# LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000125-v2 Advanced LIGO UK March 2010

Triple Acquisition Driver Board Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo\_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

# Institute for Gravitational Research University of Glasgow

Phone +44 (0) 141 330 5884
Fax +44 (0) 141 330 6833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton
Laboratory

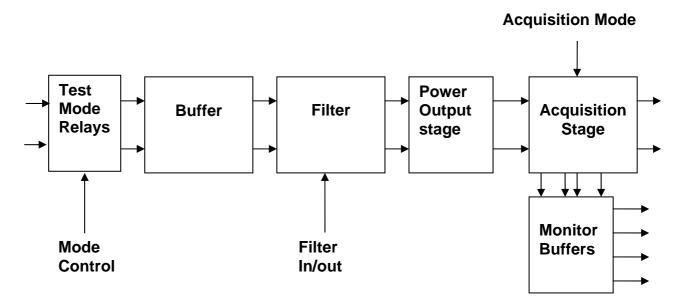
Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

# School of Physics and Astronomy University of Birmingham

Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> **Department of Physics** 

University of Strathclyde Phone +44 (0) 1411 548 3360

Fax +44 (0) 141 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk


http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers\_public/ALUK\_Homepage.htm

| UnitSerial No  Test Engineer  Date                    |
|-------------------------------------------------------|
| Contents                                              |
| 1. Description                                        |
| 2. Test Equipment                                     |
| 3. Inspection                                         |
| 4. Continuity Checks                                  |
| 5. Test Set Up                                        |
| 6. Power                                              |
| 7. Relay operation                                    |
| 8. Outputs to Monitors                                |
| 8.1 Amplifier Monitors<br>8.2 Coil Monitors           |
| 9. Filter Frequency Response Test – Low Noise Mode    |
| 10. Filter Frequency Response Test – Acquisition Mode |
| 11. Distortion                                        |
| 12. DC Stability                                      |

# **Block diagram**



# 1. Description

Each Acquisition board consists of four identical channels and the power regulators which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block is a unity gain buffer.

The third block contains a switchable filter. When the filter is switched in the corner frequency is 1Hz, with by a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off.

At higher frequencies the signal is boosted by the input network to give the required dynamic range at high frequencies.

The filter may be switched in and out by command as required under relay control.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. This stage has a gain of 2.21, the operational amplifier providing the internal gain in the loop. The loop is closed around the buffer/operational amplifier pair. The inputs of the power driver are protected by a resistor network.

The acquisition stage is used when a high coil current is required. In acquisition mode, the output resistors are bypassed by a low value resistor in series with a bank of capacitors, facilitating a high ac output current.

The outputs to the monitor board are buffered by unity gain voltage followers.

| JnitSerial No                                                       |  |
|---------------------------------------------------------------------|--|
| Гest Engineer                                                       |  |
| Date                                                                |  |
| N. Tant a main manut                                                |  |
| 2. Test equipment                                                   |  |
| Power supplies (At least +/- 20v variable, 1A)                      |  |
| Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) |  |
| Analogue oscilloscope                                               |  |
| Agilent Dynamic Signal Analyser (or similar)                        |  |
| Low noise Balanced Driver circuit                                   |  |
| Relay test box                                                      |  |

Record the Models and serial numbers of the test equipment used below.

| Unit (e.g. DVM) | Manufacturer | Model | Serial Number |
|-----------------|--------------|-------|---------------|
|                 |              |       |               |
|                 |              |       |               |
|                 |              |       |               |
|                 |              |       |               |
|                 |              |       |               |
|                 |              |       |               |
|                 |              |       |               |
|                 |              |       |               |
|                 |              |       |               |

| UnitSerial No Test Engineer Date                                  |
|-------------------------------------------------------------------|
| 3. Inspection                                                     |
| Workmanship Inspect the general workmanship standard and comment: |
|                                                                   |
|                                                                   |
|                                                                   |
|                                                                   |
|                                                                   |
|                                                                   |
|                                                                   |
|                                                                   |
|                                                                   |
|                                                                   |
|                                                                   |
|                                                                   |
|                                                                   |

Check that the link W4 is in place on each channel.

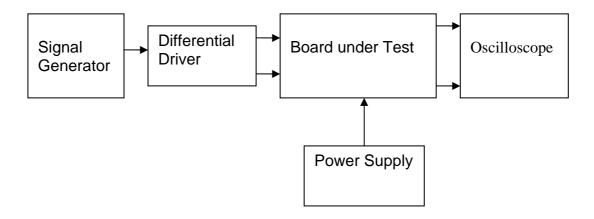
Links:

| Unit          | Serial No |
|---------------|-----------|
| Test Engineer |           |
| Date          |           |
|               |           |

# 4. Continuity Checks

J2

| PIN | SIGNAL | DESCRIPTION   | To J1 PIN | OK? |
|-----|--------|---------------|-----------|-----|
| 1   | PD1P   | Photodiode A+ | 1         |     |
| 2   | PD2P   | Photodiode B+ | 2         |     |
| 3   | PD3P   | Photodiode C+ | 3         |     |
| 4   | PD4P   | Photodiode D+ | 4         |     |
| 5   | 0V     |               |           |     |
| 6   | PD1N   | Photodiode A- | 14        |     |
| 7   | PD2N   | Photodiode B- | 15        |     |
| 8   | PD3N   | Photodiode C- | 16        |     |
| 9   | PD4N   | Photodiode D- | 17        |     |


J5

| PIN | SIGNAL | To J1 PIN | OK? |
|-----|--------|-----------|-----|
| 1   | Imon1P | 5         |     |
| 2   | Imon2P | 6         |     |
| 3   | Imon3P | 7         |     |
| 4   | Imon4P | 8         |     |
| 5   | 0V     |           |     |
| 6   | Imon1N | 18        |     |
| 7   | Imon2N | 19        |     |
| 8   | Imon3N | 20        |     |
| 9   | Imon4N | 21        |     |

# Power Supply to Satellite box J1

| PIN | SIGNAL   | DESCRIPTION | OK? |
|-----|----------|-------------|-----|
| 9   | V+ (TP1) | +17v Supply |     |
| 10  | V+ (TP1) | +17v Supply |     |
| 11  | V- (TP2) | -17v Supply |     |
| 12  | V- (TP2) | -17v Supply |     |
| 13  | 0V (TP3) |             |     |
| 22  | 0V (TP3) |             |     |
| 23  | 0V (TP3) |             |     |
| 24  | 0V (TP3) |             |     |
| 25  | 0V (TP3) |             |     |

# 5. TEST SET UP



#### Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the differential driver.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

# **Connections:**

Differential signal inputs to the board under test:

J3 pins 1, 2, 3, 4 = positive inputJ3 pins 6, 7, 8, 9 = positive input

J3 pin 5 = ground

# Power

J1 pin 9, 10 = +16.5v

J1 pin 11,12 = -16.5

J1 pins 22, 23, 24, 25 = 0v

# Outputs

| Ch1- = J4 pin 9  |
|------------------|
| Ch2- = J4 pin 11 |
| Ch3- = J4 pin 13 |
| Ch4- = J4 pin 15 |
|                  |

| Unit          | Serial No |
|---------------|-----------|
| Test Engineer |           |
| Date          |           |

#### 6. Power

Check that the 3 pin power connector is wired correctly: A1 positive, A2 return, A3 Negative.

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the regulator output voltages, measured on a DVM with 4 or more digits.

Observe the regulator outputs on an analogue oscilloscope, set to AC.

Measure and record the peak to peak noise on each regulator output.

Record regulator outputs:

| Regulator | Output voltage | Nominal +/- 0.5v? | Output noise |
|-----------|----------------|-------------------|--------------|
| +12v TP5  |                |                   |              |
| +15v TP4  |                |                   |              |
| -15v TP6  |                |                   |              |

**Record Power Supply Currents** 

| Supply | Current |
|--------|---------|
| +16.5v |         |
| -16.5v |         |

If the supplies are correct, proceed to the next test.

| Unit          | Serial No |
|---------------|-----------|
| Test Engineer |           |
| Date          |           |

# 7. Relay Operation

Note: 37 way to 25 way adapter cables are needed if the PUM test box is being used.

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

# Filter

| Channel | Indicator |     | OK? |
|---------|-----------|-----|-----|
|         | ON        | OFF |     |
| Ch1     |           |     |     |
| Ch2     |           |     |     |
| Ch3     |           |     |     |
| Ch4     |           |     |     |

# **TEST RELAYS**

| Channel | Indicator |     | OK? |
|---------|-----------|-----|-----|
|         | ON        | OFF |     |
| Ch1     |           |     |     |
| Ch2     |           |     |     |
| Ch3     |           |     |     |
| Ch4     |           |     |     |

# **ACQUISITION RELAYS**

| Channel | Indica | Indicator |  |
|---------|--------|-----------|--|
|         | ON     | OFF       |  |
| Ch1     |        |           |  |
| Ch2     |        |           |  |
| Ch3     |        |           |  |
| Ch4     |        |           |  |

| Unit          | Serial No |
|---------------|-----------|
| Test Engineer |           |
| Date          |           |

# 8. Outputs to Monitors

Switch out the filters and set the unit to Acquisition Mode.

With a 20 ohm dummy load on each channel, apply a 1v r.m.s input at 100Hz as measured between TP1 and TP2. Measure the voltage monitor outputs and compare with the voltages between TP4 and TP5.

Measure the current monitor outputs and compare with the voltage between the outputs of R10 and R11. Repeat for each channel.

8.1 Voltage Monitors

| Ch. | Output:<br>TP4 to TP5 | Monitor Pins<br>P1 | Monitor<br>Voltage | Pass/Fail:<br>Equal? (+/- 0.1v) |
|-----|-----------------------|--------------------|--------------------|---------------------------------|
| 1   |                       | Pin 1 to Pin 2     |                    |                                 |
| 2   |                       | Pin 5 to Pin 6     |                    |                                 |
| 3   |                       | Pin 9 to Pin 10    |                    |                                 |
| 4   |                       | Pin 13 to Pin 14   |                    |                                 |

# **8.2 Current monitors**

| Ch. | Output<br>between R10<br>and R11 | Monitor Pins     | Monitor<br>Voltage | Pass/Fail:<br>Equal? (+/- 0.1v) |
|-----|----------------------------------|------------------|--------------------|---------------------------------|
| 1   |                                  | Pin 3 to Pin 4   |                    |                                 |
| 2   |                                  | Pin 7 to Pin 8   |                    |                                 |
| 3   |                                  | Pin 11 to Pin 12 |                    |                                 |
| 4   |                                  | Pin 15 to Pin 16 |                    |                                 |

| Unit          | .Serial No |
|---------------|------------|
| Test Engineer |            |
| Date          |            |

**9. Frequency Response Test, Low Noise Mode:** Insert link W4 for each channel. Switch in the filters and test the response using the signal generator. Measure the frequency response of each channel using the dynamic signal analyser.

# 0.1Hz

|     | Output |       | Simulation |  |
|-----|--------|-------|------------|--|
|     | dB     | Min   | Max        |  |
| Ch1 |        | -40dB | -36dB      |  |
| Ch2 |        | -40dB | -36dB      |  |
| Ch3 |        | -40dB | -36dB      |  |
| Ch4 |        | -40dB | -36dB      |  |

# 1Hz

|     | Output |         | Simulation |  |
|-----|--------|---------|------------|--|
|     | dB     | Min     | Max        |  |
| Ch1 |        | -42.5dB | -39.5dB    |  |
| Ch2 |        | -42.5dB | -39.5dB    |  |
| Ch3 |        | -42.5dB | -39.5dB    |  |
| Ch4 |        | -42.5dB | -39.5dB    |  |

# 10Hz

|     | Output |       | Simulation |  |
|-----|--------|-------|------------|--|
|     | dB     | Min   | Max        |  |
| Ch1 |        | -53dB | -50dB      |  |
| Ch2 |        | -53dB | -50dB      |  |
| Ch3 |        | -53dB | -50dB      |  |
| Ch4 |        | -53dB | -50dB      |  |

# 100Hz

|     | Output |       | Simulation | Pass/Fail |
|-----|--------|-------|------------|-----------|
|     | dB     | Min   | Max        |           |
| Ch1 |        | -30dB | -27dB      |           |
| Ch2 |        | -30dB | -27dB      |           |
| Ch3 |        | -30dB | -27dB      |           |
| Ch4 |        | -30dB | -27dB      |           |

# 1 KHz

|     | Output | Simulation |       | Pass/Fail |
|-----|--------|------------|-------|-----------|
|     | dB     | Min        | Max   |           |
| Ch1 |        | -21dB      | -18dB |           |
| Ch2 |        | -21dB      | -18dB |           |
| Ch3 |        | -21dB      | -18dB |           |
| Ch4 |        | -21dB      | -18dB |           |

# 5 KHz

|     | Output |       | Simulation |  |
|-----|--------|-------|------------|--|
|     | dB     | Min   | Max        |  |
| Ch1 |        | -21dB | -18dB      |  |
| Ch2 |        | -21dB | -18dB      |  |
| Ch3 |        | -21dB | -18dB      |  |
| Ch4 |        | -21dB | -18dB      |  |

| Unit          | Serial No |
|---------------|-----------|
| Test Engineer |           |
| Data          |           |

**10.** Frequency Response Test, Acquisition Mode: Switch the filter off and Acquisition mode on for each channel. Connect a 20 ohm load resistor each channel. Test the response using the signal generator. With a 1v rms input signal between TP1 and TP2, measure the output across the load resistor.

1Hz

|     | Output | Simu           | Simulation     |  |
|-----|--------|----------------|----------------|--|
|     |        | Min            | Max            |  |
| Ch1 |        | -36.5dB / 20mV | -33.5dB / 16mV |  |
| Ch2 |        | -36.5dB / 20mV | -33.5dB / 16mV |  |
| Ch3 |        | -36.5dB / 20mV | -33.5dB / 16mV |  |
| Ch4 |        | -36.5dB / 20mV | -33.5dB / 16mV |  |

# 10Hz

|     | Output | Simulation    |               | Pass/Fail |
|-----|--------|---------------|---------------|-----------|
|     |        | Min           | Max           |           |
| Ch1 |        | -20dB / 122mV | -17dB / 118mV |           |
| Ch2 |        | -20dB / 122mV | -17dB / 118mV |           |
| Ch3 |        | -20dB / 122mV | -17dB / 118mV |           |
| Ch4 |        | -20dB / 122mV | -17dB / 118mV |           |

# 100Hz

|     | Output | Simulation   |              | Pass/Fail |
|-----|--------|--------------|--------------|-----------|
|     |        | Min          | Max          |           |
| Ch1 |        | -6dB / 570mV | -4dB / 565mV |           |
| Ch2 |        | -6dB / 570mV | -4dB / 565mV |           |
| Ch3 |        | -6dB / 570mV | -4dB / 565mV |           |
| Ch4 |        | -6dB / 570mV | -4dB / 565mV |           |

# 1 KHz

|     | Output | put Simulation  |                | Pass/Fail |
|-----|--------|-----------------|----------------|-----------|
|     |        | Min             | Max            |           |
| Ch1 |        | -4.5dB / 665 mV | -2.5dB / 672mV |           |
| Ch2 |        | -4.5dB / 665 mV | -2.5dB / 672mV |           |
| Ch3 |        | -4.5dB / 665 mV | -2.5dB / 672mV |           |
| Ch4 |        | -4.5dB / 665 mV | -2.5dB / 672mV |           |

# 5 KHz

|     | Output | Output Simulation |                | Pass/Fail |
|-----|--------|-------------------|----------------|-----------|
|     |        | Min               | Max            |           |
| Ch1 |        | -4.5dB / 675mV    | -2.5dB / 665mV |           |
| Ch2 |        | -4.5dB / 675mV    | -2.5dB / 665mV |           |
| Ch3 |        | -4.5dB / 675mV    | -2.5dB / 665mV |           |
| Ch4 |        | -4.5dB / 675mV    | -2.5dB / 665mV |           |

| Unit          | Serial No |  |
|---------------|-----------|--|
| Test Engineer |           |  |
| Date          |           |  |

# 11. Distortion

Switch the filters out. Increase input voltage to 5v peak, f = 1KHz. Use the 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

|     | Acquisition Mode: Distortion Free? | Non-Acquisition Distortion Free? | Mode: |
|-----|------------------------------------|----------------------------------|-------|
| Ch1 |                                    |                                  |       |
| Ch2 |                                    |                                  |       |
| Ch3 |                                    |                                  |       |
| Ch4 |                                    |                                  |       |

| Unit          | Serial No |
|---------------|-----------|
| Test Engineer |           |
| Date          |           |

# 12. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP4 and TP5. Check stability while slowly increasing the output voltage. (Link W2 in)

|     | J3 pins<br>1,6 |             | J3 pins<br>2,7 |                | J3 pins<br>3,8 |                | J3 pins<br>4,9 |                |
|-----|----------------|-------------|----------------|----------------|----------------|----------------|----------------|----------------|
|     | Ch1<br>o/p     | Ch1 stable? | Ch2<br>o/p     | Ch2<br>stable? | Ch3 o/p        | Ch3<br>stable? | Ch4<br>o/p     | Ch4<br>stable? |
| -5v | _              |             | •              |                |                |                | -              |                |
| -1v |                |             |                |                |                |                |                |                |
| 0v  |                |             |                |                |                |                |                |                |
| 1v  |                |             |                |                |                |                |                |                |
| 5v  |                |             |                |                |                |                |                |                |