LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A
Power supply	Digimess	BP3002	211259

3. Inspection

Workmanship Inspect the general workmanship standard and comment: $\boldsymbol{\checkmark}$

Board is slightly bowed.

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	

J5

PIN	SIC	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	\checkmark
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	
9	Im	on4N		21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11, 12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit Increase the voltages on the supplies to +/-3V. Determine that the supply polarities are correct on TP1 and TP2. If they are, increase input voltages to +/- 16.5v. Record the regulator output voltages, measured on a DVM with 4 or more

digits. Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.06V	\checkmark	1mV
+15v TP4	14.82V	\checkmark	1mV
-15v TP6	-14.96V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.27A
-16.5v	0.22A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37- way to 25-way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	\checkmark

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	27mV	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.6	-42.5dB	-39.5dB	\checkmark
Ch2	-40.6	-42.5dB	-39.5dB	\checkmark
Ch3	-40.6	-42.5dB	-39.5dB	\checkmark
Ch4	-40.6	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.2	-53dB	-50dB	\checkmark
Ch2	-51.2	-53dB	-50dB	\checkmark
Ch3	-51.3	-53dB	-50dB	\checkmark
Ch4	-51.2	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-29.1	-30dB	-27dB	\checkmark
Ch2	-28.9	-30dB	-27dB	\checkmark
Ch3	-29.2	-30dB	-27dB	\checkmark
Ch4	-29.0	-30dB	-27dB	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Мах	
Ch1	-19.4	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1 kHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	3.3V	0.6V
Ch2	3.3V	0.6V
Ch3	3.3V	0.6V
Ch4	3.3V	0.6V

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	0/p	Stable	0/p	Slaple		Slaple	υp	Slaple
-5v	-22V	\checkmark	-22V	\checkmark	-22V	\checkmark	-22V	\checkmark
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark
0v	0V	\checkmark	0V	\checkmark	0V	\checkmark	0V	\checkmark
1v	4.5V	\checkmark	4.5V	\checkmark	4.5V	\checkmark	4.5V	\checkmark
5v	22V	\checkmark	22V	\checkmark	22V	\checkmark	22V	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with by a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A

3. Inspection

Workmanship Inspect the general workmanship standard and comment: $\boldsymbol{\sqrt{}}$

Board is bowed.

General alignment of SM components is not great.

Removed and replaced R11 on CH4 with the correct value of 3k3.

Removed and replaced R15 on CH4 with the correct value of 100k.

IC2 and IC8 on CH4 have been replaced and also IC8 on CH3.

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C- 16		\checkmark
9	PD4N	Photodiode D-	17	

J5

PIN	SIC	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	\checkmark
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	\checkmark
9	Im	on4N		21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11,12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit Increase the voltages on the supplies to +/-3V. Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the regulator output voltages, measured on a DVM with 4 or more digits.

Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.04V	\checkmark	1mV
+15v TP4	14.92V	\checkmark	1mV
-15v TP6	15.12V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37 way to 25 way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicat	OK?	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicat	OK?	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3		\checkmark	\checkmark
Ch4		\checkmark	

ACQUISITION RELAYS

Channel	Indicat	OK?	
	ON	OFF	
Ch1	\checkmark	\checkmark	
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	
Ch4	\checkmark	\checkmark	

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode.

With a 20 ohm dummy load on each channel, apply a 1v r.m.s input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5.

Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.198V	Pin 1 to Pin 2	2.196V	
2	2.197V	Pin 5 to Pin 6	2.196V	
3	2.198V	Pin 9 to Pin 10	2.196V	
4	2.197V	Pin 13 to Pin 14	2.196V	

8.1 Voltage Monitors

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.283V	Pin 3 to Pin 4	0.283V	\checkmark
2	0.282V	Pin 7 to Pin 8	0.281V	\checkmark
3	0.284V	Pin 11 to Pin 12	0.284V	\checkmark
4	0.285V	Pin 15 to Pin 16	0.284V	\checkmark

Unit......T_ACQ_P1.....Serial No Test Engineer....Xen.... Date......1/4/10.....

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
	mV	Min	Max	
Ch1	27.0	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	27.0	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	27.0	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	26.0	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.7	-42.5dB	-39.5dB	\checkmark
Ch2	-40.6	-42.5dB	-39.5dB	\checkmark
Ch3	-40.6	-42.5dB	-39.5dB	\checkmark
Ch4	-40.7	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.2	-53dB	-50dB	\checkmark
Ch2	-51.2	-53dB	-50dB	\checkmark
Ch3	-51.0	-53dB	-50dB	\checkmark
Ch4	-51.1	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-28.6	-30dB	-27dB	\checkmark
Ch2	-28.7	-30dB	-27dB	\checkmark
Ch3	-28.4	-30dB	-27dB	\checkmark
Ch4	-28.4	-30dB	-27dB	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.5	-21dB	-18dB	\checkmark
Ch2	-19.5	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.5	-21dB	-18dB	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.3	-21dB	-18dB	\checkmark
Ch2	-19.3	-21dB	-18dB	\checkmark
Ch3	-19.3	-21dB	-18dB	\checkmark
Ch4	-19.3	-21dB	-18dB	

Unit......T_ACQ_P1.....Serial No Test Engineer....Xen.... Date......5/10/10.....

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-34.8	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-34.8	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-34.8	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-34.9	-36.5dB / 20mV	-33.5dB / 16mV	
	-03	-30.300720111	-35.5007 10114	V

10Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-18.0	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.1	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.0	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.1	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simu	Simulation		
		Min	Max		
Ch1	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark	
Ch2	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark	
Ch3	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark	
Ch4	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark	

5 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1KHz. Use the 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Distortion Free?	Mode:
Ch1	3.3V	0.6V	
Ch2	3.3V	0.6V	
Ch3	3.3V	0.6V	
Ch4	3.3V	0.6V	

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	o/p	stable?	o/p	stable?		stable?	o/p	stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V		-22V	\checkmark
-1v	-4.5V		-4.5V	\checkmark	-4.5V		-4.5V	
0v	0V		0 V	\checkmark	0V		0V	
1v	4.5V		4.5V	\checkmark	4.5V		4.5V	
5v	22V		22V		22V		22V	

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 A

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with by a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A

3. Inspection

Workmanship Inspect the general workmanship standard and comment:

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNA	L	DESCRIPTION To J1 PIN		OK?	
1	PD1P		Photodiode	4+	1	\checkmark
2	PD2P		Photodiode I	B+	2	\checkmark
3	PD3P		Photodiode (C+	3	\checkmark
4	PD4P		Photodiode I	Photodiode D+ 4		\checkmark
	5		0V			
6	PD1N		Photodiode A-		14	\checkmark
7	PD2N		Photodiode B-		15	
8	PD3N		Photodiode C-		16	
9	PD4N		Photodiode I	D-	17	\checkmark

J5

PIN	SI	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	\checkmark
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Imon2N			19	\checkmark
8	Imon3N			20	\checkmark
9	Imon4N			21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11,12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1 + = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3 + = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the regulator output voltages, measured on a DVM with 4 or more digits.

Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.04V	\checkmark	1mV
+15v TP4	14.99V	\checkmark	1mV
-15v TP6	15.02V	\checkmark	5mV

All Outputs smooth DC, no oscillation? $\sqrt{}$

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.
7. Relay Operation

Note: 37 way to 25 way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4		\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4			\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.282V	Pin 3 to Pin 4	0.282V	\checkmark
2	0.284V	Pin 7 to Pin 8	0.284V	\checkmark
3	0.284V	Pin 11 to Pin 12	0.283V	\checkmark
4	0.284V	Pin 15 to Pin 16	0.283V	\checkmark

Unit......T_ACQ_P2.....Serial No Test Engineer....Xen.... Date......1/4/10.....

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
	mV	Min	Max	
Ch1	26.0	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	26.0	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	26.0	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	26.0	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.6	-42.5dB	-39.5dB	\checkmark
Ch2	-40.6	-42.5dB	-39.5dB	\checkmark
Ch3	-40.7	-42.5dB	-39.5dB	\checkmark
Ch4	-40.6	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.1	-53dB	-50dB	\checkmark
Ch2	-51.1	-53dB	-50dB	\checkmark
Ch3	-51.2	-53dB	-50dB	\checkmark
Ch4	-51.0	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-28.5	-30dB	-27dB	\checkmark
Ch2	-28.4	-30dB	-27dB	\checkmark
Ch3	-28.7	-30dB	-27dB	\checkmark
Ch4	-28.3	-30dB	-27dB	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.5	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.5	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.3	-21dB	-18dB	\checkmark
Ch2	-19.3	-21dB	-18dB	\checkmark
Ch3	-19.3	-21dB	-18dB	\checkmark
Ch4	-19.3	-21dB	-18dB	\checkmark

Unit......T_ACQ_P2.....Serial No Test Engineer....Xen.... Date......1/4/10.....

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

ail

10Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-18.0	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.0	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.1	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.1	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-4.9	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.8	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1KHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Distortion Free?	Mode:
Ch1	3.2V	0.6V	
Ch2	3.3V	0.6V	
Ch3	3.3V	0.6V	
Ch4	3.3V	0.6V	

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable?	Ch2 o/p	Ch2 stable?	Ch3 o/p	Ch3 stable?	Ch4 o/p	Ch4 stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V	\checkmark	-22V	\checkmark
-1v	-4.5V		4.5V	\checkmark	-4.5V	\checkmark	4.5V	
0v	0V		0V	\checkmark	0V	\checkmark	0V	
1v	4.5V		4.5V	\checkmark	4.5V	\checkmark	4.5V	\checkmark
5v	22V		22V	\checkmark	22V		22V	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 A

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with by a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A

3. Inspection

Workmanship Inspect the general workmanship standard and comment:

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	\checkmark

J5

PIN	SI	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	\checkmark
9	Im	on4N		21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	
11	V- (TP2)	-17v Supply	
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11,12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1 + = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3 + = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit

Increase the voltages on the supplies to $\pm/-3V$.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the regulator output voltages, measured on a DVM with 4 or more digits.

Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.07V	\checkmark	1mV
+15v TP4	14.96V	\checkmark	1mV
-15v TP6	-15.03V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37 way to 25 way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4			\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4		\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4			\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

Unit......T_ACQ_P3.....Serial No Test Engineer....Xen... Date.....1/4/10....

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
	mV	Min	Max	
Ch1	26.0	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	26.0	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	26.0	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	26.0	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.8	-42.5dB	-39.5dB	\checkmark
Ch2	-40.6	-42.5dB	-39.5dB	\checkmark
Ch3	-40.6	-42.5dB	-39.5dB	\checkmark
Ch4	-40.7	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.3	-53dB	-50dB	\checkmark
Ch2	-51.1	-53dB	-50dB	\checkmark
Ch3	-51.0	-53dB	-50dB	\checkmark
Ch4	-51.3	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-28.6	-30dB	-27dB	\checkmark
Ch2	-28.5	-30dB	-27dB	\checkmark
Ch3	-28.5	-30dB	-27dB	\checkmark
Ch4	-28.9	-30dB	-27dB	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.5	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.5	-21dB	-18dB	\checkmark
Ch4	-19.5	-21dB	-18dB	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.3	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.3	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

Unit......T_ACQ_P3.....Serial No Test Engineer....Xen.... Date......1/4/10....

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

1Hz					
	Output	Simu	Simulation		
		Min	Max		
Ch1	-34.8	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark	
Ch2	-34.9	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark	
Ch3	-34.8	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark	
Ch4	-34.9	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark	

10Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-18.0	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.1	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.0	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.1	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.8	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1KHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Distortion Free?	Mode:
Ch1	3.3V	0.6V	
Ch2	3.3V	0.6V	
Ch3	3.3V	0.6V	
Ch4	3.3V	0.6V	

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	o/p	stable?	o/p	stable?		stable?	o/p	stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V		-22V	\checkmark
-1v	-4.5V		-4.5V	\checkmark	-4.5V		-4.5V	\checkmark
0v	0V		0V	\checkmark	0V		0V	\checkmark
1v	4.5V		4.5V	\checkmark	4.5V		4.5V	\checkmark
5v	22V		22V	\checkmark	22V		22V	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 A

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with by a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A

3. Inspection

Workmanship Inspect the general workmanship standard and comment:

Removed solder splashes on two mounting holes.

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNA	L	DESCRIPTION To J1 PIN		OK?	
1	PD1P		Photodiode	4+	1	\checkmark
2	PD2P		Photodiode	B+	2	\checkmark
3	PD3P		Photodiode	C+	3	\checkmark
4	PD4P		Photodiode	D+	4	\checkmark
	5		0V			
6	PD1N		Photodiode	A-	14	\checkmark
7	PD2N		Photodiode B-		15	\checkmark
8	PD3N		Photodiode C- 16		\checkmark	
9	PD4N		Photodiode	D-	17	\checkmark

J5

PIN	SI	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Imon2N			19	\checkmark
8	Imon3N			20	\checkmark
9	Imon4N		21		

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	
11	V- (TP2)	-17v Supply	
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11,12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1 + = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3 + = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit

Increase the voltages on the supplies to $\pm/-3V$.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the regulator output voltages, measured on a DVM with 4 or more digits.

Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.04V	\checkmark	1mV
+15v TP4	14.94V	\checkmark	1mV
-15v TP6	14.83V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37 way to 25 way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4		\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4			\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

Unit......T_ACQ_P4.....Serial No Test Engineer....Xen... Date.....1/4/10....

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
	mV	Min	Max	
Ch1	26.0	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	26.0	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	26.0	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	26.0	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.6	-42.5dB	-39.5dB	\checkmark
Ch2	-40.7	-42.5dB	-39.5dB	\checkmark
Ch3	-40.7	-42.5dB	-39.5dB	\checkmark
Ch4	-40.6	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.2	-53dB	-50dB	\checkmark
Ch2	-51.2	-53dB	-50dB	\checkmark
Ch3	-51.2	-53dB	-50dB	\checkmark
Ch4	-51.2	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-28.8	-30dB	-27dB	\checkmark
Ch2	-28.6	-30dB	-27dB	\checkmark
Ch3	-28.4	-30dB	-27dB	\checkmark
Ch4	-29.0	-30dB	-27dB	\checkmark

1 kHz

	Output	Sim	Pass/Fail	
	dB	Min	Max	
Ch1	-19.5	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.5	-21dB	-18dB	\checkmark

5 kHz

	Output	Sim	Pass/Fail	
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.3	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

Unit......T_ACQ_P4.....Serial No Test Engineer....Xen.... Date......1/4/10.....

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

ail

10Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-18.0	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.0	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.2	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.1	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-4.9	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1KHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Distortion Free?	Mode:
Ch1	3.3V	0.6V	
Ch2	3.3V	0.6V	
Ch3	3.3V	0.6V	
Ch4	3.3V	0.6V	

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	o/p	stable?	o/p	stable?		stable?	o/p	stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V		-22V	\checkmark
-1v	-4.5V		-4.5V	\checkmark	-4.5V		-4.5V	
0v	0V		0 V	\checkmark	0V		0V	
1v	4.5V		4.5V		4.5V		4.5V	
5v	22V		22V		22V		22V	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability
Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with by a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A

3. Inspection

Workmanship Inspect the general workmanship standard and comment:

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	
4	PD4P	Photodiode D+	4	
	5	0V		
6	PD1N	Photodiode A-	14	
7	PD2N	Photodiode B-	15	
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	\checkmark

J5

PIN	SI	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	\checkmark
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	\checkmark
9	Im	on4N		21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11,12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the regulator output voltages, measured on a DVM with 4 or more digits.

Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.04V	\checkmark	1mV
+15v TP4	14.94V	\checkmark	1mV
-15v TP6	-15.01V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37 way to 25 way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicat	OK?	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4		\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicat	OK?	
	ON	OFF	
Ch1			
Ch2			
Ch3	\checkmark	\checkmark	
Ch4			

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel. Switch in the filters and test the response using the signal generator. Measure the frequency response of each channel using the dynamic signal analyser.

0.1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	27mV	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.6	-42.5dB	-39.5dB	\checkmark
Ch2	-40.7	-42.5dB	-39.5dB	\checkmark
Ch3	-40.8	-42.5dB	-39.5dB	\checkmark
Ch4	-40.7	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.2	-53dB	-50dB	\checkmark
Ch2	-51.1	-53dB	-50dB	\checkmark
Ch3	-51.3	-53dB	-50dB	\checkmark
Ch4	-51.2	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-29	-30dB	-27dB	\checkmark
Ch2	-28.7	-30dB	-27dB	\checkmark
Ch3	-28.9	-30dB	-27dB	\checkmark
Ch4	-28.7	-30dB	-27dB	\checkmark

1 KHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.5	-21dB	-18dB	\checkmark
Ch2	-19.5	-21dB	-18dB	\checkmark
Ch3	-19.5	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 KHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filter off and Acquisition mode on for each channel. Connect a 20 ohm load resistor each channel. Test the response using the signal generator. With a 1v rms input signal between TP1 and TP2, measure the output across the load resistor.

1Hz

	Output	Simu	Simulation	
		Min	Max	
Ch1	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simu	llation	Pass/Fail
		Min	Max	
Ch1	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simu	Simulation	
		Min	Max	
Ch1	-5	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5	-6dB / 570mV	-4dB / 565mV	\checkmark

1 KHz

	Output	Simu	lation	Pass/Fail
		Min	Max	
Ch1	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 KHz

	Output	Sim	Simulation	
		Min	Max	
Ch1	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1KHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Distortion Free?	Mode:
Ch1	3.3V	0.6V	
Ch2	3.3V	0.6V	
Ch3	3.3V	0.6V	
Ch4	3.3V	0.6V	

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	o/p	stable?	o/p	stable?	_	stable?	o/p	stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V		-22V	
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark
0v	0V		0V	\checkmark	0V	\checkmark	0V	
1v	4.5V	\checkmark	4.5V	\checkmark	4.5V	\checkmark	4.5V	
5v	22V	\checkmark	22V	\checkmark	22V	\checkmark	22V	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with by a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A

3. Inspection

Workmanship Inspect the general workmanship standard and comment:

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIG	NAL	DESCRIPTI	ON	To J1 PIN	OK?
1	PD1	IP	Photodiode	Α +	1	\checkmark
2	PD2	<u>2</u> P	Photodiode	B+	2	\checkmark
3	PD3	3P	Photodiode	de C+ 3		\checkmark
4	PD4	1P	Photodiode	D+	4	\checkmark
	;	5	0V			
6	PD1	IN	Photodiode /	A-	14	\checkmark
7	PD2	2N	Photodiode B-		15	\checkmark
8	PD3	3N	Photodiode C- 16			
9	PD4	1N	Photodiode	D-	17	\checkmark

J5

PIN	SI	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	\checkmark
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	\checkmark
9	Im	on4N		21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11,12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the regulator output voltages, measured on a DVM with 4 or more digits.

Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.14V	\checkmark	1mV
+15v TP4	14.94V	\checkmark	1mV
-15v TP6	-14.98V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37 way to 25 way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4		\checkmark	

TEST RELAYS

Channel	Indicat	or	OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4		\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4			\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel. Switch in the filters and test the response using the signal generator. Measure the frequency response of each channel using the dynamic signal analyser.

0.1Hz

	Output	Simu	ulation	Pass/Fail
	dB	Min	Max	
Ch1	-27	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	-27	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	-27	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	-27	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.6	-42.5dB	-39.5dB	\checkmark
Ch2	-40.7	-42.5dB	-39.5dB	\checkmark
Ch3	-40.7	-42.5dB	-39.5dB	\checkmark
Ch4	-40.7	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51	-53dB	-50dB	\checkmark
Ch2	-51.2	-53dB	-50dB	\checkmark
Ch3	-51.2	-53dB	-50dB	\checkmark
Ch4	-51.2	-53dB	-50dB	\checkmark

100Hz

	Output		Simulation	Pass/Fail
	dB	Min	Max	
Ch1	-28.7	-30dB	-27dB	\checkmark
Ch2	-28.8	-30dB	-27dB	\checkmark
Ch3	-29	-30dB	-27dB	\checkmark
Ch4	-29	-30dB	-27dB	\checkmark

1 KHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.4	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 KHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filter off and Acquisition mode on for each channel. Connect a 20 ohm load resistor each channel. Test the response using the signal generator. With a 1v rms input signal between TP1 and TP2, measure the output across the load resistor.

1Hz

	Output	Simu	Simulation			
		Min	Max			
Ch1	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark		
Ch2	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark		
Ch3	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark		
Ch4	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark		

10Hz

	Output	Simu	Simulation	
		Min	Max	
Ch1	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simu	ulation	Pass/Fail
		Min	Max	
Ch1	-5	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5	-6dB / 570mV	-4dB / 565mV	\checkmark

1 KHz

	Output	Simu	Simulation	
		Min	Max	
Ch1	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 KHz

	Output	Sim	Simulation	
		Min	Max	
Ch1	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1KHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Distortion Free?	Mode:
Ch1	3.3V	0.6V	
Ch2	3.3V	0.6V	
Ch3	3.3V	0.6V	
Ch4	3.3V	0.6V	

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	o/p	stable?	o/p	stable?		stable?	o/p	stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V		-22V	\checkmark
-1v	-4.5V		-4.5V	\checkmark	-4.5V		-4.5V	\checkmark
0v	0V		0 V	\checkmark	0V		0V	\checkmark
1v	4.5V		4.5V	\checkmark	4.5V		4.5V	\checkmark
5v	22V		22V		22V		22V	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 A

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with by a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A

3. Inspection

Workmanship Inspect the general workmanship standard and comment:

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C- 16		
9	PD4N	Photodiode D-	17	

J5

PIN	SI	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	\checkmark
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	\checkmark
9	Im	on4N		21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	
11	V- (TP2)	-17v Supply	
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11,12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1 + = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3 + = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the regulator output voltages, measured on a DVM with 4 or more digits.

Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.02V	\checkmark	1mV
+15v TP4	14.98V	\checkmark	1mV
-15v TP6	-15.06V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37 way to 25 way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4		\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicat	OK?	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4			\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark
Unit...T_ACQ_P7....Serial No Test Engineer ...Simon Pyatt..... Date ...05/05/10.....

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel. Switch in the filters and test the response using the signal generator. Measure the frequency response of each channel using the dynamic signal analyser.

0.1Hz				
	Output	Sim	ulation	Pass/Fail
	dB	Min	Мах	
Ch1	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	27mV	-40dB/25mV	-36dB/28mV	
Ch3	27mV	-40dB/25mV	-36dB/28mV	
Ch4	27mV	-40dB/25mV	-36dB/28mV	

1Hz

	Output	S	Simulation	
	dB	Min	Max	
Ch1	-40.6	-42.5dB	-39.5dB	\checkmark
Ch2	-40.6	-42.5dB	-39.5dB	\checkmark
Ch3	-40.6	-42.5dB	-39.5dB	\checkmark
Ch4	-40.7	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.2	-53dB	-50dB	\checkmark
Ch2	-51.1	-53dB	-50dB	\checkmark
Ch3	-51.1	-53dB	-50dB	\checkmark
Ch4	-51.2	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-28.9	-30dB	-27dB	\checkmark
Ch2	-28.9	-30dB	-27dB	\checkmark
Ch3	-28.7	-30dB	-27dB	\checkmark
Ch4	-28.7	-30dB	-27dB	\checkmark

1 KHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.5	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 KHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.3	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

Unit...T_ACQ_P7....Serial No Test Engineer ...Simon Pyatt..... Date ...05/05/10.....

10. Frequency Response Test, Acquisition Mode: Switch the filter off and Acquisition mode on for each channel. Connect a 20 ohm load resistor each channel. Test the response using the signal generator. With a 1v rms input signal between TP1 and TP2, measure the output across the load resistor.

1Hz				
	Output	Simu	Ilation	Pass/Fail
		Min	Max	
Ch1	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	

10Hz

	Output	Simu	Simulation	
		Min	Max	
Ch1	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.3	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.3	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simu	Ilation	Pass/Fail
		Min	Max	
Ch1	-5	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-4.9	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5	-6dB / 570mV	-4dB / 565mV	\checkmark

1 KHz

	Output	Simu	Simulation		
		Min	Max		
Ch1	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark	
Ch2	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark	
Ch3	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark	
Ch4	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark	

5 KHz

	Output	Sim	Simulation	
		Min	Max	
Ch1	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

Unit...T_ACQ_P7....Serial No Test Engineer ...Simon Pyatt..... Date ...18/03/10....

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1KHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Distortion Free?	Mode:
Ch1	3.3V	0.6V	
Ch2	3.3V	0.6V	
Ch3	3.3V	0.6V	
Ch4	3.3V	0.6V	

Unit...T_ACQ_P7....Serial No Test Engineer ...Simon Pyatt..... Date ...18/03/10.....

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	o/p	stable?	o/p	stable?	_	stable?	o/p	stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V	\checkmark	-22V	
-1v	-4.5V		-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	
0v	0V		0V	\checkmark	0V	\checkmark	0V	
1v	4.5V		4.5V	\checkmark	4.5V	\checkmark	4.5V	
5v	22V		22V	\checkmark	22V	\checkmark	22V	

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 A

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm Unit...T_ACQ_P8....Serial No Test Engineer ...Simon Pyatt..... Date ...18/03/10.....

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with by a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

Unit...T_ACQ_P8....Serial No Test Engineer ...Simon Pyatt..... Date ...18/03/10.....

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A

Unit...T_ACQ_P8....Serial No Test Engineer ...Simon Pyatt..... Date ...18/03/10....

3. Inspection

Workmanship Inspect the general workmanship standard and comment:

Links: Check that the link W4 is in place on each channel. Unit...T_ACQ_P8....Serial No Test Engineer ...Simon Pyatt..... Date ...18/03/10.....

4. Continuity Checks

J2

PIN	SIGNA	L	DESCRIPTI	ON	To J1 PIN	OK?
1	PD1P		Photodiode	4+	1	\checkmark
2	PD2P		Photodiode	B+	2	\checkmark
3	PD3P		Photodiode	otodiode C+ 3		\checkmark
4	PD4P		Photodiode	D+	4	\checkmark
	5		0V			
6	PD1N		Photodiode	A-	14	\checkmark
7	PD2N		Photodiode	B-	15	\checkmark
8	PD3N		Photodiode C- 16		16	\checkmark
9	PD4N		Photodiode	D-	17	\checkmark

J5

PIN	SI	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	\checkmark
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	\checkmark
9	Im	on4N		21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	
11	V- (TP2)	-17v Supply	
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11,12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1 + = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3 + = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit...T_ACQ_P8....Serial No Test Engineer ...Simon Pyatt..... Date ...18/03/10.....

6. Power

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the regulator output voltages, measured on a DVM with 4 or more digits.

Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.03V	\checkmark	1mV
+15v TP4	14.92V	\checkmark	1mV
-15v TP6	-14.98V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

Unit...T_ACQ_P8....Serial No Test Engineer ...Simon Pyatt..... Date ...18/03/10.....

7. Relay Operation

Note: 37 way to 25 way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4			\checkmark

TEST RELAYS

Channel	Indicat	or	OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4		\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4			\checkmark

Unit...T_ACQ_P8....Serial No Test Engineer ...Simon Pyatt..... Date ...18/03/10....

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

Unit......T_ACQ_P8.....Serial No Test Engineer....Xen.... Date......31/3/10.....

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simu	ulation	Pass/Fail
	mV	Min	Max	
Ch1	26.0	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	26.0	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	26.0	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	26.0	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.7	-42.5dB	-39.5dB	\checkmark
Ch2	-40.6	-42.5dB	-39.5dB	\checkmark
Ch3	-40.7	-42.5dB	-39.5dB	\checkmark
Ch4	-40.6	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.2	-53dB	-50dB	\checkmark
Ch2	-51.1	-53dB	-50dB	\checkmark
Ch3	-51.2	-53dB	-50dB	\checkmark
Ch4	-51.2	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-28.6	-30dB	-27dB	\checkmark
Ch2	-28.5	-30dB	-27dB	\checkmark
Ch3	-28.8	-30dB	-27dB	\checkmark
Ch4	-28.6	-30dB	-27dB	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.5	-21dB	-18dB	\checkmark
Ch2	-19.5	-21dB	-18dB	\checkmark
Ch3	-19.5	-21dB	-18dB	\checkmark
Ch4	-19.5	-21dB	-18dB	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.3	-21dB	-18dB	\checkmark
Ch2	-19.3	-21dB	-18dB	\checkmark
Ch3	-19.3	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

Unit......T_ACQ_P8.....Serial No Test Engineer....Xen.... Date......31/3/10.....

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

1Hz					
	Output	Simu	Simulation		
		Min	Max		
Ch1	-34.8	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark	
Ch2	-34.8	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark	
Ch3	-34.9	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark	
Ch4	-34.8	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark	

10Hz

	Output	Simu	Simulation	
		Min	Max	
Ch1	-18.0	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.1	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.1	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.0	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simu	Simulation	
		Min	Max	
Ch1	-4.9	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simu	Simulation	
		Min	Max	
Ch1	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simu	lation	Pass/Fail
		Min	Max	
Ch1	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

Unit...T_ACQ_P8....Serial No Test Engineer ...Simon Pyatt..... Date ...18/03/10....

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1KHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Distortion Free?	Mode:
Ch1	3.3V	0.6V	
Ch2	3.3V	0.6V	
Ch3	3.3V	0.6V	
Ch4	3.3V	0.6V	

Unit...T_ACQ_P8....Serial No Test Engineer ...Simon Pyatt..... Date ...18/03/10....

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	o/p	stable?	o/p	stable?		stable?	o/p	stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V		-22V	\checkmark
-1v	-4.5V		-4.5V	\checkmark	-4.5V		-4.5V	
0v	0V		0V	\checkmark	0V		0V	
1v	4.5V		4.5V	$\overline{\mathbf{v}}$	4.5V		4.5V	
5v	22V		22V		22V		22V	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 A

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm Unit...T_ACQ_P9....Serial No Test Engineer ...Simon Pyatt..... Date ...18/03/10.....

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with by a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

Unit...T_ACQ_P9....Serial No Test Engineer ...Simon Pyatt..... Date ...18/03/10.....

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A

Unit...T_ACQ_P9....Serial No Test Engineer ...Simon Pyatt..... Date ...18/03/10....

3. Inspection

Workmanship Inspect the general workmanship standard and comment:

Links: Check that the link W4 is in place on each channel. Unit...T_ACQ_P9....Serial No Test Engineer ...Simon Pyatt..... Date ...18/03/10.....

4. Continuity Checks

J2

PIN	SIGNA	L	DESCRIPTI	ON	To J1 PIN	OK?
1	PD1P		Photodiode	4+	1	\checkmark
2	PD2P		Photodiode	B+	2	\checkmark
3	PD3P		Photodiode	C+	3	\checkmark
4	PD4P		Photodiode	D+	4	\checkmark
	5		0V			
6	PD1N		Photodiode	A-	14	\checkmark
7	PD2N		Photodiode	B-	15	\checkmark
8	PD3N		Photodiode C- 16		\checkmark	
9	PD4N		Photodiode	D-	17	\checkmark

J5

PIN	SI	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	\checkmark
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	\checkmark
9	Im	on4N		21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	
11	V- (TP2)	-17v Supply	
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11,12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1 + = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3 + = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit...T_ACQ_P9....Serial No Test Engineer ...Simon Pyatt..... Date ...18/03/10.....

6. Power

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the regulator output voltages, measured on a DVM with 4 or more digits.

Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.04V	\checkmark	1mV
+15v TP4	14.94V	\checkmark	1mV
-15v TP6	-15.01V	\checkmark	5mV

All Outputs smooth DC, no oscillation? $\sqrt{}$

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

Unit...T_ACQ_P9....Serial No Test Engineer ...Simon Pyatt..... Date ...18/03/10.....

7. Relay Operation

Note: 37 way to 25 way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicat	OK?	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4			\checkmark

TEST RELAYS

Channel	Indicat	OK?	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4		\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicat	OK?	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4			\checkmark

Unit...T_ACQ_P9....Serial No Test Engineer ...Simon Pyatt..... Date ...18/03/10....

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

Unit......T_ACQ_P9.....Serial No Test Engineer....Xen.... Date......31/3/10.....

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simu	ulation	Pass/Fail
	mV	Min	Max	
Ch1	28.0	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	27.0	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	27.0	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	27.0	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.7	-42.5dB	-39.5dB	
Ch2	-40.7	-42.5dB	-39.5dB	
Ch3	-40.6	-42.5dB	-39.5dB	\checkmark
Ch4	-40.7	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.2	-53dB	-50dB	\checkmark
Ch2	-51.2	-53dB	-50dB	\checkmark
Ch3	-51.2	-53dB	-50dB	\checkmark
Ch4	-51.2	-53dB	-50dB	\checkmark

100Hz

	Output	Sim	Simulation	
	dB	Min	Max	
Ch1	-28.6	-30dB	-27dB	\checkmark
Ch2	-28.4	-30dB	-27dB	\checkmark
Ch3	-28.8	-30dB	-27dB	\checkmark
Ch4	-28.9	-30dB	-27dB	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.5	-21dB	-18dB	\checkmark
Ch2	-19.5	-21dB	-18dB	\checkmark
Ch3	-19.5	-21dB	-18dB	\checkmark
Ch4	-19.5	-21dB	-18dB	\checkmark

5 kHz

	Output	Simu	Simulation	
	dB	Min	Max	
Ch1	-19.3	-21dB	-18dB	\checkmark
Ch2	-19.3	-21dB	-18dB	\checkmark
Ch3	-19.3	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

Unit......T_ACQ_P9.....Serial No Test Engineer....Xen.... Date......31/3/10.....

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

1Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-34.8	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-34.8	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-34.9	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-34.9	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simu	Simulation	
		Min	Max	
Ch1	-18.0	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.1	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.1	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.1	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simu	lation	Pass/Fail
		Min	Max	
Ch1	-4.9	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simu	Simulation		
		Min	Max		
Ch1	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark	
Ch2	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark	
Ch3	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark	
Ch4	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark	

5 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

Unit...T_ACQ_P9....Serial No Test Engineer ...Simon Pyatt..... Date ...18/03/10....

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1KHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Distortion Free?	Mode:
Ch1	3.3V	0.6V	
Ch2	3.3V	0.6V	
Ch3	3.3V	0.6V	
Ch4	3.3V	0.6V	

Unit...T_ACQ_P9....Serial No Test Engineer ...Simon Pyatt..... Date ...18/03/10.....

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	o/p	stable?	o/p	stable?		stable?	o/p	stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V		-22V	\checkmark
-1v	-4.5V		-4.5V	\checkmark	-4.5V		-4.5V	
0v	0V		0V	\checkmark	0V		0V	
1v	4.5V		4.5V	$\overline{\mathbf{v}}$	4.5V		4.5V	
5v	22V		22V	\checkmark	22V		22V	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 A

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm Unit...T_ACQ_P10....Serial No Test Engineer ...Simon Pyatt..... Date ...18/03/10.....

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with by a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

Unit...T_ACQ_P10....Serial No Test Engineer ...Simon Pyatt..... Date ...18/03/10.....

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A
3. Inspection

Workmanship Inspect the general workmanship standard and comment:

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	
4	PD4P	Photodiode D+	4	
	5	0V		
6	PD1N	Photodiode A-	14	
7	PD2N	Photodiode B-	Photodiode B- 15	
8	PD3N	Photodiode C-	Photodiode C- 16	
9	PD4N	Photodiode D-	17	

J5

PIN	SI	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	\checkmark
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	\checkmark
9	Im	on4N		21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	
11	V- (TP2)	-17v Supply	
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11,12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1 + = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3 + = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the regulator output voltages, measured on a DVM with 4 or more digits.

Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.02V	\checkmark	1mV
+15v TP4	14.91V	\checkmark	1mV
-15v TP6	-15.10V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37 way to 25 way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4			\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4		\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4			\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	26.0	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	26.0	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	26.0	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	26.0	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min Max		
Ch1	-40.7	-42.5dB	-39.5dB	
Ch2	-40.9	-42.5dB	-39.5dB	
Ch3	-40.6	-42.5dB	-39.5dB	
Ch4	-40.6	-42.5dB	-39.5dB	

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.3	-53dB	-50dB	\checkmark
Ch2	-51.4	-53dB	-50dB	\checkmark
Ch3	-51.1	-53dB	-50dB	\checkmark
Ch4	-51.3	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-28.8	-30dB	-27dB	\checkmark
Ch2	-28.8	-30dB	-27dB	\checkmark
Ch3	-28.7	-30dB	-27dB	\checkmark
Ch4	-29.0	-30dB	-27dB	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.4	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.5	-21dB	-18dB	\checkmark
Ch4	-19.5	-21dB	-18dB	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.3	-21dB	-18dB	\checkmark
Ch4	-19.3	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

1Hz				
	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-34.9	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-34.8	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-34.9	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-34.9	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-18.1	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.0	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.1	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.2	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.7	-4.5dB / 665mV	-2.5dB / 672mV	\checkmark
Ch2	-3.7	-4.5dB / 665mV	-2.5dB / 672mV	\checkmark
Ch3	-3.7	-4.5dB / 665mV	-2.5dB / 672mV	\checkmark
Ch4	-3.7	-4.5dB / 665mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1KHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Distortion Free?	Mode:
Ch1	3.3V	0.6V	
Ch2	3.3V	0.6V	
Ch3	3.3V	0.6V	
Ch4	3.3V	0.6V	

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	o/p	stable?	o/p	stable?		stable?	o/p	stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V		-22V	\checkmark
-1v	-4.5V		-4.5V	\checkmark	-4.5V		-4.5V	\checkmark
0v	0V		0V	\checkmark	0V		0V	\checkmark
1v	4.5V		4.5V	\checkmark	4.5V		4.5V	\checkmark
5v	22V		22V	\checkmark	22V		22V	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	77	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
V/I calibrator	Time Electronics	1044	

3. Inspection

Workmanship Inspect the general workmanship standard and comment: $\boldsymbol{\sqrt{}}$

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNA	L DESCRIP	TION	To J1 PIN	OK?
1	PD1P	Photodiod	e A+	1	\checkmark
2	PD2P	Photodiod	eB+ 2	2	\checkmark
3	PD3P	Photodiod	e C+	3	\checkmark
4	PD4P	Photodiod	e D+	4	\checkmark
	5	0V		\checkmark	
6	PD1N	Photodiod	e A-	14	\checkmark
7	PD2N	Photodiod	e B-	15	\checkmark
8	PD3N	Photodiod	Photodiode C- 16		
9	PD4N	Photodiod	e D-	17	

J5

PIN	SIC	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	\checkmark
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V	\checkmark	
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	\checkmark
9	Im	on4N		21	\checkmark

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11, 12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit Increase the voltages on the supplies to +/-3V. Determine that the supply polarities are correct on TP1 and TP2. If they are, increase input voltages to +/- 16.5v.

Record the regulator output voltages, measured on a DVM with 4 or more digits.

Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.04	\checkmark	1mV
+15v TP4	14.97	\checkmark	1mV
-15v TP6	-15.01	\checkmark	1mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	300mA
-16.5v	200mA

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37- way to 25-way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.196	Pin 1 to Pin 2	2.195	\checkmark
2	2.196	Pin 5 to Pin 6	2.195	\checkmark
3	2.196	Pin 9 to Pin 10	2.195	\checkmark
4	2.196	Pin 13 to Pin 14	2.195	\checkmark

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.280	Pin 3 to Pin 4	0.280	\checkmark
2	0.278	Pin 7 to Pin 8	0.277	\checkmark
3	0.278	Pin 11 to Pin 12	0.278	\checkmark
4	0.281	Pin 15 to Pin 16	0.280	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser.

0.1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-37.5	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	-37.6	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	-37.5	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	-37.5	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simu	ulation	Pass/Fail
	dB	Min	Max	
Ch1	-40.8	-42.5dB	-39.5dB	\checkmark
Ch2	-40.8	-42.5dB	-39.5dB	\checkmark
Ch3	-40.9	-42.5dB	-39.5dB	\checkmark
Ch4	-40.9	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simu	lation	Pass/Fail
	dB	Min	Max	
Ch1	-51.2	-53dB	-50dB	\checkmark
Ch2	-51.2	-53dB	-50dB	\checkmark
Ch3	-51.2	-53dB	-50dB	\checkmark
Ch4	-51.2	-53dB	-50dB	\checkmark

100Hz

	Output	Sim	ulation	Pass/Fail
	dB	Min	Max	
Ch1	-28.7	-30dB	-27dB	\checkmark
Ch2	-28.8	-30dB	-27dB	\checkmark
Ch3	-28.6	-30dB	-27dB	\checkmark
Ch4	-28.5	-30dB	-27dB	\checkmark

1 kHz

	Output	Simu	ulation	Pass/Fail
	dB	Min	Max	
Ch1	-19.5	-21dB	-18dB	\checkmark
Ch2	-19.5	-21dB	-18dB	\checkmark
Ch3	-19.5	-21dB	-18dB	\checkmark
Ch4	-19.5	-21dB	-18dB	\checkmark

5 kHz

	Output	Simu	ulation	Pass/Fail
	dB	Min	Max	
Ch1	-19.3	-21dB	-18dB	\checkmark
Ch2	-19.3	-21dB	-18dB	\checkmark
Ch3	-19.3	-21dB	-18dB	\checkmark
Ch4	-19.3	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

1Hz				
	Output	Simu	lation	Pass/Fail
		Min	Max	
Ch1	-34.8	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-34.9	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-34.9	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-34.9	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-18.0	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.2	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.1	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.1	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simu	Simulation	
		Min	Max	
Ch1	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5.1	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.1	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.8	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simu	Simulation	
		Min	Max	
Ch1	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1 kHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	\checkmark	\checkmark
Ch2	\checkmark	\checkmark
Ch3	\checkmark	\checkmark
Ch4	\checkmark	\checkmark

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2 stable2	Ch3 o/p	Ch3	Ch4	Ch4
	υp	SLADIC	0/p	รเลมเย :		SLADIC	υμ	SLADIC
-5v	-22.0	\checkmark	-22.0	\checkmark	-22.0	\checkmark	-21.9	\checkmark
-1v	-4.5	\checkmark	-4.5	\checkmark	-4.5		-4.5	\checkmark
0v	0	\checkmark	0	\checkmark	0		0	\checkmark
1v	4.3	\checkmark	4.2	\checkmark	4.3	\checkmark	4.5	\checkmark
5v	21.9	\checkmark	21.8	\checkmark	21.9	\checkmark	22.0	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 A

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with by a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A

3. Inspection

Workmanship Inspect the general workmanship standard and comment:

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	Photodiode C+ 3	
4	PD4P	Photodiode D+	4	
	5	0V		
6	PD1N	Photodiode A-	14	
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	

J5

PIN	SI	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	\checkmark
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	\checkmark
9	Im	on4N		21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	
10	V+ (TP1)	+17v Supply	
11	V- (TP2)	-17v Supply	
12	V- (TP2)	-17v Supply	
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		
25	0V (TP3)		

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11,12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1 + = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3 + = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the regulator output voltages, measured on a DVM with 4 or more digits.

Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.03V	\checkmark	1mV
+15v TP4	14.94V	\checkmark	1mV
-15v TP6	-14.96V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37 way to 25 way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicat	or	OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4		\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4			\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	26.0	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	26.0	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	26.0	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	26.0	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.8	-42.5dB	-39.5dB	
Ch2	-40.6	-42.5dB	-39.5dB	
Ch3	-40.7	-42.5dB	-39.5dB	
Ch4	-40.6	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.3	-53dB	-50dB	\checkmark
Ch2	-51.2	-53dB	-50dB	\checkmark
Ch3	-51.2	-53dB	-50dB	\checkmark
Ch4	-51.1	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-28.6	-30dB	-27dB	\checkmark
Ch2	-28.6	-30dB	-27dB	\checkmark
Ch3	-28.4	-30dB	-27dB	\checkmark
Ch4	-28.5	-30dB	-27dB	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.5	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.5	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.3	-21dB	-18dB	
Ch2	-19.3	-21dB	-18dB	
Ch3	-19.3	-21dB	-18dB	
Ch4	-19.2	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-34.9	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-34.9	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-34.9	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-34.9	-36.5dB / 20mV	-33.5dB / 16mV	
	01.0			,

10Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-18.1	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.2	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.1	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.2	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1KHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Distortion Free?	Mode:
Ch1	3.3V	0.6V	
Ch2	3.3V	0.6V	
Ch3	3.3V	0.6V	
Ch4	3.3V	0.6V	

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable?	Ch2 o/p	Ch2 stable?	Ch3 o/p	Ch3 stable?	Ch4 o/p	Ch4 stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V		-22V	\checkmark
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	
0v	0V	\checkmark	0V	\checkmark	0V	\checkmark	0V	
1v	4.5V		4.5V	\checkmark	4.5V	\checkmark	4.5V	
5v	22V		22V	\checkmark	22V	\checkmark	22V	

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 A

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with by a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A

3. Inspection

Workmanship Inspect the general workmanship standard and comment:

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	

J5

PIN	SI	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	\checkmark
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	\checkmark
9	Im	on4N		21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	
10	V+ (TP1)	+17v Supply	
11	V- (TP2)	-17v Supply	
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11,12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1 + = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3 + = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the regulator output voltages, measured on a DVM with 4 or more digits.

Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.08V	\checkmark	1mV
+15v TP4	14.94V	\checkmark	1mV
-15v TP6	-15.08V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37 way to 25 way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4			\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4		\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicat	OK?	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4			\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

Unit......T_ACQ_P13.....Serial No Test Engineer....Xen.... Date......30/3/10....

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
	mV	Min	Max	
Ch1	26.0mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	26.0mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	26.0mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	26.0mV	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.6	-42.5dB	-39.5dB	
Ch2	-40.8	-42.5dB	-39.5dB	\checkmark
Ch3	-40.8	-42.5dB	-39.5dB	\checkmark
Ch4	-40.6	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.2	-53dB	-50dB	\checkmark
Ch2	-51.4	-53dB	-50dB	\checkmark
Ch3	-51.2	-53dB	-50dB	\checkmark
Ch4	-51.1	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-28.5	-30dB	-27dB	\checkmark
Ch2	-29.0	-30dB	-27dB	\checkmark
Ch3	-28.7	-30dB	-27dB	\checkmark
Ch4	-28.6	-30dB	-27dB	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.5	-21dB	-18dB	\checkmark
Ch2	-19.5	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.3	-21dB	-18dB	\checkmark
Ch2	-19.3	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	

Unit......T_ACQ_P13.....Serial No Test Engineer....Xen.... Date......30/3/10.....

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-34.8	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-34.9	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-34.8	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-34.8	-36.5dB / 20mV	-33.5dB / 16mV	
	••			

10Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-18.0	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.1	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.0	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-17.9	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5.1	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-4.9	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-4.9	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.7	-4.5dB / 665mV	-2.5dB / 672mV	\checkmark
Ch2	-3.8	-4.5dB / 665mV	-2.5dB / 672mV	\checkmark
Ch3	-3.6	-4.5dB / 665mV	-2.5dB / 672mV	\checkmark
Ch4	-3.7	-4.5dB / 665mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.8	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1KHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Distortion Free?	Mode:
Ch1	3.3V	0.6V	
Ch2	3.3V	0.6V	
Ch3	3.4V	0.6V	
Ch4	3.3V	0.6V	

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable?	Ch2 o/p	Ch2 stable?	Ch3 o/p	Ch3 stable?	Ch4 o/p	Ch4 stable?
-5v	-22V		-22V	\checkmark	-22V		-22V	\checkmark
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark
0v	0V	\checkmark	0V	\checkmark	0V	\checkmark	0V	
1v	4.5V		4.5V	\checkmark	4.5V	\checkmark	4.5V	
5v	22V		22V	\checkmark	22V	\checkmark	22V	

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 A

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with by a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A

3. Inspection

Workmanship Inspect the general workmanship standard and comment:

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	SCRIPTION To J1 PIN	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	

J5

PIN	SI	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	\checkmark
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	\checkmark
9	Im	on4N		21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		
25	0V (TP3)		

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11,12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1 + = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3 + = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the regulator output voltages, measured on a DVM with 4 or more digits.

Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.06V	\checkmark	1mV
+15v TP4	14.96V	\checkmark	1mV
-15v TP6	-15.05V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37 way to 25 way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicat	OK?	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4		\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4			\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

Unit......T_ACQ_P14.....Serial No Test Engineer....Xen.... Date......30/3/10....

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
	mV	Min	Max	
Ch1	26.0	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	26.0	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	26.0	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	26.0	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.8	-42.5dB	-39.5dB	\checkmark
Ch2	-40.7	-42.5dB	-39.5dB	\checkmark
Ch3	-40.7	-42.5dB	-39.5dB	\checkmark
Ch4	-40.7	-42.5dB	-39.5dB	

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.3	-53dB	-50dB	\checkmark
Ch2	-51.2	-53dB	-50dB	\checkmark
Ch3	-51.3	-53dB	-50dB	\checkmark
Ch4	-51.2	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-28.6	-30dB	-27dB	\checkmark
Ch2	-28.8	-30dB	-27dB	\checkmark
Ch3	-29.0	-30dB	-27dB	\checkmark
Ch4	-28.5	-30dB	-27dB	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.5	-21dB	-18dB	\checkmark
Ch2	-19.5	-21dB	-18dB	\checkmark
Ch3	-19.5	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.3	-21dB	-18dB	
Ch2	-19.3	-21dB	-18dB	
Ch3	-19.3	-21dB	-18dB	
Ch4	-19.2	-21dB	-18dB	\checkmark

Unit......T_ACQ_P14.....Serial No Test Engineer....Xen.... Date......30/3/10.....

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

ail

10Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-18.2	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.1	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.2	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.2	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-5.1	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5.1	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.1	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark

1 Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.8	-4.5dB / 665mV	-2.5dB / 672mV	\checkmark
Ch2	-3.7	-4.5dB / 665mV	-2.5dB / 672mV	\checkmark
Ch3	-3.7	-4.5dB / 665mV	-2.5dB / 672mV	\checkmark
Ch4	-3.7	-4.5dB / 665mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.8	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1KHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Distortion Free?	Mode:
Ch1	3.3V	0.6V	
Ch2	3.3V	0.6V	
Ch3	3.3V	0.6V	
Ch4	3.3V	0.6V	

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable?	Ch2 o/p	Ch2 stable?	Ch3 o/p	Ch3 stable?	Ch4 o/p	Ch4 stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V		-22V	\checkmark
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark
0v	0V	\checkmark	0V	\checkmark	0V	\checkmark	0V	
1v	4.5V		4.5V	\checkmark	4.5V	\checkmark	4.5V	
5v	22V		22V	\checkmark	22V	\checkmark	22V	

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 A

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with by a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A

3. Inspection

Workmanship Inspect the general workmanship standard and comment:

Board is bowed.

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	

J5

PIN	SI	GNAL			To J1 PIN	OK?
1	Im	on1P			5	\checkmark
2	Im	on2P			6	\checkmark
3	Im	on3P			7	\checkmark
4	Im	on4P			8	\checkmark
		5	0V			
6	Im	on1N			18	\checkmark
7	Im	on2N			19	\checkmark
8	Im	on3N			20	\checkmark
9	Im	on4N			21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	
10	V+ (TP1)	+17v Supply	
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		
25	0V (TP3)		
5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11,12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1 + = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3 + = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the regulator output voltages, measured on a DVM with 4 or more digits.

Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.05V	\checkmark	1mV
+15v TP4	14.97V	\checkmark	1mV
-15v TP6	-15.06V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37 way to 25 way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4			\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4		\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4			\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

Unit.....T_ACQ_15P.....Serial No Test Engineer....Xen.... Date.....29/3/10....

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	26.0	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	26.0	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	26.0	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	26.0	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.6	-42.5dB	-39.5dB	\checkmark
Ch2	-40.6	-42.5dB	-39.5dB	\checkmark
Ch3	-40.7	-42.5dB	-39.5dB	\checkmark
Ch4	-40.6	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.2	-53dB	-50dB	
Ch2	-51.1	-53dB	-50dB	
Ch3	-51.2	-53dB	-50dB	
Ch4	-51.2	-53dB	-50dB	

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-28.7	-30dB	-27dB	\checkmark
Ch2	-28.5	-30dB	-27dB	\checkmark
Ch3	-28.6	-30dB	-27dB	\checkmark
Ch4	-28.9	-30dB	-27dB	\checkmark

1 kHz

	Output	Sim	Pass/Fail	
	dB	Min	Max	
Ch1	-19.5	-21dB	-18dB	\checkmark
Ch2	-19.5	-21dB	-18dB	\checkmark
Ch3	-19.5	-21dB	-18dB	\checkmark
Ch4	-19.5	-21dB	-18dB	\checkmark

5 kHz

	Output	Simu	Pass/Fail	
	dB	Min	Max	
Ch1	-19.3	-21dB	-18dB	\checkmark
Ch2	-19.3	-21dB	-18dB	\checkmark
Ch3	-19.3	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

Unit......T_ACQ_15P.....Serial No Test Engineer....Xen.... Date......29/3/10.....

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

1Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-34.9	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-34.8	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-34.9	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-34.9	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-18.2	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.0	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.2	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.2	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1KHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Distortion Free?	Mode:
Ch1	3.3V	0.6V	
Ch2	3.3V	0.6V	
Ch3	3.3V	0.6V	
Ch4	3.3V	0.6V	

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable?	Ch2 o/p	Ch2 stable?	Ch3 o/p	Ch3 stable?	Ch4 o/p	Ch4 stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V		-22V	\checkmark
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	
0v	0V	\checkmark	0V	\checkmark	0V	\checkmark	0V	
1v	4.5V		4.5V	\checkmark	4.5V	\checkmark	4.5V	
5v	22V		22V	\checkmark	22V	\checkmark	22V	

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 A

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with by a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A

3. Inspection

Workmanship Inspect the general workmanship standard and comment:

Board slightly bowed.

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNA	L	DESCRIPTION To J1 PIN		OK?	
1	PD1P		Photodiode	4+	1	\checkmark
2	PD2P		Photodiode	B+	2	\checkmark
3	PD3P		Photodiode	C+	3	\checkmark
4	PD4P		Photodiode	D+	4	\checkmark
	5		0V			
6	PD1N		Photodiode	A-	14	\checkmark
7	PD2N		Photodiode	B-	15	\checkmark
8	PD3N		Photodiode C- 16		\checkmark	
9	PD4N		Photodiode	D-	17	\checkmark

J5

PIN	SI	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	\checkmark
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
5		5	0V		
6	Im	on1N		18	\checkmark
7	Imon2N			19	\checkmark
8	Imon3N			20	\checkmark
9	Imon4N			21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	
11	V- (TP2)	-17v Supply	
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11,12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1 + = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3 + = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the regulator output voltages, measured on a DVM with 4 or more digits.

Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.03V	\checkmark	1mV
+15v TP4	14.93V	\checkmark	1mV
-15v TP6	-15.00V	\checkmark	1mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37 way to 25 way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4			\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4		\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4			\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

Unit......T_ACQ_P16.....Serial No Test Engineer....Xen.... Date......29/3/10....

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	26.0	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	26.0	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	26.0	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	26.0	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.8	-42.5dB	-39.5dB	\checkmark
Ch2	-40.7	-42.5dB	-39.5dB	\checkmark
Ch3	-40.7	-42.5dB	-39.5dB	\checkmark
Ch4	-40.6	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.3	-53dB	-50dB	\checkmark
Ch2	-51.3	-53dB	-50dB	\checkmark
Ch3	-51.2	-53dB	-50dB	\checkmark
Ch4	-51.1	-53dB	-50dB	\checkmark

100Hz

	Output	Sim	Pass/Fail	
	dB	Min	Max	
Ch1	-28.5	-30dB	-27dB	\checkmark
Ch2	-28.5	-30dB	-27dB	\checkmark
Ch3	-28.7	-30dB	-27dB	\checkmark
Ch4	-28.5	-30dB	-27dB	\checkmark

1 kHz

	Output	Sim	Pass/Fail	
	dB	Min	Max	
Ch1	-19.5	-21dB	-18dB	\checkmark
Ch2	-19.5	-21dB	-18dB	\checkmark
Ch3	-19.5	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.3	-21dB	-18dB	\checkmark
Ch2	-19.3	-21dB	-18dB	\checkmark
Ch3	-19.3	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

Unit......T_ACQ_P16.....Serial No Test Engineer....Xen.... Date......30/3/10.....

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

ail

10Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-18.1	-20dB / 122mV	-17dB / 118mV	
Ch2	-18.1	-20dB / 122mV	-17dB / 118mV	
Ch3	-18.1	-20dB / 122mV	-17dB / 118mV	
Ch4	-18.1	-20dB / 122mV	-17dB / 118mV	

100Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-5.0	-6dB / 570mV	-4dB / 565mV	
Ch2	-5.0	-6dB / 570mV	-4dB / 565mV	
Ch3	-5.0	-6dB / 570mV	-4dB / 565mV	
Ch4	-5.0	-6dB / 570mV	-4dB / 565mV	

1 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	
Ch2	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	
Ch3	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	
Ch4	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	

5 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	
Ch2	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	
Ch3	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	
Ch4	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1KHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Distortion Free?	Mode:
Ch1	3.3V	0.6V	
Ch2	3.3V	0.6V	
Ch3	3.3V	0.6V	
Ch4	3.3V	0.6V	

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable?	Ch2 o/p	Ch2 stable?	Ch3 o/p	Ch3 stable?	Ch4 o/p	Ch4 stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V		-22V	\checkmark
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark
0v	0V	\checkmark	0V	\checkmark	0V	\checkmark	0V	
1v	4.5V		4.5V	\checkmark	4.5V	\checkmark	4.5V	
5v	22V		22V	\checkmark	22V	\checkmark	22V	

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 A

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with by a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A

3. Inspection

Workmanship Inspect the general workmanship standard and comment:

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	
4	PD4P	Photodiode D+	4	
	5	0V		
6	PD1N	Photodiode A-	14	
7	PD2N	Photodiode B-	Photodiode B- 15	
8	PD3N	Photodiode C-	Photodiode C- 16	
9	PD4N	Photodiode D-	17	

J5

PIN	SI	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	\checkmark
9	Im	on4N		21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	
11	V- (TP2)	-17v Supply	
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11,12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1 + = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3 + = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the regulator output voltages, measured on a DVM with 4 or more digits.

Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.07V	\checkmark	1mV
+15v TP4	14.92V	\checkmark	1mV
-15v TP6	-15.03V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37 way to 25 way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4		\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4			\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

Unit......T_ACQ_17P.....Serial No Test Engineer....Xen.... Date......29/3/10....

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	26.0	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	26.0	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	26.0	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	26.0	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min Max		
Ch1	-40.6	-42.5dB	-39.5dB	
Ch2	-40.7	-42.5dB	-39.5dB	\checkmark
Ch3	-40.7	-42.5dB	-39.5dB	\checkmark
Ch4	-40.6	-42.5dB	-39.5dB	\checkmark
Ch1 Ch2 Ch3 Ch4	dB -40.6 -40.7 -40.7 -40.6	Min -42.5dB -42.5dB -42.5dB -42.5dB	Max -39.5dB -39.5dB -39.5dB -39.5dB	

10Hz

	Output	Simulation		Pass/Fail
	dB	Min Max		
Ch1	-51.2	-53dB	-50dB	\checkmark
Ch2	-51.1	-53dB	-50dB	\checkmark
Ch3	-51.2	-53dB	-50dB	\checkmark
Ch4	-51.2	-53dB	-50dB	\checkmark

100Hz

	Output	Sim	Simulation		
	dB	Min	Min Max		
Ch1	-28.9	-30dB	-27dB	\checkmark	
Ch2	-28.7	-30dB	-27dB	\checkmark	
Ch3	-28.5	-30dB	-27dB	\checkmark	
Ch4	-28.8	-30dB	-27dB	\checkmark	

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.5	-21dB	-18dB	\checkmark
Ch2	-19.5	-21dB	-18dB	\checkmark
Ch3	-19.5	-21dB	-18dB	\checkmark
Ch4	-19.5	-21dB	-18dB	\checkmark

5 kHz

	Output	Sim	Pass/Fail	
	dB	Min	Max	
Ch1	-19.3	-21dB	-18dB	\checkmark
Ch2	-19.3	-21dB	-18dB	\checkmark
Ch3	-19.3	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

Unit......T_ACQ_17P.....Serial No Test Engineer....Xen.... Date......29/3/10.....

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

1Hz				
	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-34.9	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-34.9	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-34.9	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-34.9	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-18.1	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.1	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.1	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.1	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1KHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Distortion Free?	Mode:
Ch1	3.3V	0.6V	
Ch2	3.3V	0.6V	
Ch3	3.3V	0.6V	
Ch4	3.3V	0.6V	

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable?	Ch2 o/p	Ch2 stable?	Ch3 o/p	Ch3 stable?	Ch4 o/p	Ch4 stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V		-22V	\checkmark
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	
0v	0V	\checkmark	0V	\checkmark	0V	\checkmark	0V	
1v	4.5V		4.5V	\checkmark	4.5V	\checkmark	4.5V	
5v	22V		22V	\checkmark	22V	\checkmark	22V	
LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 A

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with by a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A

3. Inspection

Workmanship Inspect the general workmanship standard and comment:

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C- 16		
9	PD4N	Photodiode D-	17	

J5

PIN	SI	GNAL		To J1 PIN	OK?
1	Im	on1P		5	
2	Im	on2P		6	
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	\checkmark
9	Im	on4N		21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	
10	V+ (TP1)	+17v Supply	
11	V- (TP2)	-17v Supply	
12	V- (TP2)	-17v Supply	
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		
25	0V (TP3)		

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11,12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1 + = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3 + = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the regulator output voltages, measured on a DVM with 4 or more digits.

Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.02V	\checkmark	1mV
+15v TP4	14.91V	\checkmark	1mV
-15v TP6	-15.02V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37 way to 25 way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4			\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4		\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicat	OK?	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4			\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

Unit......T_ACQ_P18.....Serial No Test Engineer....Xen.... Date......29/3/10....

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	26.0	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	26.0	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	26.0	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	26.0	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.6	-42.5dB	-39.5dB	
Ch2	-40.7	-42.5dB	-39.5dB	
Ch3	-40.7	-42.5dB	-39.5dB	
Ch4	-40.6	-42.5dB	-39.5dB	

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.2	-53dB	-50dB	\checkmark
Ch2	-51.1	-53dB	-50dB	\checkmark
Ch3	-51.2	-53dB	-50dB	\checkmark
Ch4	-51.0	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-28.4	-30dB	-27dB	\checkmark
Ch2	-28.3	-30dB	-27dB	\checkmark
Ch3	-28.8	-30dB	-27dB	\checkmark
Ch4	-28.3	-30dB	-27dB	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.5	-21dB	-18dB	\checkmark
Ch2	-19.5	-21dB	-18dB	\checkmark
Ch3	-19.5	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.3	-21dB	-18dB	\checkmark
Ch2	-19.3	-21dB	-18dB	\checkmark
Ch3	-19.3	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

Unit......T_ACQ_P18.....Serial No Test Engineer....Xen.... Date......29/3/10.....

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

1Hz

1114				
	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-34.9	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-34.9	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-34.9	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-34.9	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-18.2	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.1	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.1	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.2	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-5.1	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5.1	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1KHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Distortion Free?	Mode:
Ch1	3.3V	0.6V	
Ch2	3.3V	0.6V	
Ch3	3.3V	0.6V	
Ch4	3.3V	0.6V	

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable?	Ch2 o/p	Ch2 stable?	Ch3 o/p	Ch3 stable?	Ch4 o/p	Ch4 stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V		-22V	\checkmark
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	
0v	0V	\checkmark	0V	\checkmark	0V	\checkmark	0V	
1v	4.5V		4.5V	\checkmark	4.5V	\checkmark	4.5V	
5v	22V		22V	\checkmark	22V	\checkmark	22V	

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 A

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with by a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A

3. Inspection

Workmanship Inspect the general workmanship standard and comment:

Board is slightly bowed.

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	

J5

PIN	SI	GNAL		To J1 PIN	OK?
1	Im	on1P		5	
2	Im	on2P		6	
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	\checkmark
9	Im	on4N		21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	
10	V+ (TP1)	+17v Supply	
11	V- (TP2)	-17v Supply	
12	V- (TP2)	-17v Supply	
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		
25	0V (TP3)		

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11,12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1 + = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3 + = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the regulator output voltages, measured on a DVM with 4 or more digits.

Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.04V	\checkmark	1mV
+15v TP4	14.94V	\checkmark	1mV
-15v TP6	-14.96V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37 way to 25 way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?		
	ON	OFF			
Ch1	\checkmark	\checkmark	\checkmark		
Ch2	\checkmark	\checkmark	\checkmark		
Ch3	\checkmark	\checkmark	\checkmark		
Ch4	\checkmark	\checkmark	\checkmark		

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4		\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicat	OK?	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4			\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

UnitT	_ACQ_P19Serial No
Test Engineer>	Xen
Date2	26/3/10

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	26.0	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	26.0	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	26.0	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	26.0	-40dB/25mV	-36dB/28mV	\checkmark

	Output		Simulation	Pass/Fai
	dB	Min	Max	
Ch1	-40.6	-42.5dB	-39.5dB	\checkmark
Ch2	-40.7	-42.5dB	-39.5dB	\checkmark
Ch3	-40.9	-42.5dB	-39.5dB	\checkmark
Ch4	-40.6	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.1	-53dB	-50dB	\checkmark
Ch2	-51.3	-53dB	-50dB	\checkmark
Ch3	-51.5	-53dB	-50dB	\checkmark
Ch4	-51.1	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-28.7	-30dB	-27dB	
Ch2	-28.8	-30dB	-27dB	\checkmark
Ch3	-29.0	-30dB	-27dB	\checkmark
Ch4	-28.6	-30dB	-27dB	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.5	-21dB	-18dB	\checkmark
Ch2	-19.5	-21dB	-18dB	\checkmark
Ch3	-19.5	-21dB	-18dB	\checkmark
Ch4	-19.5	-21dB	-18dB	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.3	-21dB	-18dB	\checkmark
Ch2	-19.3	-21dB	-18dB	\checkmark
Ch3	-19.3	-21dB	-18dB	\checkmark
Ch4	-19.6	-21dB	-18dB	\checkmark

Unit......T_ACQ_P19.....Serial No Test EngineerXen.... Date26/3/10.....

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-34.5	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-34.8	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-34.9	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-34.8	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-18.0	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.0	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.0	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.1	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Sim	Simulation		
		Min	Max		
Ch1	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark	
Ch2	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark	
Ch3	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark	
Ch4	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark	

1 kHz

	Output	Simu	Simulation		
		Min	Max		
Ch1	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark	
Ch2	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark	
Ch3	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark	
Ch4	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark	

5 kHz

	Output	Sim	Simulation	
		Min	Max	
Ch1	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1KHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Distortion Free?	Mode:
Ch1	3.3V	0.6V	
Ch2	3.3V	0.6V	
Ch3	3.3V	0.6V	
Ch4	3.3V	0.6V	

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	o/p	stable?	o/p	stable?		stable?	o/p	stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V		-22V	\checkmark
-1v	-4.5V		-4.5V	\checkmark	-4.5V		-4.5V	\checkmark
0v	0V		0V	\checkmark	0V		0V	\checkmark
1v	4.5V		4.5V	\checkmark	4.5V		4.5V	\checkmark
5v	22V		22V	\checkmark	22V		22V	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 A

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with by a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A

3. Inspection

Workmanship Inspect the general workmanship standard and comment:

J4 slightly lifted off the board.

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNA	L	DESCRIPTION To J1		To J1 PIN	OK?
1	PD1P		Photodiode	4+	1	\checkmark
2	PD2P		Photodiode	B+	2	\checkmark
3	PD3P		Photodiode	C+	3	\checkmark
4	PD4P		Photodiode D+ 4		\checkmark	
	5		0V			
6	PD1N		Photodiode A-		14	\checkmark
7	PD2N		Photodiode B-		15	\checkmark
8	PD3N		Photodiode C-		16	\checkmark
9	PD4N		Photodiode	D-	17	\checkmark

J5

PIN	SI	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	\checkmark
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	\checkmark
9	Im	on4N		21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11,12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1 + = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3 + = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the regulator output voltages, measured on a DVM with 4 or more digits.

Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.03V	\checkmark	1mV
+15v TP4	14.97V	\checkmark	1mV
-15v TP6	-14.89V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.
7. Relay Operation

Note: 37 way to 25 way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4			\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4		\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4			\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

Unit.....T_ACQ_P20....Serial No Test Engineer...Xen.... Date......29/3/10....

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	26.0	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	26.0	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	26.0	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	26.0	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.6	-42.5dB	-39.5dB	
Ch2	-40.6	-42.5dB	-39.5dB	
Ch3	-40.6	-42.5dB	-39.5dB	
Ch4	-40.7	-42.5dB	-39.5dB	

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.1	-53dB	-50dB	\checkmark
Ch2	-51.2	-53dB	-50dB	\checkmark
Ch3	-51.2	-53dB	-50dB	\checkmark
Ch4	-51.2	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-28.5	-30dB	-27dB	\checkmark
Ch2	-28.6	-30dB	-27dB	\checkmark
Ch3	-28.9	-30dB	-27dB	\checkmark
Ch4	-28.6	-30dB	-27dB	\checkmark

1 KHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.5	-21dB	-18dB	\checkmark
Ch2	-19.5	-21dB	-18dB	\checkmark
Ch3	-19.5	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 KHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.3	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.3	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

Unit.....T_ACQ_P20....Serial No Test Engineer...Xen.... Date......29/3/10....

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2, or use the dynamic signal analyzer.

1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-34.9	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-34.9	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-34.9	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-34.9	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-18.2	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.2	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.0	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.2	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Sim	Pass/Fail	
		Min	Max	
Ch1	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1KHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Distortion Free?	Mode:
Ch1	3.3V	0.6V	
Ch2	3.3V	0.6V	
Ch3	3.3V	0.6V	
Ch4	3.3V	0.6V	

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	o/p	stable?	o/p	stable?		stable?	o/p	stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V		-22V	
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V		-4.5V	
0v	0V	\checkmark	0V	\checkmark	0V		0V	
1v	4.5V	\checkmark	4.5V		4.5V		4.5V	
5v	22V	\checkmark	22V	\checkmark	22V		22V	

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 A

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with by a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A

3. Inspection

Workmanship Inspect the general workmanship standard and comment:

Board is slightly bowed.

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	DESCRIPTION To J1 PIN	
1	PD1P	Photodiode A+	1	
2	PD2P	Photodiode B+	2	
3	PD3P	Photodiode C+	3	
4	PD4P	Photodiode D+	Photodiode D+ 4	
	5	0V		
6	PD1N	Photodiode A-	14	
7	PD2N	Photodiode B-	15	
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	

J5

PIN	SI	GNAL			To J1 PIN	OK?
1	Im	on1P			5	\checkmark
2	Im	on2P			6	
3	Im	on3P				\checkmark
4	Im	on4P			8	\checkmark
		5	0V			
6	Im	on1N			18	\checkmark
7	Imon2N				19	\checkmark
8	Im	mon3N			20	\checkmark
9	Im	on4N			21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	
11	V- (TP2)	-17v Supply	
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11,12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1 + = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3 + = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the regulator output voltages, measured on a DVM with 4 or more digits.

Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.03V	\checkmark	1mV
+15v TP4	14.93V	\checkmark	1mV
-15v TP6	-15.02V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37 way to 25 way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4			\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4		\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4			\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel. Switch in the filters and test the response using the signal generator. Measure the frequency response of each channel using the dynamic signal analyser.

0.1Hz				
	Output	Sim	ulation	Pass/Fail
	dB	Min	Max	
Ch1	25mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	25mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	25mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	25mV	-40dB/25mV	-36dB/28mV	

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.6	-42.5dB	-39.5dB	\checkmark
Ch2	-40.6	-42.5dB	-39.5dB	\checkmark
Ch3	-40.7	-42.5dB	-39.5dB	\checkmark
Ch4	-40.7	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.2	-53dB	-50dB	\checkmark
Ch2	-51.1	-53dB	-50dB	\checkmark
Ch3	-51.3	-53dB	-50dB	\checkmark
Ch4	-51.2	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-28.8	-30dB	-27dB	\checkmark
Ch2	-28.7	-30dB	-27dB	\checkmark
Ch3	-28.7	-30dB	-27dB	\checkmark
Ch4	-28.8	-30dB	-27dB	\checkmark

1 KHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.4	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 KHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filter off and Acquisition mode on for each channel. Connect a 20 ohm load resistor each channel. Test the response using the signal generator. With a 1v rms input signal between TP1 and TP2, measure the output across the load resistor.

1Hz				
	Output	Simu	Simulation	
		Min	Max	
Ch1	-35.2	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	

10Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-18.6	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-5	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5	-6dB / 570mV	-4dB / 565mV	\checkmark

1 KHz

	Output	Simu	Simulation		
		Min	Max		
Ch1	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark	
Ch2	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark	
Ch3	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark	
Ch4	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark	

5 KHz

	Output	Sim	Simulation		
		Min	Max		
Ch1	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark	
Ch2	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark	
Ch3	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark	
Ch4	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark	

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1KHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Distortion Free?	Mode:
Ch1	3.3V	0.6V	
Ch2	3.3V	0.6V	
Ch3	3.3V	0.6V	
Ch4	3.3V	0.6V	

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	o/p	stable?	o/p	stable?		stable?	o/p	stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V	\checkmark	-22V	\checkmark
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	
0v	0V	\checkmark	0V	\checkmark	0V		0V	
1v	4.5V	\checkmark	4.5V	\sim	4.5V	\checkmark	4.5V	
5v	22V	\checkmark	22V	$\overline{\mathbf{v}}$	22V	\checkmark	22V	

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 A

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with by a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A

3. Inspection

Workmanship Inspect the general workmanship standard and comment:

Board is slightly bowed.

IC6 channel 1 alignment is poor.

IC6 and IC3 channel 3 alignment is poor.

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	
4	PD4P	Photodiode D+	Photodiode D+ 4	
	5	0V		
6	PD1N	Photodiode A-	14	
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	\checkmark

J5

PIN	SI	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	\checkmark
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	\checkmark
9	Im	on4N		21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	
10	V+ (TP1)	+17v Supply	
11	V- (TP2)	-17v Supply	
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11,12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1 + = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3 + = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit

Increase the voltages on the supplies to $\pm/-3V$.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the regulator output voltages, measured on a DVM with 4 or more digits.

Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.10V	\checkmark	1mV
+15v TP4	14.88V	\checkmark	1mV
-15v TP6	-15.04V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37 way to 25 way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4			\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4		\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4			\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel. Switch in the filters and test the response using the signal generator. Measure the frequency response of each channel using the dynamic signal analyser.

0.1Hz				
	Output	Sim	ulation	Pass/Fail
	dB	Min	Max	
Ch1	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	26mV	-40dB/25mV	-36dB/28mV	

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.7	-42.5dB	-39.5dB	
Ch2	-40.7	-42.5dB	-39.5dB	
Ch3	-40.6	-42.5dB	-39.5dB	
Ch4	-40.7	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.2	-53dB	-50dB	\checkmark
Ch2	-51.3	-53dB	-50dB	\checkmark
Ch3	-51.2	-53dB	-50dB	\checkmark
Ch4	-51.2	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-28.7	-30dB	-27dB	\checkmark
Ch2	-28.9	-30dB	-27dB	\checkmark
Ch3	-28.8	-30dB	-27dB	\checkmark
Ch4	-28.8	-30dB	-27dB	\checkmark

1 KHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.4	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 KHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filter off and Acquisition mode on for each channel. Connect a 20 ohm load resistor each channel. Test the response using the signal generator. With a 1v rms input signal between TP1 and TP2, measure the output across the load resistor.

1Hz				
	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	

10Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-5	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5	-6dB / 570mV	-4dB / 565mV	\checkmark

1 KHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 KHz

	Output	Sim	Pass/Fail	
		Min	Max	
Ch1	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1KHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Distortion Free?	Mode:
Ch1	3.3V	0.6V	
Ch2	3.3V	0.6V	
Ch3	3.3V	0.6V	
Ch4	3.3V	0.6V	

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	o/p	stable?	o/p	stable?	_	stable?	o/p	stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V	\checkmark	-22V	
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark
0v	0V		0V	\checkmark	0V	\checkmark	0V	
1v	4.5V		4.5V	\checkmark	4.5V	\checkmark	4.5V	
5v	22V		22V	\checkmark	22V	\checkmark	22V	

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 A

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability
Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with by a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A

3. Inspection

Workmanship Inspect the general workmanship standard and comment:

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	
4	PD4P	Photodiode D+	4	
	5	0V		
6	PD1N	Photodiode A-	14	
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	

J5

PIN	SI	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	\checkmark
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	\checkmark
9	Im	on4N		21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	
11	V- (TP2)	-17v Supply	
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11,12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1 + = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3 + = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit

Increase the voltages on the supplies to $\pm/-3V$.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the regulator output voltages, measured on a DVM with 4 or more digits.

Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.12V	\checkmark	1mV
+15v TP4	14.96V	\checkmark	1mV
-15v TP6	15.01V	\checkmark	5mV

All Outputs smooth DC, no oscillation? $\sqrt{}$

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37 way to 25 way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4			\checkmark

TEST RELAYS

Channel	Indicat	OK?	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4		\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicat	OK?	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4			\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel. Switch in the filters and test the response using the signal generator. Measure the frequency response of each channel using the dynamic signal analyser.

0.1Hz				
	Output	Sim	ulation	Pass/Fail
	dB	Min	Max	
Ch1	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	27mV	-40dB/25mV	-36dB/28mV	

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.7	-42.5dB	-39.5dB	\checkmark
Ch2	-40.7	-42.5dB	-39.5dB	\checkmark
Ch3	-40.7	-42.5dB	-39.5dB	\checkmark
Ch4	-40.7	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.3	-53dB	-50dB	\checkmark
Ch2	-51.3	-53dB	-50dB	\checkmark
Ch3	-51.2	-53dB	-50dB	\checkmark
Ch4	-51.3	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-28.8	-30dB	-27dB	\checkmark
Ch2	-28.6	-30dB	-27dB	\checkmark
Ch3	-28.9	-30dB	-27dB	\checkmark
Ch4	-28.9	-30dB	-27dB	\checkmark

1 KHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.4	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 KHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filter off and Acquisition mode on for each channel. Connect a 20 ohm load resistor each channel. Test the response using the signal generator. With a 1v rms input signal between TP1 and TP2, measure the output across the load resistor.

1Hz				
	Output	Simu	Ilation	Pass/Fail
		Min	Max	
Ch1	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-35.2	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-35.2	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	

10Hz

	Output	Simu	Ilation	Pass/Fail
		Min	Max	
Ch1	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.6	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.6	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-5	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5	-6dB / 570mV	-4dB / 565mV	\checkmark

1 KHz

	Output	Simu	Simulation	
		Min	Max	
Ch1	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 KHz

	Output	Sim	ulation	Pass/Fail
		Min	Max	
Ch1	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1KHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Distortion Free?	Mode:
Ch1	3.3V	0.6V	
Ch2	3.3V	0.6V	
Ch3	3.3V	0.6V	
Ch4	3.3V	0.6V	

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	o/p	stable?	o/p	stable?		stable?	o/p	stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V	\checkmark	-22V	\checkmark
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	
0v	0V	\checkmark	0V	\checkmark	0V		0V	
1v	4.5V	\checkmark	4.5V	\sim	4.5V	\checkmark	4.5V	
5v	22V	\checkmark	22V	$\overline{\mathbf{v}}$	22V	\checkmark	22V	

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 A

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with by a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A

3. Inspection

Workmanship Inspect the general workmanship standard and comment:

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	Photodiode C+ 3	
4	PD4P	Photodiode D+	4	
	5	0V		
6	PD1N	Photodiode A-	14	
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	

J5

PIN	SI	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	\checkmark
9	Im	on4N		21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	
11	V- (TP2)	-17v Supply	
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11,12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1 + = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3 + = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit

Increase the voltages on the supplies to $\pm/-3V$.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the regulator output voltages, measured on a DVM with 4 or more digits.

Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	11.99V	\checkmark	1mV
+15v TP4	14.91V	\checkmark	1mV
-15v TP6	-14.93V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37 way to 25 way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicat	or	OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4		\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4			\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel. Switch in the filters and test the response using the signal generator. Measure the frequency response of each channel using the dynamic signal analyser.

0.1Hz				
	Output	Sim	ulation	Pass/Fail
	dB	Min	Max	
Ch1	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	26mV	-40dB/25mV	-36dB/28mV	
Ch3	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	26mV	-40dB/25mV	-36dB/28mV	

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.6	-42.5dB	-39.5dB	\checkmark
Ch2	-40.6	-42.5dB	-39.5dB	\checkmark
Ch3	-40.7	-42.5dB	-39.5dB	\checkmark
Ch4	-40.6	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.0	-53dB	-50dB	\checkmark
Ch2	-51.2	-53dB	-50dB	\checkmark
Ch3	-51.2	-53dB	-50dB	\checkmark
Ch4	-51.1	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-28.7	-30dB	-27dB	\checkmark
Ch2	-29.1	-30dB	-27dB	\checkmark
Ch3	-28.8	-30dB	-27dB	\checkmark
Ch4	-28.6	-30dB	-27dB	\checkmark

1 KHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.4	-21dB	-18dB	\checkmark
Ch2	-19.5	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 KHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filter off and Acquisition mode on for each channel. Connect a 20 ohm load resistor each channel. Test the response using the signal generator. With a 1v rms input signal between TP1 and TP2, measure the output across the load resistor.

1Hz					
	Output	Simu	Simulation		
		Min	Max		
Ch1	-35.0	-36.5dB / 20mV	-33.5dB / 16mV		
Ch2	-35.1	-36.5dB / 20mV	-33.5dB / 16mV		
Ch3	-35.0	-36.5dB / 20mV	-33.5dB / 16mV		
Ch4	-35.1	-36.5dB / 20mV	-33.5dB / 16mV		

10Hz

	Output	Simu	Simulation		
		Min	Max		
Ch1	-18.3	-20dB / 122mV	-17dB / 118mV		
Ch2	-18.5	-20dB / 122mV	-17dB / 118mV		
Ch3	-18.4	-20dB / 122mV	-17dB / 118mV		
Ch4	-18.5	-20dB / 122mV	-17dB / 118mV		

100Hz

	Output	Simu	Simulation	
		Min	Max	
Ch1	-5.0	-6dB / 570mV	-4dB / 565mV	
Ch2	-5.0	-6dB / 570mV	-4dB / 565mV	
Ch3	-5.0	-6dB / 570mV	-4dB / 565mV	
Ch4	-5.0	-6dB / 570mV	-4dB / 565mV	

1 KHz

	Output	Simu	Simulation		
		Min	Max		
Ch1	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV		
Ch2	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV		
Ch3	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV		
Ch4	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV		

5 KHz

	Output	Sim	Simulation	
		Min	Max	
Ch1	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	
Ch2	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	
Ch3	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	
Ch4	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1KHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Distortion Free?	Mode:
Ch1	3.3V	0.6V	
Ch2	3.3V	0.6V	
Ch3	3.3V	0.6V	
Ch4	3.3V	0.6V	

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	o/p	stable?	o/p	stable?		stable?	o/p	stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V	\checkmark	-22V	\checkmark
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	
0v	0V	\checkmark	0V	\checkmark	0V		0V	
1v	4.5V	\checkmark	4.5V	\sim	4.5V	\checkmark	4.5V	
5v	22V	\checkmark	22V	$\overline{\mathbf{v}}$	22V	\checkmark	22V	

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A
Power supply	Digimess	BP3002	211259

3. Inspection

Workmanship Inspect the general workmanship standard and comment: $\boldsymbol{\checkmark}$

Board is slightly bowed.

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

J5

PIN	SI	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	\checkmark
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	\checkmark
9	Im	on4N		21	\checkmark

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11, 12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit Increase the voltages on the supplies to +/-3V. Determine that the supply polarities are correct on TP1 and TP2. If they are, increase input voltages to +/- 16.5v. Record the regulator output voltages, measured on a DVM with 4 or more

digits. Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.00V	\checkmark	1mV
+15v TP4	14.82V	\checkmark	1mV
-15v TP6	-15.06V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37- way to 25-way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	\checkmark

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark
9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	27mV	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.3	-42.5dB	-39.5dB	\checkmark
Ch2	-40.6	-42.5dB	-39.5dB	\checkmark
Ch3	-40.6	-42.5dB	-39.5dB	\checkmark
Ch4	-40.7	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-50.7	-53dB	-50dB	\checkmark
Ch2	-51.3	-53dB	-50dB	\checkmark
Ch3	-51.3	-53dB	-50dB	\checkmark
Ch4	-51.2	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-28.7	-30dB	-27dB	\checkmark
Ch2	-29.1	-30dB	-27dB	\checkmark
Ch3	-29.2	-30dB	-27dB	\checkmark
Ch4	-29.0	-30dB	-27dB	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Мах	
Ch1	-19.4	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.6	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1 kHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	3.3V	0.6V
Ch2	3.3V	0.6V
Ch3	3.3V	0.6V
Ch4	3.3V	0.6V

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	o/p	stable?	o/p	stable?		stable?	o/p	stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V	\checkmark	-22V	
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark
0v	0V	\checkmark	0V	\checkmark	0V	\checkmark	0V	
1v	4.5V	\checkmark	4.5V	\checkmark	4.5V	\checkmark	4.5V	
5v	22V	\checkmark	22V	\checkmark	22V	\checkmark	22V	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A
Power supply	Digimess	BP3002	211259

3. Inspection

Workmanship Inspect the general workmanship standard and comment: $\boldsymbol{\sqrt{}}$

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	

J5

PIN	SI	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	\checkmark
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	\checkmark
9	Im	on4N		21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11, 12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the regulator output voltages, measured on a DVM with 4 or more digits.

Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.07V	\checkmark	1mV
+15v TP4	14.91V	\checkmark	1mV
-15v TP6	-14.95V	\checkmark	5mV

All Outputs smooth DC, no oscillation? \checkmark

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37- way to 25-way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	\checkmark

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	25mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	26mV	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.6	-42.5dB	-39.5dB	
Ch2	-40.6	-42.5dB	-39.5dB	
Ch3	-40.6	-42.5dB	-39.5dB	
Ch4	-40.5	-42.5dB	-39.5dB	

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.4	-53dB	-50dB	\checkmark
Ch2	-51.3	-53dB	-50dB	\checkmark
Ch3	-51.4	-53dB	-50dB	\checkmark
Ch4	-50.9	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-28.9	-30dB	-27dB	\checkmark
Ch2	-28.7	-30dB	-27dB	\checkmark
Ch3	-28.9	-30dB	-27dB	\checkmark
Ch4	-28.8	-30dB	-27dB	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Мах	
Ch1	-19.4	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.4	-20dB / 122mV	-17dB / 118mV	

100Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1 kHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	3.3V	0.6V
Ch2	3.3V	0.6V
Ch3	3.3V	0.6V
Ch4	3.3V	0.6V

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	o/p	stable?	o/p	stable?		stable?	o/p	stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V	\checkmark	-22V	
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark
0v	0V	\checkmark	0V	\checkmark	0V	\checkmark	0V	
1v	4.5V	\checkmark	4.5V	\checkmark	4.5V	\checkmark	4.5V	
5v	22V	\checkmark	22V	\checkmark	22V	\checkmark	22V	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A
Power supply	Digimess	BP3002	211259

3. Inspection

Workmanship Inspect the general workmanship standard and comment: $\boldsymbol{\sqrt{}}$

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	Photodiode C+ 3	
4	PD4P	Photodiode D+	otodiode D+ 4	
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	

J5

PIN	SI	GNAL			To J1 PIN	OK?
1	Im	on1P			5	\checkmark
2	Im	on2P			6	\checkmark
3	Im	on3P			7	\checkmark
4	Im	on4P			8	\checkmark
		5	0V			
6	Im	on1N			18	\checkmark
7	Im	on2N			19	\checkmark
8	Im	on3N			20	\checkmark
9	Im	on4N			21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11, 12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit Increase the voltages on the supplies to +/-3V. Determine that the supply polarities are correct on TP1 and TP2. If they are, increase input voltages to +/- 16.5v. Record the regulator output voltages, measured on a DVM with 4 or more

digits. Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.05V	\checkmark	1mV
+15v TP4	14.90V	\checkmark	1mV
-15v TP6	-14.95V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37- way to 25-way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	\checkmark

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	26mV	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.5	-42.5dB	-39.5dB	\checkmark
Ch2	-40.6	-42.5dB	-39.5dB	\checkmark
Ch3	-40.6	-42.5dB	-39.5dB	\checkmark
Ch4	-40.6	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.0	-53dB	-50dB	\checkmark
Ch2	-51.3	-53dB	-50dB	\checkmark
Ch3	-51.2	-53dB	-50dB	\checkmark
Ch4	-51.2	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-28.7	-30dB	-27dB	\checkmark
Ch2	-28.8	-30dB	-27dB	\checkmark
Ch3	-28.9	-30dB	-27dB	\checkmark
Ch4	-28.7	-30dB	-27dB	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.4	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

1Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-5	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1 kHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	3.3V	0.6V
Ch2	3.3V	0.6V
Ch3	3.3V	0.6V
Ch4	3.3V	0.6V

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	o/p	stable?	o/p	stable?		stable?	o/p	stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V	\checkmark	-22V	
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark
0v	0V	\checkmark	0V	\checkmark	0V	\checkmark	0V	
1v	4.5V	\checkmark	4.5V	\checkmark	4.5V	\checkmark	4.5V	
5v	22V	\checkmark	22V	\checkmark	22V	\checkmark	22V	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm Unit......T_ACQ_P28...Serial No Test Engineer ...Simon Pyatt..... Date6/10/10.

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A
Power supply	Digimess	BP3002	211259
3. Inspection

Workmanship Inspect the general workmanship standard and comment: $\boldsymbol{\checkmark}$

Replaced the relay K4 on CH4.

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	Photodiode D+ 4	
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	

J5

PIN	SI	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	\checkmark
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	\checkmark
9	Im	on4N		21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11, 12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit Increase the voltages on the supplies to +/-3V. Determine that the supply polarities are correct on TP1 and TP2. If they are, increase input voltages to +/- 16.5v. Record the regulator output voltages, measured on a DVM with 4 or more

digits. Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.08V	\checkmark	1mV
+15v TP4	14.98V	\checkmark	1mV
-15v TP6	-14.94V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37- way to 25-way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.20V	Pin 1 to Pin 2	2.20V	\checkmark
2	2.20V	Pin 5 to Pin 6	2.20V	\checkmark
3	2.20V	Pin 9 to Pin 10	2.20V	\checkmark
4	2.20V	Pin 13 to Pin 14	2.20V	\checkmark

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	26mV	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simu	ulation	Pass/Fail
	dB	Min	Max	
Ch1	-40.6	-42.5dB	-39.5dB	\checkmark
Ch2	-40.6	-42.5dB	-39.5dB	\checkmark
Ch3	-40.5	-42.5dB	-39.5dB	\checkmark
Ch4	-40.7	-42.5dB	-39.5dB	

10Hz

	Output	Simu	ulation	Pass/Fail
	dB	Min	Max	
Ch1	-51.1	-53dB	-50dB	\checkmark
Ch2	-51.2	-53dB	-50dB	\checkmark
Ch3	-51.1	-53dB	-50dB	\checkmark
Ch4	-51.2	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-28.6	-30dB	-27dB	\checkmark
Ch2	-28.7	-30dB	-27dB	\checkmark
Ch3	-28.8	-30dB	-27dB	\checkmark
Ch4	-28.5	-30dB	-27dB	\checkmark

1 kHz

	Output	Sim	ulation	Pass/Fail
	dB	Min	Max	
Ch1	-19.4	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.5	-21dB	-18dB	\checkmark

5 kHz

	Output	Sim	ulation	Pass/Fail
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.3	-21dB	-18dB	\checkmark

Unit......T_ACQ_P28....Serial No Test EngineerXen..... Date6/10/10.....

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

1	Ηz
---	----

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-34.9	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-34.9	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-34.9	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-34.9	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-18.2	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.1	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.1	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.1	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simu	Simulation	
		Min	Max	
Ch1	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simu	Simulation	
		Min	Max	
Ch1	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1 kHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	3.3V	0.6V
Ch2	3.3V	0.6V
Ch3	3.3V	0.6V
Ch4	3.3V	0.6V

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	o/p	stable?	o/p	stable?	_	stable?	o/p	stable?
-5v	-22.5V	\checkmark	-22.5V	\checkmark	-22.5V	\checkmark	-22.5V	
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark
0v	0V	\checkmark	0V	\checkmark	0V	\checkmark	0V	\checkmark
1v	4.5V	\checkmark	4.5V	\checkmark	4.5V	\checkmark	4.5V	\checkmark
5v	-22.5	\checkmark	22.5V	\checkmark	22.5V	\checkmark	22.5V	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A
Power supply	Digimess	BP3002	211259

3. Inspection

Workmanship Inspect the general workmanship standard and comment: $\boldsymbol{\checkmark}$

Board is slightly bowed.

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	

J5

PIN	SI	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	\checkmark
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	\checkmark
9	Im	on4N		21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11, 12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit Increase the voltages on the supplies to +/-3V. Determine that the supply polarities are correct on TP1 and TP2. If they are, increase input voltages to +/- 16.5v. Record the regulator output voltages, measured on a DVM with 4 or more

digits. Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.00V	\checkmark	1mV
+15v TP4	14.87V	\checkmark	1mV
-15v TP6	15.03V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.27A
-16.5v	0.22A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37- way to 25-way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	\checkmark

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	27mV	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.6	-42.5dB	-39.5dB	
Ch2	-40.6	-42.5dB	-39.5dB	
Ch3	-40.6	-42.5dB	-39.5dB	
Ch4	-40.6	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.2	-53dB	-50dB	\checkmark
Ch2	-51.0	-53dB	-50dB	\checkmark
Ch3	-51.1	-53dB	-50dB	\checkmark
Ch4	-51.2	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-28.9	-30dB	-27dB	\checkmark
Ch2	-28.6	-30dB	-27dB	\checkmark
Ch3	-28.6	-30dB	-27dB	\checkmark
Ch4	-28.9	-30dB	-27dB	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Мах	
Ch1	-19.4	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

1Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.3	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-5	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1 kHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	3.3V	0.6V
Ch2	3.3V	0.6V
Ch3	3.3V	0.6V
Ch4	3.3V	0.6V

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	o/p	stable?	o/p	stable?		stable?	o/p	stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V	\checkmark	-22V	
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark
0v	0V	\checkmark	0V	\checkmark	0V	\checkmark	0V	
1v	4.5V	\checkmark	4.5V	\checkmark	4.5V	\checkmark	4.5V	
5v	22V	\checkmark	22V	\checkmark	22V	\checkmark	22V	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A
Power supply	Digimess	BP3002	211259

3. Inspection

Workmanship Inspect the general workmanship standard and comment: $\boldsymbol{\sqrt{}}$

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C- 16		\checkmark
9	PD4N	Photodiode D-	17	\checkmark

J5

PIN	SI	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	\checkmark
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	\checkmark
9	Im	on4N		21	\checkmark

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11, 12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit Increase the voltages on the supplies to +/-3V. Determine that the supply polarities are correct on TP1 and TP2. If they are, increase input voltages to +/- 16.5v. Record the regulator output voltages, measured on a DVM with 4 or more

digits. Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.04V	\checkmark	1mV
+15v TP4	14.90V	\checkmark	1mV
-15v TP6	-15.02V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37- way to 25-way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	\checkmark

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	27mV	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.5	-42.5dB	-39.5dB	\checkmark
Ch2	-40.6	-42.5dB	-39.5dB	\checkmark
Ch3	-40.6	-42.5dB	-39.5dB	\checkmark
Ch4	-40.7	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.1	-53dB	-50dB	\checkmark
Ch2	-51.2	-53dB	-50dB	\checkmark
Ch3	-51.0	-53dB	-50dB	\checkmark
Ch4	-51.2	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-29.0	-30dB	-27dB	\checkmark
Ch2	-28.9	-30dB	-27dB	\checkmark
Ch3	-28.6	-30dB	-27dB	\checkmark
Ch4	-28.6	-30dB	-27dB	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Мах	
Ch1	-19.4	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

1Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-18.3	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1 kHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	3.3V	0.6V
Ch2	3.3V	0.6V
Ch3	3.3V	0.6V
Ch4	3.3V	0.6V

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	o/p	stable?	o/p	stable?		stable?	o/p	stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V		-22V	\checkmark
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark
0v	0V	\checkmark	0V	\checkmark	0V		0V	\checkmark
1v	4.5V	\checkmark	4.5V	\checkmark	4.5V	\checkmark	4.5V	\checkmark
5v	22V	\checkmark	22V	\checkmark	22V	\checkmark	22V	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A
Power supply	Digimess	BP3002	211259

3. Inspection

Workmanship Inspect the general workmanship standard and comment: $\boldsymbol{\sqrt{}}$

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

J5

PIN	SI	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	\checkmark
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	\checkmark
9	Im	on4N		21	\checkmark

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11, 12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit Increase the voltages on the supplies to +/-3V. Determine that the supply polarities are correct on TP1 and TP2. If they are, increase input voltages to +/- 16.5v. Record the regulator output voltages, measured on a DVM with 4 or more

digits. Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.01V	\checkmark	1mV
+15v TP4	14.91V	\checkmark	1mV
-15v TP6	-15.07V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37- way to 25-way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	\checkmark

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	27mV	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.6	-42.5dB	-39.5dB	\checkmark
Ch2	-40.6	-42.5dB	-39.5dB	\checkmark
Ch3	-40.5	-42.5dB	-39.5dB	\checkmark
Ch4	-40.5	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.2	-53dB	-50dB	\checkmark
Ch2	-51.3	-53dB	-50dB	\checkmark
Ch3	-51.2	-53dB	-50dB	\checkmark
Ch4	-51.1	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-28.7	-30dB	-27dB	\checkmark
Ch2	-29.3	-30dB	-27dB	\checkmark
Ch3	-29.1	-30dB	-27dB	\checkmark
Ch4	-28.7	-30dB	-27dB	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Мах	
Ch1	-19.4	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

1Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1 kHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	3.3V	0.6V
Ch2	3.3V	0.6V
Ch3	3.3V	0.6V
Ch4	3.3V	0.6V

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	o/p	stable?	o/p	stable?		stable?	o/p	stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V	\checkmark	-22V	
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	
0v	0V	\checkmark	0V	\checkmark	0V	\checkmark	0V	
1v	4.5V	\checkmark	4.5V		4.5V	\checkmark	4.5V	\checkmark
5v	22V	\checkmark	22V		22V	\checkmark	22V	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A
Power supply	Digimess	BP3002	211259

3. Inspection

Workmanship Inspect the general workmanship standard and comment: $\boldsymbol{\sqrt{}}$

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	

J5

PIN	SI	GNAL			To J1 PIN	OK?
1	Im	on1P			5	\checkmark
2	Im	on2P			6	\checkmark
3	Im	on3P			7	\checkmark
4	Im	on4P			8	\checkmark
		5	0V			
6	Im	on1N			18	\checkmark
7	Im	on2N			19	\checkmark
8	Im	on3N			20	\checkmark
9	Im	on4N			21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11, 12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit Increase the voltages on the supplies to +/-3V. Determine that the supply polarities are correct on TP1 and TP2. If they are, increase input voltages to +/- 16.5v. Record the regulator output voltages, measured on a DVM with 4 or more

digits. Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.07V	\checkmark	1mV
+15v TP4	14.93V	\checkmark	1mV
-15v TP6	-14.99V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37- way to 25-way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	\checkmark

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	27mV	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.6	-42.5dB	-39.5dB	\checkmark
Ch2	-40.6	-42.5dB	-39.5dB	\checkmark
Ch3	-40.6	-42.5dB	-39.5dB	\checkmark
Ch4	-40.7	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.1	-53dB	-50dB	\checkmark
Ch2	-51.1	-53dB	-50dB	\checkmark
Ch3	-51.2	-53dB	-50dB	\checkmark
Ch4	-51.3	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-28.6	-30dB	-27dB	\checkmark
Ch2	-28.7	-30dB	-27dB	\checkmark
Ch3	-28.7	-30dB	-27dB	\checkmark
Ch4	-28.6	-30dB	-27dB	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Мах	
Ch1	-19.4	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

1Hz	
-----	--

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-5	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1 kHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	3.3V	0.6V
Ch2	3.3V	0.6V
Ch3	3.3V	0.6V
Ch4	3.3V	0.6V

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	o/p	stable?	o/p	stable?		stable?	o/p	stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V	\checkmark	-22V	
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	4.5V	\checkmark
0v	0V	\checkmark	0V	\checkmark	0V	\checkmark	0V	
1v	4.5V	\checkmark	4.5V	\checkmark	4.5V	\checkmark	4.5V	
5v	22V	\checkmark	22V	\checkmark	22V	\checkmark	22V	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A
Power supply	Digimess	BP3002	211259

3. Inspection

Workmanship Inspect the general workmanship standard and comment: $\boldsymbol{\checkmark}$

Board is slightly bowed.

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	

J5

PIN	SI	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	\checkmark
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	
9	Im	on4N		21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark
5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11, 12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit Increase the voltages on the supplies to +/-3V. Determine that the supply polarities are correct on TP1 and TP2. If they are, increase input voltages to +/- 16.5v. Record the regulator output voltages, measured on a DVM with 4 or more

digits. Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.06V	\checkmark	1mV
+15v TP4	14.95V	\checkmark	1mV
-15v TP6	-15.03V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37- way to 25-way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indie	Indicator	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	\checkmark

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	26mV	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.6	-42.5dB	-39.5dB	\checkmark
Ch2	-40.5	-42.5dB	-39.5dB	\checkmark
Ch3	-40.6	-42.5dB	-39.5dB	\checkmark
Ch4	-40.7	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.2	-53dB	-50dB	\checkmark
Ch2	-51.2	-53dB	-50dB	\checkmark
Ch3	-51.1	-53dB	-50dB	\checkmark
Ch4	-51.3	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-28.9	-30dB	-27dB	\checkmark
Ch2	-29.0	-30dB	-27dB	\checkmark
Ch3	-29.0	-30dB	-27dB	\checkmark
Ch4	-29.0	-30dB	-27dB	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Мах	
Ch1	-19.4	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

1Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-5	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1 kHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	3.3V	0.6V
Ch2	3.3V	0.6V
Ch3	3.3V	0.6V
Ch4	3.3V	0.6V

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	o/p	stable?	o/p	stable?		stable?	o/p	stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V		-22V	\checkmark
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark
0v	0V	\checkmark	0V	\checkmark	0V		0V	\checkmark
1v	4.5V	\checkmark	4.5V	\checkmark	4.5V	\checkmark	4.5V	\checkmark
5v	22V	\checkmark	22V	\checkmark	22V	\checkmark	22V	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A
Power supply	Digimess	BP3002	211259

3. Inspection

Workmanship Inspect the general workmanship standard and comment: $\boldsymbol{\sqrt{}}$

Board is bowed.

Small scratches on board around Ch 3 area.

DS1 and DS2 positioning poor.

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+ 3		\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	Photodiode B- 15	
8	PD3N	Photodiode C-	diode C- 16	
9	PD4N	Photodiode D-	17	\checkmark

J5

PIN	SI	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	\checkmark
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	\checkmark
9	Im	on4N		21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11, 12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit Increase the voltages on the supplies to +/-3V. Determine that the supply polarities are correct on TP1 and TP2. If they are, increase input voltages to +/- 16.5v. Record the regulator output voltages, measured on a DVM with 4 or more

digits. Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.05V	\checkmark	1mV
+15v TP4	14.76V	\checkmark	1mV
-15v TP6	-15.00V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37- way to 25-way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4		\checkmark	\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	\checkmark

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	26mV	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.6	-42.5dB	-39.5dB	\checkmark
Ch2	-40.6	-42.5dB	-39.5dB	\checkmark
Ch3	-40.6	-42.5dB	-39.5dB	\checkmark
Ch4	-40.5	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simu	Pass/Fail	
	dB	Min	Max	
Ch1	-51.2	-53dB	-50dB	\checkmark
Ch2	-51.3	-53dB	-50dB	\checkmark
Ch3	-51.3	-53dB	-50dB	\checkmark
Ch4	-51.1	-53dB	-50dB	\checkmark

100Hz

	Output	Simu	Pass/Fail	
	dB	Min	Max	
Ch1	-29.2	-30dB	-27dB	\checkmark
Ch2	-29.2	-30dB	-27dB	\checkmark
Ch3	-29.4	-30dB	-27dB	\checkmark
Ch4	-28.9	-30dB	-27dB	\checkmark

1 kHz

	Output	Sim	Pass/Fail	
	dB	Min	Мах	
Ch1	-19.4	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 kHz

	Output	Sim	Pass/Fail	
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

1Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-18.3	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.3	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.3	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.3	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simu	Pass/Fail	
		Min Max		
Ch1	-5	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-4.9	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1 kHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	3.3V	0.6V
Ch2	3.3V	0.6V
Ch3	3.3V	0.6V
Ch4	3.3V	0.6V

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable?	Ch2 o/p	Ch2 stable?	Ch3 o/p	Ch3 stable?	Ch4 o/p	Ch4 stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V	\checkmark	-22V	
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark
0v	0V	\checkmark	0V	\checkmark	0V	\checkmark	0V	\checkmark
1v	4.5V	\checkmark	4.5V	\checkmark	4.5V	\checkmark	4.5V	\checkmark
5v	22V	\checkmark	22V	\checkmark	22V	\checkmark	22V	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A
Power supply	Digimess	BP3002	211259

3. Inspection

Workmanship Inspect the general workmanship standard and comment: $\boldsymbol{\checkmark}$

Board is very bowed.

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

J5

PIN	SI	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	\checkmark
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	\checkmark
9	Im	on4N		21	\checkmark

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11, 12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit Increase the voltages on the supplies to +/-3V. Determine that the supply polarities are correct on TP1 and TP2. If they are, increase input voltages to +/- 16.5v. Record the regulator output voltages, measured on a DVM with 4 or more

digits. Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.02V	\checkmark	1mV
+15v TP4	14.94V	\checkmark	1mV
-15v TP6	-15.06V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current	
+16.5v	0.28A	
-16.5v	0.23A	

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37- way to 25-way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	\checkmark

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	27mV	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.6	-42.5dB	-39.5dB	\checkmark
Ch2	-40.6	-42.5dB	-39.5dB	\checkmark
Ch3	-40.6	-42.5dB	-39.5dB	\checkmark
Ch4	-40.6	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.3	-53dB	-50dB	\checkmark
Ch2	-51.2	-53dB	-50dB	\checkmark
Ch3	-51.2	-53dB	-50dB	\checkmark
Ch4	-51.2	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-29.2	-30dB	-27dB	\checkmark
Ch2	-28.8	-30dB	-27dB	\checkmark
Ch3	-28.7	-30dB	-27dB	\checkmark
Ch4	-28.5	-30dB	-27dB	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.4	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

1Hz	
-----	--

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-34.9	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-18.2	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.3	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.3	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.3	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1 kHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	3.3V	0.6V
Ch2	3.3V	0.6V
Ch3	3.3V	0.6V
Ch4	3.3V	0.6V

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	o/p	stable?	o/p	stable?		stable?	o/p	stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V		-22V	\checkmark
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark
0v	0V	\checkmark	0V	\checkmark	0V		0V	\checkmark
1v	4.5V	\checkmark	4.5V	\checkmark	4.5V	\checkmark	4.5V	\checkmark
5v	22V	\checkmark	22V	\checkmark	22V	\checkmark	22V	\checkmark
LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A
Power supply	Digimess	BP3002	211259

3. Inspection

Workmanship Inspect the general workmanship standard and comment: $\boldsymbol{\sqrt{}}$

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	

J5

PIN	SI	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	\checkmark
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	\checkmark
9	Im	on4N		21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11, 12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit Increase the voltages on the supplies to +/-3V. Determine that the supply polarities are correct on TP1 and TP2. If they are, increase input voltages to +/- 16.5v. Record the regulator output voltages, measured on a DVM with 4 or more

digits. Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.04V	\checkmark	1mV
+15v TP4	14.96V	\checkmark	1mV
-15v TP6	-15.09V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37- way to 25-way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	\checkmark

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	27mV	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.6	-42.5dB	-39.5dB	\checkmark
Ch2	-40.6	-42.5dB	-39.5dB	\checkmark
Ch3	-40.6	-42.5dB	-39.5dB	\checkmark
Ch4	-40.6	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.0	-53dB	-50dB	\checkmark
Ch2	-51.1	-53dB	-50dB	\checkmark
Ch3	-51.2	-53dB	-50dB	\checkmark
Ch4	-51.1	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-28.6	-30dB	-27dB	\checkmark
Ch2	-28.6	-30dB	-27dB	\checkmark
Ch3	-28.8	-30dB	-27dB	\checkmark
Ch4	-28.6	-30dB	-27dB	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Мах	
Ch1	-19.4	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

1Hz	
-----	--

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-34.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.4	-20dB / 122mV	-17dB / 118mV	

100Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-4.9	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1 kHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	3.3V	0.6V
Ch2	3.3V	0.6V
Ch3	3.3V	0.6V
Ch4	3.3V	0.6V

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	o/p	stable?	o/p	stable?		stable?	o/p	stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V		-22V	\checkmark
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark
0v	0V	\checkmark	0V	\checkmark	0V		0V	\checkmark
1v	4.5V	\checkmark	4.5V	\checkmark	4.5V	\checkmark	4.5V	\checkmark
5v	22V	\checkmark	22V	\checkmark	22V	\checkmark	22V	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A
Power supply	Digimess	BP3002	211259

3. Inspection

Workmanship Inspect the general workmanship standard and comment: $\boldsymbol{\sqrt{}}$

IC4 Channel 2 was replaced. Original was mounted upside down.

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	

J5

PIN	SI	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	\checkmark
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	\checkmark
9	Im	on4N		21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11, 12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit Increase the voltages on the supplies to +/-3V. Determine that the supply polarities are correct on TP1 and TP2. If they are, increase input voltages to +/- 16.5v. Record the regulator output voltages, measured on a DVM with 4 or more

digits. Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.05V	\checkmark	1mV
+15v TP4	14.92V	\checkmark	1mV
-15v TP6	-14.95V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37- way to 25-way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4		\checkmark	\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	\checkmark

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	27mV	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.6	-42.5dB	-39.5dB	\checkmark
Ch2	-40.5	-42.5dB	-39.5dB	\checkmark
Ch3	-40.5	-42.5dB	-39.5dB	\checkmark
Ch4	-40.6	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.2	-53dB	-50dB	\checkmark
Ch2	-51.0	-53dB	-50dB	\checkmark
Ch3	-51.1	-53dB	-50dB	\checkmark
Ch4	-51.3	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-28.8	-30dB	-27dB	\checkmark
Ch2	-28.6	-30dB	-27dB	\checkmark
Ch3	-28.7	-30dB	-27dB	\checkmark
Ch4	-28.9	-30dB	-27dB	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Мах	
Ch1	-19.4	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-5	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1 kHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	3.3V	0.6V
Ch2	3.3V	0.6V
Ch3	3.3V	0.6V
Ch4	3.3V	0.6V

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	o/p	stable?	o/p	stable?		stable?	o/p	stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V	\checkmark	-22V	
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark
0v	0V	\checkmark	0V	\checkmark	0V	\checkmark	0V	
1v	4.5V	\checkmark	4.5V	\checkmark	4.5V	\checkmark	4.5V	
5v	22V	\checkmark	22V	\checkmark	22V	\checkmark	22V	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A
Power supply	Digimess	BP3002	211259

3. Inspection

Workmanship Inspect the general workmanship standard and comment: $\boldsymbol{\sqrt{}}$

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	Photodiode D+ 4	
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	

J5

PIN	SI	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	\checkmark
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	
9	Im	on4N		21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11, 12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit Increase the voltages on the supplies to +/-3V. Determine that the supply polarities are correct on TP1 and TP2. If they are, increase input voltages to +/- 16.5v. Record the regulator output voltages, measured on a DVM with 4 or more

digits. Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.10V	\checkmark	1mV
+15v TP4	14.81V	\checkmark	1mV
-15v TP6	-15.08V	\checkmark	1mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.
7. Relay Operation

Note: 37- way to 25-way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	\checkmark

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	27mV	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.6	-42.5dB	-39.5dB	\checkmark
Ch2	-40.5	-42.5dB	-39.5dB	\checkmark
Ch3	-40.6	-42.5dB	-39.5dB	\checkmark
Ch4	-40.5	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.2	-53dB	-50dB	\checkmark
Ch2	-51.2	-53dB	-50dB	\checkmark
Ch3	-51.2	-53dB	-50dB	\checkmark
Ch4	-51.2	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-29.2	-30dB	-27dB	\checkmark
Ch2	-29.2	-30dB	-27dB	\checkmark
Ch3	-28.7	-30dB	-27dB	\checkmark
Ch4	-29.2	-30dB	-27dB	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Мах	
Ch1	-19.4	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

	Output	Simu	Simulation		
		Min	Max		
Ch1	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark	
Ch2	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark	
Ch3	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark	
Ch4	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark	

10Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.3	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-5	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1 kHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	3.3V	0.6V
Ch2	3.3V	0.6V
Ch3	3.3V	0.6V
Ch4	3.3V	0.6V

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	o/p	stable?	o/p	stable?		stable?	o/p	stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V		-22V	\checkmark
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark
0v	0V	\checkmark	0V	\checkmark	0V		0V	\checkmark
1v	4.5V	\checkmark	4.5V	\checkmark	4.5V	\checkmark	4.5V	\checkmark
5v	22V	\checkmark	22V	\checkmark	22V	\checkmark	22V	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A
Power supply	Digimess	BP3002	211259

3. Inspection

Workmanship Inspect the general workmanship standard and comment: $\boldsymbol{\sqrt{}}$

Board is slightly bowed.

J7 slightly lifted off the board.

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	

J5

PIN	SI	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	\checkmark
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	\checkmark
9	Im	on4N		21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11, 12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit Increase the voltages on the supplies to +/-3V. Determine that the supply polarities are correct on TP1 and TP2. If they are, increase input voltages to +/- 16.5v. Record the regulator output voltages, measured on a DVM with 4 or more

digits. Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.05V	\checkmark	1mV
+15v TP4	14.82V	\checkmark	1mV
-15v TP6	-14.96V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37- way to 25-way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	\checkmark

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	26mV	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.7	-42.5dB	-39.5dB	\checkmark
Ch2	-40.5	-42.5dB	-39.5dB	\checkmark
Ch3	-40.6	-42.5dB	-39.5dB	\checkmark
Ch4	-40.6	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.2	-53dB	-50dB	\checkmark
Ch2	-51.1	-53dB	-50dB	\checkmark
Ch3	-51.2	-53dB	-50dB	\checkmark
Ch4	-51.1	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-28.6	-30dB	-27dB	\checkmark
Ch2	-28.6	-30dB	-27dB	\checkmark
Ch3	-29.1	-30dB	-27dB	\checkmark
Ch4	-28.7	-30dB	-27dB	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Мах	
Ch1	-19.4	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 kHz

	Output	Sim	Pass/Fail	
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1 kHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	3.3V	0.6V
Ch2	3.3V	0.6V
Ch3	3.3V	0.6V
Ch4	3.3V	0.6V

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	o/p	stable?	o/p	stable?		stable?	o/p	stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V	\checkmark	-22V	
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark
0v	0V	\checkmark	0V	\checkmark	0V	\checkmark	0V	
1v	4.5V	\checkmark	4.5V	\checkmark	4.5V	\checkmark	4.5V	
5v	22V	\checkmark	22V	\checkmark	22V	\checkmark	22V	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A
Power supply	Digimess	BP3002	211259

3. Inspection

Workmanship Inspect the general workmanship standard and comment: $\boldsymbol{\sqrt{}}$

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	DESCRIPTION To J1 PIN	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C- 16		
9	PD4N	Photodiode D-	17	

J5

PIN	SI	GNAL			To J1 PIN	OK?
1	Im	on1P			5	\checkmark
2	Im	on2P			6	\checkmark
3	Im	on3P			7	\checkmark
4	Im	on4P	8		\checkmark	
		5	0V			
6	Im	on1N			18	\checkmark
7	Im	on2N			19	\checkmark
8	Im	on3N	20		20	\checkmark
9	Im	on4N			21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11, 12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit Increase the voltages on the supplies to +/-3V. Determine that the supply polarities are correct on TP1 and TP2. If they are, increase input voltages to +/- 16.5v. Record the regulator output voltages, measured on a DVM with 4 or more

digits. Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.09V	\checkmark	1mV
+15v TP4	14.97V	\checkmark	1mV
-15v TP6	-14.88V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current	
+16.5v	0.28A	
-16.5v	0.23A	

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37- way to 25-way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	\checkmark

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	26mV	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.6	-42.5dB	-39.5dB	\checkmark
Ch2	-40.6	-42.5dB	-39.5dB	
Ch3	-40.7	-42.5dB	-39.5dB	\checkmark
Ch4	-40.6	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.2	-53dB	-50dB	\checkmark
Ch2	-51.1	-53dB	-50dB	\checkmark
Ch3	-51.2	-53dB	-50dB	\checkmark
Ch4	-51.2	-53dB	-50dB	\checkmark

100Hz

	Output	Sim	Simulation		
	dB	Min	Min Max		
Ch1	-29.0	-30dB	-27dB	\checkmark	
Ch2	-28.6	-30dB	-27dB	\checkmark	
Ch3	-28.5	-30dB	-27dB	\checkmark	
Ch4	-28.6	-30dB	-27dB	\checkmark	

1 kHz

	Output	Sim	Pass/Fail	
	dB	Min	Мах	
Ch1	-19.4	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 kHz

	Output	Sim	Pass/Fail	
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

1Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1 kHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	3.3V	0.6V
Ch2	3.3V	0.6V
Ch3	3.3V	0.6V
Ch4	3.3V	0.6V

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	o/p	stable?	o/p	stable?		stable?	o/p	stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V		-22V	\checkmark
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark
0v	0V	\checkmark	0V	\checkmark	0V		0V	\checkmark
1v	4.5V	\checkmark	4.5V	\checkmark	4.5V	\checkmark	4.5V	\checkmark
5v	22V	\checkmark	22V	\checkmark	22V	\checkmark	22V	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability
Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A
Power supply	Digimess	BP3002	211259

3. Inspection

Workmanship Inspect the general workmanship standard and comment: $\boldsymbol{\checkmark}$

Board is bowed.

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	

J5

PIN	SI	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	\checkmark
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	\checkmark
9	Im	on4N		21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11, 12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit Increase the voltages on the supplies to +/-3V. Determine that the supply polarities are correct on TP1 and TP2. If they are, increase input voltages to +/- 16.5v. Record the regulator output voltages, measured on a DVM with 4 or more

digits. Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.00V	\checkmark	1mV
+15v TP4	14.92V	\checkmark	1mV
-15v TP6	-14.93V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37- way to 25-way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	\checkmark

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	26mV	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.5	-42.5dB	-39.5dB	\checkmark
Ch2	-40.7	-42.5dB	-39.5dB	\checkmark
Ch3	-40.8	-42.5dB	-39.5dB	\checkmark
Ch4	-40.6	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.1	-53dB	-50dB	\checkmark
Ch2	-51.3	-53dB	-50dB	\checkmark
Ch3	-51.3	-53dB	-50dB	\checkmark
Ch4	-51.1	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-28.9	-30dB	-27dB	\checkmark
Ch2	-28.6	-30dB	-27dB	\checkmark
Ch3	-28.7	-30dB	-27dB	\checkmark
Ch4	-28.5	-30dB	-27dB	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Мах	
Ch1	-19.4	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-18.3	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1 kHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	3.3V	0.6V
Ch2	3.3V	0.6V
Ch3	3.3V	0.6V
Ch4	3.3V	0.6V

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	o/p	stable?	o/p	stable?		stable?	o/p	stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V		-22V	\checkmark
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark
0v	0V	\checkmark	0V	\checkmark	0V		0V	\checkmark
1v	4.5V	\checkmark	4.5V	\checkmark	4.5V	\checkmark	4.5V	\checkmark
5v	22V	\checkmark	22V	\checkmark	22V	\checkmark	22V	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A
Power supply	Digimess	BP3002	211259

3. Inspection

Workmanship Inspect the general workmanship standard and comment: $\boldsymbol{\sqrt{}}$

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	

J5

PIN	SI	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	\checkmark
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	\checkmark
9	Im	on4N		21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11, 12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit Increase the voltages on the supplies to +/-3V. Determine that the supply polarities are correct on TP1 and TP2. If they are, increase input voltages to +/- 16.5v. Record the regulator output voltages, measured on a DVM with 4 or more

digits. Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.04V	\checkmark	1mV
+15v TP4	14.93V	\checkmark	1mV
-15v TP6	-14.93V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37- way to 25-way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.20V	Pin 1 to Pin 2	2.20V	\checkmark
2	2.20V	Pin 5 to Pin 6	2.20V	\checkmark
3	2.20V	Pin 9 to Pin 10	2.20V	\checkmark
4	2.20V	Pin 13 to Pin 14	2.20V	\checkmark

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	26mV	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.6	-42.5dB	-39.5dB	\checkmark
Ch2	-40.6	-42.5dB	-39.5dB	
Ch3	-40.7	-42.5dB	-39.5dB	\checkmark
Ch4	-40.6	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.2	-53dB	-50dB	\checkmark
Ch2	-51.2	-53dB	-50dB	\checkmark
Ch3	-51.3	-53dB	-50dB	\checkmark
Ch4	-51.3	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-28.8	-30dB	-27dB	\checkmark
Ch2	-28.8	-30dB	-27dB	\checkmark
Ch3	-28.9	-30dB	-27dB	\checkmark
Ch4	-28.9	-30dB	-27dB	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Мах	
Ch1	-19.4	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-18.3	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1 kHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	3.3V	0.6V
Ch2	3.3V	0.6V
Ch3	3.3V	0.6V
Ch4	3.3V	0.6V

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	o/p	stable?	o/p	stable?		stable?	o/p	stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V		-22V	\checkmark
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark
0v	0V	\checkmark	0V	\checkmark	0V	\checkmark	0V	\checkmark
1v	4.5V	\checkmark	4.5V		4.5V		4.5V	\checkmark
5v	22V	\checkmark	22V	\checkmark	22V	\checkmark	22V	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A
Power supply	Digimess	BP3002	211259

3. Inspection

Workmanship Inspect the general workmanship standard and comment: $\boldsymbol{\checkmark}$

Board is bowed.

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	Photodiode D+ 4	
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	

J5

PIN	SI	GNAL			To J1 PIN	OK?
1	Im	on1P			5	\checkmark
2	Im	on2P			6	\checkmark
3	Im	on3P			7	\checkmark
4	Im	on4P			8	\checkmark
		5	0V			
6	Im	on1N			18	\checkmark
7	Im	on2N			19	\checkmark
8	Im	on3N			20	\checkmark
9	Im	on4N			21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11, 12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit Increase the voltages on the supplies to +/-3V. Determine that the supply polarities are correct on TP1 and TP2. If they are, increase input voltages to +/- 16.5v. Record the regulator output voltages, measured on a DVM with 4 or more

digits. Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.04V	\checkmark	1mV
+15v TP4	14.95V	\checkmark	1mV
-15v TP6	-15.04V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37- way to 25-way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	\checkmark

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark
9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	27mV	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.6	-42.5dB	-39.5dB	\checkmark
Ch2	-40.8	-42.5dB	-39.5dB	\checkmark
Ch3	-40.6	-42.5dB	-39.5dB	\checkmark
Ch4	-40.5	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.2	-53dB	-50dB	\checkmark
Ch2	-51.3	-53dB	-50dB	\checkmark
Ch3	-51.2	-53dB	-50dB	\checkmark
Ch4	-51.1	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-28.6	-30dB	-27dB	\checkmark
Ch2	-28.6	-30dB	-27dB	\checkmark
Ch3	-28.7	-30dB	-27dB	\checkmark
Ch4	-28.8	-30dB	-27dB	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.4	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-18.3	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1 kHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	3.3V	0.6V
Ch2	3.3V	0.6V
Ch3	3.3V	0.6V
Ch4	3.3V	0.6V

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	0/p	Stable	0/p	Slaple		Slaple	υp	Slaple
-5v	-22V	\checkmark	-22V	\checkmark	-22V	\checkmark	-22V	\checkmark
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark
0v	0V	\checkmark	0V	\checkmark	0V	\checkmark	0V	\checkmark
1v	4.5V	\checkmark	4.5V	\checkmark	4.5V	\checkmark	4.5V	\checkmark
5v	22V	\checkmark	22V	\checkmark	22V	\checkmark	22V	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A
Power supply	Digimess	BP3002	211259

3. Inspection

Workmanship Inspect the general workmanship standard and comment: $\boldsymbol{\sqrt{}}$

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	

J5

PIN	SI	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	\checkmark
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	\checkmark
9	Im	on4N		21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11, 12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit Increase the voltages on the supplies to +/-3V. Determine that the supply polarities are correct on TP1 and TP2. If they are, increase input voltages to +/- 16.5v. Record the regulator output voltages, measured on a DVM with 4 or more

digits. Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.08V	\checkmark	1mV
+15v TP4	14.94V	\checkmark	1mV
-15v TP6	-14.86V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37- way to 25-way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	\checkmark

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	26mV	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.6	-42.5dB	-39.5dB	\checkmark
Ch2	-40.7	-42.5dB	-39.5dB	\checkmark
Ch3	-40.5	-42.5dB	-39.5dB	\checkmark
Ch4	-40.6	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.2	-53dB	-50dB	\checkmark
Ch2	-51.1	-53dB	-50dB	\checkmark
Ch3	-51.1	-53dB	-50dB	\checkmark
Ch4	-51.1	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-28.7	-30dB	-27dB	\checkmark
Ch2	-28.5	-30dB	-27dB	\checkmark
Ch3	-28.8	-30dB	-27dB	\checkmark
Ch4	-28.6	-30dB	-27dB	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Мах	
Ch1	-19.4	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-18.3	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.3	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.3	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.3	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1 kHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	3.3V	0.6V
Ch2	3.3V	0.6V
Ch3	3.3V	0.6V
Ch4	3.3V	0.6V

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	o/p	stable?	o/p	stable?		stable?	o/p	stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V		-22V	\checkmark
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark
0v	0V	\checkmark	0V	\checkmark	0V	\checkmark	0V	\checkmark
1v	4.5V	\checkmark	4.5V		4.5V		4.5V	\checkmark
5v	22V	\checkmark	22V	\checkmark	22V	\checkmark	22V	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A
Power supply	Digimess	BP3002	211259

3. Inspection

Workmanship Inspect the general workmanship standard and comment: $\boldsymbol{\sqrt{}}$

Board is slightly bowed.

Small solder splash inside the D connector housing on J3. Doesn't appear to cause an access blockage.

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	Photodiode C+ 3	
4	PD4P	Photodiode D+	otodiode D+ 4	
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	

J5

PIN	SI	GNAL			To J1 PIN	OK?
1	Im	on1P			5	\checkmark
2	Im	on2P			6	\checkmark
3	Im	on3P			7	\checkmark
4	Im	on4P				\checkmark
		5	0V			
6	Im	on1N			18	\checkmark
7	Im	on2N			19	\checkmark
8	Im	on3N			20	\checkmark
9	Im	on4N			21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11, 12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit Increase the voltages on the supplies to +/-3V. Determine that the supply polarities are correct on TP1 and TP2. If they are, increase input voltages to +/- 16.5v. Record the regulator output voltages, measured on a DVM with 4 or more

digits. Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.10V	\checkmark	1mV
+15v TP4	15.00V	\checkmark	1mV
-15v TP6	-15.06V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37- way to 25-way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	\checkmark

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	27mV	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.7	-42.5dB	-39.5dB	\checkmark
Ch2	-40.6	-42.5dB	-39.5dB	\checkmark
Ch3	-40.6	-42.5dB	-39.5dB	\checkmark
Ch4	-40.6	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.4	-53dB	-50dB	\checkmark
Ch2	-51.3	-53dB	-50dB	\checkmark
Ch3	-51.3	-53dB	-50dB	\checkmark
Ch4	-51.2	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-29.4	-30dB	-27dB	\checkmark
Ch2	-29.0	-30dB	-27dB	\checkmark
Ch3	-29.4	-30dB	-27dB	\checkmark
Ch4	-29.1	-30dB	-27dB	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Мах	
Ch1	-19.4	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.3	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1 kHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	3.3V	0.6V
Ch2	3.3V	0.6V
Ch3	3.3V	0.6V
Ch4	3.3V	0.6V

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	υp	SLADIC	υp	Slabic		SLADIC	υp	SLADIC
-5v	-22V	\checkmark	-22V	\checkmark	-22V	\checkmark	-22V	\checkmark
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark
0v	0V	\checkmark	0V	\checkmark	0V	\checkmark	0V	\checkmark
1v	4.5V	\checkmark	4.5V	\checkmark	4.5V	\checkmark	4.5V	\checkmark
5v	22V	\checkmark	22V	\checkmark	22V	\checkmark	22V	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A
Power supply	Digimess	BP3002	211259
3. Inspection

Workmanship Inspect the general workmanship standard and comment: $\boldsymbol{\sqrt{}}$

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	Photodiode D+ 4	
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C- 16		
9	PD4N	Photodiode D-	17	

J5

PIN	SI	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	\checkmark
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	\checkmark
9	Im	on4N		21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11, 12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit Increase the voltages on the supplies to +/-3V. Determine that the supply polarities are correct on TP1 and TP2. If they are, increase input voltages to +/- 16.5v. Record the regulator output voltages, measured on a DVM with 4 or more

digits. Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.13V	\checkmark	1mV
+15v TP4	14.82V	\checkmark	1mV
-15v TP6	-15.04V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.22A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37- way to 25-way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	\checkmark

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	26mV	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simu	ulation	Pass/Fail
	dB	Min	Max	
Ch1	-40.5	-42.5dB	-39.5dB	\checkmark
Ch2	-40.7	-42.5dB	-39.5dB	\checkmark
Ch3	-40.6	-42.5dB	-39.5dB	\checkmark
Ch4	-40.6	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simu	ulation	Pass/Fail
	dB	Min	Max	
Ch1	-51.1	-53dB	-50dB	\checkmark
Ch2	-51.1	-53dB	-50dB	\checkmark
Ch3	-51.2	-53dB	-50dB	\checkmark
Ch4	-51.0	-53dB	-50dB	\checkmark

100Hz

	Output	Sim	Simulation	
	dB	Min	Max	
Ch1	-28.6	-30dB	-27dB	\checkmark
Ch2	-28.5	-30dB	-27dB	\checkmark
Ch3	-28.9	-30dB	-27dB	\checkmark
Ch4	-28.8	-30dB	-27dB	\checkmark

1 kHz

	Output	Sim	ulation	Pass/Fail
	dB	Min	Мах	
Ch1	-19.4	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 kHz

	Output	Sim	ulation	Pass/Fail
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.1	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.4	-20dB / 122mV	-17dB / 118mV	

100Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1 kHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	3.3V	0.6V
Ch2	3.3V	0.6V
Ch3	3.3V	0.6V
Ch4	3.3V	0.6V

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	o/p	stable?	o/p	stable?		stable?	o/p	stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V		-22V	\checkmark
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark
0v	0V	\checkmark	0V	\checkmark	0V	\checkmark	0V	\checkmark
1v	4.5V	\checkmark	4.5V		4.5V		4.5V	\checkmark
5v	22V	\checkmark	22V	\checkmark	22V	\checkmark	22V	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A
Power supply	Digimess	BP3002	211259

3. Inspection

Workmanship Inspect the general workmanship standard and comment: $\boldsymbol{\sqrt{}}$

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	

J5

PIN	SI	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	\checkmark
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	\checkmark
9	Im	on4N		21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11, 12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit Increase the voltages on the supplies to +/-3V. Determine that the supply polarities are correct on TP1 and TP2. If they are, increase input voltages to +/- 16.5v. Record the regulator output voltages, measured on a DVM with 4 or more

digits. Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.12V	\checkmark	1mV
+15v TP4	14.80V	\checkmark	1mV
-15v TP6	-14.96V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37- way to 25-way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	\checkmark

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	26mV	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.5	-42.5dB	-39.5dB	\checkmark
Ch2	-40.7	-42.5dB	-39.5dB	\checkmark
Ch3	-40.7	-42.5dB	-39.5dB	
Ch4	-40.7	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.0	-53dB	-50dB	\checkmark
Ch2	-51.2	-53dB	-50dB	\checkmark
Ch3	-51.2	-53dB	-50dB	\checkmark
Ch4	-51.1	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-28.6	-30dB	-27dB	\checkmark
Ch2	-28.5	-30dB	-27dB	\checkmark
Ch3	-28.8	-30dB	-27dB	\checkmark
Ch4	-28.5	-30dB	-27dB	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Мах	
Ch1	-19.4	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-18.3	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.3	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.2	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-4.9	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1 kHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	3.3V	0.6V
Ch2	3.3V	0.6V
Ch3	3.3V	0.6V
Ch4	3.3V	0.6V

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1 stable2	Ch2	Ch2 stable2	Ch3 o/p	Ch3 stable2	Ch4	Ch4 stable2
	υp	Stable :	υp	Stable		Stable :	υp	Stable:
-5v	-22V	\checkmark	-22V	\checkmark	-22V	\checkmark	-22V	\checkmark
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark
0v	0V	\checkmark	0V	\checkmark	0V	\checkmark	0V	\checkmark
1v	4.5V	\checkmark	4.5V	\checkmark	4.5V	\checkmark	4.5V	\checkmark
5v	22V	\checkmark	22V	\checkmark	22V	\checkmark	22V	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A
Power supply	Digimess	BP3002	211259

3. Inspection

Workmanship Inspect the general workmanship standard and comment: $\boldsymbol{\checkmark}$

Board is slightly bowed.

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	Photodiode D+ 4	
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	

J5

PIN	SI	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	\checkmark
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	\checkmark
9	Im	on4N		21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11, 12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit Increase the voltages on the supplies to +/-3V. Determine that the supply polarities are correct on TP1 and TP2. If they are, increase input voltages to +/- 16.5v. Record the regulator output voltages, measured on a DVM with 4 or more

digits. Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.09V	\checkmark	1mV
+15v TP4	14.96V	\checkmark	1mV
-15v TP6	-14.85V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37- way to 25-way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON OFF		
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	\checkmark

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	26mV	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.7	-42.5dB	-39.5dB	\checkmark
Ch2	-40.6	-42.5dB	-39.5dB	\checkmark
Ch3	-40.7	-42.5dB	-39.5dB	\checkmark
Ch4	-40.7	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.2	-53dB	-50dB	\checkmark
Ch2	-51.1	-53dB	-50dB	\checkmark
Ch3	-51.3	-53dB	-50dB	\checkmark
Ch4	-51.2	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-28.6	-30dB	-27dB	\checkmark
Ch2	-28.6	-30dB	-27dB	\checkmark
Ch3	-28.8	-30dB	-27dB	\checkmark
Ch4	-28.9	-30dB	-27dB	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Мах	
Ch1	-19.4	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

11	ł	Ζ	

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-34.9	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-34.5	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-17.9	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-17.8	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.3	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-4.8	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-4.9	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-4.7	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-3.5	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.4	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.4	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-3.4	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.5	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.4	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.3	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1 kHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	3.3V	0.6V
Ch2	3.3V	0.6V
Ch3	3.3V	0.6V
Ch4	3.3V	0.6V

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	o/p	stable?	o/p	stable?		stable?	o/p	stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V	\checkmark	-22V	\checkmark
-1v	4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark
0v	0V	\checkmark	0V	\checkmark	0V	\checkmark	0V	\checkmark
1v	4.5V	\checkmark	4.5V		4.5V	\checkmark	4.5V	\checkmark
5v	22V	\checkmark	22V	\checkmark	22V	\checkmark	22V	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A
Power supply	Digimess	BP3002	211259

3. Inspection

Workmanship Inspect the general workmanship standard and comment: $\boldsymbol{\checkmark}$

Board is slightly bowed.

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C- 16		
9	PD4N	Photodiode D-	17	

J5

PIN	SI	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	\checkmark
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	\checkmark
9	Im	on4N		21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11, 12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit Increase the voltages on the supplies to +/-3V. Determine that the supply polarities are correct on TP1 and TP2. If they are, increase input voltages to +/- 16.5v. Record the regulator output voltages, measured on a DVM with 4 or more

digits. Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.08V	\checkmark	1mV
+15v TP4	14.95V	\checkmark	1mV
-15v TP6	-15.01V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37- way to 25-way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

FILTER

Channel	Indi	Indicator			
	ON	OFF			
Ch1	\checkmark	\checkmark	\checkmark		
Ch2	\checkmark	\checkmark	\checkmark		
Ch3	\checkmark	\checkmark	\checkmark		
Ch4		\checkmark	\checkmark		

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	\checkmark

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	27mV	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.6	-42.5dB	-39.5dB	\checkmark
Ch2	-40.6	-42.5dB	-39.5dB	\checkmark
Ch3	-40.6	-42.5dB	-39.5dB	\checkmark
Ch4	-40.6	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.1	-53dB	-50dB	\checkmark
Ch2	-51.1	-53dB	-50dB	\checkmark
Ch3	-51.1	-53dB	-50dB	\checkmark
Ch4	-51.1	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-28.8	-30dB	-27dB	\checkmark
Ch2	-28.9	-30dB	-27dB	\checkmark
Ch3	-28.7	-30dB	-27dB	\checkmark
Ch4	-28.6	-30dB	-27dB	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Мах	
Ch1	-19.4	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.3	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.3	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1 kHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	3.3V	0.6V
Ch2	3.3V	0.6V
Ch3	3.3V	0.6V
Ch4	3.3V	0.6V

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	o/p	stable?	o/p	stable?		stable?	o/p	stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V	\checkmark	-22V	
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark
0v	0V	\checkmark	0V	\checkmark	0V	\checkmark	0V	
1v	4.5V	\checkmark	4.5V	\checkmark	4.5V	\checkmark	4.5V	
5v	22V	\checkmark	22V	\checkmark	22V	\checkmark	22V	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A
Power supply	Digimess	BP3002	211259

3. Inspection

Workmanship Inspect the general workmanship standard and comment: $\boldsymbol{\sqrt{}}$

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	Photodiode C+ 3	
4	PD4P	Photodiode D+	4	\checkmark
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C- 16		
9	PD4N	Photodiode D-	17	\checkmark

J5

PIN	SI	GNAL			To J1 PIN	OK?
1	Im	on1P			5	\checkmark
2	Im	on2P			6	\checkmark
3	Im	on3P			7	\checkmark
4	Im	on4P			8	\checkmark
		5	0V			
6	Im	on1N			18	\checkmark
7	Im	on2N			19	\checkmark
8	Im	on3N			20	\checkmark
9	Im	on4N				

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11, 12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit Increase the voltages on the supplies to +/-3V. Determine that the supply polarities are correct on TP1 and TP2. If they are, increase input voltages to +/- 16.5v. Record the regulator output voltages, measured on a DVM with 4 or more

digits. Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.06V	\checkmark	1mV
+15v TP4	14.91V	\checkmark	1mV
-15v TP6	-14.91V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37- way to 25-way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4		\checkmark	\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	\checkmark

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements	with the signal	generator	and oscilloscope)
0.1Hz				

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	26mV	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.8	-42.5dB	-39.5dB	\checkmark
Ch2	-40.6	-42.5dB	-39.5dB	\checkmark
Ch3	-40.5	-42.5dB	-39.5dB	\checkmark
Ch4	-40.5	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.4	-53dB	-50dB	\checkmark
Ch2	-51.2	-53dB	-50dB	\checkmark
Ch3	-51.1	-53dB	-50dB	\checkmark
Ch4	-51.0	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-28.8	-30dB	-27dB	\checkmark
Ch2	-28.8	-30dB	-27dB	\checkmark
Ch3	-28.9	-30dB	-27dB	\checkmark
Ch4	-28.7	-30dB	-27dB	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.4	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.3	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1 kHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	3.3V	0.6V
Ch2	3.3V	0.6V
Ch3	3.3V	0.6V
Ch4	3.3V	0.6V

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	o/p	stable?	o/p	stable?		stable?	o/p	stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V		-22V	\checkmark
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark
0v	0V	\checkmark	0V	\checkmark	0V	\checkmark	0V	\checkmark
1v	4.5V	\checkmark	4.5V		4.5V		4.5V	\checkmark
5v	22V	\checkmark	22V	\checkmark	22V	\checkmark	22V	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A
Power supply	Digimess	BP3002	211259

3. Inspection

Workmanship Inspect the general workmanship standard and comment: $\boldsymbol{\checkmark}$

Board is bowed.

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	

J5

PIN	SI	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	\checkmark
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	
9	Im	on4N		21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark
5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11, 12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit Increase the voltages on the supplies to +/-3V. Determine that the supply polarities are correct on TP1 and TP2. If they are, increase input voltages to +/- 16.5v. Record the regulator output voltages, measured on a DVM with 4 or more

digits. Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.05V	\checkmark	1mV
+15v TP4	14.94V	\checkmark	1mV
-15v TP6	-14.80V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37- way to 25-way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.20V	Pin 1 to Pin 2	2.20V	\checkmark
2	2.20V	Pin 5 to Pin 6	2.20V	\checkmark
3	2.20V	Pin 9 to Pin 10	2.20V	\checkmark
4	2.20V	Pin 13 to Pin 14	2.20V	\checkmark

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.32V	Pin 3 to Pin 4	0.32V	\checkmark
2	0.32V	Pin 7 to Pin 8	0.32V	\checkmark
3	0.33V	Pin 11 to Pin 12	0.33V	\checkmark
4	0.33V	Pin 15 to Pin 16	0.33V	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	27mV	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.6	-42.5dB	-39.5dB	
Ch2	-40.6	-42.5dB	-39.5dB	
Ch3	-40.6	-42.5dB	-39.5dB	
Ch4	-40.6	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.1	-53dB	-50dB	\checkmark
Ch2	-51.1	-53dB	-50dB	\checkmark
Ch3	-51.2	-53dB	-50dB	\checkmark
Ch4	-51.1	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-28.6	-30dB	-27dB	\checkmark
Ch2	-28.7	-30dB	-27dB	\checkmark
Ch3	-28.6	-30dB	-27dB	\checkmark
Ch4	-28.9	-30dB	-27dB	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Мах	
Ch1	-19.4	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.3	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1 kHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	3.3V	0.6V
Ch2	3.3V	0.6V
Ch3	3.3V	0.6V
Ch4	3.3V	0.6V

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	0/p	Stable	0/p	Slaple		Slaple	υp	Slaple
-5v	-22V	\checkmark	-22V	\checkmark	-22V	\checkmark	-22V	\checkmark
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark
0v	0V	\checkmark	0V	\checkmark	0V	\checkmark	0V	\checkmark
1v	4.5V	\checkmark	4.5V	\checkmark	4.5V	\checkmark	4.5V	\checkmark
5v	22V	\checkmark	22V	\checkmark	22V	\checkmark	22V	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A
Power supply	Digimess	BP3002	211259

3. Inspection

Workmanship Inspect the general workmanship standard and comment: $\boldsymbol{\sqrt{}}$

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	DESCRIPTION To J1 PIN	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	

J5

PIN	SI	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	\checkmark
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	\checkmark
9	Im	on4N		21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11, 12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit Increase the voltages on the supplies to +/-3V. Determine that the supply polarities are correct on TP1 and TP2. If they are, increase input voltages to +/- 16.5v. Record the regulator output voltages, measured on a DVM with 4 or more

digits. Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.01V	\checkmark	1mV
+15v TP4	14.91V	\checkmark	1mV
-15v TP6	-15.04V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37- way to 25-way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	\checkmark

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements	with the signal	generator	and oscilloscope
0.1Hz			

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	27mV	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Sim	ulation	Pass/Fail
	dB	Min	Max	
Ch1	-40.6	-42.5dB	-39.5dB	\checkmark
Ch2	-40.6	-42.5dB	-39.5dB	\checkmark
Ch3	-40.6	-42.5dB	-39.5dB	\checkmark
Ch4	-40.6	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Sim	ulation	Pass/Fail
	dB	Min	Max	
Ch1	-51.1	-53dB	-50dB	\checkmark
Ch2	-51.1	-53dB	-50dB	\checkmark
Ch3	-51.2	-53dB	-50dB	\checkmark
Ch4	-51.2	-53dB	-50dB	\checkmark

100Hz

	Output	Simu	ulation	Pass/Fail
	dB	Min	Max	
Ch1	-28.6	-30dB	-27dB	\checkmark
Ch2	-28.6	-30dB	-27dB	\checkmark
Ch3	-28.7	-30dB	-27dB	\checkmark
Ch4	-28.8	-30dB	-27dB	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.4	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1 kHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	3.3V	0.6V
Ch2	3.3V	0.6V
Ch3	3.3V	0.6V
Ch4	3.3V	0.6V

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	o/p	stable?	o/p	stable?		stable?	o/p	stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V		-22V	\checkmark
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark
0v	0V	\checkmark	0V	\checkmark	0V	\checkmark	0V	\checkmark
1v	4.5V	\checkmark	4.5V		4.5V		4.5V	\checkmark
5v	22V	\checkmark	22V	\checkmark	22V	\checkmark	22V	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A
Power supply	Digimess	BP3002	211259

3. Inspection

Workmanship Inspect the general workmanship standard and comment: $\boldsymbol{\checkmark}$

Board is slightly bowed.

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C- 16		
9	PD4N	Photodiode D-	17	\checkmark

J5

PIN	SIC	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	\checkmark
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	\checkmark
9	Im	on4N		21	\checkmark

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11, 12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit Increase the voltages on the supplies to +/-3V. Determine that the supply polarities are correct on TP1 and TP2. If they are, increase input voltages to +/- 16.5v. Record the regulator output voltages, measured on a DVM with 4 or more

digits. Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.07V	\checkmark	1mV
+15v TP4	14.79V	\checkmark	1mV
-15v TP6	-15.08V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37- way to 25-way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	\checkmark

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	27mV	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.7	-42.5dB	-39.5dB	\checkmark
Ch2	-40.6	-42.5dB	-39.5dB	
Ch3	-40.6	-42.5dB	-39.5dB	
Ch4	-40.6	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.3	-53dB	-50dB	\checkmark
Ch2	-51.1	-53dB	-50dB	\checkmark
Ch3	-51.2	-53dB	-50dB	\checkmark
Ch4	-51.2	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-29.1	-30dB	-27dB	\checkmark
Ch2	-28.5	-30dB	-27dB	\checkmark
Ch3	-28.7	-30dB	-27dB	\checkmark
Ch4	-28.9	-30dB	-27dB	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.4	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

1	Ηz	
---	----	--

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1 kHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	3.3V	0.6V
Ch2	3.3V	0.6V
Ch3	3.3V	0.6V
Ch4	3.3V	0.6V

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	o/p	stable?	o/p	stable?		stable?	o/p	stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V	\checkmark	-22V	\checkmark
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark
0v	0V	\checkmark	0V	\checkmark	0V	\checkmark	0V	\checkmark
1v	4.5V		4.5V		4.5V	\checkmark	4.5V	\checkmark
5v	22V	\checkmark	22V	\checkmark	22V	\checkmark	22V	\checkmark
LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A
Power supply	Digimess	BP3002	211259

3. Inspection

Workmanship Inspect the general workmanship standard and comment: $\boldsymbol{\sqrt{}}$

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	

J5

PIN	SI	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	\checkmark
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	\checkmark
9	Im	on4N		21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11, 12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit Increase the voltages on the supplies to +/-3V. Determine that the supply polarities are correct on TP1 and TP2. If they are, increase input voltages to +/- 16.5v. Record the regulator output voltages, measured on a DVM with 4 or more

digits. Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.06V	\checkmark	1mV
+15v TP4	14.95V	\checkmark	1mV
-15v TP6	-14.93V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37- way to 25-way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	\checkmark

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	27mV	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.6	-42.5dB	-39.5dB	\checkmark
Ch2	-40.5	-42.5dB	-39.5dB	\checkmark
Ch3	-40.6	-42.5dB	-39.5dB	\checkmark
Ch4	-40.6	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.0	-53dB	-50dB	\checkmark
Ch2	-51.1	-53dB	-50dB	\checkmark
Ch3	-51.2	-53dB	-50dB	\checkmark
Ch4	-51.2	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-28.6	-30dB	-27dB	\checkmark
Ch2	-28.6	-30dB	-27dB	\checkmark
Ch3	-29.0	-30dB	-27dB	\checkmark
Ch4	-29.0	-30dB	-27dB	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Мах	
Ch1	-19.4	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-3.5	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1 kHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	3.3V	0.6V
Ch2	3.3V	0.6V
Ch3	3.3V	0.6V
Ch4	3.3V	0.6V

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	o/p	stable?	o/p	stable?		stable?	o/p	stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V		-22V	\checkmark
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark
0v	0V	\checkmark	0V	\checkmark	0V		0V	\checkmark
1v	4.5V	\checkmark	4.5V	\checkmark	4.5V	\checkmark	4.5V	\checkmark
5v	22V	\checkmark	22V	\checkmark	22V	\checkmark	22V	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A
Power supply	Digimess	BP3002	211259

3. Inspection

Workmanship Inspect the general workmanship standard and comment: $\boldsymbol{\checkmark}$

Board is slightly bowed.

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	

J5

PIN	SIC	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	\checkmark
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	
9	Im	on4N		21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11, 12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit Increase the voltages on the supplies to +/-3V. Determine that the supply polarities are correct on TP1 and TP2. If they are, increase input voltages to +/- 16.5v. Record the regulator output voltages, measured on a DVM with 4 or more

digits. Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.07V	\checkmark	1mV
+15v TP4	14.91V	\checkmark	1mV
-15v TP6	-15.07V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37- way to 25-way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	\checkmark

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	26mV	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.6	-42.5dB	-39.5dB	\checkmark
Ch2	-40.6	-42.5dB	-39.5dB	\checkmark
Ch3	-40.6	-42.5dB	-39.5dB	\checkmark
Ch4	-40.7	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.2	-53dB	-50dB	\checkmark
Ch2	-51.1	-53dB	-50dB	\checkmark
Ch3	-51.2	-53dB	-50dB	\checkmark
Ch4	-51.3	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-28.7	-30dB	-27dB	\checkmark
Ch2	-28.9	-30dB	-27dB	\checkmark
Ch3	-28.7	-30dB	-27dB	\checkmark
Ch4	-29.4	-30dB	-27dB	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Мах	
Ch1	-19.4	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-35.2	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-35.2	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-18.6	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.6	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.1	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1 kHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	3.3V	0.6V
Ch2	3.3V	0.6V
Ch3	3.3V	0.6V
Ch4	3.3V	0.6V

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	o/p	stable?	o/p	stable?		stable?	o/p	stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V		-22V	\checkmark
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark
0v	0V	\checkmark	0V	\checkmark	0V	\checkmark	0V	\checkmark
1v	4.5V	\checkmark	4.5V		4.5V		4.5V	\checkmark
5v	22V	\checkmark	22V	\checkmark	22V	\checkmark	22V	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A
Power supply	Digimess	BP3002	211259

3. Inspection

Workmanship Inspect the general workmanship standard and comment: $\boldsymbol{\sqrt{}}$

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	Photodiode D+ 4	
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	

J5

PIN	SI	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	\checkmark
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	
9	Im	on4N		21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11, 12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit Increase the voltages on the supplies to +/-3V. Determine that the supply polarities are correct on TP1 and TP2. If they are, increase input voltages to +/- 16.5v. Record the regulator output voltages, measured on a DVM with 4 or more

digits. Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.10V	\checkmark	1mV
+15v TP4	14.99V	\checkmark	1mV
-15v TP6	-15.02V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.
7. Relay Operation

Note: 37- way to 25-way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	\checkmark

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements	with the signal	generator	and oscilloscope
0.1Hz			

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	26mV	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.5	-42.5dB	-39.5dB	\checkmark
Ch2	-40.5	-42.5dB	-39.5dB	\checkmark
Ch3	-40.5	-42.5dB	-39.5dB	\checkmark
Ch4	-40.5	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.0	-53dB	-50dB	\checkmark
Ch2	-51.2	-53dB	-50dB	\checkmark
Ch3	-51.0	-53dB	-50dB	\checkmark
Ch4	-51.2	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-28.6	-30dB	-27dB	\checkmark
Ch2	-29.3	-30dB	-27dB	\checkmark
Ch3	-28.9	-30dB	-27dB	\checkmark
Ch4	-28.9	-30dB	-27dB	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.4	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

1Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-18.3	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.3	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1 kHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	3.3V	0.6V
Ch2	3.3V	0.6V
Ch3	3.3V	0.6V
Ch4	3.3V	0.6V

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	o/p	stable?	o/p	stable?		stable?	o/p	stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V		-22V	\checkmark
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark
0v	0V	\checkmark	0V	\checkmark	0V	\checkmark	0V	\checkmark
1v	4.5V	\checkmark	4.5V		4.5V		4.5V	\checkmark
5v	22V	\checkmark	22V	\checkmark	22V	\checkmark	22V	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A
Power supply	Digimess	BP3002	211259

3. Inspection

Workmanship Inspect the general workmanship standard and comment: $\boldsymbol{\sqrt{}}$

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	

J5

PIN	SI	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	\checkmark
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	\checkmark
9	Im	on4N		21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11, 12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit Increase the voltages on the supplies to +/-3V. Determine that the supply polarities are correct on TP1 and TP2. If they are, increase input voltages to +/- 16.5v. Record the regulator output voltages, measured on a DVM with 4 or more

digits. Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.04V	\checkmark	1mV
+15v TP4	14.91V	\checkmark	1mV
-15v TP6	-15.05V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37- way to 25-way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	\checkmark

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
	mV	Min	Max	
Ch1	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	27mV	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

Output	Simulation		Pass/Fail
dB	Min	Max	
-40.8	-42.5dB	-39.5dB	\checkmark
-40.7	-42.5dB	-39.5dB	\checkmark
-40.7	-42.5dB	-39.5dB	\checkmark
-40.6	-42.5dB	-39.5dB	\checkmark
	Output dB -40.8 -40.7 -40.7 -40.6	Output Simulation dB Min -40.8 -42.5dB -40.7 -42.5dB -40.7 -42.5dB -40.6 -42.5dB	Output Simulation dB Min Max -40.8 -42.5dB -39.5dB -40.7 -42.5dB -39.5dB -40.7 -42.5dB -39.5dB -40.6 -42.5dB -39.5dB

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.2	-53dB	-50dB	\checkmark
Ch2	-51.2	-53dB	-50dB	\checkmark
Ch3	-51.1	-53dB	-50dB	\checkmark
Ch4	-51.2	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-28.4	-30dB	-27dB	\checkmark
Ch2	-28.4	-30dB	-27dB	\checkmark
Ch3	-28.4	-30dB	-27dB	\checkmark
Ch4	-29.0	-30dB	-27dB	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.5	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.5	-21dB	-18dB	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.3	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

1Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-18.3	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.6	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.2	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-5	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.8	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simu	Pass/Fail	
		Min Max		
Ch1	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1 kHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	3.3V	0.6V
Ch2	3.3V	0.6V
Ch3	3.3V	0.6V
Ch4	3.3V	0.6V

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	0/p	Stable	0/p	Slaple		Slaple	υp	Slaple
-5v	-22V	\checkmark	-22V	\checkmark	-22V	\checkmark	-22V	\checkmark
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark
0v	0V	\checkmark	0V	\checkmark	0V	\checkmark	0V	\checkmark
1v	4.5V	\checkmark	4.5V	\checkmark	4.5V	\checkmark	4.5V	\checkmark
5v	22V	\checkmark	22V	\checkmark	22V	\checkmark	22V	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A
Power supply	Digimess	BP3002	211259

3. Inspection

Workmanship Inspect the general workmanship standard and comment: $\boldsymbol{\sqrt{}}$

Board is slightly bowed.

Low voltage test revealed that C18 Ch4 was causing a short circuit. Component has been replaced.

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	Photodiode B- 15	
8	PD3N	Photodiode C-	hotodiode C- 16	
9	PD4N	Photodiode D-	17	\checkmark

J5

PIN	SI	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	\checkmark
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	\checkmark
9	Im	on4N		21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11, 12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit Increase the voltages on the supplies to +/-3V. Determine that the supply polarities are correct on TP1 and TP2. If they are, increase input voltages to +/- 16.5v. Record the regulator output voltages, measured on a DVM with 4 or more

digits. Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.05V	\checkmark	1mV
+15v TP4	14.98V	\checkmark	1mV
-15v TP6	-15.02V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.22A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37- way to 25-way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

FILTER

Channel	Indicator		OK?		
	ON	OFF			
Ch1	\checkmark	\checkmark	\checkmark		
Ch2	\checkmark	\checkmark	\checkmark		
Ch3	\checkmark	\checkmark	\checkmark		
Ch4	\checkmark	\checkmark	\checkmark		

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4		\checkmark	\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	\checkmark

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	26mV	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.7	-42.5dB	-39.5dB	\checkmark
Ch2	-40.6	-42.5dB	-39.5dB	\checkmark
Ch3	-40.7	-42.5dB	-39.5dB	\checkmark
Ch4	-40.5	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simu	Pass/Fail	
	dB	Min Max		
Ch1	-51.1	-53dB	-50dB	\checkmark
Ch2	-51.1	-53dB	-50dB	\checkmark
Ch3	-51.2	-53dB	-50dB	\checkmark
Ch4	-51.0	-53dB	-50dB	\checkmark

100Hz

	Output	Sim	Pass/Fail	
	dB	Min	Min Max	
Ch1	-28.5	-30dB	-27dB	\checkmark
Ch2	-28.5	-30dB	-27dB	\checkmark
Ch3	-28.6	-30dB	-27dB	\checkmark
Ch4	-28.5	-30dB	-27dB	\checkmark

1 kHz

	Output	Sim	Pass/Fail	
	dB	Min Max		
Ch1	-19.4	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 kHz

	Output	Sim	Pass/Fail	
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

1Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.3	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.3	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1 kHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	3.3V	0.6V
Ch2	3.3V	0.6V
Ch3	3.3V	0.6V
Ch4	3.3V	0.6V

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	o/p	stable?	o/p	stable?		stable?	o/p	stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V		-22V	\checkmark
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark
0v	0V	\checkmark	0V	\checkmark	0V	\checkmark	0V	\checkmark
1v	4.5V	\checkmark	4.5V		4.5V		4.5V	\checkmark
5v	22V	\checkmark	22V	\checkmark	22V	\checkmark	22V	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability
Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A
Power supply	Digimess	BP3002	211259

3. Inspection

Workmanship Inspect the general workmanship standard and comment: $\boldsymbol{\checkmark}$

Board is slightly bowed.

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C- 16		
9	PD4N	Photodiode D-	17	\checkmark

J5

PIN	SI	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	\checkmark
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	\checkmark
9	Im	on4N		21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11, 12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit Increase the voltages on the supplies to +/-3V. Determine that the supply polarities are correct on TP1 and TP2. If they are, increase input voltages to +/- 16.5v. Record the regulator output voltages, measured on a DVM with 4 or more

digits. Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.07V	\checkmark	1mV
+15v TP4	14.91V	\checkmark	1mV
-15v TP6	-14.94V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37- way to 25-way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	\checkmark

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	27mV	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.9	-42.5dB	-39.5dB	\checkmark
Ch2	-40.7	-42.5dB	-39.5dB	\checkmark
Ch3	-40.6	-42.5dB	-39.5dB	\checkmark
Ch4	-40.7	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.2	-53dB	-50dB	\checkmark
Ch2	-51.3	-53dB	-50dB	\checkmark
Ch3	-51.1	-53dB	-50dB	\checkmark
Ch4	-51.1	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-28.6	-30dB	-27dB	\checkmark
Ch2	-28.9	-30dB	-27dB	\checkmark
Ch3	-28.7	-30dB	-27dB	\checkmark
Ch4	-28.2	-30dB	-27dB	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Мах	
Ch1	-19.4	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.3	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.3	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1 kHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	3.3V	0.6V
Ch2	3.3V	0.6V
Ch3	3.3V	0.6V
Ch4	3.3V	0.6V

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	0/p	Stable	0/p	Slaple		Slaple	υp	Slaple
-5v	-22V	\checkmark	-22V	\checkmark	-22V	\checkmark	-22V	\checkmark
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark
0v	0V	\checkmark	0V	\checkmark	0V	\checkmark	0V	\checkmark
1v	4.5V	\checkmark	4.5V	\checkmark	4.5V	\checkmark	4.5V	\checkmark
5v	22V	\checkmark	22V	\checkmark	22V	\checkmark	22V	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A
Power supply	Digimess	BP3002	211259

3. Inspection

Workmanship Inspect the general workmanship standard and comment: $\boldsymbol{\checkmark}$

Board is very slightly bowed.

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C- 16		
9	PD4N	Photodiode D-	17	\checkmark

J5

PIN	SI	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	\checkmark
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	\checkmark
9	Im	on4N		21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11, 12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit Increase the voltages on the supplies to +/-3V. Determine that the supply polarities are correct on TP1 and TP2. If they are, increase input voltages to +/- 16.5v. Record the regulator output voltages, measured on a DVM with 4 or more

digits. Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.08V	\checkmark	1mV
+15v TP4	14.95V	\checkmark	1mV
-15v TP6	-15.03V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.27A
-16.5v	0.22A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37- way to 25-way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	\checkmark

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	27mV	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.7	-42.5dB	-39.5dB	
Ch2	-40.6	-42.5dB	-39.5dB	
Ch3	-40.6	-42.5dB	-39.5dB	
Ch4	-40.6	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.1	-53dB	-50dB	\checkmark
Ch2	-51.1	-53dB	-50dB	\checkmark
Ch3	-51.2	-53dB	-50dB	\checkmark
Ch4	-51.1	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-28.5	-30dB	-27dB	\checkmark
Ch2	-28.8	-30dB	-27dB	\checkmark
Ch3	-28.6	-30dB	-27dB	\checkmark
Ch4	-28.9	-30dB	-27dB	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Мах	
Ch1	-19.4	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

1Hz	
-----	--

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1 kHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	3.3V	0.6V
Ch2	3.3V	0.6V
Ch3	3.3V	0.6V
Ch4	3.3V	0.6V

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	o/p	stable?	o/p	stable?		stable?	o/p	stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V		-22V	\checkmark
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark
0v	0V	\checkmark	0V	\checkmark	0V	\checkmark	0V	\checkmark
1v	4.5V	\checkmark	4.5V		4.5V		4.5V	\checkmark
5v	22V	\checkmark	22V	\checkmark	22V	\checkmark	22V	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A
Power supply	Digimess	BP3002	211259

3. Inspection

Workmanship Inspect the general workmanship standard and comment: $\boldsymbol{\sqrt{}}$

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	Photodiode C+ 3	
4	PD4P	Photodiode D+	4	\checkmark
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C- 16		
9	PD4N	Photodiode D-	17	\checkmark

J5

PIN	SIC	GNAL			To J1 PIN	OK?
1	Im	on1P			5	\checkmark
2	Im	on2P			6	\checkmark
3	Im	on3P			7	\checkmark
4	Im	on4P				\checkmark
		5	0V			
6	Im	on1N			18	\checkmark
7	Im	on2N			19	\checkmark
8	Im	on3N			20	
9	Im	on4N			21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11, 12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit Increase the voltages on the supplies to +/-3V. Determine that the supply polarities are correct on TP1 and TP2. If they are, increase input voltages to +/- 16.5v. Record the regulator output voltages, measured on a DVM with 4 or more

digits. Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.03V	\checkmark	1mV
+15v TP4	14.93V	\checkmark	1mV
-15v TP6	-15.05V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.27A
-16.5v	0.22A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37- way to 25-way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	\checkmark

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark
9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	27mV	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.6	-42.5dB	-39.5dB	\checkmark
Ch2	-40.6	-42.5dB	-39.5dB	\checkmark
Ch3	-40.6	-42.5dB	-39.5dB	\checkmark
Ch4	-40.6	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.1	-53dB	-50dB	\checkmark
Ch2	-51.0	-53dB	-50dB	\checkmark
Ch3	-51.0	-53dB	-50dB	\checkmark
Ch4	-51.1	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-28.5	-30dB	-27dB	\checkmark
Ch2	-28.3	-30dB	-27dB	\checkmark
Ch3	-28.5	-30dB	-27dB	\checkmark
Ch4	-28.5	-30dB	-27dB	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Мах	
Ch1	-19.4	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

1Hz	
-----	--

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.3	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1 kHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	3.3V	0.6V
Ch2	3.3V	0.6V
Ch3	3.3V	0.6V
Ch4	3.3V	0.6V

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable?	Ch2	Ch2 stable?	Ch3 o/p	Ch3 stable?	Ch4 o/p	Ch4 stable?
-5v	-22V		-22V		-22V	otablo	-22V	
-1v	-4.5V		-4.5V		-4.5V		-4.5V	
0v	0V		0V		0V		0V	
1v	4.5V		4.5V		4.5V		4.5V	
5v	22V		22V		22V		22V	

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A
Power supply	Digimess	BP3002	211259

3. Inspection

Workmanship Inspect the general workmanship standard and comment: $\boldsymbol{\sqrt{}}$

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C- 16		
9	PD4N	Photodiode D-	17	\checkmark

J5

PIN	SI	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	\checkmark
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	\checkmark
9	Im	on4N		21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11, 12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit Increase the voltages on the supplies to +/-3V. Determine that the supply polarities are correct on TP1 and TP2. If they are, increase input voltages to +/- 16.5v. Record the regulator output voltages, measured on a DVM with 4 or more

digits. Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.06V	\checkmark	1mV
+15v TP4	14.89V	\checkmark	1mV
-15v TP6	-14.94V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.27A
-16.5v	0.22A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37- way to 25-way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

FILTER

Channel	Indicator		OK?		
	ON	OFF			
Ch1	\checkmark	\checkmark	\checkmark		
Ch2	\checkmark	\checkmark	\checkmark		
Ch3	\checkmark	\checkmark	\checkmark		
Ch4	\checkmark	\checkmark	\checkmark		

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	\checkmark

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	26mV	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.6	-42.5dB	-39.5dB	\checkmark
Ch2	-40.6	-42.5dB	-39.5dB	\checkmark
Ch3	-40.7	-42.5dB	-39.5dB	\checkmark
Ch4	-40.6	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.2	-53dB	-50dB	\checkmark
Ch2	-51.2	-53dB	-50dB	\checkmark
Ch3	-51.3	-53dB	-50dB	\checkmark
Ch4	-51.2	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-29.0	-30dB	-27dB	\checkmark
Ch2	-28.7	-30dB	-27dB	\checkmark
Ch3	-29.1	-30dB	-27dB	\checkmark
Ch4	-29.0	-30dB	-27dB	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Мах	
Ch1	-19.4	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

1Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1 kHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	3.3V	0.6V
Ch2	3.3V	0.6V
Ch3	3.3V	0.6V
Ch4	3.3V	0.6V

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	o/p	stable?	o/p	stable?		stable?	o/p	stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V	\checkmark	-22V	\checkmark
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark
0v	0V	\checkmark	0V	\checkmark	0V	\checkmark	0V	\checkmark
1v	4.5V	\checkmark	4.5V	\checkmark	4.5V	\checkmark	4.5V	\checkmark
5v	22V	\checkmark	22V		22V	\checkmark	22V	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A
Power supply	Digimess	BP3002	211259

3. Inspection

Workmanship Inspect the general workmanship standard and comment: $\boldsymbol{\sqrt{}}$

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	Photodiode C+ 3	
4	PD4P	Photodiode D+	todiode D+ 4	
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	

J5

PIN	SI	GNAL			To J1 PIN	OK?
1	Im	on1P		Ę	5	\checkmark
2	Im	on2P		6	6	\checkmark
3	Im	on3P		7	7	\checkmark
4	Im	on4P		8	8	\checkmark
		5	0V			
6	Im	on1N			18	\checkmark
7	Im	on2N		-	19	\checkmark
8	Im	on3N			20	\checkmark
9	Im	on4N			21	\checkmark

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11, 12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit Increase the voltages on the supplies to +/-3V. Determine that the supply polarities are correct on TP1 and TP2. If they are, increase input voltages to +/- 16.5v. Record the regulator output voltages, measured on a DVM with 4 or more

digits. Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.05V	\checkmark	1mV
+15v TP4	14.93V	\checkmark	1mV
-15v TP6	-15.06V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.27A
-16.5v	0.22A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37- way to 25-way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	\checkmark

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	26mV	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.6	-42.5dB	-39.5dB	\checkmark
Ch2	-40.7	-42.5dB	-39.5dB	\checkmark
Ch3	-40.7	-42.5dB	-39.5dB	\checkmark
Ch4	-40.7	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.1	-53dB	-50dB	\checkmark
Ch2	-51.2	-53dB	-50dB	\checkmark
Ch3	-51.2	-53dB	-50dB	\checkmark
Ch4	-51.4	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-28.8	-30dB	-27dB	\checkmark
Ch2	-28.6	-30dB	-27dB	\checkmark
Ch3	-28.7	-30dB	-27dB	\checkmark
Ch4	-29.4	-30dB	-27dB	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Мах	
Ch1	-19.4	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

1Hz	
-----	--

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.5	-20dB / 122mV	-17dB / 118mV	$\overline{\mathbf{v}}$

100Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1 kHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	3.3V	0.6V
Ch2	3.3V	0.6V
Ch3	3.3V	0.6V
Ch4	3.3V	0.6V

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	0/p	stable?	0/p	stable?		stable ?	0/p	stable ?
-5v	-22V	\checkmark	-22V	\checkmark	-22V	\checkmark	-22V	\checkmark
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark
0v	0V	\checkmark	0V	\checkmark	0V	\checkmark	0V	\checkmark
1v	4.5V	\checkmark	4.5V	\checkmark	4.5V	\checkmark	4.5V	\checkmark
5v	22V	\checkmark	22V	\checkmark	22V	\checkmark	22V	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A
Power supply	Digimess	BP3002	211259
3. Inspection

Workmanship Inspect the general workmanship standard and comment: $\boldsymbol{\sqrt{}}$

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	Photodiode D+ 4	
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	

J5

PIN	SI	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	\checkmark
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	\checkmark
9	Im	on4N		21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11, 12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit Increase the voltages on the supplies to +/-3V. Determine that the supply polarities are correct on TP1 and TP2. If they are, increase input voltages to +/- 16.5v. Record the regulator output voltages, measured on a DVM with 4 or more

digits. Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.08V	\checkmark	1mV
+15v TP4	14.82V	\checkmark	1mV
-15v TP6	-15.13V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.27A
-16.5v	0.22A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37- way to 25-way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	\checkmark

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	26mV	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.6	-42.5dB	-39.5dB	\checkmark
Ch2	-40.8	-42.5dB	-39.5dB	\checkmark
Ch3	-40.6	-42.5dB	-39.5dB	\checkmark
Ch4	-40.7	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simu	ulation	Pass/Fail
	dB	Min	Max	
Ch1	-51.1	-53dB	-50dB	\checkmark
Ch2	-51.3	-53dB	-50dB	\checkmark
Ch3	-51.1	-53dB	-50dB	\checkmark
Ch4	-51.1	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-28.5	-30dB	-27dB	\checkmark
Ch2	-28.6	-30dB	-27dB	\checkmark
Ch3	-28.8	-30dB	-27dB	\checkmark
Ch4	-28.5	-30dB	-27dB	\checkmark

1 kHz

	Output	Sim	ulation	Pass/Fail
	dB	Min	Мах	
Ch1	-19.4	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 kHz

	Output	Sim	ulation	Pass/Fail
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1 kHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	3.3V	0.6V
Ch2	3.3V	0.6V
Ch3	3.3V	0.6V
Ch4	3.3V	0.6V

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	0/p	Stable	0/p	Slaple		Slaple	υp	Slaple
-5v	-22V	\checkmark	-22V	\checkmark	-22V	\checkmark	-22V	\checkmark
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark
0v	0V	\checkmark	0V	\checkmark	0V	\checkmark	0V	\checkmark
1v	4.5V	\checkmark	4.5V	\checkmark	4.5V	\checkmark	4.5V	\checkmark
5v	22V	\checkmark	22V	\checkmark	22V	\checkmark	22V	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A
Power supply	Digimess	BP3002	211259

3. Inspection

Workmanship Inspect the general workmanship standard and comment: $\boldsymbol{\checkmark}$

Board is bowed.

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	\checkmark

J5

PIN	SI	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	\checkmark
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	\checkmark
9	Im	on4N		21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11, 12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit Increase the voltages on the supplies to +/-3V. Determine that the supply polarities are correct on TP1 and TP2. If they are, increase input voltages to +/- 16.5v. Record the regulator output voltages, measured on a DVM with 4 or more

digits. Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.00V	\checkmark	1mV
+15v TP4	14.97V	\checkmark	1mV
-15v TP6	-15.11V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37- way to 25-way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	\checkmark

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	27mV	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.6	-42.5dB	-39.5dB	\checkmark
Ch2	-40.6	-42.5dB	-39.5dB	
Ch3	-40.7	-42.5dB	-39.5dB	\checkmark
Ch4	-40.6	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.2	-53dB	-50dB	\checkmark
Ch2	-51.2	-53dB	-50dB	\checkmark
Ch3	-51.2	-53dB	-50dB	\checkmark
Ch4	-51.2	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-28.9	-30dB	-27dB	\checkmark
Ch2	-28.6	-30dB	-27dB	\checkmark
Ch3	-28.7	-30dB	-27dB	\checkmark
Ch4	-28.7	-30dB	-27dB	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Мах	
Ch1	-19.4	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

1Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1 kHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	3.3V	0.6V
Ch2	3.3V	0.6V
Ch3	3.3V	0.6V
Ch4	3.3V	0.6V

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	o/p	stable?	o/p	stable?		stable?	o/p	stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V		-22V	\checkmark
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark
0v	0V	\checkmark	0V	\checkmark	0V	\checkmark	0V	\checkmark
1v	4.5V	\checkmark	4.5V		4.5V		4.5V	\checkmark
5v	22V	\checkmark	22V	\checkmark	22V	\checkmark	22V	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A
Power supply	Digimess	BP3002	211259

3. Inspection

Workmanship Inspect the general workmanship standard and comment: $\boldsymbol{\sqrt{}}$

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C- 16		
9	PD4N	Photodiode D-	17	\checkmark

J5

PIN	SI	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	\checkmark
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	\checkmark
9	Im	on4N		21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11, 12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit Increase the voltages on the supplies to +/-3V. Determine that the supply polarities are correct on TP1 and TP2. If they are, increase input voltages to +/- 16.5v. Record the regulator output voltages, measured on a DVM with 4 or more

digits. Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.07V	\checkmark	1mV
+15v TP4	14.91V	\checkmark	1mV
-15v TP6	-14.85V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37- way to 25-way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

FILTER

Channel	Indicator		OK?	
	ON	OFF		
Ch1	\checkmark	\checkmark	\checkmark	
Ch2	\checkmark	\checkmark	\checkmark	
Ch3	\checkmark	\checkmark	\checkmark	
Ch4	\checkmark	\checkmark	\checkmark	

TEST RELAYS

Channel	Indic	OK?	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	\checkmark

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	26mV	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.6	-42.5dB	-39.5dB	\checkmark
Ch2	-40.7	-42.5dB	-39.5dB	\checkmark
Ch3	-40.6	-42.5dB	-39.5dB	\checkmark
Ch4	-40.5	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.1	-53dB	-50dB	\checkmark
Ch2	-51.3	-53dB	-50dB	\checkmark
Ch3	-51.1	-53dB	-50dB	\checkmark
Ch4	-51.1	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-28.8	-30dB	-27dB	\checkmark
Ch2	-29.3	-30dB	-27dB	\checkmark
Ch3	-28.7	-30dB	-27dB	\checkmark
Ch4	-28.9	-30dB	-27dB	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Мах	
Ch1	-19.4	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.6	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1 kHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	3.3V	0.6V
Ch2	3.3V	0.6V
Ch3	3.3V	0.6V
Ch4	3.3V	0.6V

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	o/p	stable?	o/p	stable?		stable?	o/p	stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V	\checkmark	-22V	
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	
0v	0V	\checkmark	0V	\checkmark	0V	\checkmark	0V	
1v	4.5V	\checkmark	4.5V		4.5V	\checkmark	4.5V	\checkmark
5v	22V	\checkmark	22V		22V	\checkmark	22V	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A
Power supply	Digimess	BP3002	211259

3. Inspection

Workmanship Inspect the general workmanship standard and comment: $\boldsymbol{\sqrt{}}$

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	\checkmark

J5

PIN	SI	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	\checkmark
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	\checkmark
9	Im	on4N		21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11, 12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit Increase the voltages on the supplies to +/-3V. Determine that the supply polarities are correct on TP1 and TP2. If they are, increase input voltages to +/- 16.5v. Record the regulator output voltages, measured on a DVM with 4 or more

digits. Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.05V	\checkmark	1mV
+15v TP4	14.94V	\checkmark	1mV
-15v TP6	-15.09V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37- way to 25-way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

FILTER

Channel	Indicator		OK?		
	ON	OFF			
Ch1	\checkmark	\checkmark	\checkmark		
Ch2	\checkmark	\checkmark	\checkmark		
Ch3	\checkmark	\checkmark	\checkmark		
Ch4	\checkmark	\checkmark	\checkmark		

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4		\checkmark	\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	\checkmark

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	26mV	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.7	-42.5dB	-39.5dB	
Ch2	-40.6	-42.5dB	-39.5dB	
Ch3	-40.5	-42.5dB	-39.5dB	
Ch4	-40.8	-42.5dB	-39.5dB	

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.3	-53dB	-50dB	\checkmark
Ch2	-51.3	-53dB	-50dB	\checkmark
Ch3	-51.0	-53dB	-50dB	\checkmark
Ch4	-51.3	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-28.8	-30dB	-27dB	\checkmark
Ch2	-29.1	-30dB	-27dB	\checkmark
Ch3	-28.7	-30dB	-27dB	\checkmark
Ch4	-28.6	-30dB	-27dB	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Мах	
Ch1	-19.4	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

1Hz	
-----	--

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.4	-20dB / 122mV	-17dB / 118mV	

100Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1 kHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	3.3V	0.6V
Ch2	3.3V	0.6V
Ch3	3.3V	0.6V
Ch4	3.3V	0.6V

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	o/p	stable?	o/p	stable?		stable?	o/p	stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V		-22V	\checkmark
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark
0v	0V	\checkmark	0V	\checkmark	0V	\checkmark	0V	\checkmark
1v	4.5V	\checkmark	4.5V		4.5V		4.5V	\checkmark
5v	22V	\checkmark	22V	\checkmark	22V	\checkmark	22V	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A
Power supply	Digimess	BP3002	211259

3. Inspection

Workmanship Inspect the general workmanship standard and comment: $\boldsymbol{\checkmark}$

Board is slightly bowed.

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	Photodiode C+ 3	
4	PD4P	Photodiode D+	todiode D+ 4	
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	

J5

PIN	SI	GNAL			To J1 PIN	OK?
1	Im	on1P			5	\checkmark
2	Im	on2P			6	\checkmark
3	Im	on3P			7	\checkmark
4	Im	on4P				\checkmark
		5	0V			
6	Im	on1N			18	\checkmark
7	Im	on2N			19	\checkmark
8	Im	on3N			20	\checkmark
9	Im	on4N			21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11, 12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit Increase the voltages on the supplies to +/-3V. Determine that the supply polarities are correct on TP1 and TP2. If they are, increase input voltages to +/- 16.5v. Record the regulator output voltages, measured on a DVM with 4 or more

digits. Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.06V	\checkmark	1mV
+15v TP4	14.79V	\checkmark	1mV
-15v TP6	-15.00V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.27A
-16.5v	0.22A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37- way to 25-way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	\checkmark

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	26mV	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.6	-42.5dB	-39.5dB	\checkmark
Ch2	-40.6	-42.5dB	-39.5dB	
Ch3	-40.7	-42.5dB	-39.5dB	\checkmark
Ch4	-40.6	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.2	-53dB	-50dB	\checkmark
Ch2	-51.2	-53dB	-50dB	\checkmark
Ch3	-51.2	-53dB	-50dB	\checkmark
Ch4	-51.2	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-29.4	-30dB	-27dB	\checkmark
Ch2	-29.0	-30dB	-27dB	\checkmark
Ch3	-28.6	-30dB	-27dB	\checkmark
Ch4	-28.7	-30dB	-27dB	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.4	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.3	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.3	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-4.9	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1 kHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	3.3V	0.6V
Ch2	3.3V	0.6V
Ch3	3.3V	0.6V
Ch4	3.3V	0.6V

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	o/p	stable?	o/p	stable?		stable?	o/p	stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V		-22V	\checkmark
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark
0v	0V	\checkmark	0V	\checkmark	0V	\checkmark	0V	\checkmark
1v	4.5V	\checkmark	4.5V		4.5V		4.5V	\checkmark
5v	22V	\checkmark	22V	\checkmark	22V	\checkmark	22V	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A
Power supply	Digimess	BP3002	211259

3. Inspection

Workmanship Inspect the general workmanship standard and comment: $\boldsymbol{\sqrt{}}$

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	\checkmark

J5

PIN	SIC	GNAL		To J1 PIN	OK?
1	Imo	on1P		5	\checkmark
2	Imo	on2P		6	\checkmark
3	Imo	on3P		7	\checkmark
4	Imo	on4P		8	\checkmark
		5	0V		
6	Imo	on1N		18	\checkmark
7	Imo	on2N		19	\checkmark
8	Imo	on3N		20	\checkmark
9	Imo	on4N		21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark
5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11, 12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit Increase the voltages on the supplies to +/-3V. Determine that the supply polarities are correct on TP1 and TP2. If they are, increase input voltages to +/- 16.5v. Record the regulator output voltages, measured on a DVM with 4 or more

digits. Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.13V	\checkmark	1mV
+15v TP4	14.97V	\checkmark	1mV
-15v TP6	-14.92V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37- way to 25-way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	\checkmark

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	26mV	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.6	-42.5dB	-39.5dB	\checkmark
Ch2	-40.6	-42.5dB	-39.5dB	\checkmark
Ch3	-40.6	-42.5dB	-39.5dB	\checkmark
Ch4	-40.6	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.2	-53dB	-50dB	\checkmark
Ch2	-51.2	-53dB	-50dB	\checkmark
Ch3	-51.1	-53dB	-50dB	\checkmark
Ch4	-51.1	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-28.9	-30dB	-27dB	\checkmark
Ch2	-28.7	-30dB	-27dB	\checkmark
Ch3	-28.9	-30dB	-27dB	\checkmark
Ch4	-28.6	-30dB	-27dB	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.3	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.3	-21dB	-18dB	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.1	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.1	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

11	ł	Ζ	

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-34.8	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-34.8	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-34.9	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.3	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.3	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-4.9	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-4.9	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-4.9	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-4.7	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.5	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.3	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.5	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.4	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.3	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1 kHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	3.3V	0.6V
Ch2	3.3V	0.6V
Ch3	3.3V	0.6V
Ch4	3.3V	0.6V

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	o/p	stable?	o/p	stable?		stable?	o/p	stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V		-22V	\checkmark
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark
0v	0V	\checkmark	0V	\checkmark	0V	\checkmark	0V	\checkmark
1v	4.5V	\checkmark	4.5V		4.5V		4.5V	\checkmark
5v	22V	\checkmark	22V	\checkmark	22V	\checkmark	22V	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A
Power supply	Digimess	BP3002	211259

3. Inspection

Workmanship Inspect the general workmanship standard and comment: $\boldsymbol{\checkmark}$

Board is slightly bowed.

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	

J5

PIN	SIG	NAL		To J1 PIN	OK?
1	Imo	n1P		5	\checkmark
2	Imo	n2P		6	\checkmark
3	Imo	n3P		7	\checkmark
4	Imo	n4P		8	\checkmark
		5	0V		
6	Imo	n1N		18	\checkmark
7	Imo	n2N		19	\checkmark
8	Imo	n3N		20	\checkmark
9	Imo	n4N		21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11, 12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit Increase the voltages on the supplies to +/-3V. Determine that the supply polarities are correct on TP1 and TP2. If they are, increase input voltages to +/- 16.5v. Record the regulator output voltages, measured on a DVM with 4 or more

digits. Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.10V	\checkmark	1mV
+15v TP4	14.79V	\checkmark	1mV
-15v TP6	-15.07V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37- way to 25-way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4		\checkmark	\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode.

With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	\checkmark

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	27mV	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.6	-42.5dB	-39.5dB	\checkmark
Ch2	-40.5	-42.5dB	-39.5dB	\checkmark
Ch3	-40.6	-42.5dB	-39.5dB	\checkmark
Ch4	-40.6	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simu	Pass/Fail	
	dB	Min	Min Max	
Ch1	-51.3	-53dB	-50dB	\checkmark
Ch2	-51.2	-53dB	-50dB	\checkmark
Ch3	-51.0	-53dB	-50dB	\checkmark
Ch4	-51.2	-53dB	-50dB	\checkmark

100Hz

	Output	Simu	Simulation		
	dB	Min	Min Max		
Ch1	-29.3	-30dB	-27dB	\checkmark	
Ch2	-29.3	-30dB	-27dB	\checkmark	
Ch3	-28.8	-30dB	-27dB	\checkmark	
Ch4	-29.0	-30dB	-27dB	\checkmark	

1 kHz

	Output	Sim	Simulation		
	dB	Min Max			
Ch1	-19.4	-21dB	-18dB	\checkmark	
Ch2	-19.4	-21dB	-18dB	\checkmark	
Ch3	-19.4	-21dB	-18dB	\checkmark	
Ch4	-19.4	-21dB	-18dB	\checkmark	

5 kHz

	Output	Sim	Pass/Fail	
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

1	ŀ	łz	

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-35.2	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.3	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.6	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simu	ulation	Pass/Fail
		Min	Max	
Ch1	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1 kHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	3.3V	0.6V
Ch2	3.3V	0.6V
Ch3	3.3V	0.6V
Ch4	3.3V	0.6V

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	o/p	stable?	o/p	stable?		stable?	o/p	stable?
-5v	-22V		-22V		-22V		-22V	
-1v	-4.5V		-4.5V		-4.5V		-4.5V	
0v	0V		0V		0V		0V	
1v	4.5V		4.5V		4.5V		4.5V	
5v	22V		22V		22V		22V	

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A
Power supply	Digimess	BP3002	211259

3. Inspection

Workmanship Inspect the general workmanship standard and comment: $\boldsymbol{\sqrt{}}$

Board is slightly bowed.

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C- 16		
9	PD4N	Photodiode D-	17	\checkmark

J5

PIN	SI	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	\checkmark
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	\checkmark
9	Im	on4N		21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11, 12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit Increase the voltages on the supplies to +/-3V. Determine that the supply polarities are correct on TP1 and TP2. If they are, increase input voltages to +/- 16.5v. Record the regulator output voltages, measured on a DVM with 4 or more

digits. Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.04V	\checkmark	1mV
+15v TP4	14.96V	\checkmark	1mV
-15v TP6	-15.03V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37- way to 25-way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

FILTER

Channel	Indicator		OK?	
	ON	OFF		
Ch1	\checkmark	\checkmark	\checkmark	
Ch2	\checkmark	\checkmark	\checkmark	
Ch3	\checkmark	\checkmark	\checkmark	
Ch4	\checkmark	\checkmark	\checkmark	

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	\checkmark

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	27mV	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.6	-42.5dB	-39.5dB	
Ch2	-40.7	-42.5dB	-39.5dB	
Ch3	-40.5	-42.5dB	-39.5dB	
Ch4	-40.3	-42.5dB	-39.5dB	

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.2	-53dB	-50dB	\checkmark
Ch2	-51.3	-53dB	-50dB	\checkmark
Ch3	-51.0	-53dB	-50dB	\checkmark
Ch4	-50.5	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-29.1	-30dB	-27dB	\checkmark
Ch2	-28.9	-30dB	-27dB	\checkmark
Ch3	-28.6	-30dB	-27dB	\checkmark
Ch4	-28.1	-30dB	-27dB	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Мах	
Ch1	-19.4	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.1	-21dB	-18dB	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-18.9	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

1Hz	
-----	--

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-34.7	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-34.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-34.4	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.0	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.0	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.1	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-4.9	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-4.6	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-4.7	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-4.8	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-3.5	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.3	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.4	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.4	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-3.5	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.3	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.3	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.4	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1 kHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	3.3V	0.6V
Ch2	3.3V	0.6V
Ch3	3.3V	0.6V
Ch4	3.3V	0.6V

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	0/p	Stable	0/p	Slaple		Slaple	υp	Slaple
-5v	-22V	\checkmark	-22V	\checkmark	-22V	\checkmark	-22V	\checkmark
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark
0v	0V	\checkmark	0V	\checkmark	0V	\checkmark	0V	\checkmark
1v	4.5V	\checkmark	4.5V	\checkmark	4.5V	\checkmark	4.5V	\checkmark
5v	22V	\checkmark	22V	\checkmark	22V	\checkmark	22V	\checkmark
LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A
Power supply	Digimess	BP3002	211259

3. Inspection

Workmanship Inspect the general workmanship standard and comment: \checkmark

U3 (LM2990S) noisy, component has been replaced.

Board is bowed.

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	

J5

PIN	SI	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	\checkmark
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	\checkmark
9	Im	on4N		21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11, 12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit Increase the voltages on the supplies to +/-3V. Determine that the supply polarities are correct on TP1 and TP2. If they are, increase input voltages to +/- 16.5v. Record the regulator output voltages, measured on a DVM with 4 or more

digits. Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.10V	\checkmark	1mV
+15v TP4	14.95V	\checkmark	1mV
-15v TP6	-14.86V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.27A
-16.5v	0.22A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37- way to 25-way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

FILTER

Channel	Indicator		OK?		
	ON	OFF			
Ch1	\checkmark	\checkmark	\checkmark		
Ch2	\checkmark	\checkmark	\checkmark		
Ch3	\checkmark	\checkmark	\checkmark		
Ch4	\checkmark	\checkmark	\checkmark		

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	\checkmark

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	26mV	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.6	-42.5dB	-39.5dB	
Ch2	-40.6	-42.5dB	-39.5dB	
Ch3	-40.6	-42.5dB	-39.5dB	
Ch4	-40.6	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.2	-53dB	-50dB	\checkmark
Ch2	-51.1	-53dB	-50dB	\checkmark
Ch3	-51.3	-53dB	-50dB	\checkmark
Ch4	-51.2	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-28.6	-30dB	-27dB	\checkmark
Ch2	-28.5	-30dB	-27dB	\checkmark
Ch3	-29.1	-30dB	-27dB	\checkmark
Ch4	-29.0	-30dB	-27dB	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Мах	
Ch1	-19.4	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1 kHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	3.3V	0.6V
Ch2	3.3V	0.6V
Ch3	3.3V	0.6V
Ch4	3.3V	0.6V

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	o/p	stable?	o/p	stable?		stable?	o/p	stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V		-22V	\checkmark
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark
0v	0V	\checkmark	0V	\checkmark	0V	\checkmark	0V	\checkmark
1v	4.5V	\checkmark	4.5V		4.5V		4.5V	\checkmark
5v	22V	\checkmark	22V	\checkmark	22V	\checkmark	22V	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A
Power supply	Digimess	BP3002	211259

3. Inspection

Workmanship Inspect the general workmanship standard and comment: $\boldsymbol{\sqrt{}}$

J6 connector replace. Original had solder splash on it preventing use.

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	

J5

PIN	SI	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	\checkmark
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	\checkmark
9	Im	on4N		21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11, 12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit Increase the voltages on the supplies to +/-3V. Determine that the supply polarities are correct on TP1 and TP2. If they are, increase input voltages to +/- 16.5v. Record the regulator output voltages, measured on a DVM with 4 or more

digits. Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.08V	\checkmark	1mV
+15v TP4	15.02V	\checkmark	1mV
-15v TP6	-14.98V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37- way to 25-way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4		\checkmark	\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	\checkmark

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.27V	Pin 3 to Pin 4	0.27V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	26mV	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.3	-42.5dB	-39.5dB	\checkmark
Ch2	-40.6	-42.5dB	-39.5dB	\checkmark
Ch3	-40.6	-42.5dB	-39.5dB	\checkmark
Ch4	-40.7	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.3	-53dB	-50dB	\checkmark
Ch2	-51.2	-53dB	-50dB	\checkmark
Ch3	-51.2	-53dB	-50dB	\checkmark
Ch4	-51.3	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-29.5	-30dB	-27dB	\checkmark
Ch2	-28.8	-30dB	-27dB	\checkmark
Ch3	-28.8	-30dB	-27dB	\checkmark
Ch4	-28.9	-30dB	-27dB	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Мах	
Ch1	-19.5	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.3	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1 kHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	3.3V	0.6V
Ch2	3.3V	0.6V
Ch3	3.3V	0.6V
Ch4	3.3V	0.6V

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	0/p	stable?	0/p	stable?		stable ?	0/p	stable ?
-5v	-22V	\checkmark	-22V	\checkmark	-22V	\checkmark	-22V	\checkmark
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark
0v	0V	\checkmark	0V	\checkmark	0V	\checkmark	0V	\checkmark
1v	4.5V	\checkmark	4.5V	\checkmark	4.5V	\checkmark	4.5V	\checkmark
5v	22V	\checkmark	22V	\checkmark	22V	\checkmark	22V	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A
Power supply	Digimess	BP3002	211259

3. Inspection

Workmanship Inspect the general workmanship standard and comment: $\boldsymbol{\sqrt{}}$

Regulator (LM2990S) was noisy and has been replaced.

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	Photodiode D+ 4	
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	

J5

PIN	SI	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	\checkmark
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	
9	Im	on4N		21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11, 12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit Increase the voltages on the supplies to +/-3V. Determine that the supply polarities are correct on TP1 and TP2. If they are, increase input voltages to +/- 16.5v. Record the regulator output voltages, measured on a DVM with 4 or more

digits. Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.04V	\checkmark	1mV
+15v TP4	14.93V	\checkmark	1mV
-15v TP6	-14.96V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.
7. Relay Operation

Note: 37- way to 25-way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

FILTER

Channel	Indie	Indicator	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4		\checkmark	\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	\checkmark

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	26mV	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.8	-42.5dB	-39.5dB	\checkmark
Ch2	-40.5	-42.5dB	-39.5dB	\checkmark
Ch3	-40.7	-42.5dB	-39.5dB	
Ch4	-40.7	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.3	-53dB	-50dB	\checkmark
Ch2	-51.1	-53dB	-50dB	\checkmark
Ch3	-51.3	-53dB	-50dB	\checkmark
Ch4	-51.2	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-28.7	-30dB	-27dB	\checkmark
Ch2	-28.6	-30dB	-27dB	\checkmark
Ch3	-29.0	-30dB	-27dB	\checkmark
Ch4	-28.9	-30dB	-27dB	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Мах	
Ch1	-19.4	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

1Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1 kHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	3.3V	0.6V
Ch2	3.3V	0.6V
Ch3	3.3V	0.6V
Ch4	3.3V	0.6V

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	o/p	stable?	o/p	stable?		stable?	o/p	stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V		-22V	\checkmark
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark
0v	0V	\checkmark	0V	\checkmark	0V	\checkmark	0V	\checkmark
1v	4.5V	\checkmark	4.5V		4.5V		4.5V	\checkmark
5v	22V	\checkmark	22V	\checkmark	22V	\checkmark	22V	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A
Power supply	Digimess	BP3002	211259

3. Inspection

Workmanship Inspect the general workmanship standard and comment: $\boldsymbol{\sqrt{}}$

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	

J5

PIN	SI	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	\checkmark
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	\checkmark
9	Im	on4N		21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11, 12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit Increase the voltages on the supplies to +/-3V. Determine that the supply polarities are correct on TP1 and TP2. If they are, increase input voltages to +/- 16.5v. Record the regulator output voltages, measured on a DVM with 4 or more

digits. Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.05V	\checkmark	1mV
+15v TP4	14.95V	\checkmark	1mV
-15v TP6	-15.06V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.27A
-16.5v	0.22A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37- way to 25-way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4		\checkmark	\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	\checkmark

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	27mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	27mV	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.6	-42.5dB	-39.5dB	
Ch2	-40.6	-42.5dB	-39.5dB	
Ch3	-40.8	-42.5dB	-39.5dB	
Ch4	-40.7	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.4	-53dB	-50dB	\checkmark
Ch2	-51.5	-53dB	-50dB	\checkmark
Ch3	-51.5	-53dB	-50dB	\checkmark
Ch4	-51.6	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-29.3	-30dB	-27dB	\checkmark
Ch2	-29.2	-30dB	-27dB	\checkmark
Ch3	-28.6	-30dB	-27dB	\checkmark
Ch4	-29.0	-30dB	-27dB	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Мах	
Ch1	-19.4	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 kHz

	Output	Sim	Pass/Fail	
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

1Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.2	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-4.8	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.5	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.5	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.5	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1 kHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	3.3V	0.6V
Ch2	3.3V	0.6V
Ch3	3.3V	0.6V
Ch4	3.3V	0.6V

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	o/p	stable?	o/p	stable?		stable?	o/p	stable?
-5v	-22V		-22V		-22V		-22V	
-1v	-4.5V		-4.5V		-4.5V		-4.5V	
0v	0V		0V		0V		0V	
1v	-4.5V		-4.5V		-4.5V		-4.5V	
5v	-22V		-22V		-22V		-22V	

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A
Power supply	Digimess	BP3002	211259

3. Inspection

Workmanship Inspect the general workmanship standard and comment: $\boldsymbol{\sqrt{}}$

Board is slightly bowed.

J7 not sitting flat on board, slightly lifted.

P2 mounted at an slight angle.

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION To J1 PIN		OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	

J5

PIN	SI	GNAL			To J1 PIN	OK?
1	Im	on1P			5	\checkmark
2	Im	on2P			6	\checkmark
3	Im	on3P			7	\checkmark
4	Im	on4P	8		8	\checkmark
		5	0V			
6	Im	on1N			18	\checkmark
7	Im	on2N	on2N		19	\checkmark
8	Im	on3N			20	\checkmark
9	Im	on4N			21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11, 12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit Increase the voltages on the supplies to +/-3V. Determine that the supply polarities are correct on TP1 and TP2. If they are, increase input voltages to +/- 16.5v. Record the regulator output voltages, measured on a DVM with 4 or more

digits. Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.02V	\checkmark	1mV
+15v TP4	14.91V	\checkmark	1mV
-15v TP6	-14.95V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37- way to 25-way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	\checkmark

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	26mV	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.6	-42.5dB	-39.5dB	\checkmark
Ch2	-40.6	-42.5dB	-39.5dB	\checkmark
Ch3	-40.6	-42.5dB	-39.5dB	\checkmark
Ch4	-40.5	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.1	-53dB	-50dB	\checkmark
Ch2	-51.2	-53dB	-50dB	\checkmark
Ch3	-51.2	-53dB	-50dB	\checkmark
Ch4	-51.1	-53dB	-50dB	\checkmark

100Hz

	Output	Simu	Pass/Fail	
	dB	Min	Min Max	
Ch1	-28.8	-30dB	-27dB	\checkmark
Ch2	-28.9	-30dB	-27dB	\checkmark
Ch3	-28.9	-30dB	-27dB	\checkmark
Ch4	-28.8	-30dB	-27dB	\checkmark

1 kHz

	Output	Sim	Pass/Fail	
	dB	Min Max		
Ch1	-19.4	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 kHz

	Output	Sim	Pass/Fail	
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

1Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-18.3	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1 kHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	3.3V	0.6V
Ch2	3.3V	0.6V
Ch3	3.3V	0.6V
Ch4	3.3V	0.6V

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	o/p	stable?	o/p	stable?		stable?	o/p	stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V		-22V	\checkmark
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark
0v	0V	\checkmark	0V	\checkmark	0V	\checkmark	0V	\checkmark
1v	4.5V	\checkmark	4.5V		4.5V		4.5V	\checkmark
5v	22V	\checkmark	22V	\checkmark	22V	\checkmark	22V	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability
Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A
Power supply	Digimess	BP3002	211259

3. Inspection

Workmanship Inspect the general workmanship standard and comment: $\boldsymbol{\checkmark}$

Board is slightly bowed.

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	

J5

PIN	SI	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	\checkmark
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	\checkmark
9	Im	on4N		21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11, 12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit Increase the voltages on the supplies to +/-3V. Determine that the supply polarities are correct on TP1 and TP2. If they are, increase input voltages to +/- 16.5v. Record the regulator output voltages, measured on a DVM with 4 or more

digits. Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.04V	\checkmark	1mV
+15v TP4	14.97V	\checkmark	1mV
-15v TP6	-15.02V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37- way to 25-way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	\checkmark

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Sim	Simulation	
		Min	Max	
Ch1		-40dB/25mV	-36dB/28mV	\checkmark
Ch2		-40dB/25mV	-36dB/28mV	\checkmark
Ch3		-40dB/25mV	-36dB/28mV	\checkmark
Ch4		-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.6	-42.5dB	-39.5dB	\checkmark
Ch2	-40.6	-42.5dB	-39.5dB	\checkmark
Ch3	-40.6	-42.5dB	-39.5dB	\checkmark
Ch4	-40.6	-42.5dB	-39.5dB	\checkmark
· · · · · · · · · · · · · · · · · · ·				•

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.1	-53dB	-50dB	\checkmark
Ch2	-51.2	-53dB	-50dB	\checkmark
Ch3	-51.1	-53dB	-50dB	\checkmark
Ch4	-51.2	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-28.4	-30dB	-27dB	\checkmark
Ch2	-28.7	-30dB	-27dB	\checkmark
Ch3	-28.6	-30dB	-27dB	\checkmark
Ch4	-28.9	-30dB	-27dB	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.4	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1 kHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	3.3V	0.6V
Ch2	3.3V	0.6V
Ch3	3.3V	0.6V
Ch4	3.3V	0.6V

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	o/p	stable?	o/p	stable?		stable?	o/p	stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V	\checkmark	-22V	
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	
0v	0V	\checkmark	0V	\checkmark	0V	\checkmark	0V	
1v	4.5V	\checkmark	4.5V	\checkmark	4.5V	\checkmark	4.5V	
5v	-22V	\checkmark	-22V	\checkmark	-22V	\checkmark	-22V	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A
Power supply	Digimess	BP3002	211259

3. Inspection

Workmanship Inspect the general workmanship standard and comment: $\boldsymbol{\checkmark}$

Board is bowed.

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	

J5

PIN	SI	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	\checkmark
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	\checkmark
9	Im	on4N		21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11, 12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit Increase the voltages on the supplies to +/-3V. Determine that the supply polarities are correct on TP1 and TP2. If they are, increase input voltages to +/- 16.5v. Record the regulator output voltages, measured on a DVM with 4 or more

digits. Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.04V	\checkmark	1mV
+15v TP4	14.94V	\checkmark	1mV
-15v TP6	-15.07V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37- way to 25-way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

FILTER

Channel	Indicator		OK?		
	ON	OFF			
Ch1	\checkmark	\checkmark	\checkmark		
Ch2	\checkmark	\checkmark	\checkmark		
Ch3	\checkmark	\checkmark	\checkmark		
Ch4	\checkmark	\checkmark	\checkmark		

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	\checkmark

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	26mV	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.6	-42.5dB	-39.5dB	\checkmark
Ch2	-40.6	-42.5dB	-39.5dB	\checkmark
Ch3	-40.6	-42.5dB	-39.5dB	\checkmark
Ch4	-40.6	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.2	-53dB	-50dB	\checkmark
Ch2	-51.0	-53dB	-50dB	\checkmark
Ch3	-51.1	-53dB	-50dB	\checkmark
Ch4	-51.2	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-28.8	-30dB	-27dB	\checkmark
Ch2	-28.4	-30dB	-27dB	\checkmark
Ch3	-28.6	-30dB	-27dB	\checkmark
Ch4	-28.7	-30dB	-27dB	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Мах	
Ch1	-19.4	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

1Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simulation		Pass/Fail
		Min	Max	\checkmark
Ch1	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1 kHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	3.3V	0.6V
Ch2	3.3V	0.6V
Ch3	3.3V	0.6V
Ch4	3.3V	0.6V

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	0/p	Stable	0/p	Slaple		Slaple	υp	Slaple
-5v	-22V	\checkmark	-22V	\checkmark	-22V	\checkmark	-22V	\checkmark
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark
0v	0V	\checkmark	0V	\checkmark	0V	\checkmark	0V	\checkmark
1v	4.5V	\checkmark	4.5V	\checkmark	4.5V	\checkmark	4.5V	\checkmark
5v	22V	\checkmark	22V	\checkmark	22V	\checkmark	22V	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A
Power supply	Digimess	BP3002	211259

3. Inspection

Workmanship Inspect the general workmanship standard and comment: $\boldsymbol{\checkmark}$

P2 mounted at a slight angle.

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	Photodiode C+ 3	
4	PD4P	Photodiode D+	otodiode D+ 4	
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	

J5

PIN	SI	GNAL			To J1 PIN	OK?
1	Im	on1P			5	\checkmark
2	Im	on2P			6	\checkmark
3	Im	on3P			7	\checkmark
4	Im	on4P			8	\checkmark
		5	0V			
6	Im	on1N			18	\checkmark
7	Im	on2N			19	\checkmark
8	Im	on3N			20	\checkmark
9	Im	on4N			21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11, 12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit Increase the voltages on the supplies to +/-3V. Determine that the supply polarities are correct on TP1 and TP2. If they are, increase input voltages to +/- 16.5v. Record the regulator output voltages, measured on a DVM with 4 or more

digits. Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.05V	\checkmark	1mV
+15v TP4	14.95V	\checkmark	1mV
-15v TP6	-14.92V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37- way to 25-way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4			\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	\checkmark

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark
9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements	with the signal	generator	and oscilloscope
0.1Hz			

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	26mV	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.7	-42.5dB	-39.5dB	\checkmark
Ch2	-40.5	-42.5dB	-39.5dB	\checkmark
Ch3	-40.6	-42.5dB	-39.5dB	\checkmark
Ch4	-40.5	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.2	-53dB	-50dB	\checkmark
Ch2	-51.1	-53dB	-50dB	\checkmark
Ch3	-51.2	-53dB	-50dB	\checkmark
Ch4	-51.2	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-28.6	-30dB	-27dB	\checkmark
Ch2	-28.7	-30dB	-27dB	\checkmark
Ch3	-28.8	-30dB	-27dB	\checkmark
Ch4	-29.1	-30dB	-27dB	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.4	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.3	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-4.9	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-4.9	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1 kHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	3.3V	0.6V
Ch2	3.3V	0.6V
Ch3	3.3V	0.6V
Ch4	3.3V	0.6V

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	o/p	stable?	o/p	stable?		stable?	o/p	stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V		-22V	\checkmark
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark
0v	0V	\checkmark	0V	\checkmark	0V	\checkmark	0V	\checkmark
1v	4.5V	\checkmark	4.5V		4.5V		4.5V	\checkmark
5v	22V	\checkmark	22V	\checkmark	22V	\checkmark	22V	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A
Power supply	Digimess	BP3002	211259

3. Inspection

Workmanship Inspect the general workmanship standard and comment: $\boldsymbol{\sqrt{}}$

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C- 16		
9	PD4N	Photodiode D-	17	\checkmark

J5

PIN	SI	GNAL			To J1 PIN	OK?
1	Im	on1P		Ę	5	\checkmark
2	Im	on2P		6	6	\checkmark
3	Im	on3P		7	7	\checkmark
4	Im	on4P		8	8	\checkmark
		5	0V			
6	Im	on1N			18	\checkmark
7	Im	on2N		-	19	\checkmark
8	Im	on3N			20	\checkmark
9	Im	on4N			21	\checkmark

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11, 12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit Increase the voltages on the supplies to +/-3V. Determine that the supply polarities are correct on TP1 and TP2. If they are, increase input voltages to +/- 16.5v. Record the regulator output voltages, measured on a DVM with 4 or more

digits. Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.08V	\checkmark	1mV
+15v TP4	14.90V	\checkmark	1mV
-15v TP6	-14.96V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37- way to 25-way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indic	OK?	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	\checkmark

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	26mV	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.8	-42.5dB	-39.5dB	\checkmark
Ch2	-40.5	-42.5dB	-39.5dB	
Ch3	-40.7	-42.5dB	-39.5dB	\checkmark
Ch4	-40.5	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.3	-53dB	-50dB	\checkmark
Ch2	-51.1	-53dB	-50dB	\checkmark
Ch3	-51.2	-53dB	-50dB	\checkmark
Ch4	-51.1	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-28.7	-30dB	-27dB	\checkmark
Ch2	-28.5	-30dB	-27dB	\checkmark
Ch3	-28.7	-30dB	-27dB	\checkmark
Ch4	-28.6	-30dB	-27dB	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Мах	
Ch1	-19.4	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

1Hz				
	Output	Simu	lation	Pass/Fail
		Min	Max	
Ch1	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-4.9	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1 kHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	3.3V	0.6V
Ch2	3.3V	0.6V
Ch3	3.3V	0.6V
Ch4	3.3V	0.6V

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	o/p	stable?	o/p	stable?		stable?	o/p	stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V		-22V	\checkmark
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark
0v	0V	\checkmark	0V	\checkmark	0V	\checkmark	0V	\checkmark
1v	4.5V	\checkmark	4.5V		4.5V		4.5V	\checkmark
5v	22V	\checkmark	22V	\checkmark	22V	\checkmark	22V	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A
Power supply	Digimess	BP3002	211259

3. Inspection

Workmanship Inspect the general workmanship standard and comment: $\boldsymbol{\sqrt{}}$

Board is slightly bowed.

J3 connector was of the wrong gender, component has been replaced.

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	Photodiode C+ 3	
4	PD4P	Photodiode D+	odiode D+ 4	
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	

J5

PIN	SI	GNAL			To J1 PIN	OK?
1	Im	on1P			5	\checkmark
2	Im	on2P			6	\checkmark
3	Im	on3P			7	\checkmark
4	Im	on4P				\checkmark
		5	0V			
6	Im	on1N			18	\checkmark
7	Im	on2N			19	\checkmark
8	Im	on3N			20	\checkmark
9	Im	on4N			21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11, 12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit Increase the voltages on the supplies to +/-3V. Determine that the supply polarities are correct on TP1 and TP2. If they are, increase input voltages to +/- 16.5v. Record the regulator output voltages, measured on a DVM with 4 or more

digits. Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.06V	\checkmark	1mV
+15v TP4	14.94V	\checkmark	1mV
-15v TP6	-14.87V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37- way to 25-way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	\checkmark

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	27mV	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.5	-42.5dB	-39.5dB	\checkmark
Ch2	-40.6	-42.5dB	-39.5dB	\checkmark
Ch3	-40.6	-42.5dB	-39.5dB	\checkmark
Ch4	-40.5	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.1	-53dB	-50dB	\checkmark
Ch2	-51.2	-53dB	-50dB	\checkmark
Ch3	-51.2	-53dB	-50dB	\checkmark
Ch4	-51.1	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-28.6	-30dB	-27dB	\checkmark
Ch2	-28.8	-30dB	-27dB	\checkmark
Ch3	-28.8	-30dB	-27dB	\checkmark
Ch4	-28.8	-30dB	-27dB	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Мах	
Ch1	-19.4	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.6	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.3	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1 kHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	3.3V	0.6V
Ch2	3.3V	0.6V
Ch3	3.3V	0.6V
Ch4	3.3V	0.6V

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	o/p	stable?	o/p	stable?		stable?	o/p	stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V		-22V	\checkmark
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark
0v	0V	\checkmark	0V	\checkmark	0V	\checkmark	0V	\checkmark
1v	4.5V	\checkmark	4.5V		4.5V		4.5V	\checkmark
5v	22V	\checkmark	22V	\checkmark	22V	\checkmark	22V	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A
Power supply	Digimess	BP3002	211259
3. Inspection

Workmanship Inspect the general workmanship standard and comment: $\boldsymbol{\sqrt{}}$

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	otodiode D+ 4	
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B- 15		\checkmark
8	PD3N	Photodiode C- 16		
9	PD4N	Photodiode D-	17	\checkmark

J5

PIN	SI	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	\checkmark
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	\checkmark
9	Im	on4N		21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11, 12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit Increase the voltages on the supplies to +/-3V. Determine that the supply polarities are correct on TP1 and TP2. If they are, increase input voltages to +/- 16.5v. Record the regulator output voltages, measured on a DVM with 4 or more

digits. Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.02V	\checkmark	1mV
+15v TP4	14.90V	\checkmark	1mV
-15v TP6	-14.97V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37- way to 25-way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	\checkmark

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	26mV	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simu	ulation	Pass/Fail
	dB	Min	Max	
Ch1	-40.6	-42.5dB	-39.5dB	\checkmark
Ch2	-40.6	-42.5dB	-39.5dB	\checkmark
Ch3	-40.6	-42.5dB	-39.5dB	\checkmark
Ch4	-40.6	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simu	ulation	Pass/Fail
	dB	Min	Max	
Ch1	-51.3	-53dB	-50dB	\checkmark
Ch2	-51.1	-53dB	-50dB	\checkmark
Ch3	-51.2	-53dB	-50dB	\checkmark
Ch4	-51.2	-53dB	-50dB	\checkmark

100Hz

	Output	Simu	Simulation	
	dB	Min	Max	
Ch1	-28.9	-30dB	-27dB	\checkmark
Ch2	-28.4	-30dB	-27dB	\checkmark
Ch3	-28.7	-30dB	-27dB	\checkmark
Ch4	-28.7	-30dB	-27dB	\checkmark

1 kHz

	Output	Sim	ulation	Pass/Fail
	dB	Min	Мах	
Ch1	-19.4	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 kHz

	Output	Sim	ulation	Pass/Fail
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-35.1	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.5	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.4	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1 kHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	3.3V	0.6V
Ch2	3.3V	0.6V
Ch3	3.3V	0.6V
Ch4	3.3V	0.6V

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	o/p	stable?	o/p	stable?		stable?	o/p	stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V		-22V	\checkmark
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark
0v	0V	\checkmark	0V	\checkmark	0V	\checkmark	0V	\checkmark
1v	4.5V	\checkmark	4.5V		4.5V		4.5V	\checkmark
5v	22V	\checkmark	22V	\checkmark	22V	\checkmark	22V	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Power supply	Digimess	BP3002	211259
Signal Generator	Agilent	33120A	MY40016550
Oscilloscope	Tenma	72-6800	0900889
Signal Analyser	N/A	N/A	N/A
Diff driver circuit	N/A	N/A	N/A
Relay test box	N/A	N/A	N/A
Power supply	Digimess	BP3002	211259

3. Inspection

Workmanship Inspect the general workmanship standard and comment: $\boldsymbol{\sqrt{}}$

Links: Check that the link W4 is in place on each channel.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	0V		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	

J5

PIN	SI	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	\checkmark
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V		
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	\checkmark
9	Im	on4N		21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11, 12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

6. Power

Set the power supply outputs to zero. Connect power to the unit Increase the voltages on the supplies to +/-3V. Determine that the supply polarities are correct on TP1 and TP2. If they are, increase input voltages to +/- 16.5v. Record the regulator output voltages, measured on a DVM with 4 or more

digits. Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.08V	\checkmark	1mV
+15v TP4	14.89V	\checkmark	1mV
-15v TP6	-15.03V	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	0.28A
-16.5v	0.23A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Note: 37- way to 25-way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.19V	Pin 1 to Pin 2	2.19V	\checkmark
2	2.19V	Pin 5 to Pin 6	2.19V	\checkmark
3	2.19V	Pin 9 to Pin 10	2.19V	\checkmark
4	2.19V	Pin 13 to Pin 14	2.19V	\checkmark

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28V	Pin 3 to Pin 4	0.28V	\checkmark
2	0.28V	Pin 7 to Pin 8	0.28V	\checkmark
3	0.28V	Pin 11 to Pin 12	0.28V	\checkmark
4	0.28V	Pin 15 to Pin 16	0.28V	\checkmark

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	26mV	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.7	-42.5dB	-39.5dB	\checkmark
Ch2	-40.6	-42.5dB	-39.5dB	\checkmark
Ch3	-40.7	-42.5dB	-39.5dB	
Ch4	-40.8	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.2	-53dB	-50dB	\checkmark
Ch2	-51.2	-53dB	-50dB	\checkmark
Ch3	-51.2	-53dB	-50dB	\checkmark
Ch4	-51.3	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-28.8	-30dB	-27dB	\checkmark
Ch2	-28.8	-30dB	-27dB	\checkmark
Ch3	-28.7	-30dB	-27dB	\checkmark
Ch4	-28.6	-30dB	-27dB	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Мах	
Ch1	-19.4	-21dB	-18dB	\checkmark
Ch2	-19.4	-21dB	-18dB	\checkmark
Ch3	-19.4	-21dB	-18dB	\checkmark
Ch4	-19.4	-21dB	-18dB	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.2	-21dB	-18dB	\checkmark
Ch2	-19.2	-21dB	-18dB	\checkmark
Ch3	-19.2	-21dB	-18dB	\checkmark
Ch4	-19.2	-21dB	-18dB	\checkmark

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-18.3	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.3	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.3	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.3	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.0	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-4.9	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch2	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch3	-3.7	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark
Ch4	-3.6	-4.5dB / 665 mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simu	Pass/Fail	
		Min	Max	
Ch1	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.6	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1 kHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	3.3V	0.6V
Ch2	3.3V	0.6V
Ch3	3.3V	0.6V
Ch4	3.3V	0.6V

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	o/p	stable?	o/p	stable?		stable?	o/p	stable?
-5v	-22V	\checkmark	-22V	\checkmark	-22V		-22V	\checkmark
-1v	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark	-4.5V	\checkmark
0v	0V	\checkmark	0V	\checkmark	0V	\checkmark	0V	\checkmark
1v	4.5V	\checkmark	4.5V		4.5V		4.5V	\checkmark
5v	22V	\checkmark	22V	\checkmark	22V	\checkmark	22V	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v1 Ac

Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm Unit......T_ACQ_P85.....Serial No Test Engineer....Xen.... Date......6/10/10.....

Contents 1. Description

- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Outputs to Monitors
- 8.1 Amplifier Monitors 8.2 Coil Monitors
- 9. Filter Frequency Response Test Low Noise Mode
- **10. Filter Frequency Response Test Acquisition Mode**
- 11. Distortion
- 12. DC Stability

Block diagram

1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

Unit......T_ACQ_P85.....Serial No Test Engineer....Xen.... Date......6/10/10....

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
V/I calibrator	Time Electronics	1044	

Unit.....T_ACQ_P85.....Serial No Test Engineer....Xen.... Date......6/10/10....

3. Inspection

Workmanship Inspect the general workmanship standard and comment: $\boldsymbol{\sqrt{}}$

Links: Check that the link W4 is in place on each channel. Unit......T_ACQ_P85.....Serial No Test Engineer....Xen.... Date......6/10/10.....

4. Continuity Checks

J2

PIN	SIGNA	L DESCRIP	TION	To J1 PIN	OK?
1	PD1P	Photodiod	e A+	1	\checkmark
2	PD2P	Photodiod	eB+ 2	2	\checkmark
3	PD3P	Photodiod	e C+	3	\checkmark
4	PD4P	Photodiod	Photodiode D+ 4		\checkmark
	5	0V		\checkmark	
6	PD1N	Photodiod	e A-	14	\checkmark
7	PD2N	Photodiod	e B-	15	\checkmark
8	PD3N	Photodiod	Photodiode C-		
9	PD4N	Photodiod	e D-	17	

J5

PIN	SI	GNAL		To J1 PIN	OK?
1	Im	on1P		5	\checkmark
2	Im	on2P		6	\checkmark
3	Im	on3P		7	\checkmark
4	Im	on4P		8	\checkmark
		5	0V	\checkmark	
6	Im	on1N		18	\checkmark
7	Im	on2N		19	\checkmark
8	Im	on3N		20	\checkmark
9	Im	on4N		21	

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11, 12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs	
Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit......T_ACQ_P85.....Serial No Test Engineer....Xen.... Date......6/10/10.....

6. Power

Set the power supply outputs to zero. Connect power to the unit Increase the voltages on the supplies to +/-3V. Determine that the supply polarities are correct on TP1 and TP2. If they are, increase input voltages to +/- 16.5v. Record the regulator output voltages measured on a DVM wi

Record the regulator output voltages, measured on a DVM with 4 or more digits.

Observe the regulator outputs on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.02	\checkmark	1mV
+15v TP4	14.96	\checkmark	1mV
-15v TP6	-15.11	\checkmark	5mV

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5v	225mA
-16.5v	300mA

If the supplies are correct, proceed to the next test.

Unit......T_ACQ_P85......Serial No Test Engineer....Xen.... Date......6/10/10.....

7. Relay Operation

Note: 37- way to 25-way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

Unit......T_ACQ_P85.....Serial No Test Engineer....Xen.... Date......6/10/10....

8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode. With a 20 ohm dummy load on each channel, apply a 1v r.m.s (704mVPP) input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5. Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

Ch.	Output: TP4 to TP5	Monitor Pins P1	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	2.2	Pin 1 to Pin 2	2.2	\checkmark
2	2.2	Pin 5 to Pin 6	2.2	\checkmark
3	2.2	Pin 9 to Pin 10	2.2	\checkmark
4	2.2	Pin 13 to Pin 14	2.2	\checkmark

8.2 Current monitors

Ch.	Output between R10 and R11	Monitor Pins	Monitor out Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	0.28	Pin 3 to Pin 4	0.28	\checkmark
2	0.27	Pin 7 to Pin 8	0.27	\checkmark
3	0.28	Pin 11 to Pin 12	0.28	\checkmark
4	0.28	Pin 15 to Pin 16	0.28	\checkmark

Unit......T_ACQ_P85.....Serial No Test Engineer....Xen.... Date......6/10/10....

9. Frequency Response Test, Low Noise Mode: Insert link W4 for each channel and switch in the filters. Measure the frequency response of each channel across the 20 Ohm loads using the dynamic signal analyser. Measure the gain at 0.1 Hz using the signal generator and scope, using a 1v peak input signal, and recording the peak output.

0.1 Hz measurements with the signal generator and oscilloscope 0.1Hz

	Output	Simulation		Pass/Fail
	mV	Min	Max	
Ch1	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch2	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch3	26mV	-40dB/25mV	-36dB/28mV	\checkmark
Ch4	26mV	-40dB/25mV	-36dB/28mV	\checkmark

1Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-40.8	-42.5dB	-39.5dB	\checkmark
Ch2	-40.8	-42.5dB	-39.5dB	\checkmark
Ch3	-40.7	-42.5dB	-39.5dB	\checkmark
Ch4	-40.9	-42.5dB	-39.5dB	\checkmark

10Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-51.2	-53dB	-50dB	\checkmark
Ch2	-51.2	-53dB	-50dB	\checkmark
Ch3	-51.1	-53dB	-50dB	\checkmark
Ch4	-51.4	-53dB	-50dB	\checkmark

100Hz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-28.6	-30dB	-27dB	\checkmark
Ch2	-28.4	-30dB	-27dB	\checkmark
Ch3	-28.5	-30dB	-27dB	\checkmark
Ch4	-28.7	-30dB	-27dB	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.5	-21dB	-18dB	\checkmark
Ch2	-19.5	-21dB	-18dB	\checkmark
Ch3	-19.5	-21dB	-18dB	\checkmark
Ch4	-19.5	-21dB	-18dB	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
	dB	Min	Max	
Ch1	-19.3	-21dB	-18dB	\checkmark
Ch2	-19.3	-21dB	-18dB	\checkmark
Ch3	-19.3	-21dB	-18dB	\checkmark
Ch4	-19.3	-21dB	-18dB	\checkmark

Unit.....T_ACQ_P85....Serial No Test Engineer....Xen... Date.....6/10/10....

10. Frequency Response Test, Acquisition Mode: Switch the filters off and switch the Acquisition mode in for each channel. Connect a 20 Ohm load resistor across each channel. Either test the response using the signal generator with a 1v r.m.s input signal between TP1 and TP2 or use the dynamic signal analyzer.

1Hz	
-----	--

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-34.9	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch2	-35.0	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch3	-34.9	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark
Ch4	-34.9	-36.5dB / 20mV	-33.5dB / 16mV	\checkmark

10Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-18.2	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch2	-18.3	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch3	-18.1	-20dB / 122mV	-17dB / 118mV	\checkmark
Ch4	-18.1	-20dB / 122mV	-17dB / 118mV	\checkmark

100Hz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-5.1	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch2	-5.1	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch3	-5.1	-6dB / 570mV	-4dB / 565mV	\checkmark
Ch4	-5.1	-6dB / 570mV	-4dB / 565mV	\checkmark

1 kHz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-3.7	-4.5dB / 665mV	-2.5dB / 672mV	\checkmark
Ch2	-3.8	-4.5dB / 665mV	-2.5dB / 672mV	\checkmark
Ch3	-3.9	-4.5dB / 665mV	-2.5dB / 672mV	\checkmark
Ch4	-3.8	-4.5dB / 665mV	-2.5dB / 672mV	\checkmark

5 kHz

	Output	Simulation		Pass/Fail
		Min	Max	
Ch1	-3.7	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch2	-3.8	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch3	-3.9	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Ch4	-3.8	-4.5dB / 675mV	-2.5dB / 665mV	\checkmark
Unit......T_ACQ_P85.....Serial No Test Engineer....Xen.... Date......6/10/10.....

11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1 kHz. Use the 20 Ohm loads. Observe the voltage across each dummy load resistor with an oscilloscope in both Acquisition and Non-Acquisition modes.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	\checkmark	\checkmark
Ch2	\checkmark	\checkmark
Ch3	\checkmark	\checkmark
Ch4	\checkmark	\checkmark

Unit......T_ACQ_P85.....Serial No Test Engineer....Xen.... Date......6/10/10.....

12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage using the scope between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1	Ch1	Ch2	Ch2	Ch3 o/p	Ch3	Ch4	Ch4
	o/p	stable?	o/p	stable?		stable?	o/p	stable?
-5v	-22.0	\checkmark	-22.0	\checkmark	-22.0		-22.0	
-1v	-4.5	\checkmark	-4.5	\checkmark	-4.5	\checkmark	-4.5	\checkmark
0v	0	\checkmark	0	\checkmark	0	\checkmark	0	
1v	4.5	\checkmark	4.5	\checkmark	4.5		4.5	
5v	22.0	\checkmark	22.0	\checkmark	22.0	\checkmark	22.0	\checkmark