th ]avg. (4.80)

13i.e. that strain due to the applied Levin force.
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We are now in a position to write the averaged form of (4.77) as

jωTc(z)− κc
∂2Tc

∂z2
= −jωΓc, (4.81)

where the averaged coating properties are given by

Cv,c = [Cv]avg, κc =
Kth,c

Cv,c

(4.82)

and Γc =
[CvΓ]avg
Cv,c

=
1

Cv,c

[
Y αthT0E

1− 2σ

]

avg

. (4.83)

In order to average the final term of (4.81) we must evaluate Eavg. We may write El as

linear combination of two solutions, one having Θ0(r) = Θzz(r, 0) = 0 and a specified

in-plane strain E0(r) = 1/2[Err(r, 0) +Eφφ(r, 0)] and a second with vanishing in-plane

strain (E0 = 0) and specified normal stress Θ0(r) [170] i.e.

El =
2(1− 2σl)

1− σl
E0(r) +

(1− 2σl)(1 + σl)

1− σl

1

Yl
Θ0(r). (4.84)

Expressing the elastic fields in this way we see that

Γs(r) =
T0
Cv,s

(
2Ysαth,s

1− σs

)

E0(r) +

(
(1 + σs)αth,s

1− σs

)

Θ0(r). (4.85)

We may now easily apply our averaging operator to obtain the average fields in the

coating and thus Γc

Γc(r) =
T0

[Cv]avg

[
2Y αth

1− σ

]

avg

E0(r) +

[
(1 + σ)αth

1− σ

]

avg

Θ0(r). (4.86)

All that remains is to solve (4.77) and (4.81) in the apposite regions subject to appro-

priate boundary conditions. We enforce the following

Tc|z=d = Ts|z=d, Kth,c
∂Tc

∂z

∣
∣
∣
∣
z=d

= Kth,s
∂Ts

∂z

∣
∣
∣
∣
z=d

,

∂Tc

∂z

∣
∣
∣
∣
z=0

= 0,
∂Ts

∂z

∣
∣
∣
∣
z=h

= 0,

i.e. continuity of temperature and flux across the coating-substrate boundary and van-
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ishing heat flux at the surfaces of the test mass.14

Equations (4.77) and (4.81) are simply solved with general solutions given by

Tl = −Γl + C1,le
γlz + C2,le

−γlz, (4.87)

where again the subscript l denotes substrate or coating and γl = (1 + j)
√

πf/κl is

the complex propagation constant of the damped thermal waves. Application of our

boundary conditions defines the constants C1,s, C2,s, C1,c, C2,c to be

C1,s =
Kth,cγce

γsd(e2γcd − 1)(Γc − Γs)

D
, (4.88)

C2,s = C1,se
2γsh, (4.89)

C1,c =
Kthγse

γcd(e2γsd − e2γsh)(Γc − Γs)

D
, (4.90)

C2,c = C1,c (4.91)

where D = e2γsh(Kth,cγc −Kthγs)− e2(γc+γs)d(Kth,cγc −Kthγs)+

e2γsd(Kth,cγc +Kthγs)− e2γcd+2γsh(Kth,cγc +Kthγs), (4.92)

completely defining Ts and Tc.

Using the standard expression of (4.65) with T = T we can compute Wdiss as follows
15

Wdiss =
1

2

(
Kth,c

T0
2π

d∫

0

a∫

0

|∇Tc|2rdrdz +
Kth

T0
2π

h∫

d

a∫

0

|∇Ts|2rdrdz
)

(4.93)

Although we integrate over the entire test mass we are calculating coating thermoelastic

noise only – we use the zeroth order fields at the surface as the source term in both

regions. For the final time we note that

SCTE
x (f) =

√

2kBT0
π2f 2

Wdiss

[
m√
Hz

]

. (4.94)

14We assume a mirror of finite thickness, rather than the infinite half-plane Fejer studies. The
substrate is so much thicker than the coating that this leads to no quantitative difference in the
result.

15This step represents a departure from the methods of [170].
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4.3 Simulation

In order to gauge the impact of thermal effects in future interferometers having mesa

beams a series of simulations were undertaken. The goal of this work was to find the

intensity distribution of the thermally perturbed cavity eigenmodes as a function of

coating absorption and to estimate the resulting thermal noise measured by a kilometre

scale gravitational wave detector.

Here we give details of the systems investigated and the techniques employed in obtain-

ing the thermally distorted modes. For more details on the simulation tools themselves

and the FFT method in general please see §1.6.

Two cavities supporting non-Gaussian mesa beams were considered; one nearly flat,

the other nearly concentric (see sections 1.5.2.3 and 2.1). As a foil to these cases we also

examined a nearly concentric spherical cavity supporting well-known Gaussian modes.

Each mirror of this cavity had a 2076 m radius of curvature. All three cavities had

a length of 4 km. These parameters are representative of an arm cavity in a second

generation gravitational wave detector.

The choice of where to convert from Gaussian to mesa beams is not obvious. In

this investigation we assumed that the interferometer arm cavity will be driven by a

Gaussian field. We assigned to this input beam an integrated power of 1070 W, a value

considered for AdvLIGO.

For each cavity the input beam parameters were chosen to yield optimal coupling to

the unperturbed or ‘cold’ cavity. Hence, the spot size of the incident Gaussian differed

among the three cavity configurations: For the spherical mirror cavity it was 6 cm to

match the mode resonating in the unperturbed cavity. For the mesa beam cavities the

input spot size was 8.4 cm in the flat case and 8.2 cm for the concentric system, to

optimise the coupling to the unperturbed cavity’s mesa beam mode. This optimised

coupling was 95% in both cases. Thus the circulating power in the unperturbed mesa

cavities was only 808 kW in contrast to 850 kW achievable in the perfectly matched
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Gaussian case.16 The chosen injection beam remained fixed for all calculations in each

case.

No

Yes

Lock cavity & store 
intracavity fields

Has intracavity power 
changed by >10-5 ?

Stop
iteration

Calculate thermoelastic 
deformations

Initialise
unperturbed cavity

Add thermoelastic 
deformations to mirrors

Figure 4.4: Flowchart detailing the iteration procedure used to find static self-consistent
intracavity fields and the thermoelastic deformations they produce.

In this study we sought static, self-consistent solutions of the optical fields and thermal

deformations using the following procedure: Starting with an unperturbed cavity and

no stored optical power, a field is injected through the input mirror and the fields

throughout the cavity propagated and updated. These fields are re-propagated and

updated iteratively until the stored intracavity power is stable to one part in 105

between successive iterations.17 We then calculate the thermoelastic distortion of the

mirror surfaces for the intracavity mode shape and power obtained and some assumed

mirror coating absorption (see §4.1). This distortion is then added to the mirror phase

profile and the optical simulation restarted with no stored intracavity power. Again

we seek a stable optical solution, but generally with a different mode shape and stored

power due to the added thermal perturbation. The thermoelastic effect of this new

intracavity optical field is applied to the mirrors and the procedure of finding new

optical fields and deformations repeated until the stored intracavity power is stable

16Thermorefractive aberrations will also be present in the input mirror substrate (see §4.6), but
these have been ignored in this study so as to better understand the cavity effects.

17The cavity is also simultaneously ‘locked’ by altering the longitudinal position of the ETM to
maintain resonance.



4.3 Simulation 174

between these larger distortion iterations to within one part in 105. This process is

summarised in figure 4.4.

We found that for low coating absorption rates convergence was achieved within 10

iterations; with greater absorbed power convergence was slower. In some high absorp-

tion cases numerical oscillations between distinct optical modes and thermal distortions

were observed. These problems were easily overcome by implementing a simple bisec-

tion procedure, averaging the perturbation of successive iterations (see figure 4.5).

These convergence issues are numerical rather than physical. They arise from our

instantaneous approach to a system that exhibits thermal lag. Our model treats the

thermal response of the mirror as being comparably rapid to the optical buildup within

the cavity. In reality the cavity response is many orders of magnitude faster and the

optical field adapts nearly instantaneously to the thermal deformation of the mirror,

but not vice-versa.

Nevertheless we believe that our result represents the true physical solution. If we

reduce our ‘step size’ adding only a small portion of the mirror perturbation (reality

being the limit of infinitesimal step size) we arrive at the same equilibrium but with

much slower convergence.
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Figure 4.5: Top: Intracavity power as a function of iteration number for 0.5 ppm ab-
sorption. Convergence is achieved within 10 iterations in the Gaussian case; the mesa
system requires 15 refinements. At higher absorption rates low level numerical oscilla-
tions were found. A simple bisection algorithm was implemented and rapid convergence
achieved. The bottom panes demonstrate this in the flat mesa beam case for 2.5 ppm
absorption. Bottom left: Gross convergence is achieved within 20 iterations. Bottom
right: On closer inspection a low level numerical oscillation is present. Convergence is
expedited by our bisection algorithm. To allow for easy comparison of different sys-
tems, the mesa intracavity powers have been normalised such that unperturbed mesa
and Gaussian cavities store the same power. In reality the power stored in the mesa
cavity is somewhat lower.
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4.4 Results

4.4.1 Thermoelastic deformation and resultant mode shape

The left hand column of figure 4.6 shows the steady state thermoelastic perturbations

of both mesa and Gaussian cavity mirrors. The shapes of the deformations are strongly

dependent on the thermal gradients imposed by the beam. At low power levels flat

and concentric mesa beams induce similar thermoelastic deformations; as greater power

is absorbed the concentric beam tends toward a more Gaussian intensity profile and

hence gives rise to the larger deformations typical of Gaussian beams. Flat mesa beams

retain their greater width under thermal loading and produce deformations around 50%

smaller than equivalent Gaussian modes. This is consistent with the general results

of Vinet [100] and is due to the more even deposition of heat into the mirror. The

thermal deformation due to the mesa beams also more closely resembles a pure radius

of curvature change, which may be easier to correct.18

Although the shapes of the thermal distortions are of interest, the change in the struc-

ture of the resonant light field has greater impact on the performance of the interferom-

eter. The right-hand column of figure 4.6 shows the effects of the thermal deformations

on the cavity eigenmode. The Gaussian beam is fairly robust in its functional form

as the absorbed power increases. For small amounts of heating the spot size on the

mirrors decreases as the thermoelastic bump effectively increases the mirrors’ radii of

curvature, making the cavity more stable. The stored power, as we show in the next

section (table 4.1), does not substantially decrease until the absorbed power becomes

relatively large.

The mesa beam cavities, on the other hand, undergo striking changes. The flat mesa

beam deforms into a more annular shape, even under modest heat loads, whilst the

overall width of its intensity profile changes little. This is likely due to confinement of

the optical field by the mirror’s steep rim, which is relatively immune to thermal dis-

18For example, by heating the rear faces of the test masses, an approach clearly better suited to the
end test masses of gravitational wave detectors.
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Figure 4.6: Thermoelastic deformation (left) and resonant mode shape (right) as a
function of coating absorption. Top row: spherical cavity; middle row: flat mesa
cavity; bottom row: concentric mesa cavity.
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tortions. The concentric mesa beams are also grossly deformed but instead of retaining

their width these beams become strongly peaked.

This differing behaviour may be understood by considering the profiles of the two mesa

mirrors (see fig. 2.4). Both mirrors are only a small deviation away from optics which

support Gaussian modes. The flat mesa mirror is realised by adding a small deviation

to a flat surface; the concentric mirror is constructed by subtracting the same small

deviation from a spherical surface. Thermal effects add a small perturbation to the

existing mirror profile making the flat mirror less flat and the concentric mirror more

spherical. Hence these effects will tend to push the concentric mesa mirror toward

supporting narrower beams whilst the flat mesa mirror should be more resilient.

It is known that unstable cavities can show similar changes in their optical fields when

the microscopic length of the cavity is changed [172]. In our case this effect was ruled

out. Sweeping the cavity length by many linewidths around the lock point, no change

in mode shape was observed. We also found that peak power build up was achieved at

the lock point found by SIS (see §1.6.2).

4.4.2 Losses

Given the need for very high circulating light power, losses are significant even at the

part per million level. In a power recycled interferometer (see §1.2.3) recycling gain is

inversely proportional to the losses in the FPM.19 Arm cavity losses of a few parts per

million can, depending on finesse, translate into losses of a few percent in the FPM,

reducing recycling gain and circulating power considerably.

Further, depending on the optical design margin, unforeseen losses can alter the cou-

pling of the recycling mirror-FPM cavity, a serious issue for any interferometer control

scheme.

In table 4.1 we present a summary of diffraction and mode matching losses as a function

19Assuming negligible loss in the power recycling mirror itself.
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of coating absorption.

Table 4.1: Cavity gain and diffraction losses as a function of coating absorption.

Coating Cavity Diffraction Mode Matching
Cavity Absorption Gain Loss Loss

ppm ppm %

Gaussian

0 795 0.43 0
0.25 792 0.19 < 1
0.5 786 1.16 1
1 755 32.42 4
1.5 689 189.32 7

Flat Mesa

0 755 0.48 5
0.25 747 0.80 6
0.5 737 1.37 7
1 717 3.20 10
1.5 697 6.63 12

Concentric
Mesa

0 756 0.49 5
0.25 763 0.33 4
0.5 768 0.29 3
1 764 0.76 4
1.5 733 6.12 8

We derive the dominant mode coupling loss from a comparison between the theoretical

intracavity power and that which is recorded in simulation. Once diffraction effects

are accounted for, we assign the residual loss to mode coupling error, in doing so we

ignore other loss mechanisms such as scatter and absorption. The values obtained using

this method are in excellent agreement with those calculated directly from the inner

product of the intracavity and injected fields. One could envisage mitigating these

losses via thermal compensation in the recycling cavity. Such ideas are not discussed

in this work.

Cavity round trip power loss which cannot be attributed to the finite mirror reflectiv-

ities alone is ascribed to diffraction loss. The quoted numbers represent a complete

round trip; losses per bounce are half as large. Our values for the unperturbed cavities

are in accord with the literature [105, 173]. To our knowledge the results for perturbed

cavities are the first to be published.
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4.4.3 Thermal noise

Non-Gaussian beams, including mesa beams, are being studied theoretically and ex-

perimentally as they are expected to reduce test mass thermal noise in interferometric

gravitational wave detectors [107, 109, 117, 174]. Thermoelastic distortion of the cavity

mirrors changes the intensity profile of the cavity mode and thus alters the expected

thermal noise.20

It has been shown that a thermally perturbed spherical cavity continues to support

a nearly Gaussian beam [175], the main consequence of moderate heating is that the

beam waist shrinks, increasing total thermal noise by around 10%. Thermal effects in

non-Gaussian cavities are less well understood. Using the techniques outlined in §4.2,
the thermal noise expected from our thermally perturbed eigenmodes (see fig. 4.6) was

determined. Our findings are presented below.

Fig. 4.7 shows the thermal displacement noise arising from four different sources as a

function of coating absorption. All values were evaluated at 100 Hz for a cylindrical

fused silica substrate (34 cm �×20 cm tk.) and silica-tantala quarter wave coating.

Fig. 4.8 shows how these noise effects sum in an interferometric detector with Fabry-

Perot arms. The total equivalent strain noise is evaluated as
√

4
∑

iN
2
i /L, where L

is the length of the arm cavity and each Ni represents the displacement noise arising

from a single mechanism. Our calculation assumes that all four cavity mirrors have

the same coating and hence overestimates the total thermal noise.21

As expected the thermal noise associated with the Gaussian and concentric mesa beams

increases with absorbed power as the beam waist shrinks; the effects of beam size on

thermal noise are well documented [166, 73, 113, 168, 170]. Conversely, the noise of the

thermally perturbed flat mesa beam decreases under the same conditions.22 This effect

is less intuitive and is likely due to the small increase in beam width under heating. The

20Strictly speaking, thermoelastic distortion is also associated with increased thermal noise by virtue
of the extra heat in the mirror. We ignore this effect here.

21The ITMs have lower reflectivity, thinner coatings contributing less dissipation.
22An effect verified by finite element methods.
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Figure 4.7: Thermal displacement noise as a function of coating absorption for a single
test mass.

width of flat mesa beams is modified only very slowly with heating, a fact reflected in

the shallower gradients seen in figures 4.7 and 4.8. Note that these results are a strong

function of the material parameters used in their evaluation, for a complete listing of

the values used see Appendix A.
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Figure 4.8: Total equivalent strain noise as a function of coating absorption.

4.5 Passive thermal compensation system

Although thermoelastic effects may reduce the thermal noise associated with flat mesa

beams, the modes which produce these reductions would simultaneously impair the

sensitivity of any detector, as they have a poor coupling to the Gaussian modes outside

the interferometer’s arms. We must maintain the standard mesa mode even if the

thermal noise will be greater.23

The Mexican hat mirrors which support mesa beams are constructed using a multi-step

silica deposition process over a micro-polished flat substrate (see §2.2.1.1 and [176]).

Currently this technique can achieve up to 2 nm precision and is able to create almost

any mirror profile desirable in a full scale interferometric detector at no additional cost.

Exploiting this technology, we resolved to design a mirror which only achieves the cor-

rect figure after thermoelastic deformation caused by the impinging optical power. This

approach would reduce the compensation required from (and hence noise introduced

23It is of course possible to devise a scheme whereby gravitational wave readout is effected by
injecting a suitable mode at the output port of the interferometer.
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by) external sources such as a carbon dioxide laser or ring heater.24

4.5.1 Method

Using the methods described in §4.1 we are able to find the thermoelastic deformation

caused by an almost arbitrary intensity profile. Such perturbations are easily incor-

porated into our optical simulations to find the eigenmode of the thermally perturbed

cavity. The self-correcting mirror profile, supporting the nominal cavity eigenmode

only when thermally deformed, may then be found iteratively.

Beginning from an unperturbed cavity, the system is allowed to evolve to its steady

state as described by fig. 4.4. We then subtract the resulting thermoelastic deformation

from the ideal mirror profiles and allow the system to reach a new equilibrium. Itera-

tively repeating this process one eventually arrives at the mirror figure which deforms

under thermal loading to support the desired mode.

4.5.2 Results and discussion

In figures 4.9, 4.10 and 4.11 below we show how such a system might operate for

Gaussian and mesa modes. We chose to study the case of 0.5 ppm coating absorption,

which at the time of writing is a reasonable value for future gravitational wave detectors.

4.5.2.1 Gaussian

The upper plot of fig. 4.9 shows the uncorrected thermoelastic deformation arising from

0.5 ppm coating absorption (blue) and the profile which must be subtracted from the

ideal cavity mirrors so that they support the nominal mode after heating (orange). As

one would expect, these profiles are not equal.

24A more recent proposal by Kamp et al. may also be useful for thermal compensation in non-
Gaussian interferometers [177].
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Figure 4.9: Using self-correcting mirrors for thermal compensation - Gaussian beams.
Top: Thermoelastic deformation with no correction and the correction which must be
subtracted from the ideal mirror profile to restore the nominal mode. Bottom: Cavity
eigenmodes with no TCS (black), with our doctored TCS mirrors ‘cold’ (blue) and at
equilibrium (orange). Notice that the recovered mode overlaps exactly with the ideal
cavity mode (grey crosses).

The cavity formed by self-correcting mirrors always supports a mode having power less

than or equal to that of the fiducial Gaussian.25 These lower power modes yield weaker

thermal deformation of the cavity mirrors than does the standard Gaussian. We desire

that these small deformations restore the ideal mirror shape, thus the profile subtracted

from the nominal figure to create our self-correcting mirrors must be smaller than the

deformation caused by the fiducial Gaussian mode. An identical argument holds for

the concentric mesa beam case whilst an analogous approach is suitable for flat mesa

25With equality only realised at equilibrium.
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beams where the cavity with self-correcting mirrors always stores power greater than

or equal to that of the fiducial mode.

The lower plot of fig. 4.9 presents theoretical results showing how the cavity eigenmode

is affected by our compensation scheme. The theoretical intensity profile ignoring

thermal effects is marked by grey crosses; the black curve represents the mode to be

expected if no correction is implemented. Using a blue line we show the mode which

is resonant when our compensating mirrors are cold whilst the orange curve shows the

profile recovered once these mirrors are at operating temperature. As expected this

profile agrees excellently with the ideal cavity mode.

4.5.2.2 Mesa

Figures 4.10 and 4.11 convey analogous results for flat mesa and concentric mesa cavi-

ties respectively. For both configurations the mode recovered after heating again shows

superb agreement with the nominal mode.

In order for the corrective mirror profiles calculated above to be practicable in a real

interferometer we may require some auxiliary source to heat the test mass before res-

onance is attained (such as a carbon dioxide laser or ring heater). Once stably locked

this compensating source may have its heating significantly reduced so that noise is

injected at a level which is acceptable for recording astrophysical data.

We acknowledge that the results of this section present a single point solution and

neglect multiple real-world effects. For example fabrication errors and vague knowledge

of or inconsistency in the coating absorption. Effects such as these were responsible

for the variable success of a similar scheme used in the polishing of the initial LIGO

power recycling mirrors. Nonetheless we believe that passive approaches such as this

one may find applications in the future as researchers strive to increase the circulating

power in interferometers’ arms.
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Figure 4.10: Using self-correcting mirrors for thermal compensation - Flat mesa beams.
Top: Thermoelastic deformation with no correction and the correction which must be
subtracted from the ideal mirror profile to recover the nominal mode. Bottom: Cavity
eigenmodes with no TCS (black), with our doctored TCS mirrors ‘cold’ (blue) and at
equilibrium (orange). Notice that the recovered mode overlaps exactly with the ideal
cavity mode (grey crosses).
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Figure 4.11: Using self-correcting mirrors for thermal compensation - Concentric mesa
beams. Top: Thermoelastic deformation with no correction and the correction which
must be subtracted from the ideal mirror profile to recover the nominal mode. Bottom:
Cavity eigenmodes with no TCS (black), with our doctored TCS mirrors ‘cold’ (blue)
and at equilibrium (orange). Notice that the recovered mode overlaps exactly with the
ideal cavity mode (grey crosses).
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4.6 Thermal lensing

In addition to thermoelastic distortion of the mirror coatings, thermorefractive aber-

rations will also be present in the input mirror substrates. This complication was

neglected in the above sections so as to better understand cavity effects.26 Here we

discuss the consequences of such aberrations and briefly examine how Gaussian and

mesa beams differ in their susceptibility to them.

The maximum permissible level of circulating power in an interferometer is usually set

by the finite absorption of the transmissive optics.27 This absorbed laser power gives

rise to optical path length distortion in the mirror substrates through the thermo-optic

coefficient dn/dT . We call such distortion thermal lensing.

Thermal lensing can limit the sensitivity of interferometric detectors in numerous ways

[156]. It reduces carrier gain in the arm and power recycling cavities, decreasing the

power stored in the arms; it affects sideband gain in the recycling cavity, which can

noticeably reduce the efficiency of any RF readout scheme and finally this effect also

enhances the contrast defect, contributing to increased shot noise.

The form taken by these thermorefractive distortions is clearly dependent on the spatial

distribution of the incident optical power. As an indication of the relative magnitude

of lensing effects with Gaussian and mesa beams, the additional optical path lengths

experienced traversing the test masses of Gaussian and mesa cavities28 were determined.

The additional optical path length or thermal lens in the test mass substrate is calcu-

lated from the integral

Z(r) = β

h/2∫

−h/2

T (r, z) dz, (4.95)

where β = dn/dT is the thermo-optic coefficient. Using the notation and techniques

26This is equivalent to assuming that the purely thermorefractive aberrations have been compen-
sated on the input field prior to injection into the cavity. It should be noted that such compensation
is far from trivial.

27Radiation pressure induced instabilities aside.
28The mesa beam intensity profile is equal for flat and concentric cavities.
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of §4.1 (specifically (4.16)) this expression can be written

Z(r) =
∑

m

zmJ0(kmr) (4.96)

where zm = β
ǫP0a

Kth

pm
km

1− exp(−kmh)
kma+ χ− (kma− χ) exp(−kmh)

. (4.97)

Evaluating this formula using the parameters of Appendix A, fig. 4.12 clearly shows

that the mesa beam gives rise to a much weaker thermal lens. Fits to these profiles,
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Figure 4.12: Thermal lenses induced by Gaussian and mesa beams. Fits giving the
effective radius of curvature are weighted by the intensity profile of the appropriate
arm cavity eigenmode.

weighted by the intensity of the appropriate arm cavity eigenmode, reveal that the

effective focal length of the mesa thermal lens is approximately three times longer than

that seen in the Gaussian case. The mesa lens also has a more spherical profile and

may therefore be easier to correct via ring heaters or by suitably modifying the input

beam.29

29Although in this case differences between the arms will be a limiting factor.
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4.7 Summary and discussion

We have illustrated how the resonant modes of mesa and Gaussian beam cavities are

modified by thermoelastic effects as a function of coating absorption. In doing so we

have demonstrated that the losses of mesa cavities are relatively unaffected by optical

power absorbed in their coatings.

Along with other candidates, mesa beams are being considered for use in future de-

tectors as they ameliorate the effects of test mass thermal noise. We find for flat

mesa beams, in contrast to Gaussian and concentric mesa modes, that thermal noise

decreases with absorbed power.

Although this thermal noise reduction is welcomed, overall interferometer operation

will be more stable if the nominal mesa mode is preserved. To this end we have

outlined a possible method of thermal compensation for non-Gaussian beams. Such

passive techniques may also be a useful complement to standard Gaussian beam TCS

systems as interferometers’ circulating power enters the MW range.

The above results neglected thermorefractive effects in the test mass substrates so as to

better understand the cavity behaviour. A preliminary investigation revealed that mesa

beams are far less susceptible to thermal lensing than their Gaussian counterparts.

Collectively, our findings indicate that non-Gaussian beams are potentially more robust

with respect to thermal aberrations than equivalent Gaussian modes. However, before

one can draw any strong conclusions it is essential that thermoelastic, thermo-optic30

and subtle differential arm effects be considered simultaneously. Such work requires

complex full-interferometer simulations but would ultimately place limits on acceptable

material properties and define manufacturing tolerances.

30And perhaps even elasto-optic, depending on the test mass material.



Chapter 5

Parametric instabilities

In this chapter we move away from the problem of thermal noise and the proposed

solution of mesa beams to study another issue which may inhibit future interferometers

– parametric instabilities.

Parametric instabilities (PIs) result from the non-linear coupling of optical energy

stored in the interferometer’s arm cavities into mechanical energy stored in internal

mechanical modes of the test masses. This coupling is driven by radiation pressure

and is strongly dependent on the mechanical quality factor of the test masses. As

such it is of concern for advanced detectors which hope to employ high power lasers

and optics with extremely low mechanical loss. If the coupling is sufficiently strong,

exponentially growing mechanical motion of the test mass will compromise detector

noise performance and control. In some cases the interferometer will lose lock. Given

the consequences of uncontrolled PIs, work is ongoing to investigate means by which

they may be mitigated. We investigate one such scheme.

The majority of currently operating gravitational wave detectors utilise coil-magnet

actuators to control the positions and alignment of their suspended optics. Problems

associated with this system (see §5.1.5) led to the development of electrostatic actua-

tors. In this chapter we evaluate the possibility of using these electrostatic actuators

to damp mechanical modes of the test masses and thus ameliorate PIs.



5.1 Background 192

We begin in section 5.2.1 by theoretically determining the force required to damp a PI

to an arbitrary safe level. Then, by numerical methods, we obtain the force available

from a prototype Electrostatic Drive (ESD) (sections 5.2.5 and 5.2.6). Comparing these

two quantities in section 5.2.9, our model predicts that an ESD can successfully damp

any potential PI. We conclude our investigation in section 5.3 with an experimental

study of the same prototype ESD, validating our model and predictions.

5.1 Background

We commence by introducing the physical mechanisms which drive PIs, describing

why they have not been seen in first generation interferometers but are expected to

prove troublesome for future detectors. We present a new, intuitive approach to the

calculation of parametric gain which allows easy generalisation to complex interferom-

eter topologies. Continuing, we review previously proposed methods of controlling PIs

before outlining our plans for an improved scheme.

5.1.1 Parametric instabilities

Spontaneously excited parametric instabilities are not a issue of concern for currently

operating gravitational wave detectors and to date have only been observed in a small

number of specially designed experiments (e.g. [178, 179, 180]). However, in efforts

to reduce test mass thermal noise (see §4.2) and photon shot noise (see §1.4), sec-
ond generation interferometers will employ extremely low-loss test masses and strive

to maximise the power circulating in their arms. These changes have inadvertently

brought PIs into prominence.

Parametric instabilities (PIs) arise when radiation pressure forces result in a nonlinear

coupling between optical energy stored in the interferometer’s arm cavities and me-

chanical energy stored in the acoustical mode of a test mass. This process may be

easily understood as a classical feedback effect.
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Excitation, thermal or otherwise, of a test mass eigenmode initiates the process, scat-

tering light from the fundamental cavity mode into a pair1 of sideband fields with

frequency spacing equal to the mechanical mode frequency. The spatial profile of the

test mass mode is also imprinted onto these fields. The sidebands then experience

the, generally different, optical response of the system before arriving back to the ex-

cited optic together with the main cavity field. Radiation pressure then couples the

scattered light into mechanical motion, thus closing the feedback loop. Based on the

overall loop phase the mechanical mode may be suppressed or further excited, leading

to an instability.

The entire parametric instability process may be quantified by a single dimensionless

quantity, the parametric gain Rm. In the following section we discuss the evaluation

of this key parameter.

5.1.2 Calculation of the parametric gain

The possible problem of PIs was highlighted by Braginsky and colleagues in 2001 when

they published an analytic expression for the parametric gain in a single Fabry-Perot

cavity [181]. This work was subsequently generalised to increasingly complex interfer-

ometer topologies [182, 183, 184, 185, 186]. Unfortunately the formalism and vernacular

adopted were somewhat esoteric. Recently Evans et al. showed that equivalent results

could more easily be obtained [187]. Applying techniques well-known in the field, he

developed an approach which may easily be generalised to arbitrary optical systems.

This approach was adopted in the following sections and is recounted here.

The calculation of parametric gain may be treated as a classical feedback problem

whereby test mass mechanical modes influence the optical modes in the system through

scattering and the optical modes in turn influence the mechanical modes via radiation

pressure. In this section we evaluate the parametric gain associated with a single

mechanical mode with resonant frequency ωm. This shall be the frequency of interest

1In this work we consider terms only up to linear order, a reasonable approximation for the small
oscillation amplitudes under study.
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for our feedback calculation. We begin by examining the scattering process.

First consider the simple case of plane wave of wavelength λ0, frequency ω0, reflecting

from a mirror oscillating with small amplitude φ at frequency ωm.

If Ψinc = Einc exp[j(w0t)] (5.1)

then Ψrefl = Erefl exp[j(w0t+ 2
2π

λ0
φ cos(ωmt))]

≃ Erefl(1 + j(2
2π

λ0
φ cos(ωmt))) exp[j(w0t)] (5.2)

= (Erefl + j
2π

λ0
φErefl(e

jωmt + e−jωmt)) exp[j(w0t)].

Notice how audio sidebands with amplitude j2πφErefl/λ0 and frequency ωm are created

symmetrically about the fundamental frequency. For parametric gain calculations this

simple example must be extended to include spatial information. Consider an optical

mode of form

Ψcirc = Ecircf0e
jω0t, (5.3)

with amplitude Ecirc, frequency ω0 and spatial distribution f0, having just left a surface

with time varying spatial profile

φ = Am(~um · ẑ)ejωmt, (5.4)

where ẑ is the unit vector along the cavity direction, Am is the modal amplitude of

test mass mechanical mode m, ~um = (u, v, w) is its displacement field and ωm its

eigenfrequency. With this notation Am(~um · ẑ) is the displacement along the cavity

axis.

The resultant scattered field will consist of upper and lower audio sidebands at fre-

quency ωm with spatial profiles dependent on φ. We describe these fields in the space

of Higher Order Modes (HOMs) with basis functions fn

Ψscat =
∞∑

n=0

Escat,nfne
jω0t(ejωmt + e−jωmt). (5.5)
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Similarly to (5.2) the sideband pairs have amplitudes given by

Escat,n = j
2π

λ0
AmEcircBm,n, (5.6)

where λ0 and Ecirc are the wavelength and amplitude of the fundamental optical mode

driving the scattering process and Bm,n is the geometric overlap of mechanical mode

m with the nth HOM defined via

Bm,n =
x

S

f0fn(~um · ẑ) dS, (5.7)

where S is the test mass surface normal to the direction of beam propagation. The

modal displacement and basis functions have normalisations

x

∞

|fn|2 dS = 1 and
y

V

ρ|~um|2 dV = 1, (5.8)

where ρ is the mass density of the test mass and V is its volume.

We must now consider how each of the scattered sideband fields interacts with the

optical system. In general the upper and lower sidebands will experience different

gain. Denoting the closed loop transfer function of the nth HOM as G±
n , the modal

amplitudes of the field reflected from the excited optic’s surface after a round trip

through the system may be written in the HOM basis as

Ψrt =
∞∑

n=0

Escat,nfne
jω0t(G+

n e
jωmt +G−

n e
−jωmt) = Ψ+

rt +Ψ−
rt. (5.9)

(For full details regarding the calculation of G±
n please see §5.1.3.)

This scattered field couples the optical system to mechanical oscillations of the test

mass via radiation pressure

Prad =
2

c
|Ψrefl|2 where Ψrefl = Ψcirc +Ψ+

rt +Ψ−
rt. (5.10)

The component of the radiation pressure at the mechanical mode frequency is given
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by

Prad,m =
2

c

(

E∗
circf0

∞∑

n=0

E−
rt,nfn + Ecircf0

∞∑

n=0

E+∗
rt,nfn

)

=
2

c

(

E∗
circf0

∞∑

n=0

(G−
nEscat,n)fn + Ecircf0

∞∑

n=0

(G+
nEscat,n)

∗fn

)

. (5.11)

Integrating this pressure over the surface of the optic to obtain the force coupled into

the mechanical mode of interest, i.e. performing integrals of the form given in (5.7), we

arrive at

Frad,m =
2

c

(

E∗
circ

∞∑

n=0

(G−
nEscat,n)Bm,n + Ecirc

∞∑

n=0

(G+
nEscat,n)

∗Bm,n

)

= j
2π

λ0

2Pcirc

c
Am

∞∑

n=0

(G−
n −G+∗

n )B2
m,n (5.12)

= j
2π

λ0

2Pcirc

c
Am

∞∑

n=0

(Gn)B
2
m,n,

where we have introduced Gn = G−
n −G+∗

n .

The change in modal amplitude ∆Am brought about by this radiation pressure force is

given by the transfer function of a mechanical oscillator at its resonant frequency ωm

∆Am =
−jQm

µmω2
m

Frad,m

=
Qm

µmω2
m

4πPcirc

cλ0
Am

∞∑

n=0

GnB
2
m,n, (5.13)

where µm is the modal mass of the oscillating eigenmode.2 Thus the open loop gain of

the PI considered as a classical feedback loop is

∆Am

Am

=
4πQmPcirc

µmω2
mcλ0

∞∑

n=0

(Gn)B
2
m,n. (5.14)

2With Evans’ normalisation ((3) of [187]) µm =M , the total mass of the test mass, for all modes.
For consistency with later work we adopt a slightly different normalisation which leads to µm = 1 for
all modes.
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The parametric gain R is the real part of this open loop gain

Rm = ℜ
[
∆Am

Am

]

=
4πQmPcirc

µmω2
mcλ0

∞∑

n=0

ℜ[Gn]B
2
m,n. (5.15)

Since Rm is the open loop gain of a feedback loop we have instability for Rm > 1 and

optical damping for Rm < 0. In arriving at this expression we have tacitly assumed

that only a single mechanical mode of a single test mass is involved in any PI3 and that

the power stored in the fundamental cavity mode Pcirc is unaltered by any scattering

processes.

Quantifying the entire parametric instability process with a single quantity is indeed

elegant but it is not until one considers the calculation of Gn that the true power of

this formulation is revealed.

5.1.3 Transfer functions of the optical plant

Using the audio sideband formalism [188, 189] the closed loop gain of each HOM

scattering sideband may be calculated as it traverses the optical system. This quantity

is complex and will generally be different for upper and lower sidebands.

We begin by constructing a matrix S whose ijth-entry is the transfer coefficient from

the field evaluated at node j to the field evaluated at node i, Ej ; Ei i.e.

S =











E1 ; E1 E2 ; E1 . . . En ; E1

E1 ; E2 E2 ; E2 . . . En ; E2

...
...

. . .
...

E1 ; En E2 ; En . . . En ; En











, (5.16)

a zero is entered for unconnected nodes.We demonstrate this idea with two basic ex-

3 Given the high Q of the mechanical modes it is unlikely that more than one mode will play a
significant role at a single frequency.
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amples. For the case of a simple mirror (fig. 5.1), showing only non-zero entries

Smirr =











E1 E2 E3 E4

E1 · · · ·
E2 jt · r ·
E3 · · · ·
E4 r · jt ·











, (5.17)

where r and t are the amplitude reflectivity and transmissivity of the mirror. Similarly

1 2

34 

Figure 5.1: Node diagram of a single mirror used to construct matrix of transfer coef-
ficients.

for a Fabry-Perot cavity (fig. 5.2)

S±
n,FP =























E1 E2 E3 E4 E5 E6 E7 E8

E1 · · · · · · · ·
E2 jtA · · · · · rA ·
E3 · P±

L;n · · · · · ·
E4 · · jtB · rB · · ·
E5 · · · · · · · ·
E6 · · rB · jtB · · ·
E7 · · · · · P±

L;n · ·
E8 rA · · · · · jtA ·























, (5.18)

where P±
L;n is the propagation operator

P±
L;n = ej(Φn±ωmL/c). (5.19)
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We take the plus sign for upper scattering sidebands and the minus for lower. The

1 2 3 4

5678 

Mirror A Mirror B 

Figure 5.2: Node diagram of a Fabry-Perot cavity used to construct matrix of transfer
coefficients.

propagation phase Φn depends on the propagation phase of the fundamental mode Φ0

and the additional Gouy phase ΦG accumulated by the HOM

Φn = Φ0 −OnΦG, (5.20)

where On is the order of the nth HOM. The simplicity with which the S matrices are

constructed makes this technique easily extensible to complex interferometer topologies

and to other systems where optomechanical interactions are of interest – a decisive

advantage over previous methods.

The algorithm can be further generalised to include mode dependent losses. This

can be achieved by modifying S±
n for each higher order mode or by splitting it into

diagonal propagation matrix P±
n and a constant ‘mirror’ matrix M. A distinct loss

matrix Cn may then be constructed for each HOM with the new total matrix formed

as S±
n = MC±

nP
±
n [187].

In our analyses diffraction losses are included via the clipping approximation. These

losses are insignificant for low order optical modes but strongly limit the optical gain of

modes of order & 9. For all mirrors we set the radius of the clipping aperture equal to

the radius of a test mass, 0.17 m. For the beamsplitter we take 0.133 m, the innermost

radius of the ITM ESD pattern. This choice accounts for loss suffered passing through

the reaction masses inside the recycling cavity.

With the scattering matrix of the optical system fully defined we may calculate the
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closed loop gain of each scattering sideband HOM as

G±
n = ~e T

i (I− S±
n )

−1~ei, (5.21)

where ~ei is the ith column of the identity matrix I with transpose ~e T

i . The index i

corresponds to the node at which we wish to evaluate the PI. For example if we wished

to consider PIs excited by oscillations of mirror B in fig. 5.2 we would use ~e6.

Recall that G±
n represents the closed loop of each HOM sideband. Still examining

fig. 5.2, notice how the Gn take the form 1/(1− round trip gain), in exact analogy to

a classical feedback loop

G±
n;2,3,6,7 =

1

1− rArB(P
±
L;n)

2
. (5.22)

To reinforce the parallel between our system and a classical feedback loop we sketch a

derivation of Gn. Omitting ± for clarity and considering a single HOM we may write











Et1
1

Et1
2

...

Et1
N











= S











Et0
1

Et0
2

...

Et0
N











+











ESB
1

ESB
2

...

ESB
N











, (5.23)

where N is the number of nodes in our system, the Et0
i and Et1

i are the field amplitudes

at node i separated by some small increment of time and the ESB
i are the scattering

sidebands injected at node i. If we impose a steady state condition Et0
i = Et1

i = Ei we

may write










E1

E2

...

EN











= [I− S]−1











ESB
1

ESB
2

...

ESB
N











. (5.24)

We seek the closed loop transfer function of the scattering sidebands i.e. Ei/E
SB
i . Post

multiplying both sides of the equation by

(

1/ESB
1 1/ESB

2 · · · 1/ESB
N

)

(5.25)
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and suppressing irrelevant matrix entries we obtain











E1/E
SB
1

E2/E
SB
2

. . .

EN/E
SB
N











= [I− S]−1











1

1
. . .

1











. (5.26)

Selecting the node of interest

~e T

i











E1/E
SB
1

E2/E
SB
2

. . .

EN/E
SB
N











~ei = ~e T

i [I− S]−1











1

1
. . .

1











~ei

i.e. Ei/E
SB
i = ~e T

i [I− S]−1~ei

or G = ~e T

i [I− S]−1~ei. (5.27)

Reintroducing modal dependence and our ± we recover (5.21).

5.1.4 Proposed methods of damping

Several analyses suggest parametric instabilities may prove troublesome in second gen-

eration interferometers, hence efforts are underway to evaluate methods of mitigating

them. Schemes currently under study fall into two broad categories: those which mod-

ify Gn [190, 191] and those which modify Qm [192, 193]. We discuss a selection of these

schemes below in advance of introducing the method we considered in the following

section.

5.1.4.1 Thermal ROC tuning

To realise a high parametric gain we require that a scattering sideband experiences

considerable optical gain upon making a round trip through our optical system. This
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is achievable when a mechanical mode has a strong spatial overlap with a particular

HOM and the frequency of the mechanical mode closely matches the spacing of the

HOM from the carrier field. If the HOM spacing may be appropriately controlled then

optical and consequently parametric gain may be reduced.

The frequency spacing in Hz of the N th order HOM from the fundamental is given by

∆fN =
NfFSR cos−1(±√

g)

π
, (5.28)

where fFSR = c/(2Lcavity) is the cavity free spectral range and g = g1g2 = (1 −
Lcavity/R1)(1− Lcavity/R2) is the cavity g factor. We take the plus sign for a cavity in

the upper right quadrant of the cavity stability diagram (g1, g2 > 0) and the negative

sign for cavities in the lower left quadrant (g1, g2 > 0). The cavity length is fixed,

leaving the mirror radii of curvature as the only free parameters.

Thermal radius of curvature tuning is a well studied technique [156]. It has been

successfully used in GEO600 to correct for manufacturing errors, matching the radii of

curvature of the far folding mirrors [194]. Incandescent ring heaters will also be used

Figure 5.3: The ring heater behind GEO600’s East folding mirror used to match the
radius of curvature of this optic to that of North folding mirror.



5.1 Background 203

in AdvLIGO to control the arm cavity mode [195].

Figure 5.4: Rendering and image showing Advanced LIGO ring heater positioned 40
mm from the AR face of the test mass.

In 2005 Zhao et al. proposed to use similar techniques to alleviate parametric insta-

bilities by thermally tuning the HOM spacing [196, 190]. Unfortunately, what initially

appears to be an imaginative solution to the problem of PIs suffers from a number of

practical problems.

At frequencies above ∼20 kHz the mechanical mode spacing is around 50 Hz compared

to the cavity line width of order 100 Hz. Hence tuning the radius of curvature to

suppress one mode may lead to unintentional excitation of an adjacent mode. Further,

altering the radius of curvature of a test mass not only degrades single cavity mode

matching it also increases the contrast defect as the arm cavities will no longer be

matched.

The thermal effects themselves are also a source of concern. Heating must be limited

to the ETMs as any thermal distortion of the ITM substrates will affect the recycling

cavity mode and impact matching into the arms. Additionally, it is likely that heating

the front surface of the test mass will introduce prohibitive levels of noise so that

heating must be limited to the rear surface. This configuration only allows radii of

curvature to be reduced meaning that the parametric gain may not always be reduced

monotonically. Also, PIs are a dynamic process with perhaps several being encountered
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as the interferometer is brought to full power. A mitigation scheme based around

a thermal actuator will always be limited by the thermal time constant of the test

mass (∼10 min) limiting its effectiveness. Finally we mention that this scheme may

not be the ideal choice for cryogenic detectors. Introducing additional heat sources is

contrary to the design principles of such an instrument and the reduction in coefficients

of thermal expansion at low temperature compounds this issue.4

Although this scheme benefits from using existing hardware and is likely to introduce

little noise5 it is not the optimal choice for fused-silica masses. It may however be worth

exploring for use with other test mass materials exhibiting greater thermal conductivity

and more sparsely distributed eigenmodes such as sapphire.

5.1.4.2 Optical interference

A second mitigation scheme tasked with reducing optical gain is the subject of current

experimental work. In this design no cavity parameters are doctored, gain is instead

modified via optical mode interference [191].

If the scattering sidebands are particularly well coupled to a single HOM, injecting this

same mode into the system with opposite phase drastically attenuates the scattered

field with a commensurate reduction in parametric gain. Recent studies using a tunable

cavity and externally driven mechanical oscillations have demonstrated the principle

of this technique [197].

It may however be a formidable task to extend this work to spontaneously excited

instabilities in a full size detector. One must detect which HOM is resonant, sub-

sequently create an accompanying mode with appropriate spatial profile, orientation,

amplitude, frequency and phase before injecting it back into the interferometer with-

out introducing excess noise. The complexity and technical challenges presented are

non-negligible. For example, to mitigate noise due to backscattering of light into the

4Relative to room temperature more heat is required to effect the same change in radius of curva-
ture.

5If ring heaters are used they will thermally average any noise from their power supplies.
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arm cavities it is desirable that this system be seismically isolated and under vacuum.

Such difficulties will be compounded if multiple modes operate above threshold at a

single time, each requiring its own companion mode to interfere with. This said, op-

tical mode interference is a compelling idea in its own right which certainly merits a

thorough exploration.

5.1.4.3 Lossy rings/coatings

Equation (5.15) illustrates the proportional dependence of the parametric gain Rm on

the mechanical mode quality factor Qm. This leads one to imagine reducing parametric

gains by increasing the effective loss of the test mass. However in doing so one must also

be mindful of the competing demands of mirror thermal noise (see §4.2). Fortunately
this noise depends strongly on the distribution of loss throughout the test mass [65,

66, 198].

DeSalvo and colleagues were the first to investigate regions where lossy material could

be added with relative impunity, locating a ring around the circumference of the test

mass [199]. This discovery motivated proposals to place a ring of damping material

material around this circumference. Gras et al. performed a comprehensive analysis

of this idea concluding that the all the test mass modes could be effectively damped if

one is willing to accept a 20% penalty in thermal noise [193, 200].

Enthusiasm for this idea also stimulated experimental work at Caltech’s TNI. Fig. 5.5

shows two of three types of ring damper tested there – Buna O-rings, Kapton tape and

a copper ring (not shown).

The Buna O-rings were 1/8 inch thick and held in place by their own tension. These

dampers were found to reduce modal Qs to a level where they could no longer be

measured. However, this promising result was accompanied by an increase in broad-

band noise. This excess noise was later attributed to internal mechanical modes of the

O-ring.
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Figure 5.5: Prototype ring dampers tested at Caltech’s Thermal Noise Interferometer.
Left: Buna O-rings. Right: Kapton tape.

Work continued with Kapton tape – a good approximation to the types of damper

studied by Gras. With shallower profile and reduced mass the Kapton was thought

less susceptible to internal oscillations. Results showed no excess of noise but also

limited damping capability. The maximum Q reduction was just a factor of two.

Concluding that the ideal damper must have appreciable mass like the O-ring, but no

internal resonances like the Kapton, copper rings were investigated. A ring of 4 mm

thickness with its first resonances above 100 kHz was selected. This ring successfully

suppressed Qs so that they could not be measured but again introduced noise. In

addition to the broadband noise seen previously, sharp resonances were also observed.

It is believed that the screw fastening used to tighten the ring around the test mass

was liable for this behaviour.

Experiments were planned to test a second copper ring. This ring was to be inductively

heated and positioned over the test mass before being allowed to cool in position. This

monolithic design promised to damp test mass eigenmodes without becoming itself

excited. At the time of writing this idea has not yet been implemented.

Simple, yet effective, ring dampers remain an area of interest for passively damping

parametric instabilities.
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5.1.4.4 Resonant dampers

In addition to ring dampers there exists another promising passive damping scheme

– resistively-shunted piezoelectric Acoustic Mode Dampers (AMDs) [201]. As well

as simple mechanical damping these devices also dissipate energy into piezoelectric

material shunted with passive electrical circuits.6 By altering the properties of the

external circuit the overall performance of the damper may be tuned.

Figure 5.6: A cylinder of tungsten (C) is mounted atop two orthogonally poled PZTs
(D). A resistor (B) is connected across each PZT to provide electrical damping (con-
nections omitted for clarity). The entire assembly is attached to a rigid base plate
(A). The PZT electrical connections are made on their top and bottom surfaces. This
suggests the use of an entirely solder based construction with components coated as
necessary. The overall dimension of the damper is around 20 mm.

For our application these devices will be constructed as illustrated in fig. 5.6. A small

cylinder of tungsten is mounted atop two orthogonally poled PZTs. Each PZT has an

associated resistor connected across it. These resistors shall be fixed to the tungsten

mass as shown. By careful mechanical and electrical design the principal resonances of

the damper can be made to coincide with the two main series of potentially dangerous

acoustic modes at 15 and 50 kHz (see fig. 5.19). The tails of these and other resonances

are able to damp the remaining modes. The asymmetric mounting of the cylinder7

ensures modal degeneracy is broken extending the useful damping range.

6In our configuration the addition of a shunt resistor lowers the Q by a factor of ∼10.
7The base formed by the two PZTs is rectangular rather than square presenting different spring

constants along orthogonal axes.
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Unlike ring dampers these devices are expected to have a negligible noise contribution

due to the properties of the PZT, their resonant design and location on the test mass.

Any excess noise will likely be introduced in fixing the device to the test mass (e.g. glue).

To ensure that even this component is inconsequential we limit ourselves to 1 cm2 of

contact area per damper [202].

Owing to their tuning flexibility AMDs can be accurately targeted on the most danger-

ous acoustic modes. In this way it is likely that excellent results can be achieved with

a small number of AMDs. Although AdvLIGO is currently providing for 8 damper lo-

cations around the barrel of each test mass it is unlikely that all will be filled. Fig. 5.7

shows how the AMDs might be positioned in AdvLIGO. First experimental tests of
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Figure 5.7: Possible locations of acoustic mode dampers (blue) in AdvLIGO. Image
and annotation courtesy of C. Torrie.

this idea have been undertaken at Massachusetts Institute of Technology (MIT) using a

simple PZT accelerometer in place of a bespoke damper [192]. This work confirmed the

ability of such instruments to effectively reduce modal Qs and corroborated the TNI

result (see §5.1.4.3) that it is essential to account for internal modes of one’s damper
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in order to accurately model damping performance. AMDs are a leading candidate for

PI mitigation and future results are eagerly anticipated.

Having reviewed the leading schemes currently considered for ameliorating PIs the

next section begins to introduce the idea investigated in this work by examining an

electrostatic actuator.

5.1.5 ESD

The majority of currently operating gravitational wave detectors employ coil-magnet

actuators [203] to control the position and angular orientation of their suspended op-

tics.8 The permanent magnets attached to the interferometer test masses are known

to introduce noise through a number of mechanisms [204, 66, 205]. We give a brief

account of these noise couplings and subsequently describe a new type of electrostatic

actuator which will eliminate the need for magnets in future detectors.

5.1.5.1 Thermal noise due to magnets

There exists a large body of evidence highlighting the detrimental effect magnets have

on test mass modal Qs, in some cases increasing loss by more than an order of magni-

tude (see e.g. [206]). Previously these Q modifications were translated directly into in-

creased noise [164]; current understanding of thermal noise from inhomogeneous sources

indicates that loss localised far from the beam spot is less significant [66]. Measured

losses may also overestimate the effect magnets have in the GW detection band.9 It

is nevertheless prudent to take all reasonable precautions for AdvLIGO where noise

8GEO600 being the notable exception – it currently uses ESDs.
9In Initial LIGO actuator magnets are attached to metal standoffs (see fig. 5.9), raising them from

the surface of the optic [207]. Internal mechanical resonances of the magnet-standoff assembly are
predicted to give the loss associated with this structure an f4 frequency dependence below resonance.
This attenuation at lower frequencies suggests that values inferred from measurements at test mass
eigenmode frequencies represent an upper limit on the loss which will be observed in the gravitational
wave detection band. Initial measurements confirmed the f4 dependence [208] while later studies
proved inconclusive [209].



5.1 Background 210

Figure 5.8: Initial LIGO test mass showing five coil-magnet actuators (OSEMs). Due
to known magnetic noise couplings these actuators will be replaced with ESDs in
AdvLIGO.

requirements will be around ten times more stringent. The switch to ESDs will remove

the need for any actuator components on the test mass.

5.1.5.2 Barkhausen noise

During its fifth science run LIGO exhibited exquisite noise performance reaching its

design sensitivity across all but a small portion of its frequency band [210]. However in

the region between 50-100 Hz known sources were unable to fully explain the observed

noise [211]. A series of experiments showed that non-linear upconversion of actuator

coil currents to broadband noise via the Barkhausen effect was a likely candidate [212].

Barkhausen noise arises in unsaturated ferromagnetic material, such as the NdFeB



5.1 Background 211

φ1.9mm

3.2 mm

0.5 mm
1.2 mm

0.5 mm

φ1.9 mm

φ1.0 mm

Magnet

Standoff

Figure 5.9: Left: Suspension wire stand off and side magnet on Initial LIGO test mass.
Right: Magnet/standoff dimensions.

magnets used in Initial LIGO, due to the discrete nature of magnetic domains [205, 213].

These domains are smaller than ∼10 µm in size and contain polarised electrons with

aligned magnetic moments. Each domain is effectively a quantum for the magnetisation

process. When domains re-orient themselves in response to an external magnetic field

(e.g. from the actuator coils) there is friction at the boundaries between domains. This

friction gives rise to magnetic dissipation when the material is driven by time varying

fields. In addition the domains do not respond smoothly to the external field creating

stochastic fluctuations in magnetisation.

Guided by experiment the decision was made to swap the ETM magnets from Nd-

FeB to saturated SmCo. The SmCo magnets were expected to be less susceptible to

Barkhausen noise by a factor of more than 100. Although a conclusive study remains

to be made preliminary measurements suggest that upconversion is no longer present

[214]. Despite this positive result the elevated noise at low frequency remains. Current

suspicion is focused on auxiliary control noise and poorly designed wire stand offs (see
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fig. 5.9) which provide an ill-defined boundary condition for the suspension wires [215].

Although it appears that this magnetic problem has been efficiently diagnosed and

solved it is included to illustrate the types of issues which may have been uncovered if

magnets were retained for AdvLIGO.

5.1.5.3 Coupling to ambient magnetic fields

It is clearly advantageous to install strong magnets providing large control forces on the

test masses of a gravitational wave interferometer. However one must ensure that such

measures do not adversely affect instrument performance through coupling to ambient

magnetic fields. In this section we make an estimate of the maximum permissible

magnet strength which still allows AdvLIGO’s technical displacement noise limit of

x0 = 10−20 m/
√
Hz at 10 Hz to be met. These arguments are based on the work of

Fritschel and Schofield [216].

Despite being arranged with alternating polarity a measurable interaction exists be-

tween test mass magnets and external magnetic fields. This coupling has been charac-

terised for Initial LIGO test masses by production of a magnetic field frequency comb

near each test mass chamber [217]. Accounting for shielding by the Beam Splitter

Chambers (BSCs) chambers the average coupling factor is k = 10 NT−1(Am2)−1.

Ambient magnetic fields at LIGO’s sites have also been investigated using both com-

mercial and purpose built magnetometers. This work guided us in setting a conservative

upper limit of B = 10−11 T/
√
Hz for the prevailing field in our calculations.10

A comprehensive model of the AdvLIGO quadruple suspension system has been devel-

oped over recent years by Barton [218]. Using this model the transfer function from

applied actuation force to test mass displacement is easily obtained [219]. Combining

the given value of H = 6.45×10−6 m/N with the above measurements allows us to

10There is some suspicion that this number is inflated by a factor of 2-3 due to magnetometer
motion. This remains to be investigated.
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compute a maximum allowable single magnet strength of

µmax =
x0

BkH
(5.29)

= 15.5 µAm2,

450 times smaller than the magnets used in initial LIGO.

Although this number represents a conservative upper limit it nevertheless illustrates

the severity of the problem. Consider that, for typical actuation coefficients seen in

Initial LIGO (2.2 NA−1(Am2)−1) and a reasonable maximum rms coil current of 0.1 A

this magnet strength allows a force of just 14 µN. Compare this with 200 µN expected

from the ESD. Put another way, magnets able to produce a force equal to that of the

ESD could inject noise up to the 1.5×10−19 m
√
Hz level at 10 Hz.

Magnets will continue to be used to control the higher pendulum stages in AdvLIGO

where residual motion requirements are more relaxed but this work clearly shows that

environmental couplings prohibit their use to control the test masses. One might worry

that an ESD is equally susceptible to variations in external electric fields. This is not

foreseen as a problem due to the excellent shielding provided by the highly conductive

vacuum chamber.

Having highlighted a selection of problems associated with coil-magnet actuators the

following section introduces the electrostatic drive developed as its replacement.

5.1.5.4 The electrostatic actuator

Before describing the specifics of the ESD used in this work we introduce the working

principle of the device with a simple example. With reference to fig. 5.10, consider a

dielectric mass with two electrodes fixed to its surface. This construction is held at

some small distance from a second dielectric mass which we wish to control. Imagine

two molecules in the target dielectric placed symmetrically about the mid plane of the

diagram. Creating a potential difference across the electrodes gives rise to a fringing
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field which polarises these molecules. Since the electric field is non-uniform the forces

acting on the the positive and negative charges are not quite collinear leading to a

resultant force on each molecule F1, F2. By symmetry the total force on the pair of

molecules F1 + F2 is downward (negative z direction). The total force on the target

dielectric is obtained by summing over all such molecule pairs.

Figure 5.10: Cartoon diagram illustrating the working principle of the ESD. The upper
rectangle represents the test mass containing two polarised molecules; the lower rect-
angle represents the reaction mass bearing two electrodes. Surface plot shows electrical
potential with electric field lines shown in cyan.

Although crude, this example serves to reveal several key properties of the ESD.

- The force experienced by the test mass is entirely due to fringing electric fields.

Deriving analytical descriptions of the ESD actuator is thus extremely challeng-

ing, leading us to adopt a numerical approach (see §5.2.2).
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- The ESD is a non-linear device. The actuation forces are due to the interaction of

polarised material with an external field. Thus we should expect the total force

to be proportional to the electric field (and therefore potential difference between

the electrodes) squared – one factor to induce the polarisation and a second to

describe the force on the dipoles.

- This description also highlights that the force from the ESD is uniformly attrac-

tive.11

An ESD, as applied to gravitational wave interferometers, consists of a comb-like pat-

tern of four interleaving electrode pairs deposited in gold onto the surface of a cylinder

of high quality fused silica. This cylinder is known as a reaction mass. In operation

four electrodes, one from each pair or quadrant, are connected to a common bias po-

tential. Control signals are applied to the remaining electrodes providing four distinct

actuators. In this way both angular and longitudinal position may be controlled.

The force produced by an ESD may be characterised as

FESD = α(∆V )2, (5.30)

where ∆V is the potential difference between the electrode pairs and α is our constant

of proportionality. This constant is dependent on the separation between the test

mass and the reaction mass; the material properties of the two optics and the specific

geometry of the ESD pattern. In the following sections α is both numerically modelled

and experimentally measured.

ESDs have been used successfully in the GEO600 interferometer for some time [220].

Drawing on this experience ESDs have been chosen as the baseline test mass actuator

for AdvLIGO. In fig. 5.11 we show a prototype reaction mass bearing a pattern design

considered for AdvLIGO’s input test masses. All numerical and experimental work was

carried out using this article. Technical drawings of the mask used in the construction

of this pattern may be found in figs. B.1 and B.2 of Appendix B.

11This and the previous point are dealt with in §5.3.1.3.
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Figure 5.11: Advanced LIGO noise prototype reaction mass and ESD. This is the
pattern being considered for the reaction masses for the input test masses. This design
is used for all numerical and experimental work discussed herein.

In order for the fringing fields to effectively penetrate the test mass, the electrode spac-

ing should be approximately equal to the gap between the test mass and reaction mass.

For AdvLIGO this number is expected to be 5 mm. Fig. 5.12 shows the relationship

of the reaction mass to the test mass pictorially.
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Figure 5.12: Photographs showing the relationship of the reaction mass to the test
mass. Upper left: View of ESD through test mass before installation. Upper right:
Complete noise prototype quadruple pendulum installation. Observe the ESD (with
gold coating) immediately behind test mass. Lower: View of reaction mass (left) and
test mass (right) from below.
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5.1.5.5 Drawbacks

Having outlined the problems associated with magnet based actuators above, this sec-

tion presents a similar discussion of the ESD.

There is risk associated with placing high voltage electrodes in such close proximity to

the test masses. In 2006, after electrical problems at the GEO600 site left the optics

undamped, the functionality of the ESDs was found to be seriously compromised. It

is believed that, whilst the optics were freely swinging, contact was made between the

test masses and live ESD electrical connections, allowing the test masses to become

charged. Although the following work by Hewitson et al. [221] led to the development

of techniques for gauging and removing test mass charge this incident would have been

happily avoided.

Measurements carried out at Moscow State University have revealed a frequency de-

pendent damping mechanism associated with electrostatic drives [222, 223]. It was

shown that this mechanism depends greatly on the preparation of, what in our case

would be, the rear surface of the test mass. The effects of this damping fall off as

1/f with bias voltage, recommending the use of an AC bias. It is probable that only

implementation in AdvLIGO will determine whether an AC bias is truly necessary but

all ESD electronics are designed to preserve this option.12

Accounting for the non-linearity of the ESD one normally operates with a bias large

compared to the typical control forces. This large bias may couple strongly to stray

charges on the dielectric test masses and also present a wider pathway for actuation

noise.

A further source of damping associated with the ESD is Joule loss in the electrodes,

wiring and drive amplifier. Motion of the test mass about its nominal position changes

the capacitance of the drive and allows a current to flow. Any resistance in the drive

12The use of an AC bias has the potential to dissipate several watts of power. The current driver
design uses water cooling to cope with this as cooling by convection could introduce excess noise
through fans etc. It may be that commercial voltage drivers will eventually be used.
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electronics leads to damping of the test mass and can thus introduce thermal noise. For-

tunately the magnitude of this effect is easily reduced by minimising the real impedance

presented by the electronics. Experience has shown that the electrodes can be de-

posited with a resistance of ∼5 Ω so that this effect is essentially controlled by the

output impedance of the drive amplifier where there is ample design freedom.

Despite these minor issues it is our proposal that the ESD described here be used to

actively suppress PIs. In the following section we begin to investigate this possibility.

5.2 Modelling

Below we describe how a theoretical estimate of the force required to damp PIs using

the ESD was obtained. We begin in §5.2.1 by constructing a simple model of the

system. This allows us to extract an analytical expression for the required damping

force. In the following sections we populate the unknown parameters in this expression,

namely the test mass mode shapes and frequencies (§5.2.3), the force distribution of the

ESD (§5.2.5), the undamped parametric gains (§5.2.7) and the force coupling between

the ESD and each mechanical mode (§5.2.8). We conclude in §5.2.9 by evaluating the

force required to damp each mode of the test mass and comparing it to that which is

available.

5.2.1 Damping forces

In this section we derive a closed form expression for the force demanded of the ESD to

effectively damp a PI. Considering each acoustical mode of the test mass as a damped

oscillator with resonant frequency ω0,m rads−1 and modal mass µm we have

µmẍm +
ω0,mµm

Qm

ẋm + kmxm − Fapp,m = 0, (5.31)
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where Fapp,m is that portion of the total ESD force which is effectively coupled into

mode m. Assuming viscous damping,

Fapp,m = −Kmẋm, (5.32)

we write

µmẍm +

[
ω0,mµm

Qeff,m

]

ẋm + kmxm = 0. (5.33)

In doing so we have defined an effective Q,

Qeff,m =

(
1

Qm

+
Km

µmω0,m

)−1

, (5.34)

whence

Km = µmω0,m

(
1

Qeff,m

− 1

Qm

)

. (5.35)

Assuming sinusoidal time variation, so that we may write ẋm = jω0,mxm,

Fapp,m = −Kmẋm

= −µmω0,m

(
1

Qeff,m

− 1

Qm

)

jω0,mxm. (5.36)

For thermal excitations we have

xm =
√

kBT0/µmω2
0,m, (5.37)

where kB is Boltzmann’s constant and T0 is the ambient temperature. Thus

Fapp,m = −jω0,m

√

µmkBT0

(
1

Qeff,m

− 1

Qm

)

. (5.38)

To account for the coupling between the ESD actuation force and the mechanical

mode in question we introduce an additional parameter bm defined through Fapp,m =

bmFESD,m. This coupling may be calculated as follows

bm =

∣
∣
∣
∣

x

S

fESD(~um · ẑ) dS
∣
∣
∣
∣
, (5.39)
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where fESD is the force density of the ESD and ~um · ẑ is the displacement of the mirror’s

surface along the cavity axis. These quantities have normalisations

x

S

fESD dS = 1 and
y

V

ρ|~um|2 dV = 1, (5.40)

ρ being the uniform mass density of the test mass, S the rear surface of the optic

normal to the cavity axis and V the test mass volume. With this normalisation µm = 1

for all modes.

Including the overlap parameter bm and making use of the proportionality of Q and R,

i.e.

Qeff,m = Qm
Reff,m

Rm

, (5.41)

we find the magnitude of force demanded from the ESD to reduce the parametric gain

from Rm to Reff,m for a thermally excited mode is

FESD,m =
√

µmkBT0
ω0,m

bm

(
Rm −Reff,m

QmReff,m

)

. (5.42)

As (5.42) shows, FESD,m is a strong function of bm and Rm. In order to accurately

calculate required damping forces we must have a solid estimate of both factors. To

achieve this we require the ESD force density fESD, the mechanical mode shapes ~um

and their frequencies ω0,m. Given the complexities involved, a numerical approach was

adopted.

5.2.2 Finite element model

The Finite Element Method (FEM) is a well-known technique for numerically solving

differential equations. Unlike some other numerical methods, like the finite difference

method [224] for example, it is particularly well suited to problems involving the strange

geometries often found in engineering and the physical sciences. The FEM converts a

problem with an infinite number of unknowns (e.g. values of scalar field) into a soluble
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problem with a finite, albeit sometimes large, number of unknowns. This is achieved

via a number of steps.

The region of the problem is first divided into a number of smaller domains, the finite

elements. An example of this division process, called meshing, may be seen in fig. 5.14.

The locations where element boundaries intersect are known as nodes.

An interpolation function is then assumed for each element. The value of the unknown

at any point within an element is uniquely determined by the values at the nodes and

the interpolation function. These functions are often chosen to be polynomials since

they may easily be integrated and differentiated. The order of the polynomial typically

depends on the number of nodes the element possesses.

The appropriate matrix equation is then formed on each element from the global gov-

erning equation. There exist a number of standard methods for completing this task

(e.g. Galerkin’s method [225]) which shall not be discussed here.

Using the fact that the unknown must be equal for all elements sharing a node, the

element equations are assembled into a global system of equations. At this point

boundary conditions are applied.

In static situations this system may be solved algebraically. In cases with temporal

variation the global PDE is transformed into a system of ODEs which may be solved via

standard methods (e.g. Runge-Kutta [226]). This solution provides the nodal values,

using the interpolation functions we extend the solution to the whole domain. Further

post-processing allows one to compute gradients, fluxes and the like.

This piecewise approximation provides good accuracy even for simple interpolation

functions. However we must remember that solutions are always approximate. By

increasing the number of elements, arbitrary precision may be achieved at the expense

of computation time. In reality the mesh resolution is often tailored to better capture

behaviour in regions of interest.
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Modern FEM packages (e.g. [227, 228]) are extremely powerful tools which often hide

the above method from the casual user. Great care must be taken to ensure that the

correct questions are well posed and that the solutions provided are both valid and

accurate.

Finite element models are ideally suited to problems where the global governing equa-

tion is well-known but complex geometry or boundary conditions make finding closed

form solutions difficult. Below we describe two such problems which were encountered

in our study of parametric instabilities, one in continuum mechanics and one in elec-

tromagnetism. We begin by outlining the derivation of the governing equations before

describing the models themselves and presenting typical results.

5.2.3 Eigenfrequency analysis

The fundamental equation for linear elasticity is the equilibrium equation. In engineer-

ing notation

~F −∇ ·Θ = 0, (5.43)

where Θ is the stress tensor and ~F denotes the body/volume forces.

In eigenfrequency analysis the solution we seek is a frequency-displacement pair, hence

it is beneficial to formulate the equilibrium equation in terms of displacements. To do

so we must define two relationships; that between strain and displacement and that

between stress and strain.

For our three dimensional problem we write the deformation as ~u = (u, v, w). The six

independent components of the strain tensor are then given by

Ex =
∂u

∂x
Exy =

1

2

(
∂u

∂y
+
∂v

∂x

)

,

Ey =
∂v

∂y
Eyz =

1

2

(
∂v

∂z
+
∂w

∂y

)

, (5.44)

Ez =
∂w

∂z
Exy =

1

2

(
∂w

∂x
+
∂u

∂z

)

.
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Treating the components of stress and strain as entries in column vectors, the standard

stress strain relationship Θ = CelastE may be written as
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(5.45)

where Y is Young’s modulus, σ is Poisson’s ratio and Celast is the elasticity matrix.

Isotropic behaviour is assumed.

Through substitution of our newly defined relationships (5.44) and (5.45) we obtain

the equilibrium equation (5.43) in displacement form

~F −∇ · (c0∇~u) = 0, (5.46)

where c0 is a constant dependent on material properties. This equation governs static

motion. In order to perform a modal analysis we must include the mass. Assuming

sinusoidal solutions we write

− χc1~u−∇ · c0∇~u = 0, (5.47)

where the c1 coefficient includes the density of our object and χ is our eigenvalue.

(5.47) is solved to find the eigenvectors/mode shapes ~u and eigenvalues χ. The modal

frequency is obtained from the eigenvalue as

f =

√
χ

2π
. (5.48)

Accurately modelling a complex system in contemporary FEM software involves many

choices. For example, which type of elements, pre-conditioning, solvers and smoothing
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to use. For readability we omit a comprehensive discussion of all options, instead

highlighting those choices critical to our arguments. The main properties of the FEM

models are described in tables 5.1 and 5.2.

Table 5.1: Parameters used in eigenmode analysis of Advanced LIGO test mass.

Quantity Value

Fused
silica

Young’s Modulus 72 GPa
Poisson’s ratio 0.17

Density 2202 kg m−3

Test mass

Radius 0.17 m
Thickness 0.2 m

Flats on side of mass 0.095 m
Wedge angle 0.167◦

Eigenfrequency
simulation

# elements 100,000
# nodes 160,000

Mode shapes and frequencies of an AdvLIGO test mass were found using ANSYS

[228]. The elements used each had 10 nodes with three degrees of freedom per node

(u, v, w). Plasticity, hyperelasticity, creep, stress stiffening, large deflection, and large

strain capabilities were all incorporated into the model.

This analysis produced several thousand mode shapes with frequencies in the 10-90 kHz

band. We limit ourselves to this region as higher frequency modes typically couple to

high order optical modes which suffer from significant clipping losses and thus yield

low parametric gain. Figure 5.13 shows typical output from our model – the total

test mass displacement and the displacement along the beam direction. These data

was subsequently used in the calculation of theoretical parametric gains and damping

forces.

5.2.4 Electrostatic model

As a consequence of the complex electrode geometry and non-uniform electric fields

involved, the calculation of the force produced by the ESD is a demanding problem also

well suited to finite element analysis. We begin by deriving the appropriate governing
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Figure 5.13: Output of eigenmode analysis. Test mass acoustical mode at 14275 Hz.
Left: Total displacement

√

ℜ[u]2 + ℜ[v]2 + ℜ[w]2 where ~um = (u, v, w). Right: Surface
displacement along beam axis ~um · ẑ.

equation. Gauss’ law gives

∇ ·D = ρfree. (5.49)

Applying our chosen constitutive relation

D = ε0εrE = εE, (5.50)

we find

∇ · E =
ρfree
ε
. (5.51)

Now, the electrostatic potential may be defined as

E = −∇V, (5.52)

so that combining (5.51) and (5.52) we may eliminate E and arrive at

∇2V = −ρfree
ε
, (5.53)

a form of Poisson’s equation. A second model solving this equation was constructed

using COMSOL Multiphysics [227]. The field variable solved for in this electrostatic
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simulation is the electric potential V , all fields and quantities of interest are easily

derived from this.

For concreteness and in order to facilitate verification by experiment the following

sections limit their discussions to the particular ESD shown in figure 5.11. This pattern

is a design considered for AdvLIGO’s input test mass reaction chains. The electrode

dimensions entered into our model were taken from the mask used in their manufacture.

Technical drawings of this mask may be found in figs. B.1 and B.2 of Appendix B.

Other model parameters are given in table 5.2.

Table 5.2: Parameters used in finite element model of electrostatic drive.

Quantity Value

Fused
silica

Young’s Modulus 72 GPa
Poisson’s ratio 0.17

Density 2202 kg m−3

Relative permittivity 3.75

Test mass

Radius 0.17 m
Thickness 0.2 m

Flats 0.095 m
Wedge angle 0.167◦

Reaction
mass

Radius 0.17 m
Thickness 0.13 m

Max. element
sizes

Volume of test mass 1 cm
Rear surface of test mass 1.5 mm

Front surface of reaction mass 1 cm
Electrodes 5 mm

Mesh
# elements 445,060†

# nodes 601,272†

† For 5mm separation.

The electrostatic simulation incorporated several sub domains – the test mass, the re-

action mass, the electrodes and the outside world – making it decidedly more compli-

cated than the eigenfrequency analysis. This added complexity necessitated a number

of measures.

Finite element methods often encounter difficulties when the ratio of scales in the

problem is large. In our model we were bound to accurately describe both a test
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mass of thickness 0.2 m and the gold electrodes of thickness ∼500 nm. Pre-scaling the

model geometry can often allay this problem but in this instance a different strategy

was preferred. We chose to implement the electrodes as a 2D object within the greater

3D model. As such the electrodes had vanishing extent along the cavity direction. The

negligible change in electric field at the test mass is more than offset by the number of

elements which are liberated for use in other areas.

The electrical characteristics of the electrodes were also simplified. To each piece of the

gold pattern a uniform potential was ascribed, effectively assuming perfect conductivity.

In doing so practicalities associated with connectors and their positioning were avoided

allowing one to focus on more pertinent aspects of the problem.

Even with these approximations it was found that describing the entire domain with

good fidelity was outside the capabilities of the computing resources available. Model

output was found to vary as a function of model parameters at an unacceptable level.

In order to reduce computational cost, symmetry was employed.

Exploiting the natural four-fold symmetry of the ESD pattern (see figs. B.1 and B.2)

the application of appropriate boundary conditions enables one to accurately simulate

the behaviour of the entire ESD through study of a single quadrant (see fig. 5.14). This

reduction in scope permitted the use of a finer mesh in key areas allowing convergence

to be achieved. Fig. 5.14 shows the final meshing of the model.

Recall that the field variable solved for in this electrostatic simulation is the potential

V . Fig. 5.15 shows a representative model solution plotting V across the rear surface

of the test mass.

To evaluate the force coupling between the ESD and the various mechanical modes we

must however convert this potential into a force distribution.
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Figure 5.14: Finite element model of a prototype AdvLIGO ESD showing test mass
(front) and reaction mass with ESD (rear). We exploit the four-fold symmetry of the
problem to reduce computational cost. Note the concentration of elements on the rear
surface of the test mass.

Figure 5.15: Finite element model of a prototype AdvLIGO ESD showing test mass
(front) and reaction mass with ESD (rear). This slice plot displays the electrical
potential across the rear surface of the test mass. Yellow is positive; blue negative.
With ±100 V on the electrode pairs one finds approximately ±50 V on the test mass.
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5.2.5 Force distribution

COMSOL possesses a wide array of advanced post-processing capabilities allowing one

to extract fields and quantities of interest from the solution variable. With a view to

finding the force density fESD(x, y) across the transverse dimensions of the test mass

the Maxwell stress tensor (MST) was constructed from the electrical potential. For

our electrostatic simulation

Υij = EiDj −
1

2
δij

3∑

k=1

EkDk, (5.54)

where Ei and Di are the ith Cartesian components of electric and displacement fields

and δij is the Kronecker delta.

The analysis then proceeded in the following way

Export interior data Both Υzx,Υzy are evaluated over a uniform 3 dimensional grid

encompassing the test mass (total number of points ∼ 5× 106) and exported.

Export boundary data Variously Υzx,Υzy,Υzz as appropriate are evaluated at nodes

residing on the test mass boundary and exported. These components are then

interpolated onto the uniform grid of the interior data.

Integrate MST The test mass was subsequently divided, in the abstract sense, into

an array of right rectangular prisms whose long axes were oriented along the

beam direction. The edges of these prisms ran along the vertices of our grid. The

MST was then numerically integrated over the exterior of specific combinations of

prisms to determine the force experienced by the volumes of test mass enclosed.13

Convert force data into a force density The selection of prism combinations was

carefully orchestrated so that, by later subtraction, the force on every prism could

be obtained. Dividing each force by the area of the prism base we obtain the

13N.B. Although the MST integrates over a closed volume to give a force it is not itself a force
density. See for example [229].
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force density evaluated on a fine 2D grid across the transverse dimension of the

test mass.

The force density obtained for our selected ESD pattern (fig. 5.11) is shown in figure

5.16.
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Figure 5.16: Force density as a function of transverse position across the test mass
in Nm−2. Forces are uniformly attractive and most significant directly in front of the
electrode pattern. Values shown for ∆V = 200 V.
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5.2.6 Absolute force

A critical parameter for lock acquisition and interferometer control is the peak force

available from the ESD. Integrating our force density over the test mass (or equivalently

integrating the MST over the test mass boundary) we find that α = 2.9×10−10 N/V2.14

For ∆V = 800 V, a reasonable value for a wide bandwidth, low noise voltage amplifier

and one considered for AdvLIGO, this corresponds to a nominal maximum force of

∼190 µN. The effects of small variations in model parameters on this prediction shall

be investigated in this section.

The nominal separation between the test mass and reaction mass is 5 mm. However

given the elaborate nature of the quadruple suspension (see §5.3.1.1) it is not unrea-

sonable to expect that this value may have a static offset of as much as ±0.5 mm [230].

There is also potential for this gap to vary as a function of time, driven by thermal gra-

dients for example.15 Considering the implications this might have for interferometer

control and calibration it is important to quantify this effect.

To this end the existing FEM model was invoked in a loop, varying the intermass sepa-

ration in a stepwise manner. Upon each iteration the model was remeshed according to

the rules set forth in table 5.2 and the usual limits on mesh growth rate and curvature.

From the resulting model solutions one is able to determine the coupling coefficient α

as a function of separation. This dependence is illustrated in fig. 5.17.

A standard least square fit reveals that α ∝ d−2.4. Over our estimated range of static

deviations this would allow α to vary by as much as ±30%. Static offsets are not

the only cause for concern. Although not achieved in Initial LIGO [231] one would

hope to achieve a calibration accuracy of around 1%. In order for stochastic changes

in the separation of the masses not to compromise this effort the separation must be

controlled to within ±2 × 10−5 m. Recent modelling work suggests that this is easily

achievable.

14Recall that F = α∆V 2

15Seismic effects are likely negligible as the test mass and reaction mass will move together at low
frequencies and are well isolated at high frequencies.
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Figure 5.17: The ESD coupling coefficient α as a function of separation between the
reaction mass and the test mass. Vertical line shows nominal separation corresponding
to 2.9 × 10−10 NV−2. Least squares fitting reveals that dependence is stronger than
quadratic.

Another area in which there is often great uncertainty is in the selection of material

properties. For our fused silica masses we chose to use εr = 3.75. So that we might

study the implications of this decision a second series of simulations were run.

Fixing the separation to 5 mm the relative permittivity of both masses was varied

simultaneously. Again a new mesh was constructed and a value for α extracted upon

each iteration. The resulting data is shown in fig. 5.18. The dependence is purely

quadratic with coefficients (-7.932e-012,1.167e-010,-3.566e-011) in order of descending

power – a dramatically weaker effect than variation in separation. The potential for

changes in α is of the order ±5 % for a reasonable range of εr.

Both results suggest that all parameters should be verified before model output is used

with confidence. With this caveat in mind we begin to evaluate the parametric gain

Rm and the ESD mechanical mode coupling bm in the next section.
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Figure 5.18: α as a function of relative permittivity εr of both masses. Assumed value
of 3.75 is indicated by vertical line.

5.2.7 Parametric gain

Section 5.1.2 exposed the relationship between parametric gain and Bm,n, the geometric

overlap of the scattered HOM fields with the test mass eigenmode. Having calculated

the mechanical mode shapes in §5.2.3 the numerical value of Bm,n may be determined.

Using this information, the methodology developed in §5.1.2 may be applied to inves-

tigate whether PIs are of concern in future dual recycled Fabry-Perot interferometers.

Our model parameters are listed in table 5.3. These values are broadly representative

of AdvLIGO but by no means definitive.

At the time of writing there exists some ambiguity regarding a selection of these val-

ues. In these cases we make educated order of magnitude estimates. For example, in

AdvLIGO circulating arm power is expected to be ∼850 kW whereas we assume 1 MW

and in keeping with current measurements [56] and experience of full size suspended
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Table 5.3: Interferometer parameters used in the theoretical evaluation of parametric
gain.

Quantity Value

Lengths
Arm cavity 3994.5 m
Power recycling cavity 57.175 m
Signal recycling cavity 55.475 m

Gouy phases♯
Arm cavity 156◦

Power recycling cavity 25◦

Signal recycling cavity 20◦

Optical
properties

Circulating arm power 1 MW
Input mirror power transmittance 0.014
End mirror power transmittance 10−5

Power recycling mirror power transmittance 0.03
Signal recycling mirror power transmittance 0.2
Beam splitter power transmittance 0.5
Laser wavelength 1064 nm

Mechanical
properties

Mass of test mass 40 kg
Mechanical mode Q 107

♯ The one way Gouy phases listed above are calculated from ∆ψ = arccos(±√
g).

g = (A+D + 2)/4 is the generalised cavity g factor, where A and D are the diagonal

elements of the cavity round trip ABCD matrix.

optics within the field we assume a value of Qm = 107 for all modes.16

There is potential for large discrepancies between theoretical values of parametric gain

and any eventual experimental measurement. Mode frequencies obtained from finite

element models may not accurately match those witnessed experimentally due to small

differences in material properties or prevailing temperature.17 Control issues may pre-

vent the circulating power from reaching its design value. Optical gain may be different

due to deviations of mirror radii of curvature from their nominal values, causing small

but consequential changes in Gouy phase.

To allow for realistic variations in model parameters ‘worst case’ Rm values were cal-

culated. The parametric gain is predominantly sensitive to the overlaps in frequency

space between the mechanical modes and higher order cavity modes. By randomly

16Estimated Q values will only become more accurate once a prototype of AdvLIGO’s quasi mono-
lithic suspension design is available.

17Due to thermal compensation systems for example.
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varying the Gouy phases of the cavities about their fiducial values an upper limit –

the smallest value greater than 99% of the results – was found for each mode. 120,000

trials were conducted varying the phase in the arms over 5 × 10−3 degrees and the

phases of the recycling cavities over a few degrees.

Results are shown in fig. 5.19. We find 212 modes with R > 0.1 and 32 modes with

R > 1. The maximum gain is less than 30. Comparable with other investigations,

such results suggest that parametric instabilities are an issue of concern for second

generation interferometers.
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Figure 5.19: “Worst case” Rm values for an interferometer configuration representative
of AdvLIGO. In our evaluation we randomly sweep over realistic model parameters,
setting an upper limit on R for each mode as the lowest value greater than 99% of the
results. Diffraction losses are included via the clipping approximation. We find 212
modes with R > 0.1 and 32 modes with R > 1.

Observing these numbers we return to our proposed mitigation scheme with renewed

fervour to quantify the force coupling between the ESD and each mechanical mode.
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5.2.8 Overlaps

Having completed a modal analysis of the test mass and determined the distribution

of ESD forces, we are equipped to evaluate bm,
18 the penultimate step in estimating

the force required to damp PIs.

Due to diffraction loss, optical gain is highest for low order transverse modes. This

leads one to surmise that these modes are most likely to give rise to PIs. In addition,

low order modes exhibit low order symmetries implying that their coupling to the four-

fold symmetric ESD pattern will be poor and that they will thus require large damping

forces. Indeed, if not for symmetry breaking wedges some modes, such as that in figure

5.20, would have vanishing overlap with the ESD and could therefore never be damped

via the methods we propose.

Figure 5.20: Some mechanical modes possess symmetries which make them difficult
to damp using the four fold symmetric ESD pattern. By operating with a single ESD
quadrant vast gains are available. For this 40.3 kHz mode b increases from 4.3× 10−5

to 0.05.

To address this issue we sought to introduce small asymmetries into the ESD design

before realising that a more elegant solution was already at hand. Simply by operat-

ing with a single ESD quadrant the ESD-mechanical mode coupling may be enhanced

18This simply amounts to evaluating (5.68) numerically.
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markedly. For the mode of fig. 5.20 b is increased from 4.3× 10−5 to 0.05. Larger over-

laps allow effective damping to be realised with smaller applied forces and consequently

less noise.19

In fig. 5.21 we compare the theoretical overlaps obtained using a lone quadrant to those

obtained from the entire ESD pattern. Valuable improvements are available for most

modes with the median value of b growing from 0.003 to 0.013.
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Figure 5.21: Normalised force coupling bm between the ESD and test mass eigenmodes
considering both the full ESD pattern (circles) and a single quadrant (squares). Larger
overlaps and thus smaller damping forces are observed when considering a single quad-
rant.

With the coupling between the ESD and each mechanical mode well defined, we com-

pute the force required to successfully mitigate any PI and measure this value against

available capacity in the following section.

19It is nevertheless still desirable to include small asymmetries in the ESD pattern. Their negligible
impact on the total available force is more than compensated for by the prospect of damping an
otherwise evasive mode.
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5.2.9 Required damping forces

In advance of calculating any force using our numerical data we must select an appro-

priate value for Reff,m, the residual parametric gain which we deem tolerable. Recalling

that the criterion for instability is R > 1, we select Reff,m = 0.1. The consequences of

this choice are revealed in fig. 5.22 where we present the fraction of the available ESD

force required to damp each mode using all four quadrants. We assume ∆V = 800 V.

0 1 2 3 4 5 6 7 8 9 10
x 10

4

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Mode frequency [Hz]

F
ra

ct
io

na
l u

til
is

at
io

n 
of

 E
S

D

Fmax = 186 µ N

Figure 5.22: Fraction of total ESD force from all four quadrants required to reduce the
parametric gain to 0.1. All modes are successfully damped with a maximum utilisation
of 4.6%. The maximum force is evaluated for ∆V = 800 V.

In all cases we see that successful damping is theoretically achievable using just a few

percent of the available force. In fig. 5.23 we show how these results are modified when

one takes advantage of the improved coupling (see fig. 5.21) available in single quadrant

operation.

Whilst median values of the damping forces are comparable in both cases the maximum

force required in the single quadrant case is reduced by more than an order of magni-

tude. This leads us to recommend single quadrant operation as the baseline mode for
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Figure 5.23: Damping forces required when using a just a single ESD quadrant. Maxi-
mum utilisation is 0.3%. The force required to damp the five most troublesome modes
is indicated. Again, the maximum force is evaluated for an assumed ∆V of 800 V.

our scheme.

This investigation has shown that, theoretically, all potential parametric instabilities in

a second generation dual recycled interferometer can be efficiently damped using elec-

trostatic actuators intended for test mass alignment and control. In order to strengthen

this argument and validate our modelling effort experimental confirmation is necessary.

Such confirmation is presented below in §5.3.

5.2.10 Future work

With well-developed tools available there exist a number of investigations which, al-

though beyond the remit of this thesis, are worthy of attention.

It has been shown that all potentially unstable modes may be damped using just a

single quadrant of the ESD. We expect that further gains could be realised by recruiting
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several quadrants simultaneously with mode dependent phasing. For example, the

mode depicted in figure 5.20 would benefit from the use of all four quadrants with

adjacent quadrants driven out of phase. Such operation promises to reduce the required

damping force by as much as a factor of four.

Experience with GEO’s photon calibrator has shown that we can no longer consider

the test masses as rigid bodies [232, 233]. It may therefore be important to consider the

implications of test mass deformation caused by the ESD forces for both PI damping

and detector calibration.

Not all high power interferometers possess electrostatic drives, similar modelling tech-

niques could be applied to determine whether coil-magnet actuators are able to usefully

damp test mass eigenmodes. This idea could be tested in Enhanced LIGO using ther-

mally excited test mass modes near the first free spectral range.

5.3 Experiment

In order to verify the predictions of our numerical model an experimental investigation

was carried out, we describe this work below. Beginning in §5.3.1 we introduce the

experimental setup before moving on to discuss the measurements of α (§5.3.2) and bm
(§5.3.3). At each stage we compare our results with model output.

5.3.1 Apparatus

All measurements were conducted at LIGO’s Advanced Systems Test Facility (LASTI)

at MIT. This laboratory is a testbed for hardware destined for use at the LIGO sites.

Hence much of this work was carried out using prototype AdvLIGO equipment. In

the following sections we describe the experimental setup including optical system

and digital controls. In §5.3.1.3 we describe how the ESD drive is linearised before

presenting the overall displacement sensitivity.



5.3 Experiment 242

5.3.1.1 Seismic isolation

In Enhanced LIGO the dominant noise source below ∼40 Hz is residual seismic mo-

tion. AdvLIGO hopes to have a detection band extending down to ∼10 Hz. In order

to achieve this the current single pendulum suspensions [203] and four layer passive

isolation stacks [234] shall be replaced with three new systems operating in series, with

each system providing isolation for the following stage (see fig. 5.24) [235]. Below

we describe each system in sufficient detail for our purposes, providing appropriate

references for the curious reader.

The first stage of attenuation is a Hydraulic External Pre-Isolator (HEPI) system which

resides outside the vacuum envelope [236]. HEPI uses a combination of position sensors,

geophones and hydraulic actuators to provide low frequency (. 5 Hz) alignment and

isolation in six degrees of freedom. HEPI has a large actuation range of ±1 mm and is

used to correct for tides, seasonal temperature variations and to relieve other actuators.

Mounted atop HEPI inside the vacuum chamber is the Internal Seismic Isolation (ISI)

system [237, 238]. The ISI is an active isolation platform suspended using stiff cantilever

springs and short pendulum links. The ISI is also appropriately instrumented (low

frequency seismometers, high frequency geophones, capacitive position sensors and

electromagnetic actuators) to provide sensing and control in all six degrees of freedom.

Isolation ranges from a factor of ∼100 at 1 Hz to ∼1000 at 10 Hz. Fig. 5.25 shows a

computer rendering of the two stage BSC ISI.

LIGO employs two different sizes of vacuum tank. Horizontal Access Modules (HAMs)

are used for the input mode cleaner optics, recycling cavity mirrors and OMC whereas

larger Beam Splitter Chambers (BSCs) are needed for the test masses and beam split-

ter. Variations of the HEPI and ISI systems have been developed for each type of

chamber.

The interferometer optics are suspended from the ISI tables using coupled pendulum

systems derived from those developed by the GEO collaboration [239]. The test masses
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Figure 5.24: Top: Illustration showing the three layers of seismic isolation present in an
AdvLIGO BSC chamber. A - The HEPI structure is shown in light blue with sensor-
actuators in red/white/magenta. B - Above HEPI sits the ISI shown in dark blue
(stage 0), cyan (stage 1) and orange (stage 2). C - Finally the quadruple pendulum
(partially obscured) is fixed to stage 2 of the ISI. Bottom: Displacement noise after
each stage of isolation at LASTI.
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Figure 5.25: Rendering of redesigned BSC ISI. The ISI is rigidly fixed to HEPI and
provides two stages of active isolation for the chamber’s optical table.

require quadruple pendulums whilst all other optics employ simpler triple suspensions.

Fig. 5.26 shows an AdvLIGO quadruple pendulum [240]. The upper stages are sus-

pended from maraging steel cantilever blade springs to provide vertical isolation. These

stages use metal suspension wire whilst the final fourth stage adopts fused silica fibres

in the interests of thermal noise [241, 242]. To avoid seismic shorts the actuators for

each pendulum stage are suspended immediately behind the appropriate mass on a

reaction chain at a nominal separation of 5 mm. Global control forces for the first

three stages are provided by coil-magnet pairs whilst the final stage is endowed with

an ESD.

Less sensitive optics are suspended from various incarnations of triple pendulum (see

fig. 5.27) [243]. These suspensions adopt the same design principles as the quadruple

pendulum but relaxed requirements remove the need for any reaction chain, silica fibres

or electrostatic actuator. For a comprehensive discussion of the small triple pendulum

and expected performance see [244].
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Figure 5.26: Engineering rendering of AdvLIGO quadruple suspension system. The
upper pendulum stages will continue to use coil-magnet actuators with only the critical
final stage meriting an ESD. The ESD pattern is deposited onto the surface of the
reaction mass (highlighted in yellow). Figure 5.11 shows a prototype reaction mass in
more detail.

Our experimental cavity is formed between a BSC and a HAM, with the HAM housing

the input test mass. Both chambers have the appropriate HEPI installed whilst only

the BSC has an active ISI. The optical table in the HAM is supported by a passive

initial LIGO stack (see fig. 5.28). The HAM houses a small triple suspension with

a final mass fashioned from metal. This dummy mass approximates the mechanical

properties of a 150 mm diameter x 75 mm thick fused silica cylinder but allows one

to mount standard 25.4 mm diameter optics. The BSC is home to the AdvLIGO

noise prototype quad. The reaction mass of the quad is that shown in figure 5.11 and
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Figure 5.27: Left: HAM small triple suspension designed for 150 mm diameter optics.
This design is appropriate for the input mode cleaner mirrors and the small recycling
cavity optics. Right: HAM large triple suspension for 265 mm diameter optics. This
design shall be used for the large recycling cavity mirrors. There exists a third triple
suspension (not shown) for beam splitters and folding mirrors.

modelled in section 5.2.2.

5.3.1.2 Optics and control

Experimental measurements were conducted on the 16 m Fabry-Perot resonator formed

between the triple and quadruple suspensions. Henceforth this cavity shall be referred

to as the arm to clearly distinguish it from the reference cavity used for frequency

stabilisation. The parameters of both cavities are given in table 5.4.

The cavity was driven by a sub-W Nd:YAG NPRO (Lightwave/JSDU 126 [245]).

Fig. 5.29 shows the input bench where the laser light was imprinted with phase side-
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Figure 5.28: An open HAM chamber reveals the optical table (A) supported by mass
spring stacks (B). Inset: Springs in more detail.

Table 5.4: Optical properties of experimental apparatus.

Quantity Value

Arm cavity

Length 16 m
Input mirror power transmission 0.01
End mirror power transmission 50 ppm
Input mirror radius of curvature 20 m
End mirror radius of curvature ∞
Finesse 623
Cavity pole 7.516 kHz
Input power 10 mW
Unity gain 100 Hz

Reference cavity
Length 20 cm
Mirror radius of curvature♭ 50 cm
Finesse 5300

♭ Cavity is nominally symmetric
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bands20 before being attenuated and split into two paths. The majority of the light (90

%) was sent through a mode matching telescope to the arm cavity whilst the remainder

was directed toward our reference cavity enclosure (fig. 5.30). The reference cavity is

of pseudo monolithic fused silica construction and is suspended from two wire loops

inside an anechoic chamber.

Figure 5.29: Input optics bench. Red - arm cavity injection beam; Orange - reference
cavity input; Cyan - reflected beam selected by polarising beam splitter and directed
toward RF photodiode.

The laser was locked to the reference cavity using standard PDH reflection locking

[92] with the dc light transmitted through the cavity used to trigger control actuators.

A blended feedback loop was implemented with low frequency signals being sent to

the laser temperature controller whilst high frequency signals were routed to the PZT

mounted atop the laser crystal. The bandwidth of this loop was ∼12 kHz with a

20A lithium niobate crystal doped with magnesium oxide (to prevent optical damage) was driven
via a resonant tank circuit. The modulation depth was chosen to be 0.3.
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B
A

Figure 5.30: Reference cavity enclosure. Orange - Input beam; Cyan - reflected beam.
Diode A is the DC transmitted diode used to trigger control signals. Diode B is the
RF diode in reflection used for generation of the error signal. To allow for in-vacuo
operation the reference cavity has two ports. These orifices have been filled with visco-
elastic damping material to reduce acoustic couplings.

crossover frequency around 1 Hz. The reference cavity loop was entirely analogue to

avoid the bandwidth restriction of a digital system.

The arm cavity length was controlled to match the frequency of the pre-stabilised laser

light, again using PDH locking. Use was made of a digital control system to facilitate

rapid commissioning and allow for easy extension to more complicated control archi-

tectures in the future. The digital system also allowed for more complex triggering and

linearisation of the error signal by the dc transmitted light. Arm cavity control signals

were applied to the coil-magnet actuators on the final stage of the triple pendulum.

The unity gain frequency was set to 100 Hz. Fig. 5.31 shows a model of the open loop

gain, the components of which are outlined in table 5.5
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Table 5.5: Components of arm cavity locking loop.

Quantity Frequency [Hz] Description

Pendulum 0.65 Complex pole (Q=3)
Cavity pole 7516 Simple pole
Anti-alias 7500 3rd order Butterworth
Anti-image 7500 3rd order, 0.5 dB ripple Chebyshev
Sampling delay — One half sample
Processing delay — Two samples
Boost 1 0.1;5 Simple pole-zero pair
Boost 2 0.1;5 Simple pole-zero pair
Control filter 1,800;20 Simple zero at 1 Hz, complex zero at 800 Hz

(Q=0.6); complex pole at 20 Hz (Q=0.6)
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Figure 5.31: Model of arm cavity open loop gain. Measured data is also plotted near
unity gain.



5.3 Experiment 251

LASTI’s digital control system is also designed to mimic that which will eventually be

used in AdvLIGO. The key properties of the system are described in table 5.6. Each

interferometer subsystem (e.g. HEPI, ISI or the suspensions) has a dedicated front-

end computer running realtime code. Experimental Physics and Industrial Control

System (EPICS) Motif Editor and Display Manager (MEDM) [246] provides a user

interface allowing one to interact with the realtime system for commissioning work.

Well developed tools are available allowing one to inject arbitrary waveforms, view,

acquire and process data in real time.

Table 5.6: Optical parameters of experiment.

Quantity Description

Sampling frequency 16384 Hz
Resolution 16-bit
DAC/ADC range ± 10 V
Anti-alias fc=7.5 kHz 3rd order Butterworth
Anti-image fc=7.5 kHz 3rd order, 0.5 dB ripple, Chebyshev

5.3.1.3 How we drive the ESD

Two features of the ESD which hinder rapid commissioning are its non-linear actuation

and uniformly attractive nature. We have resolved these issues by incorporating a

simple linearisation algorithm into our digital control system. The derivation of this

code is discussed below with digital quantities represented by sans serif fonts.

In standard operation, signals from the digital control system are passed through a

Digital to Analogue Converter (DAC) to a low noise, wide bandwidth voltage amplifier

known as the ESD driver. The ESD driver used in this work was an early prototype

largely based on the GEO design [247]. The ESD driver provides 4 identical channels

and a fifth of increased gain for the bias electrode. The channels are DC coupled but

are designed with the possibility of an AC bias in mind [223]. Each channel has a

differential receiver (LT 1125) to accept low voltage signals from the DAC followed by

a high voltage stage (APEX PA94) with ±300 V symmetrical supplies. The gain of

the four control channels was 40; the bias channel had a gain of 80. The frequency
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response of both stages was uniform to ∼20 kHz.

In the absence of any linearisation, input signals translate directly into voltages applied

to ESD quadrants. Our code instead treats inputs as a desired force (in arbitrary units)

and calculates the appropriate control signals which must be sent to achieve this force.

The standard force output is simply F = k∆V
2 = k(Vsig − Vbias)

2, where k is a positive

constant. Assuming |Vsig| ≤ |Vbias|

Fmin = 0 for Vsig = Vbias, (5.55)

and Fmax = 4kV2
bias for Vsig = −Vbias. (5.56)

In order to permit bipolar operation we desire that our eventual force have form

F = k(Vsig − Vbias)
2 − Foffset. (5.57)

Most useful operation is achieved when Foffset is equal to half of the maximum force

Foffset =
1

2
Fmax = 2kV2

bias. (5.58)

With this choice solving (5.57) for Vsig gives

Vsig = Vbias ±
√

2V2
bias +

F

k
(5.59)

where due to our assumption that |Vsig| ≤ |Vbias| we must take the plus sign for Vbias < 0

and the negative for Vbias > 0.

In our code we take

k = − 1

2Vbias

(5.60)

to ensure that both F and Vsig have range ±Vbias (i.e. within our DAC range). Thus
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we arrive at our final result

Vsig = Vbias

(

1±
√
2
√

1− F/Vbias

)

for Vbias ≶ 0. (5.61)

Figure 5.32 plots Vsig as a function of requested force for one particular choice of Vbias.
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Figure 5.32: Illustration of linearisation code in action. The requested force and the
signal which must be sent to the ESD to realise it are denoted by F and Vsig respectively.
Note that linearisation only occurs for |F| < |Vbias|.

Experimental measurements have shown the linearisation method described above to

be effective. In Fig. 5.33 we demonstrate how the second harmonic of a sinusoidal drive

is suppressed by around a factor of 5. Better suppression is desirable and it is expected

that further work shall be undertaken in this area.

5.3.1.4 Sensitivity

Figure 5.34 shows typical displacement sensitivity of our apparatus. Given that we
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Figure 5.33: Experimental data showing the linearisation of a monochromatic ESD
signal in the cavity length error signal REFL I. Note how linearisation suppresses the
second harmonic of the drive.
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Figure 5.34: Amplitude spectral density of arm cavity displacement sensitivity.
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operate with a single cavity, our noise floor is dominated by laser frequency noise. In

order to reduce this effect a small reference cavity was added to our system (fig. 5.30).

The results of stabilising the laser in this fashion are shown in fig. 5.35. Even after

additional damping efforts acoustic couplings were still strong in the 10-100 Hz decade

(see figure 5.36). Preparations have been made and the reference cavity will soon be

placed under vacuum to mitigate this coupling.
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Figure 5.35: Reduction in frequency noise seen by arm cavity after stabilising laser to
reference cavity. Calibration lines at 50 and 100 Hz.

Achieving optimum sensitivity and the development of an exhaustive noise budget

for our apparatus was neither a goal of nor a prerequisite for our investigations into

PIs. Our noise floor was only a hindrance in locating test mass mechanical modes.

In the frequency range of interest our sensitivity was 1.5 − 2 × 10−14 m/
√
Hz. This

performance did not allow the observation of thermally excited modes. However, guided

by FEM results the modes were easily found by other means (see §5.3.3.2). With ample

sensitivity for our purposes we were able to accurately measure α and investigate our

theoretically predicted ESD-mechanical mode couplings bm.
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Figure 5.36: Coherence between microphone placed in reference cavity enclosure and
cavity error signal.

5.3.2 α measurement

The construction of suitable apparatus allowed us to begin verifying the predictions

of our model. The most transparent test was chosen for the first investigation – an

experimental measurement of α, the ESD force coupling coefficient.

With the system globally controlled as described previously the end mirror was driven

longitudinally by applying a sinusoidal excitation to all four quadrants of the ESD.

The resulting mirror motion was recorded in the cavity error signal. Knowing the

excitation waveform applied to the ESD driver and the mechanical response of the

system, a calculation of the applied force allows α to be found.

For excitation frequencies above the highest pendulum resonance (∼3.5 Hz) and below

the first internal mode of the test mass (∼6 kHz) we may write the peak-to-peak ESD

force as

Fpp = mω2
excxpp, (5.62)
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where m is the total mass of the test mass, ωexc is our excitation frequency in rads−1

and xpp is the peak-to-peak test mass displacement. Having characterised the ap-

posite electronics, the peak-to-peak differential voltage ∆Vpp applied across the ESD

electrodes is easily found for known excitation waveforms. Thus from (5.30) we have

α =
Fpp

∆V 2
pp

. (5.63)

Measurements of the test mass response xpp were made as a function of excitation

amplitude and frequency over the 10-100 Hz band. Subsequent calculations revealed

α to have a mean value of 2.95 ± 0.08 × 10−10 N/V2, in excellent agreement with the

predicted value of 2.91× 10−10 N/V2. The most significant contributions to our error

budget came from uncertainties in cavity displacement measurements and PDH signal

calibration. Both quantities were assigned a relative uncertainty of 5%. Fig. 5.37 shows

typical data.
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Figure 5.37: Typical ESD actuation coefficient measurement. Solid line indicates mean
value of 2.95 × 10−10 N/V2; dashed line shows theoretically predicted value of 2.91 ×
10−10 N/V2.
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This experimental confirmation of our model’s predictions encouraged us to proceed

with more challenging work. In the next section we attend to the coupling between

the ESD and the eigenmodes of the test mass.

5.3.3 Overlap measurement

Given the limitations of our setup, namely low input power and optical gain, there

was little hope of observing spontaneously excited PIs. Further, the characteristics of

our system did not allow thermally excited modes to penetrate the instrument noise.

Hence the scope for demonstrating our ability to damp internal modes of the test mass

was limited to those modes which we could ourselves excite. Given this somewhat

unsatisfactory prospect we adopted a different approach. We sought to demonstrate

that all modes could successfully be damped by showing that the principal unknown in

our expression for the required damping force was accurately predicted by our model.

We would measure bm.

5.3.3.1 Theory

In order to experimentally measure these coupling coefficients we appealed to simple

conservation of energy. When a test mass eigenmode is excited into a steady-state

oscillation we know that we must have balance between energy applied to the system

and energy dissipated from the system.

Modelling the system as an oscillator with angular resonant frequency ω0

Q = ω0
Estored

Ploss

, (5.64)

Estored =
1

2
kA2 =

1

2
ω2
0µA

2, (5.65)

∴ Ploss =
1
2
ω3
0µA

2

Q
, (5.66)

where µ is the modal mass and A is the modal amplitude.
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The input power required to maintain an oscillation of amplitude A at resonance is

given by [248]

Pinput(ω0) =
1

2
ω0AFapp, (5.67)

where Fapp is the fraction of the ESD force which is effectively coupled into the

mechanical mode. We define our ESD-mechanical mode force coupling bm through

Fapp,m = bmFESD,m. Thus at equilibrium we have for each mode

Ploss = Pinput,

i.e.
1
2
ω3
0,mµmA

2
m

Qm

=
1

2
ω0,mAmFESD,mbm,

whence bm =
ω2
0,mµmAm

QmFESD,m

. (5.68)

The unknown parameters in this expression FESD,m, Am and Qm are treated in turn

below.

The amplitude of FESD,m is calculated as21

FESD,m =
1

2
α

[

Vexc,m − Vbias,m

]2

, (5.69)

where Vexc is the excitation voltage applied to the control electrodes and Vbias is the

constant voltage applied to the bias electrode. The modal amplitude Am is determined

from the cavity error signal via

Am =
xm
cm
, (5.70)

where xm is the measured test mass displacement and cm is a geometric overlap factor

which accounts for the fraction of mechanical mode amplitude sensed by the cavity. For

example, if the cavity beam is incident on the mirror near a node, cm will be smaller

than if the beam were incident near an anti-node. This overlap is calculated as

cm =

∣
∣
∣
∣

x

S

I00(~um · ẑ) dS
∣
∣
∣
∣
. (5.71)

21We gain a factor of 1/2 since we are no longer considering peak-to-peak values.
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~um has the same normalisation as before (see (5.40)) and I00, the intensity profile of

the fundamental cavity mode, is normalised by

x

∞

I00 dS = 1. (5.72)

The theoretical expression for bm is given by (5.39). In what follows we describe the

measurements leading to an experimental estimate of bm via (5.68) above. In §5.3.3.4
we compare the two sets of values.

5.3.3.2 Feedback loop

An experimental measurement of bm requires that we are able to locate, excite and

measure the losses of each test mass eigenmode. Unable to use our digital control

system for work at mechanical mode frequencies (fsample = 16384 Hz) simple analogue

electronics were constructed.22

As discussed previously, thermally excited modes were not visible above instrument

noise. In order to locate and study these mechanical modes they first had to be excited.

Modes were initially found by applying analogue excitations to the ESD driver using

a signal generator. The spectrum of the demodulated cavity error signal REFL I was

observed whilst the the frequency of the injected signal was slowly swept (0.1 Hzs−1).

FEM predictions provided invaluable guidance in the choice of which band to study and

several modes were quickly found. Fig. 5.38 shows the modes which were selected for

our final analysis. Their predicted and observed frequencies may be found in table 5.7.

To excite the observed modes into steady state oscillation and allow easy calculation of

losses via ringdown measurements, a rudimentary servo loop was constructed (fig. 5.39).

22The digital system can in fact be used to excite test mass modes beyond the Nyquist frequency by
utilising the nonlinearity of the ESD. Driving the first sub harmonic of the mode with no linearisation
creates sufficient signal at the internal mode frequency to ring up high Q modes. However this method
was rejected in favour of an all analogue approach.
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Figure 5.38: Modelled face displacements, ~um · ẑ, of the experimentally studied test
mass modes. Asymmetry in the 13 kHz mode is due to the wedge of the test mass.

The demodulated arm cavity error signal REFL I was tapped prior to the Analogue

to Digital Converter (ADC) and bandpass filtered before being amplified and sent to

the ESD driver. The bandpass was constructed using a programmable filter with two

distinct stages – an 8-pole, 6-zero low pass elliptic filter23 and an equivalent 8-zero,

6-pole high pass filter [249]. This bandpass served to reduce noise and limit gain to a

narrow band around our acoustic mode frequency. Moreover, by finely adjusting the

corner frequencies of the filter we were able to tune the loop phase.

The loop was initiated by a small excitation applied at the (now known) modal fre-

quencies. Once a signal to noise & 5 was achieved the excitation was removed and

23115 dB/decade roll off, 0.1 dB passband ripple and 80 dB stop band attenuation.
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Figure 5.39: Representation of the servo loop used to excited test mass eigenmodes.
Excitations were initiated using the signal generator before closing the feedback loop.
The upper left loop is the standard arm cavity control scheme feeding back to coil
magnet actuators on the final stage of the triple pendulum. REFL I is the in phase
demodulated cavity error signal.

the loop closed. Excitations were made with only a single quadrant of the ESD as

our modelling predicts that all potentially unstable modes may be effectively damped

in this way. The feedback loop remained closed until the system reached equilibrium,

typically with S/N≃ 100. At this point the modal amplitude and ESD drive signal

were recorded.

5.3.3.3 Q measurements

The losses associated with each test mass eigenmode were quantified by observing the

internal mode oscillations decay in the demodulated cavity error signal REFL I. With

the test mass in an excited state, data capture was initiated and the feedback loop

broken, removing any excitation. Modal amplitudes subsequently underwent exponen-

tial decay. The ringdown was captured using bespoke LabView continuously buffered

acquisition code. Sample rate was varied as a function of Q and modal frequency to

produce manageable data sets whilst still capturing the character of the process.
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The recorded data was post-processed in MatLab in order to extract the Q value.

Spurious data (e.g. that data recorded whilst excitations were present) was culled before

the application of a resonant filter at the internal mode frequency.24 The envelope of

the decay was then extracted by squaring and low pass filtering25 before the absolute

value and square root were taken.26 The rms noise level of the raw data was found and

any envelope data with magnitude smaller than 1/3 of this value were removed from

the final analysis.

The amplitude of the test mass oscillation decays exponentially

A(t) = A0e
− t

τ , (5.73)

with time constant

τ =
Q

πf0
. (5.74)

A standard least squares fit of the natural logarithm of the envelope was performed.

The gradient of this fit gives −1/τ and thus Q. In finding Q the measured frequency

was used for f0 since the detuning due to losses is small for large Qs viz

f = f0

(

1− 1

2Q2

)1/2

≃ f0

(

1− 1

4Q2

)

for Q≫ 1. (5.75)

A typical ringdown measurement is shown in fig. 5.40. A complete list of measured Q

values is given in table 5.7 along with predicted and observed mode frequencies.

Table 5.7: Comparison of mode frequencies predicted by FEM and those measured
experimentally. Measured test mass Q values are also listed.

f measured f predicted Q
kHz kHz

8.149 8.1439 412,170 ± 1003
10.4115 10.397 604,158 ± 4728
12.9705 12.959 508,666 ± 2473
15.0405 15.0439 409,504 ± 4139

24Q = 100, G = 1.
25fp = 30, 60;Qp = 0.7, 2 with a further notch at twice the mode frequency fz = 2f0, Qz = 100.
26Envelope extraction via Hilbert transforms was also tested and found to be equivalent.
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Figure 5.40: Typical ringdown measurement. Left: Raw data, filtered data and ex-
tracted envelope. REFL I is the 0◦ demodulated cavity error signal.
Right: Q values are found from standard least-squares fits.

Observe that measured Q values are significantly lower than the value of 107 we assume

in our calculations. This illustrates the difficulties associated with preserving the high

Qs of 10 kg scale optics and hints that we are perhaps setting an upper limit for the

parametric gain. We speculate that the two main loss mechanisms at work may be

dissipation due to violin modes of the four lengths of wire suspending the mass [250]

and friction associated with wire stand-offs (see fig. 5.41) [215]. Note that these Qs

were measured with a metal wire suspension, AdvLIGO will adopt a quasi-monolithic

fused silica design [240].

5.3.3.4 Results

Before presenting measured values and comparing them to those predicted by our

numerical model we first discuss possible sources of uncertainty. In evaluating cm

(i.e. (5.71)) we make two assumptions: firstly that we know the shape of the excited

mode under study and secondly that the cavity optical mode is well centred on the

test mass.

The superb agreement between mode frequencies predicted by finite element modelling
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Figure 5.41: Test mass suspension wire stand off. We speculate that this item may
contribute excess loss leading to low experimentally measured Qs. Below the metal
standoff one can see fused silica ears to which a quasi-monolithic suspension was to be
attached.

and those observed experimentally (see table 5.7) leads us to assert that modal dis-

placements produced by FEM closely matched those of our experimental test mass.

The issue of beam centring on the test mass is not so easily dispatched. Compre-

hensive steps were taken to ensure that the cavity axis passed through the centre of

the mirrors.27 However perfect alignment can never be assumed. To further mitigate

any errors introduced by deviations from perfect centring we limited our analysis to

‘drumhead’ type modes with smoothly varying mode shapes near their centres. The

four modes remaining after this cut are shown in figure 5.38. In our final analysis we

assume a centring error of 3 cm. This results in variations in cm of up to 10%. These

effects are included in the error bars of fig. 5.42.

Comparing the overlaps calculated using measured data and those found theoretically

(fig. 5.42) agreement was found to be better than 20%. This is a strong endorsement of

our modelling work and prior conclusions as both mode shapes and ESD force density

were numerically obtained.

27Alignment with visible lasers, minimising evidence of angular excitations, CCD cameras observing
cavity mirrors etc.
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Figure 5.42: Force coupling between ESD and test mass eigenmodes. Ratio of exper-
imental to theoretical bm coefficients. The shallow downward trend observed in the
results suggests a small systematic effect which remains to be accounted for.

5.3.4 Future work

LASTI’s principal goal is to prototype systems for the LIGO sites. For our apparatus

this will entail the development of a hierarchical control scheme for the quadruple

pendulum. Once mature this work will be exported to LIGO’s sites to expedite detector

commissioning.

Since we operate with a single arm there is no common mode rejection of laser noise.

Stabilising the laser to a separate reference cavity is of some benefit but more suppres-

sion is desirable. Significant correlation was observed between acoustic noise in the

reference cavity enclosure and the arm cavity error signal. This leads us to propose

an adaptive noise cancellation experiment [251] using a horn driver to feed back to the

cavity enclosure. Such work would likely entail simple LMS adaptive filtering [252].

This investigation is more of a curiosity than a final solution as the reference cavity

will soon be placed under vacuum. If this is not sufficient a 16 m reference cavity in

parallel with the main arm cavity has been mooted.
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The measured test mass Q values demonstrate the difficulties in suspending large optics

without introducing loss. If Qs in AdvLIGO are this low28 parametric instabilities are

unlikely to be of concern. We speculated that damping introduced by violin modes of

the suspension wires was a principal loss mechanism. A thorough investigation of this

issue could prove fruitful.

5.4 In a real detector

5.4.1 Basic scheme

Fig. 5.43 demonstrates how one particular PI mitigation scheme based around the

ESDs might operate in a second generation interferometer, in this section we provide

explanatory details.

The presence of a fledgling parametric instability is detected at the anti-symmetric

port through the beating of the scattered HOM mode sideband with the main carrier

field on a suitably segmented detector.29 This optical interference generates a signal

at the mechanical mode frequency wm.

The photodiode signals are acquired by a fast ADC and processed by a dedicated front

end machine running in real time. This machine applies two resonant filters. The first

has a Q of ∼10,000 and is centred on the mechanical mode frequency. The purpose of

this stage is to limit feedback to the mode of interest and avoid introducing noise to

the detection band. A second low Q filter, Q≃10 say, is used to set the phase of our

loop via modest detunings from fm.

The correction signal is then distributed to the real time suspension controllers via

a reflective memory network [253]. This system has a bandwidth of approximately

30 MBs−1. The suspension controller will divide the correction appropriately between

28Remembering that our measurements were made with steel suspension wire.
29The HOM basis functions are orthogonal over a single infinite detector (see §3.2.1.1).
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Figure 5.43: How a parametric instability mitigation scheme might work in a second
generation interferometer.

the quadrants and relay them through a fast DAC to the ESD driver.

5.4.2 Operation

We envisage that this scheme might be applied as follows. With the interferometer

initially locked in a stable state, attempts are made to increase the power. A growing
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PI is detected and the power is subsequently reduced to just below30 the PI threshold.

In this configuration the unstable mode is studied in its thermally excited state. Tuning

the loop phase by means of the low Q resonant filter section the mode is damped. The

effective Q of the mode is now reduced so that later increases in power will not lead to

instability.

Due to the frequency selective nature of our approach we expect any noise injected to

be negligible. Unless the test masses have an appropriately placed resonance they will

not exhibit any appreciable response to our damping forces. What little coupling there

is will be evident at frequencies above ∼10 kHz – well beyond the gravitational wave

detection band.

Sending a ∼100 kHz signal to the end stations does incur a delay of many cycles.

However this latency does not impact the operation of our system so long as we maintain

appropriate phase at the upper and lower unity gain crossings. This gain bandwidth

is primarily set by the Q of the mechanical mode rather than the shape of our loop.

It is not important to determine which optic excited any instability. The correction

signal can be applied equally to all test masses, the only optic to exhibit a response

must have an eigenmode at the observed frequency and is thus culpable. Alternatively

one can find the correct optic by applying feedback to each test mass in sequence.

If multiple distinct modes are simultaneously resonant one simply operates several

damping loops in parallel. The original photodetector signal will be passed through

a compound filter with one high Q resonance per mode. Each resonance will have an

associated low Q section to tune the loop phase appropriately. Again, all correction

signals can be applied to all optics.

30To, as far as possible, preserve the thermal state of the interferometer so that eigenfrequencies do
not shift appreciably.
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5.4.3 Possible modifications

HOMs created by scattering from an excited optic are evidenced in the photodetector

signal by a beat note at the test mass eigenfrequency. Thus we require an operational

bandwidth &100 kHz with commensurately high sampling rate. Such high rates are

superfluous for other interferometer subsystems allowing us the freedom to configure a

dedicated system for our scheme.

The simplest approach, described above, would be to augment any existing scheme

with fast ADCs and DACs, however a number of other options exist. For example, one

could take advantage of the speed and flexibility of FPGAs or alternatively mix signals

down to lower frequency before acquisition and reconstruct them at the point of use.31

The use of additional hardware to detect HOMs at the dark port of the interferometer

may be unnecessary. Finite photodiodes and realistic alignment errors should give suf-

ficient signal on currently available diodes, provided they are not tuned to a particular

modulation frequency. Also, if the interferometer is employing homodyne detection the

offset from the dark fringe may allow HOMs to be detected at dc using a CCD camera,

for example. Nevertheless the benefits of sensing using a quadrant diode which has

symmetry equal to that of the ESD should not be underestimated.

Finally we mention that the choice to detect HOMs at the dark port of the interferom-

eter is by no means definitive. It is equally possible to arrange diodes in transmission

from the arms or at any other of a number of ports.

31In theory this approach should require 10-15 oscillators at both the photodetector and all four
test masses to allow the entire 10-100 kHz mechanical mode frequency range to be captured by a 16
kHz ADC. In practice the number of simultaneously unstable modes is likely to be small so that the
entire system might operate with 10-15 oscillators total.
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5.5 Summary & Conclusion

In this chapter we have provided an introduction to the problem of PIs as applied to

interferometric gravitational wave detectors. We have introduced a new way of calcu-

lating the parametric gain which is easily understandable and extensible to complex

detector topologies. Several issues relating to currently used coil-magnet actuators were

raised before introducing the ESD as a solution to these problems and as a possible

means of mitigating PIs.

This electrostatic actuator was then modelled numerically to quantify the absolute

force available for lock acquisition and alignment. The distribution of this force was

also obtained and used to determine whether ESDs are capable of damping PIs. We

contend that all potentially dangerous modes can be effectively suppressed.

A suite of experimental measurements tasked with verifying the predictions of our

numerical work was then carried out. Experimental results were found to be in close

agreement with our expectations.

We have shown through theoretical, numerical and experimental work that the ESD is

a viable candidate for damping PIs. The close agreement between our predicted and

observed values for the ESD actuation coefficient and the force coupling between the

ESD and test mass eigenmodes demonstrates a sound understanding of the physical

principles at work and of each component of our apparatus, including the ESD itself.

If PIs really do begin to threaten the robust operation of second generation interferom-

eters there will likely be no panacea. It is probable that a combination of approaches

will be necessary, perhaps based around passive damping with an active scheme tar-

geted to particularly troublesome modes. The ESD entails zero (pecuniary) cost and

has shown itself to be effective in suppressing test mass Qs. Therefore the ESD is

capable of playing a major role in any such mitigation scheme.
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Planned upgrades of existing interferometric gravitational wave detectors aim to in-

crease strain sensitivity by an order of magnitude. The resulting second generation

instruments will present new experimental challenges and be limited by new noise

sources.

In the frequency band of peak sensitivity, the principal source of displacement noise is

expected to be mirror thermal noise. Theory indicates that the impact of this noise

scales in inverse proportion to the spot size of laser light incident upon the optics.

However, one cannot simply increase the width of the standard Gaussian mode as

diffraction losses quickly become unmanageable.

This problem led to the conception of a new non-Gaussian mode for use in long-baseline

interferometers. This mode, known as the mesa beam, is wider than the equivalent

Gaussian and has a predominantly flat-topped intensity profile. Theoretical analyses

argue that, by switching to mesa beams, measured thermal noise can be significantly

reduced without compromising interferometer control.

In order to study the properties of this mode experimentally for the first time, a

prototype cavity supporting mesa beams was constructed. Unlike Gaussian fields,

which are supported by standard spherical mirrors, mesa beam resonators are formed

from highly specialised substrates whose intricate features give the mesa beam its

unique shape. In building our prototype mirror, collaborators demonstrated that it was

possible to manufacture low loss optics with non-uniform figures. Future refinements

of the technique developed have proved so successful that it is now being used in the
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realisation of spherical mirrors for advanced detectors.

To be useful in a real detector, it is important that the mesa beam can be created effi-

ciently from a Gaussian input. Our work demonstrated that this is possible by coupling

Gaussian input light into our mesa beam resonator with high efficiency. Depending on

the eventual implementation of mesa beams, this coupling may also have important

consequences for the application of recycling techniques.

In commissioning our cavity it was also confirmed that standard Pound-Drever-Hall

reflection locking techniques are applicable to mesa beams. The measured discriminant

closely followed theoretical prediction and was successfully used in the longitudinal

control of our resonator. The widespread use of the PDH method in Gaussian beam

interferometry makes this achievement all the more significant.

The fundamental mesa eigenmode supported by our resonator was found to be con-

sistent with the best achievable, given measured mirror imperfections. These imper-

fections resulted from the manufacturing constraints imposed by the small size of our

optic, larger optics suitable for astrophysically significant interferometers should be far

easier to realise.

Mesa beam interferometers are predicted to be marginally more sensitive to angular

mirror motion than their Gaussian counterparts. Using our prototype resonator this

conjecture was tested. Recording the mesa beam intensity profile as a function of

mirror tilts, the experimental response was shown to be in excellent agreement with

prediction. Although this result confirmed that mesa beams are indeed more sensitive

to mirror tilts, it also illustrated that the level of pointing accuracy achieved in currently

operating detectors is sufficient for operation with mesa beams.

Following this positive result, the extension of differential wavefront sensing to mesa

beams was investigated. The resulting error signals were bipolar and linear about

resonance, suggesting closed loop control to be feasible. An unexplained systematic

error in the magnitude of the signals remains to be explored with current suspicion

falling on figure errors of the cavity mirrors.
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Our study of the mesa beam continued with numerical simulations of the effects optical

power absorbed in mirror coatings could have on mesa resonators. Using FFT routines

the steady state eigenmodes of thermally perturbed cavities were found. These fields

allowed losses and thermal noise to be calculated as a function of absorbed power.

The flat mesa beam retained its greater width under thermal loading whereas Gaus-

sian and concentric mesa beams became sharply peaked. The thermal noise of the

concentric and Gaussian modes thus increased as expected. In contrast, the measured

thermal noise associated with the flat mesa beam actually decreased. The optical losses

experienced by all modes grew with absorbed power. Both mesa beam configurations

were slightly less susceptible to increases in diffraction loss.

We conclude our review of results regarding mesa beams by outlining possible avenues

of future research for what remains an immature but greatly promising technology.

As a result of the lag between theoretical and experimental results, much of the work

regarding mesa beams to date has focused on the nearly flat cavity configuration. Due

to radiation pressure induced tilt instabilities it is important that concentric beams

perform equally well. We therefore advise that future examinations of non-Gaussian

modes concentrate on this geometry.

It has been shown that the behaviour of mesa beams meets with expectation in a single

Fabry-Perot interferometer. It is our recommendation that future efforts be directed

toward evaluation of this mode in dual-recycled Michelson configurations. Throughout

our work the accuracy of FFT based simulations has been consistently demonstrated.

Using these techniques to simulate mesa beams in a full interferometer will allow signal

extraction and subtle recycling effects to be investigated with realistically imperfect

optics. Results from this simulation work will likely inform the choice of subsequent

experimental endeavours.

In tandem with this effort, current methods of constructing non-spherical mirrors for

mesa beams should be refined and new methods sought. It is important to demon-

strate that large scale optics suitable for gravitational wave detectors can indeed be
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manufactured to the required specifications and the ability to realise small mirrors for

table-top mesa beam experiments would dramatically accelerate development work.

Whilst this proposed research is underway, care should be taken to monitor the progress

of other modes hoping to replace the fundamental Gaussian beam. Although the mesa

beam was the first to be experimentally studied, it may not prove the most practical

solution in a real interferometer.

Due to radiation pressure, there exists a nonlinear coupling between optical energy

stored in the interferometer’s arms and mechanical energy stored in the acoustic modes

of its test masses. Second generation interferometers will operate with increased circu-

lating power and lower loss test masses, increasing the strength of this coupling. Under

appropriate conditions, the test masses can become so excited that interferometer oper-

ation becomes impossible. This effect is known as parametric instability and has been

touted as one of the greatest experimental challenges facing advanced interferometers.

In the final part of this work we considered a proposal to mitigate parametric instabil-

ities using the electrostatic actuators designed to control the position and orientation

of the test masses. Through these actuators the test mass eigenmodes can be damped,

reducing parametric gain to a safe level.

This examination began with extensive finite element modelling. A modal analysis of

an Advanced LIGO style test mass was conducted to find its eigenmodes and their

resonant frequencies. Simulations were also performed to determine the maximum

force available from the electrostatic drive along with its spatial distribution. Using

this information, a simple model was developed to predict the force required to damp

each potentially dangerous acoustic mode to a safe level.

Including a reasonable margin, such force was found to be available for all modes.

Thus, parametric instabilities in advanced interferometers can, theoretically at least,

be eliminated without the introduction of any additional hardware.

In order to test these claims an experimental investigation was conducted using proto-
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type Advanced LIGO hardware, including a full size test mass and electrostatic actu-

ator. Since our apparatus operated at low power, it was not possible to demonstrate

damping of a spontaneously excited instability. However, available measurements re-

vealed that our model was successful in predicting the frequencies of the test mass

eigenmodes, the absolute strength of the electrostatic actuator and the coupling be-

tween the electrostatic drive and all observable test mass modes. These successes

bestow credibility upon our grander claims.

Future continuation of our work on parametric instabilities should seek to understand

whether acoustic modes of the test masses can be effectively damped using coil-magnet

actuators. Once modelled, this idea could be investigated experimentally using the

thermally excited modes observed in currently operating detectors.

Although methods of implementing our approach in an operational detector have been

sketched, further work is necessary to demonstrate that this scheme is truly practical.

It may be that simpler passive ideas, such as resistively shunted piezoelectric dampers,

are ultimately preferable.



Appendix A

Material parameters

As far as possible we use parameters which, at the time of writing, appear plausible

for future second generation interferometers. We acknowledge that these values are

dynamic and have thus presented sufficient detail above to allow any of our numerical

values to be re-calculated.
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Table A.1: The material parameters used in our calculations of thermal effects.

Parameter Symbol Value

Substrate

Radius a 0.17 m
Thickness h 0.2 m
Density ρ 2.2×103 kgm−3

Poisson’s ratio σ 0.17
Young’s modulus Y 7.2×1010 Nm−2

Loss angle Φ 5× 10−9

Linear thermal expansion
coefficient

αth 5.1×10−7 K−1

Thermal conductivity Kth 1.38 Wm−1K−1

Specific heat at constant
volume

Cv 1.64 ×106 JK−1m−3

Averaged
parameters in
SiO2/Ta2O5

coating

Poisson’s ratio σc 0.195
Young’s modulus Yc 1.003×1011 Nm−2

Loss angle Φc 2.167× 10−4

Linear thermal expansion
coefficient

αc 1.798×10−6 K−1

Thermal conductivity Kth,c 2.297 Wm−1K−1

Specific heat at constant
volume

Cv,c 1.832 ×106 JK−1m−3

Total coating thickness d 5.975×10−6 m.



Appendix B

ESD mask drawings

For ease of viewing each of these drawings is granted a full page.
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