LIGO Laboratory / LIGO Scientific Collaboration

Advanced LIGO UK

March 2010

Triple Acquisition Driver Unit Test Report

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT

```
Unit................T ACQ P84............................Serial No.
Test Engineer.....Xen.
Date................17/9/10
```

Drive Card ID.......T ACQ84
Monitor Card ID....Mon250
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

1. Description

Block diagram

Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
ACQ_P84
```

\qquad

``` 17/9/10
```


2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz )
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	$33250 A$	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.

Links:

Check that the links W2 and W4 are present on each channel.

Test Engineer.. Xen.
Date. 17/9/10

4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{l \mid}$
5	0V	\sqrt{l}		
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
5	0V	$\sqrt{\|c\|}$		
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	$\sqrt{ }$

PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	$\mathrm{V}+$ (TP1)	+17v Supply	\checkmark
11	V - (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit.
```

\qquad

``` T_ACQ_P84
``` \(\qquad\)
Test Engineer.....Xen.
Date 17/9/10.
```


## 6. Power

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents

$\mathbf{+ 1 6 . 5}$ supply current (mA)	- $\mathbf{1 6 . 5}$ supply current (mA)
500 mA	400 mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	$\sqrt{2}$	$\sqrt{ }$
Rear Panel	$\sqrt{ }$	$\sqrt{ }$

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen..
Date. 17/9/10

## 7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\checkmark$	$\checkmark$	$\checkmark$
Ch2	$\checkmark$	$\checkmark$	$\checkmark$
Ch3	$\checkmark$	$\checkmark$	$\checkmark$
Ch4	$\checkmark$	$\checkmark$	$\checkmark$

TEST RELAYS

Channel	Indicator		OK?
Ch1	ON	OFF	
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

## ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\checkmark$	$\checkmark$	$\checkmark$
Ch2	$\checkmark$	$\checkmark$	$\checkmark$
Ch3	$\checkmark$	$\checkmark$	$\checkmark$
Ch4	$\checkmark$	$\checkmark$	$\checkmark$

```
Unit
 .T_ACQ_P84
 Serial No
Test Engineer.....Xen.
```

Date
.17/9/10

## 8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

### 8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S   Monitor	Expected value	Pass/Fail:   Equal? (+/-0.1v)
$\mathbf{1}$	0.33	3	0.33 v	$\sqrt{ }$
$\mathbf{2}$	0.33	6	0.33 v	$\sqrt{ }$
$\mathbf{3}$	0.33	9	0.33 v	$\sqrt{ }$
$\mathbf{4}$	0.33	12	0.33 v	$\sqrt{ }$

Adjust the input voltage until the voltage across the load resistor $=1 \mathrm{v}$ r.m.s. Record the current monitor output values.
8.2 Current Monitors

Ch.	Output	V, I and R.M.S   Monitor	Expected   Value	Pass/Fail:   Equal? (+/- 0.1v)
$\mathbf{1}$	1.92	2	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{2}$	1.93	5	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{3}$	1.92	8	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{4}$	1.92	11	$1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}$	$\sqrt{ }$

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S   Monitor	Expected   Value	Pass/Fail:   Equal? (+/- 0.1v)
$\mathbf{1}$	1.96	1	1.86 vdc	$\sqrt{ }$
$\mathbf{2}$	1.96	4	1.86 vdc	$\sqrt{ }$
$\mathbf{3}$	1.96	7	1.86 vdc	$\sqrt{ }$
$\mathbf{4}$	1.96	10	1.86 vdc	$\sqrt{ }$

### 8.4 Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu \mathrm{V} \sqrt{ } \mathrm{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA $\sqrt{ } \mathrm{Hz}$ should give $2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}$ out.

Ch.	Output   $(\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})$	$\div($ Pre-amplifier   gain $)$	Expected   Value	Comparison
$\mathbf{1}$		1.77	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{2}$		1.57	$2.9 \mu \mathrm{~V} \mathrm{~Hz}$	$\sqrt{ }$
$\mathbf{3}$		1.61	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{4}$		1.66	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$

```
Unit.
```

$\qquad$

```
 T_ACQ_P84
```

$\qquad$

```
 Serial No
Test Engineer.....Xen..
Date
 17/9/10
```


## 9. Distortion

```
Switch the filters out. Increase input voltage to 5 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.
```

	Acquisition Mode:   Distortion Free?	Non-Acquisition Mode:   Distortion Free?
Ch1	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{2}$	$\sqrt{ }$

Unit.
.T_ACQ_P84.
Test Engineer.....Xen.
Date .17/9/10.

## 10 Load tests and Frequency response check

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

### 10.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo   $($ Vo/20 $)$	Specification	Pass/Fail
Ch1	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

10Hz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.066	4.7 mA	$>\mathbf{~ 2 . 5 m A ~ p e a k ~}$	$\sqrt{ }$
Ch2	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

100 Hz

	Vor.m.s	$\begin{gathered} \text { Peak lo } \\ (\mathrm{Vo} / 20) \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	0.324	22.9 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch2	0.323	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch3	0.323	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch4	0.323	22.8 mA	>2.5mA peak	$\checkmark$

200 Hz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times$ 1.414	Specification	Pass/Fail	
Ch1	0.390	27.6 mA	$\boldsymbol{> 2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.390	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.390	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.389	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.414	29.3 mA	$>\mathbf{2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.. Xen.
Date
.17/9/10.

### 10.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo   (Vo/20)	Specification	Pass/Fail
Ch1	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch2	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch3	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch4	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	

10 Hz

	Vo peak	Peak lo   $($ Vo/20 $)$	Specification	Pass/Fail
Ch1	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch2	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch3	15 mV	750 uA	$>2.5 \mathrm{~mA}$ peak	
Ch4	16 mV	800 uA	$>2.5 \mathrm{~mA}$ peak	

100 Hz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.123	8.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.126	8.9 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.122	8.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.124	8.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.238	16.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.242	17.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.236	16.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.238	16.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.368	26.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.368	26.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.. Xen.
Date 17/9/10.

### 10.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch3	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch4	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA }}$ peak	$\sqrt{ }$

1 kHz

	Vor.m.s	Vo pk.	$\begin{gathered} \hline \text { Peak lo (Vo/20) } \\ \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	>125mA peak	$\checkmark$
Ch2	2.3	3.3	162.6 mA	>125mA peak	$\checkmark$
Ch3	2.3	3.3	162.6 mA	$>125 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	2.3	3.3	162.6 mA	>125mA peak	$\checkmark$

5 kHz

	Vo r.m.s	Vo pk.	Peak Io (Vo/20)   $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	1.66	2.3	117.4 mA	>125mA peak	
Ch2	1.68	2.4	118.8 mA	$>125 \mathrm{~mA}$ peak	
Ch3	1.68	2.4	118.8 mA	$>125 \mathrm{~mA}$ peak	
Ch4	1.67	2.4	118.1 mA	>125mA peak	

Test Engineer.....Xen
Date 17/9/10.

## 11. Noise Measurements

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.


Measure the noise output at 10 Hz .

	Spec in   $\mathrm{dB} V \sqrt{ } \mathrm{~Hz}$	Measured @   10 Hz	$-60 \mathrm{~dB}=$	Measured in   $\mathrm{nV} \sqrt{ } \mathrm{Hz}$	OK?
Ch1	-143.5	-93.0	-153.0	22.4	$\sqrt{ }$
Ch2	-143.5	-92.9	-152.9	22.6	$\sqrt{ }$
Ch3	-143.5	-91.6	-151.6	26.3	$\sqrt{ }$
Ch4	-143.5	-91.7	-151.7	26.0	$\sqrt{ }$

## Notes:

Specified noise output current at $10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}$ (worst case)
Total resistance at 10 Hz , in Low noise mode $=6.7 \mathrm{k}$
Amplifier noise voltage should therefore be $=67 \mathrm{nV} \sqrt{\mathrm{Hz}}$
$67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}$

```
Unit
TACQ84P
Serial No
```

$\qquad$

```
Test Engineer
RMC
Date
4/11/10
```


## 12. Final Assembly Tests

1. Remove the lid of the box. $\sqrt{ }$
2. Unplug all external connections. $\sqrt{ }$
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight. $\sqrt{ }$
4. Check that all internal connectors are firmly mated. $\sqrt{ }$
5. Tighten the screw-locks holding all the external connectors. $\sqrt{ }$
6. Check that all the LEDs are nicely centred. $V$
7. Check that all links W4 are in place. $\sqrt{ }$
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TASCQ48P
Driver board ID	TASCQ48P
Driver board Drawing No/Issue No	D0901047_V4
Monitor board ID	MON250_
Monitor board Drawing No/Issue No	D070480_5_K

9. Check the security of any modification wires. None
10. Visually inspect. $\sqrt{ }$
11. Put the lid on and fasten all screws, $\sqrt{ }$

Check all external screws for tightness. $\sqrt{ }$

## LIGO Laboratory / LIGO Scientific Collaboration

## Advanced LIGO UK

March 2010

## Triple Acquisition Driver Unit Test Report

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research<br>University of Glasgow<br>Phone +44 (0) 1413305884<br>Fax +44 (0) 1413306833<br>E-mail k.strain@physics.gla.ac.uk<br>Engineering Department<br>CCLRC Rutherford Appleton Laboratory<br>Phone +44 (0) 1235445297<br>Fax +44 (0) 1235445843<br>E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT

```
Unit...............T ACQ P1..............................Serial No.
Test Engineer.....Xen.
Date................19/10/10
```

Drive Card ID.......T ACQ1
Monitor Card ID....Mon183
Contents
1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

## 1. Description

## Block diagram



## Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
__ACQ_P1
P1.
Serial No
Test Engineer.....Xen
Date
19/10/10
```


## 2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz)
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	



## 3. Inspection

## Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.

## Links

Check that the links W2 and W4 are present on each channel.

```
Unit
```

$\qquad$

``` .T_ACQ_P1 Serial No
Test Engineer.....Xen.
Date
14/10/10.
```


## 4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\checkmark$
2	PD2P	Photodiode B+	2	$\checkmark$
3	PD3P	Photodiode C+	3	$\checkmark$
4	PD4P	Photodiode D+	4	$\checkmark$
	5	OV	$\checkmark$	
6	PD1N	Photodiode A-	14	$\checkmark$
7	PD2N	Photodiode B-	15	$\checkmark$
8	PD3N	Photodiode C-	16	$\checkmark$
9	PD4N	Photodiode D-	17	$\checkmark$

LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\checkmark$
2	Imon2P		6	$\checkmark$
3	Imon3P		7	$\checkmark$
4	Imon4P		8	$\checkmark$
	5	OV	$\checkmark$	
6	Imon1N		18	$\checkmark$
7	Imon2N		19	$\checkmark$
8	Imon3N		20	$\checkmark$
9	Imon4N		21	$\checkmark$

PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
11	V - (TP2)	-17 v Supply	$\sqrt{ }$
12	V - (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	0 V (TP3)		$\sqrt{ }$
24	OV (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

## 5. TEST SET UP



Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

## Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit.
 T_ACQ_P1
```

$\qquad$
Date
14/10/10

```

\section*{6. Power}

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents
\begin{tabular}{|c|c|}
\hline \(\mathbf{+ 1 6 . 5}\) supply current (mA) & - \(\mathbf{1 6 . 5}\) supply current (mA) \\
\hline 500 mA & 400 mA \\
\hline
\end{tabular}

Check that all power LEDs are illuminated.
\begin{tabular}{|c|c|c|}
\hline LEDs & Plus & Minus \\
\hline Front Panel & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Rear Panel & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.
```

Unit.

``` \(\qquad\)
``` T_ACQ_P1
Test Engineer.....Xen.
```

Date. 14/10/10

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{\|c\|}$	$\sqrt{ }$	$\sqrt{ }$

TEST RELAYS

Channel	Indicator		OK?
Ch1	ON	OFF	
Ch2	$\sqrt{ }$	$\sqrt{2}$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	\checkmark	$\sqrt{ }$

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{\|l\|}$	$\sqrt{ }$	$\sqrt{ }$

```
Unit.
                            T_ACQ_P1
                                    Serial No
Test Engineer.....Xen.
Date
14/10/10.
```


8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S Monitor	Expected value	Pass/Fail: Equal? (+/-0.1v)
$\mathbf{1}$	0.33	3	0.33 v	$\sqrt{ }$
$\mathbf{2}$	0.33	6	0.33 v	$\sqrt{ }$
$\mathbf{3}$	0.33	9	0.33 v	$\sqrt{ }$
$\mathbf{4}$	0.33	12	0.33 v	$\sqrt{ }$

Adjust the input voltage until the voltage across the load resistor $=1 \mathrm{v}$ r.m.s. Record the current monitor output values.
8.2 Current Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	1.91	2	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{2}$	1.91	5	$1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}$	$\sqrt{ }$
$\mathbf{3}$	1.91	8	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{4}$	1.91	11	$1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}$	$\sqrt{ }$

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	1.95	1	1.86 vdc	$\sqrt{ }$
$\mathbf{2}$	1.95	4	1.86 vdc	$\sqrt{ }$
$\mathbf{3}$	1.94	7	1.86 vdc	$\sqrt{ }$
$\mathbf{4}$	1.95	10	1.86 vdc	$\sqrt{ }$

8.4 Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu \mathrm{V} \sqrt{ } \mathrm{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA $\sqrt{ } \mathrm{Hz}$ should give $2.9 \mu \mathrm{~V} \sqrt{\mathrm{H} z}$ out.

Ch.	Output $(\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z})}$	\div (Pre-amplifier gain)	Expected Value	Comparison
$\mathbf{1}$		1.60	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{2}$		1.85	$2.9 \mu \mathrm{~V} \mathrm{~Hz}$	$\sqrt{ }$
$\mathbf{3}$		1.43	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{4}$		1.00	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$

```
Unit
T_ACQ_P1
1.
Serial No
Test Engineer.....Xen.
Date
.14/10/10
```


9. Distortion

```
Switch the filters out. Increase input voltage to 5 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.
```

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{2}$	$\sqrt{ }$

```
Unit
```

\qquad

```
                            T_ACQ_P1
Test Engineer.....Xen.
Date
19/10/10
```

10 Load tests and Frequency response check
Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

10.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo (Vol20)	Specification	Pass/Fail
Ch1	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch2	67.5 mV	3.4 mA	>2.5mA peak	\checkmark
Ch3	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch4	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark

10 Hz

Vo r.m.s	Peak lo $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.066	4.7 mA	$>\mathbf{2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

100 Hz

	Vo r.m.s	Peak lo $($ Vo/20 $) \times$ 1.414	Specification	Pass/Fail
Ch1	0.323	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.322	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.325	23.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.322	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200Hz

Vo r.m.s	Peak lo $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.390	27.6 mA	$\boldsymbol{> 2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.390	27.6 mA	$>\mathbf{2 . 5 m A}$ peak	$\sqrt{ }$
Ch3	0.391	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.389	27.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

Vo r.m.s	Peak lo $(\mathbf{V o / 2 0}) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.415	29.3 mA	$\boldsymbol{> 2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

```
Unit.
                            T_ACQ_P1
                                    Serial No
Test Engineer.....Xen.
Date
19/10/10
```


10.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo (Vo/20)	Specification	Pass/Fail
Ch1	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch2	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch3	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch4	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	

10 Hz

	Vo peak	Peak Io (Vo/20)	Specification	Pass/Fail
Ch1	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch2	15 mV	750 uA	$>2.5 \mathrm{~mA}$ peak	
Ch3	16 mV	800 uA	$>2.5 \mathrm{~mA}$ peak	
Ch4	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	

100 Hz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.129	9.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.128	9.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.130	9.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.132	9.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.246	17.4 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch2	0.245	17.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.247	17.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.249	17.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.. Xen.
Date 19/10/10.

10.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	1.99	2.8	140.7 mA	$\boldsymbol{> 1 2 5 m A}$ peak	\checkmark
Ch2	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch3	1.99	2.8	140.7 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch4	1.97	2.8	140.7 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

200 Hz

	Vor.m.s	Vo pk.	$\begin{gathered} \hline \text { Peak lo }(\text { Vo/20 }) \\ \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	$>125 \mathrm{~mA}$ peak	\checkmark
Ch2	2.2	3.1	155.5 mA	$>125 \mathrm{~mA}$ peak	\checkmark
Ch3	2.2	3.1	155.5 mA	$>125 \mathrm{~mA}$ peak	\checkmark
Ch4	2.2	3.1	155.5 mA	>125mA peak	\checkmark

1 kHz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	2.3	3.3	162.6 mA	>125mA peak	\checkmark
Ch2	2.3	3.3	162.6 mA	>125mA peak	\checkmark
Ch3	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$
Ch4	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$

5 kHz

	Vo r.m.s	Vo pk.	Peak Io (Vo/20) $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	1.68	2.4	118.8 mA	>125mA peak	
Ch2	1.67	2.4	118.1 mA	$>125 \mathrm{~mA}$ peak	
Ch3	1.68	2.4	118.8 mA	$>125 \mathrm{~mA}$ peak	
Ch4	1.67	2.4	118.1 mA	>125mA peak	

```
Unit
                T_ACQ_P1.
                                    Serial No
Test Engineer.....Xen
Date...............14/10/10
```


11. Noise Measurements

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

Measure the noise output at 10 Hz .

	Spec in $\mathrm{dB} V \sqrt{ } \mathrm{~Hz}$	Measured @ 10 Hz	$-60 \mathrm{~dB}=$	Measured in $\mathrm{nV} \sqrt{ } \mathrm{Hz}$	OK?
Ch1	-143.5	-92.4	-152.4	24.0	$\sqrt{ }$
Ch2	-143.5	-92.8	-152.8	22.9	$\sqrt{ }$
Ch3	-143.5	-89.3	-149.3	34.3	$\sqrt{ }$
Ch4	-143.5	-92.7	-152.7	23.2	$\sqrt{ }$

Notes:

Specified noise output current at $10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}$ (worst case)
Total resistance at 10 Hz , in Low noise mode $=6.7 \mathrm{k}$
Amplifier noise voltage should therefore be $=67 \mathrm{nV} \sqrt{\mathrm{Hz}}$
$67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{\mathrm{~Hz}}$

Unit.
.Serial No \qquad
Test Engineer
Date \qquad

12. Final Assembly Tests

1. Remove the lid of the box.
2. Unplug all external connections.
3. Check that the 9 mm pillars are in place in the corners of the Monitor Board towards the centre of the box.
4. Check that all internal connectors are firmly mated.
5. Tighten the screw-locks holding all the external connectors.
6. Check that the nuts holding the tabs of the power drivers are secure tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis.
7. Check that all the LEDs are nicely centred.
8. Check that all links W4 and W2 are in place.
9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	
Driver board ID	
Driver board Drawing No/Issue No	
Driver board Serial Number	
Monitor board ID	
Monitor board Drawing No/Issue No	
Monitor board Serial Number	

10. Check the security of any modification wires.
11. Visually inspect.
12. Put the lid on and fasten all screws,

Check all external screws for tightness.

LIGO Laboratory / LIGO Scientific Collaboration

Advanced LIGO UK

Triple Acquisition Driver Unit Test Report

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT

Drive Card ID......T ACQ2P
Monitor Card ID...Mon137

Contents

1 Description

2 Test Equipment

3 Inspection

4 Continuity Checks
$5 \quad$ Test Set Up

6 Power

7 Relay operation

8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

1. Description

Block diagram

Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
T_ACQ_P2
2.
Serial No
Test Engineer.....Xen.
Date................20/5/10
```


2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz )
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.

Links:

Check that the links W2 and W4 are present on each channel.

4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	OV	\checkmark	
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	\checkmark
2	Imon2P		6	\checkmark
3	Imon3P		7	\checkmark
4	Imon4P		8	\checkmark
	5	OV	\checkmark	
6	Imon1N		18	\checkmark
7	Imon2N		19	\checkmark
8	Imon3N		20	\checkmark
9	Imon4N		21	\checkmark

PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
11	V - (TP2)	-17 v Supply	$\sqrt{ }$
12	V - (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	0 V (TP3)		$\sqrt{ }$
24	0 V (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

5. TEST SET UP

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit.
```

\qquad

``` T_ACQ_P2 2.
Test Engineer.....Xen.
Date.................20/5/10.
```


6. Power

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents

$\mathbf{+ 1 6 . 5}$ supply current (mA)	- $\mathbf{1 6 . 5}$ supply current (mA)
500 mA	400 mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	$\sqrt{2}$	$\sqrt{ }$
Rear Panel	$\sqrt{ }$	$\sqrt{ }$

If the supplies are correct, proceed to the next test.
Unit.................T_ACQ_P2.............................Serial No.
Test Engineer....Xen.............................

Test Engineer......Xen..
Date 20/5/10

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	$\sqrt{ }$	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

```
Unit.
    T_ACQ_P2
Serial No
Test Engineer.....Xen
Date
.20/5/10
```


8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S Monitor	Expected value	Pass/Fail: Equal? (+/-0.1v)
$\mathbf{1}$	0.33	3	0.33 v	$\sqrt{ }$
$\mathbf{2}$	0.33	6	0.33 v	$\sqrt{ }$
$\mathbf{3}$	0.33	9	0.33 v	$\sqrt{ }$
$\mathbf{4}$	0.33	12	0.33 v	$\sqrt{ }$

Adjust the input voltage until the voltage across the load resistor $=1 \mathrm{v}$ r.m.s. Record the current monitor output values.
8.2 Current Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	Pass/Fail: Equal? ($+/-\mathbf{0 . 1 v})$
$\mathbf{1}$	1.93	2	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{2}$	1.93	5	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{3}$	1.93	8	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{4}$	1.93	11	1.86 v r.m.s	$\sqrt{ }$

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	Pass/Fail: Equal? ($+/ \mathbf{0 . 1 v})$
$\mathbf{1}$	1.96	1	1.86 v dc	$\sqrt{ }$
$\mathbf{2}$	1.96	4	1.86 vdc	$\sqrt{ }$
$\mathbf{3}$	1.96	7	1.86 v dc	$\sqrt{ }$
$\mathbf{4}$	1.96	10	1.86 vdc	$\sqrt{ }$

8.4 Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu \mathrm{V} \sqrt{ } \mathrm{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA $\sqrt{ } \mathrm{Hz}$ should give $2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}$ out.

Ch.	Output $(\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})$	$\div($ Pre-amplifier gain $)$	Expected Value	Comparison
$\mathbf{1}$		1.66	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{2}$		0.94	$2.9 \mu \mathrm{~V} \mathrm{~Hz}$	$\sqrt{ }$
$\mathbf{3}$		1.43	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{4}$		0.92	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$

```
Unit.
...............T_ACQ_P2
2.
Serial No
Test Engineer.....Xen.
Date................20/5/10.
```


9. Distortion

```
Switch the filters out. Increase input voltage to 5 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.
```

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{2}$	$\sqrt{ }$

```
Unit.
                            T_ACQ_P2
Test Engineer.....Xen
Date .20/5/10
``` \(\qquad\)

10 Load tests and Frequency response check
Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

\subsection*{10.1 Noisy Mode}

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vo peak & Peak lo (Vol20) & Specification & Pass/Fail \\
\hline Ch1 & 64.5 mV & 3.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch2 & 64.5 mV & 3.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch3 & 64.5 mV & 3.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch4 & 64.5 mV & 3.2 mA & >2.5mA peak & \(\checkmark\) \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c}
Peak lo \\
\((\) Vo/20 \() \times \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.066 & 4.7 mA & \(>\mathbf{2 . 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.066 & 4.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.066 & 4.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.066 & 4.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vo r.m.s & \begin{tabular}{c}
Peak lo \\
\((\mathrm{Vo/20}) \times\) 1.414
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.321 & 22.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.323 & 22.8 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.324 & 22.9 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.324 & 22.9 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

200Hz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c}
Peak lo \\
\((\) Vo/20 \() \times \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.389 & 27.5 mA & \(\boldsymbol{> 2 . 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.390 & 27.6 mA & \(>\mathbf{2 . 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.390 & 27.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.390 & 27.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|l|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c}
Peak lo \\
\((\) Vo/20 \() \times\) 1.414
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.414 & 29.3 mA & \(\boldsymbol{> 2 . 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.415 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.415 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.413 & 29.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit.
T_ACQ_P2
Serial No
Test Engineer.....Xen
Date
.20/5/10

```

\subsection*{10.2 Low noise Mode}

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo peak & \begin{tabular}{c}
Peak lo \\
(Vo/20)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 45 mV & 2.3 mA & \(>\mathbf{2 . 5 m A}\) peak & \\
\hline Ch2 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch3 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch4 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo peak & \begin{tabular}{c}
Peak lo \\
(Vo/20)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 16 mV & 800 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch2 & 16 mV & 800 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch3 & 16 mV & 800 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch4 & 14 mV & 700 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vo r.m.s & \begin{tabular}{c}
Peak lo \\
(Vo/20) \(\mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.131 & 9.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.131 & 9.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.127 & 9.0 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.133 & 9.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

200 Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo r.m.s & \begin{tabular}{c}
Peak lo \\
(Vo/20) \(\mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.248 & 17.5 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.248 & 17.5 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.243 & 17.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.250 & 17.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo r.m.s & \begin{tabular}{c}
Peak lo \\
(Vo/20) \(\mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.370 & 26.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.371 & 26.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.370 & 26.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.369 & 26.1 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit
T_ACQ_P2.
Test Engineer.....Xen
Date. 20/5/10

```

\subsection*{10.3 Acquisition Mode}

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100 Hz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c}
Peak lo (Vo/20) \\
\(\mathbf{x} \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 2.0 & 2.8 & 141.4 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 2.0 & 2.8 & 141.4 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 2.0 & 2.8 & 141.4 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 2.0 & 2.8 & 141.4 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

200 Hz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c}
Peak lo (Vo/20) \\
\(\mathbf{x} \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\sqrt{ }\) \\
\hline Ch2 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\sqrt{ }\) \\
\hline Ch3 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\sqrt{ }\) \\
\hline Ch4 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Vor.m.s & Vo pk. & \[
\begin{gathered}
\hline \text { Peak lo (Vo/20) } \\
\times 1.414 \\
\hline
\end{gathered}
\] & Specification & Pass/Fail \\
\hline Ch1 & 2.2 & 3.1 & 155.5 mA & >125mA peak & \(\checkmark\) \\
\hline Ch2 & 2.3 & 3.3 & 162.6 mA & \(>125 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch3 & 2.3 & 3.3 & 162.6 mA & \(>125 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch4 & 2.2 & 3.1 & 155.5 mA & >125mA peak & \(\checkmark\) \\
\hline
\end{tabular}

5 kHz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c}
Peak lo (Vo/20) \\
\(\mathbf{x} 1.414\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 1.7 & 2.4 & 120.2 mA & >125mA peak & \\
\hline Ch2 & 1.7 & 2.4 & 120.2 mA & \(>125 \mathrm{~mA}\) peak & \\
\hline Ch3 & 1.7 & 2.4 & 120.2 mA & \(>125 \mathrm{~mA}\) peak & \\
\hline Ch4 & 1.7 & 2.4 & 120.2 mA & >125mA peak & \\
\hline
\end{tabular}
```

Unit
T_ACQ_P2
Serial No
Test Engineer.....Xen.
Date
3/6/10

```

\section*{11. Noise Measurements}

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

Measure the noise output at 10 Hz .
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \begin{tabular}{c}
Spec in \\
\(\mathrm{dB} V \mathrm{~V} \mathrm{~Hz}\)
\end{tabular} & \begin{tabular}{c}
Measured @ \\
10 Hz
\end{tabular} & \(-60 \mathrm{~dB}=\) & \begin{tabular}{c}
Measured in \\
\(\mathrm{nV} \sqrt{ } \mathrm{Hz}\)
\end{tabular} & OK? \\
\hline Ch1 & -143.5 & -91.7 & -151.7 & 26.0 & \(\checkmark\) \\
\hline Ch2 & -143.5 & -91.7 & -151.7 & 26.0 & \(\sqrt{ }\) \\
\hline Ch3 & -143.5 & -93.0 & -153.0 & 22.4 & \(\sqrt{ }\) \\
\hline Ch4 & -143.5 & -91.5 & -151.5 & 26.6 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Notes:}

Specified noise output current at \(10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}\) (worst case)
Total resistance at 10 Hz , in Low noise mode \(=6.7 \mathrm{k}\)
Amplifier noise voltage should therefore be \(=67 \mathrm{nV} \sqrt{\mathrm{Hz}}\)
\(67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}\)

\section*{Unit.}

Serial No \(\qquad\)
Test Engineer
Date \(\qquad\)

\section*{12. Final Assembly Tests}
1. Remove the lid of the box. \(\sqrt{ }\)
2. Unplug all external connections. \(\sqrt{ }\)
3. Check that the 9 mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \(\sqrt{ }\)
4. Check that all internal connectors are firmly mated. \(\sqrt{ }\)
5. Tighten the screw-locks holding all the external connectors. \(\sqrt{ }\)
6. Check that the nuts holding the tabs of the power drivers are secure tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. N/A
7. Check that all the LEDs are nicely centred. \(\sqrt{ }\)
8. Check that all links W4 are in place. \(\sqrt{ }\)
9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. \(\sqrt{ }\) Record below:
\begin{tabular}{|l|l|}
\hline UoB box ID & TACQ2 P \\
\hline Driver board ID & TACQ2 \\
\hline Driver board Drawing No/Issue No & D0901047_V2 \\
\hline Driver board Serial Number & TACQ2 \\
\hline Monitor board ID & MON137 \\
\hline Monitor board Drawing No/Issue No & D070480_4_K \\
\hline Monitor board Serial Number & MON137 P \\
\hline
\end{tabular}
10. Check the security of any modification wires. None
11. Visually inspect. \(\sqrt{ }\)
12. Put the lid on and fasten all screws, \(\sqrt{ }\)

Check all external screws for tightness. \(\sqrt{ }\)

\section*{LIGO Laboratory / LIGO Scientific Collaboration}

\section*{Advanced LIGO UK}

\section*{Triple Acquisition Driver Unit Test Report}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

\author{
Institute for Gravitational Research \\ University of Glasgow \\ Phone +44 (0) 1413305884 \\ Fax +44 (0) 1413306833 \\ E-mail k.strain@physics.gla.ac.uk \\ Engineering Department \\ CCLRC Rutherford Appleton Laboratory \\ Phone +44 (0) 1235445297 \\ Fax +44 (0) 1235445843 \\ E-mail J.Greenhalgh@rl.ac.uk
}

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT}

Drive Card ID......T ACQ3P
Monitor Card ID...Mon136

Contents

1 Description

2 Test Equipment

3 Inspection

4 Continuity Checks
\(5 \quad\) Test Set Up

6 Power

7 Relay operation

8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

\section*{1. Description}

\section*{Block diagram}

\section*{Description}

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.
```

Unit
T_ACQ_P3
Serial No
Test Engineer.....Xen.
Date................20/5/10

```

\section*{2. Test equipment}
```

Power supplies (At least $+/-20 \mathrm{v}$ variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz )
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & ISO-TECH & ISR622 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77III & \\
\hline Signal analyzer & Agilent & 35670A & \\
\hline Pre-amplifier & Stanford Systems & SR560 & \\
\hline
\end{tabular}

\section*{3. Inspection}

\section*{Workmanship}

Inspect the general workmanship standard and comment: \(\sqrt{ }\)
Capacitors C35 and C27 have been changed to 1 nF on all channels.

\section*{Links:}

Check that the links W2 and W4 are present on each channel.

\section*{4. Continuity Checks}

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\checkmark\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\checkmark\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\checkmark\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\checkmark\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\checkmark\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\checkmark\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\checkmark\) \\
\hline
\end{tabular}

\section*{LED Mon}
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\checkmark\) \\
\hline 2 & Imon2P & & 6 & \(\checkmark\) \\
\hline 3 & Imon3P & & 7 & \(\checkmark\) \\
\hline 4 & Imon4P & & 8 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & Imon1N & & 18 & \(\checkmark\) \\
\hline 7 & Imon2N & & 19 & \(\checkmark\) \\
\hline 8 & Imon3N & & 20 & \(\checkmark\) \\
\hline 9 & Imon4N & & 21 & \(\checkmark\) \\
\hline
\end{tabular}

PD from Sat
\begin{tabular}{|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & \(\mathrm{~V}+\) (TP1) & +17 v Supply & \(\sqrt{ }\) \\
\hline 10 & \(\mathrm{~V}+\) (TP1) & +17 v Supply & \(\sqrt{ }\) \\
\hline 11 & V - (TP2) & -17 v Supply & \(\sqrt{ }\) \\
\hline 12 & V - (TP2) & -17 v Supply & \(\sqrt{ }\) \\
\hline 13 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 22 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 23 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 24 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, \(4=\) positive input
Drive Input J3 pins 6, 7, 8, \(9=\) negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, \(10=+16.5 \mathrm{v}\)
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, \(25=0 v\)
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin \(1 \quad\) Ch1 \(-=\mathrm{J} 4\) pin 9
Ch2 \(+=\mathrm{J} 4\) pin \(3 \quad\) Ch2- \(=\mathrm{J} 4\) pin 11
Ch3 \(+=\mathrm{J} 4\) pin \(5 \quad\) Ch3- \(=\mathrm{J} 4\) pin 13
Ch4+ = J4 pin \(7 \quad\) Ch4- \(=\mathrm{J} 4\) pin 15
```

Unit.
T_ACQ_P3..
Serial No
Test Engineer.....Xen.
Date
19/5/10

```

\section*{6. Power}

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents
\begin{tabular}{|c|c|}
\hline \(\mathbf{+ 1 6 . 5}\) supply current (mA) & - \(\mathbf{1 6 . 5}\) supply current (mA) \\
\hline 500 mA & 400 mA \\
\hline
\end{tabular}

Check that all power LEDs are illuminated.
\begin{tabular}{|c|c|c|}
\hline LEDs & Plus & Minus \\
\hline Front Panel & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Rear Panel & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen.
Date. 19/5/10

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{|c|}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

TEST RELAYS
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline Ch1 & ON & OFF & \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\checkmark\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{ACQUISITION RELAYS}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{|l|}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit.
.T_ACQ_P3
Serial No
Test Engineer.....Xen.
Date
19/5/10

```

\section*{8. Monitor Outputs}

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

\subsection*{8.1 Voltage Monitors}
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output: & \begin{tabular}{c}
V, I and R.M.S \\
Monitor
\end{tabular} & Expected value & \begin{tabular}{c}
Pass/Fail: \\
Equal? (+/-0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & 0.33 & 3 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 0.33 & 6 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 0.33 & 9 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 0.33 & 12 & 0.33 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

Adjust the input voltage until the voltage across the load resistor \(=1 \mathrm{v}\) r.m.s. Record the current monitor output values.
8.2 Current Monitors
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output & \begin{tabular}{c}
V, I and R.M.S \\
Monitor
\end{tabular} & \begin{tabular}{c}
Expected \\
Value
\end{tabular} & \begin{tabular}{c}
Pass/Fail: \\
Equal? (+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & 1.93 & 2 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 1.93 & 5 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 1.93 & 8 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 1.93 & 11 & \(1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.3 R.M.S Monitors
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output & \begin{tabular}{c}
V, I and R.M.S \\
Monitor
\end{tabular} & \begin{tabular}{c}
Expected \\
Value
\end{tabular} & \begin{tabular}{c}
Pass/Fail: \\
Equal? (+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & 1.97 & 1 & 1.86 vdc & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 1.96 & 4 & 1.86 vdc & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 1.97 & 7 & 1.86 vdc & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 1.96 & 10 & 1.86 vdc & \(\sqrt{ }\) \\
\hline
\end{tabular}

\subsection*{8.4 Noise Monitors}
- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in \(\mu \mathrm{V} \sqrt{ } \mathrm{Hz}\) on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \(\sqrt{ } \mathrm{Hz}\) should give \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{H} z}\) out.
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c}
Output \\
\((\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})\)
\end{tabular} & \begin{tabular}{c}
\(\div(\) Pre-amplifier \\
gain)
\end{tabular} & \begin{tabular}{c}
Expected \\
Value
\end{tabular} & Comparison \\
\hline \(\mathbf{1}\) & & 1.14 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & & 0.92 & \(2.9 \mu \mathrm{~V} \mathrm{~Hz}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & & 1.20 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & & 1.48 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit.
...............T_ACQ_P3
3.
Serial No
Test Engineer.....Xen.
Date.
3/6/10

```

\section*{9. Distortion}
```

Switch the filters out. Increase input voltage to 5 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

```
\begin{tabular}{|c|c|c|}
\hline & \begin{tabular}{c}
Acquisition Mode: \\
Distortion Free?
\end{tabular} & \begin{tabular}{c}
Non-Acquisition Mode: \\
Distortion Free?
\end{tabular} \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{2}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit.

```
\(\qquad\)
```

                            T_ACQ_P3.
    Test Engineer.....Xen.
Date
.19/5/10

```

10 Load tests and Frequency response check
Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

\subsection*{10.1 Noisy Mode}

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz
\begin{tabular}{|c|c|c|c|c|}
\hline Ch1 & Vo peak & \begin{tabular}{c}
Peak lo \\
(Vo/20)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch2 & 65 mV & 3.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 65 mV & 3.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 65 mV & 3.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

10Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vor.m.s & \[
\begin{gathered}
\text { Peak lo } \\
(\mathrm{Vo} / 20) \times 1.414 \\
\hline
\end{gathered}
\] & Specification & Pass/Fail \\
\hline Ch1 & 0.064 & 4.5 mA & \(>2.5 \mathrm{~mA} \mathrm{peak}\) & \(\checkmark\) \\
\hline Ch2 & 0.064 & 4.5 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch3 & 0.065 & 4.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch4 & 0.064 & 4.5 mA & >2.5mA peak & \(\checkmark\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vor.m.s & \[
\begin{gathered}
\text { Peak lo } \\
(\mathrm{Vo} / 20) \times 1.414 \\
\hline
\end{gathered}
\] & Specification & Pass/Fail \\
\hline Ch1 & 0.322 & 22.8 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch2 & 0.323 & 22.8 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch3 & 0.326 & 23.0 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch4 & 0.322 & 22.8 mA & >2.5mA peak & \(\checkmark\) \\
\hline
\end{tabular}

200Hz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c}
Peak lo \\
\((\mathbf{V o / 2 0}) \times \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.389 & 27.5 mA & \(\boldsymbol{> 2 . 5 m A}\) peak & \(\checkmark\) \\
\hline Ch2 & 0.390 & 27.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch3 & 0.391 & 27.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.389 & 27.5 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c}
Peak lo \\
\((\) Vo/20 \() \times\) 1.414
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.414 & 29.3 mA & \(>\mathbf{~ 2 . 5 m A ~ p e a k ~}\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.415 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.415 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.414 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit.
T_ACQ_P3
Serial No
Test Engineer.....Xen
Date
.20/5/10

```

\subsection*{10.2 Low noise Mode}

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo peak & \begin{tabular}{c}
Peak lo \\
(Vo/20)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 45 mV & 2.3 mA & \(>\mathbf{2 . 5 m A}\) peak & \\
\hline Ch2 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch3 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch4 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo peak & \begin{tabular}{c}
Peak lo \\
(Vo/20)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 14 mV & 700 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch2 & 14 mV & 700 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch3 & 14 mV & 700 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch4 & 12 mV & 600 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vo r.m.s & \begin{tabular}{c}
Peak lo \\
(Vo/20) \(\mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 130 mV & 9.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 130 mV & 9.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 130 mV & 9.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 125 mV & 8.8 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

200 Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo r.m.s & \begin{tabular}{c}
Peak lo \\
(Vo/20) \(\mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.246 & 17.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.247 & 17.5 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.247 & 17.5 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.240 & 17.0 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo r.m.s & \begin{tabular}{c}
Peak lo \\
(Vo/20) \(\mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.369 & 26.1 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.371 & 26.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.370 & 26.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.368 & 26.0 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit
T_ACQ_P3.
Test Engineer.....Xen
Date. .20/5/10

```

\subsection*{10.3 Acquisition Mode}

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100 Hz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c}
Peak lo (Vo/20) \\
\(\mathbf{x} \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/FaiI \\
\hline Ch1 & 2.0 & 2.8 & 141.4 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 2.0 & 2.8 & 141.4 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 2.0 & 2.8 & 141.4 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 2.0 & 2.8 & 141.4 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

200 Hz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c}
Peak lo (Vo/20) \\
\(\mathbf{x} 1.414\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\sqrt{ }\) \\
\hline Ch3 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\sqrt{ }\) \\
\hline Ch4 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA }}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Vor.m.s & Vo pk. & \[
\begin{gathered}
\text { Peak lo (Vo/20) } \\
\times 1.414 \\
\hline
\end{gathered}
\] & Specification & Pass/Fail \\
\hline Ch1 & 2.2 & 3.1 & 155.5 mA & \(>125 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch2 & 2.3 & 3.3 & 162.6 mA & \(>125 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch3 & 2.3 & 3.3 & 162.6 mA & \(>125 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch4 & 2.3 & 3.3 & 162.6 mA & >125mA peak & \(\checkmark\) \\
\hline
\end{tabular}

5 kHz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c}
Peak Io (Vo/20) \\
\(\mathbf{x} 1.414\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 1.7 & 2.4 & 120.2 mA & >125mA peak & \\
\hline Ch2 & 1.7 & 2.4 & 120.2 mA & \(>125 \mathrm{~mA}\) peak & \\
\hline Ch3 & 1.7 & 2.4 & 120.2 mA & \(>125 \mathrm{~mA}\) peak & \\
\hline Ch4 & 1.7 & 2.4 & 120.2 mA & \(>125 \mathrm{~mA}\) peak & \\
\hline
\end{tabular}
```

Unit
T_ACQ_P3
Serial No
Test Engineer.....Xen
Date................20/5/10

```

\section*{11. Noise Measurements}

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

Measure the noise output at 10 Hz .
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \begin{tabular}{c}
Spec in \\
\(\mathrm{dBV} \sqrt{ } \mathrm{Hz}\)
\end{tabular} & \begin{tabular}{c}
Measured @ \\
10 Hz
\end{tabular} & \(-60 \mathrm{~dB}=\) & \begin{tabular}{c}
Measured in \\
\(\mathrm{nV} \sqrt{ } \mathrm{Hz}\)
\end{tabular} & OK? \\
\hline Ch1 & -143.5 & -91.1 & -151.1 & 27.9 & \(\sqrt{ }\) \\
\hline Ch2 & -143.5 & -90.7 & -150.7 & 29.2 & \(\sqrt{ }\) \\
\hline Ch3 & -143.5 & -90.5 & -150.5 & 29.9 & \(\sqrt{ }\) \\
\hline Ch4 & -143.5 & -91.1 & -151.1 & 27.9 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Notes:}

Specified noise output current at \(10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}\) (worst case)
Total resistance at 10 Hz , in Low noise mode \(=6.7 \mathrm{k}\)
Amplifier noise voltage should therefore be \(=67 \mathrm{nV} \sqrt{\mathrm{Hz}}\)
\(67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{\mathrm{~Hz}}\)
Unit................TAQ3..................Serial No
Test Engineer ... RMC
Date9/6/10

\section*{12. Final Assembly Tests}
1. Remove the lid of the box. \(\sqrt{ }\)
2. Unplug all external connections. \(\sqrt{ }\)
3. Check that the 9 mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \(\sqrt{ }\)
4. Check that all internal connectors are firmly mated. \(\sqrt{ }\)
5. Tighten the screw-locks holding all the external connectors. \(\sqrt{ }\)
6. Check that the nuts holding the tabs of the power drivers are secure tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis.
7. Check that all the LEDs are nicely centred. \(V\)
8. Check that all links W4 are in place. \(\sqrt{ }\)
9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:
\begin{tabular}{|l|l|}
\hline UoB box ID & TAQ3 P \\
\hline Driver board ID & TAQ3 \\
\hline Driver board Drawing No/Issue No & D0901047_P \\
\hline Driver board Serial Number & TAQ3 \\
\hline Monitor board ID & MON136 \\
\hline Monitor board Drawing No/Issue No & D070480_4_K \\
\hline Monitor board Serial Number & MON136 \\
\hline
\end{tabular}
10. Check the security of any modification wires. None
11. Visually inspect. \(\sqrt{ }\)
12. Put the lid on and fasten all screws, \(\sqrt{ }\)

Check all external screws for tightness. \(\sqrt{ }\)

\section*{LIGO Laboratory / LIGO Scientific Collaboration}

\section*{Advanced LIGO UK}

\section*{Triple Acquisition Driver Unit Test Report}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

\author{
Institute for Gravitational Research \\ University of Glasgow \\ Phone +44 (0) 1413305884 \\ Fax +44 (0) 1413306833 \\ E-mail k.strain@physics.gla.ac.uk \\ Engineering Department \\ CCLRC Rutherford Appleton Laboratory \\ Phone +44 (0) 1235445297 \\ Fax +44 (0) 1235445843 \\ E-mail J.Greenhalgh@rl.ac.uk
}

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT}

Drive Card ID.........T ACQ4P
Monitor Card ID......Mon134

Contents

1 Description

2 Test Equipment

3 Inspection

4 Continuity Checks
\(5 \quad\) Test Set Up
6 Power

7 Relay operation

8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

\section*{1. Description}

\section*{Block diagram}

\section*{Description}

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.
```

Unit
_ACQ_P4
P4.
Serial No
Test Engineer.....Xen.
Date
18/5/10

```

\section*{2. Test equipment}
```

Power supplies (At least $+/-20 \mathrm{v}$ variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz )
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & ISO-TECH & ISR622 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77III & \\
\hline Signal analyzer & Agilent & 35670A & \\
\hline Pre-amplifier & Stanford Systems & SR560 & \\
\hline
\end{tabular}

\section*{3. Inspection}

\section*{Workmanship}

Inspect the general workmanship standard and comment: \(\sqrt{ }\)
Capacitors C35 and C27 have been changed to 1 nF on all channels.

\section*{Links:}

Check that the links W2 and W4 are present on each channel.

\section*{4. Continuity Checks}

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\checkmark\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\checkmark\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\checkmark\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\checkmark\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\checkmark\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\checkmark\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\checkmark\) \\
\hline
\end{tabular}

\section*{LED Mon}
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\checkmark\) \\
\hline 2 & Imon2P & & 6 & \(\checkmark\) \\
\hline 3 & Imon3P & & 7 & \(\checkmark\) \\
\hline 4 & Imon4P & & 8 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & Imon1N & & 18 & \(\checkmark\) \\
\hline 7 & Imon2N & & 19 & \(\checkmark\) \\
\hline 8 & Imon3N & & 20 & \(\checkmark\) \\
\hline 9 & Imon4N & & 21 & \(\checkmark\) \\
\hline
\end{tabular}

PD from Sat
\begin{tabular}{|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & \(\mathrm{~V}+\) (TP1) & +17 v Supply & \(\sqrt{ }\) \\
\hline 10 & \(\mathrm{~V}+\) (TP1) & +17 v Supply & \(\sqrt{ }\) \\
\hline 11 & V - (TP2) & -17 v Supply & \(\sqrt{ }\) \\
\hline 12 & V - (TP2) & -17 v Supply & \(\sqrt{ }\) \\
\hline 13 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 22 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 23 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 24 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, \(4=\) positive input
Drive Input J3 pins 6, 7, 8, \(9=\) negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, \(10=+16.5 \mathrm{v}\)
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, \(25=0 v\)
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin \(1 \quad\) Ch1 \(-=\mathrm{J} 4\) pin 9
Ch2 \(+=\mathrm{J} 4\) pin \(3 \quad\) Ch2- \(=\mathrm{J} 4\) pin 11
Ch3 \(+=\mathrm{J} 4\) pin \(5 \quad\) Ch3- \(=\mathrm{J} 4\) pin 13
Ch4+ = J4 pin \(7 \quad\) Ch4- \(=\mathrm{J} 4\) pin 15
```

Unit.

```
\(\qquad\)
``` T_ACQ_P4
``` \(\qquad\)
Test Engineer.....Xen.
Date 18/5/10.
```


## 6. Power

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents

$\mathbf{+ 1 6 . 5}$ supply current (mA)	- $\mathbf{1 6 . 5}$ supply current (mA)
500 mA	400 mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	$\sqrt{ }$	$\sqrt{ }$
Rear Panel	$\sqrt{ }$	$\sqrt{ }$

If the supplies are correct, proceed to the next test.
Unit.................T_ACQ_P4..............................Serial No.
Test Engineer....Xen...........................

Date 18/5/10

## 7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

## TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\checkmark$	$\checkmark$	$\checkmark$
Ch2	$\checkmark$	$\checkmark$	$\checkmark$
Ch3	$\checkmark$	$\checkmark$	$\checkmark$
Ch4	$\checkmark$	$\checkmark$	$\checkmark$

## ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\checkmark$	$\sqrt{ }$	$\checkmark$
Ch2	$\checkmark$	$\checkmark$	$\checkmark$
Ch3	$\checkmark$	$\checkmark$	$\checkmark$
Ch4	$\checkmark$	$\checkmark$	$\checkmark$

```
Unit.
 .T_ACQ_P4
 Serial No
Test Engineer.....Xen
Date
18/5/10
```


## 8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

### 8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S   Monitor	Expected value	Pass/Fail:   Equal? (+/-0.1v)
$\mathbf{1}$	0.33	3	0.33 v	$\sqrt{ }$
$\mathbf{2}$	0.33	6	0.33 v	$\sqrt{ }$
$\mathbf{3}$	0.33	9	0.33 v	$\sqrt{ }$
$\mathbf{4}$	0.33	12	0.33 v	$\sqrt{ }$

Adjust the input voltage until the voltage across the load resistor $=1 \mathrm{v}$ r.m.s. Record the current monitor output values.
8.2 Current Monitors

Ch.	Output	V, I and R.M.S   Monitor	Expected   Value	Pass/Fail:   Equal? (+/- 0.1v)
$\mathbf{1}$	1.90	2	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{2}$	1.90	5	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{3}$	1.91	8	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{4}$	1.90	11	$1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}$	$\sqrt{ }$

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S   Monitor	Expected   Value	Pass/Fail:   Equal? ( $+/ \mathbf{0 . 1 v})$
$\mathbf{1}$	1.94	1	1.86 vdc	$\sqrt{ }$
$\mathbf{2}$	1.94	4	1.86 vdc	$\sqrt{ }$
$\mathbf{3}$	1.94	7	1.86 v dc	$\sqrt{ }$
$\mathbf{4}$	1.93	10	1.86 vdc	$\sqrt{ }$

### 8.4 Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu \mathrm{V} \sqrt{ } \mathrm{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA $\sqrt{ } \mathrm{Hz}$ should give $2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}$ out.

Ch.	Output   $(\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})$	$\div($ Pre-amplifier   gain)	Expected   Value	Comparison
$\mathbf{1}$		1.88	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{2}$		0.88	$2.9 \mu \mathrm{~V} \mathrm{~Hz}$	$\sqrt{ }$
$\mathbf{3}$		1.28	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{4}$		1.87	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$

```
Unit.
```

$\qquad$

```
 T_ACQ_P4
 4.
 Serial No
Test Engineer.....Xen.
Date
18/5/10
```


## 9. Distortion

```
Switch the filters out. Increase input voltage to 5 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.
```

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	$\checkmark$	$\checkmark$
Ch2	$\checkmark$	$\checkmark$
Ch3	$\checkmark$	$\checkmark$
Ch4	$\checkmark$	$\checkmark$

```
Unit.
 T_ACQ_P4
Test Engineer.....Xen
Date
.18/5/10
```

$\qquad$

10 Load tests and Frequency response check
Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

### 10.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo (Vol20)	Specification	Pass/Fail
Ch1	66.5 mV	3.3 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch2	66.5 mV	3.3 mA	>2.5mA peak	$\checkmark$
Ch3	66.5 mV	3.3 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch4	66.5 mV	3.3 mA	>2.5mA peak	$\checkmark$

10 Hz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.066	4.7 mA	$>\mathbf{2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

100 Hz

Vo r.m.s	Peak lo   $(V o / 20) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.323	22.8 mA	$>\mathbf{2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.323	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.323	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.324	22.9 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200Hz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.390	27.6 mA	$\boldsymbol{> 2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.390	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.390	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.390	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times$ 1.414	Specification	Pass/Fail	
Ch1	0.415	29.3 mA	$\boldsymbol{> 2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.416	29.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

```
Unit.
T_ACQ_P4
Test Engineer.....Xen
Date
18/5/10
```


### 10.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo   (Vo/20)	Specification	Pass/Fail
Ch1	45 mV	2.3 mA	$>\mathbf{2 . 5 m A}$ peak	
Ch2	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch3	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch4	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	

10 Hz

	Vo peak	Peak lo   (Vo/20)	Specification	Pass/Fail
Ch1	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch2	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch3	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch4	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	

100 Hz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.126	8.9 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.129	9.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.131	9.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.122	8.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.242	17.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.245	17.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.249	17.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.235	16.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.368	26.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

```
Unit
T_ACQ_P4
Test Engineer.....Xen
Date 18/5/10
```


### 10.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/FaiI
Ch1	2.0	2.8	141.4 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	2.0	2.8	141.4 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch3	2.0	2.8	141.4 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch4	2.0	2.8	141.4 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\checkmark$
Ch2	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\checkmark$
Ch3	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\checkmark$
Ch4	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$

1 kHz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	2.3	3.3	162.6 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\checkmark$
Ch2	2.3	3.3	162.6 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\checkmark$
Ch3	2.3	3.3	162.6 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	2.3	3.3	162.6 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

5 kHz

	Vo r.m.s	Vo pk.	Peak Io (Vo/20)   $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	1.7	2.4	120.2 mA	$>125 \mathrm{~mA}$ peak	
Ch2	1.7	2.4	120.2 mA	$>125 \mathrm{~mA}$ peak	
Ch3	1.7	2.4	120.2 mA	$>125 \mathrm{~mA}$ peak	
Ch4	1.7	2.4	120.2 mA	$>125 \mathrm{~mA}$ peak	

```
Unit
T_ACQ_P4
Serial No
Test Engineer.....Xen
Date
18/5/10
```


## 11. Noise Measurements

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.


Measure the noise output at 10 Hz .

	Spec in   $\mathrm{dB} V \sqrt{ } \mathrm{~Hz}$	Measured @   10 Hz	$-60 \mathrm{~dB}=$	Measured in   $\mathrm{nV} \sqrt{ } \mathrm{Hz}$	OK?
Ch1	-143.5	-91.4	-151.4	26.9	$\sqrt{ }$
Ch2	-143.5	-91.4	-151.4	26.9	$\sqrt{ }$
Ch3	-143.5	-94.1	-154.1	19.7	$\sqrt{ }$
Ch4	-143.5	-92.1	-152.1	24.8	$\sqrt{ }$

## Notes:

Specified noise output current at $10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}$ (worst case)
Total resistance at 10 Hz , in Low noise mode $=6.7 \mathrm{k}$
Amplifier noise voltage should therefore be $=67 \mathrm{nV} \sqrt{\mathrm{Hz}}$
$67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}$
Unit..................TACQ4 P.
Test Engineer .........RMC

Date ........................9/6/10

## 12. Final Assembly Tests

1. Remove the lid of the box $\sqrt{ }$
2. Unplug all external connections. $\sqrt{ }$
3. Check that the 9 mm pillars are in place in the corners of the Monitor Board towards the centre of the box. $\sqrt{ }$
4. Check that all internal connectors are firmly mated. $\sqrt{ }$
5. Tighten the screw-locks holding all the external connectors. $\sqrt{ }$
6. Check that the nuts holding the tabs of the power drivers are secure tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis.
7. Check that all the LEDs are nicely centred. $\sqrt{ }$
8. Check that all links W4 are in place. $\sqrt{ }$
9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TACQ4 P
Driver board ID	TACQ4 P
Driver board Drawing No/Issue No	D0901047_V2
Driver board Serial Number	TACQ4 P
Monitor board ID	MON134
Monitor board Drawing No/Issue No	D070480_4_K
Monitor board Serial Number	MON134

10. Check the security of any modification wires. None
11. Visually inspect. $\sqrt{ }$
12. Put the lid on and fasten all screws, $\sqrt{ }$

Check all external screws for tightness. $\sqrt{ }$

## LIGO Laboratory / LIGO Scientific Collaboration

## Advanced LIGO UK

March 2010

## Triple Acquisition Driver Unit Test Report

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research<br>University of Glasgow<br>Phone +44 (0) 1413305884<br>Fax +44 (0) 1413306833<br>E-mail k.strain@physics.gla.ac.uk<br>Engineering Department<br>CCLRC Rutherford Appleton Laboratory<br>Phone +44 (0) 1235445297<br>Fax +44 (0) 1235445843<br>E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT



```
Test Engineer.....Xen.
Date................18/5/10
```

Drive Card ID......T ACQ11P
Monitor Card ID...Mon135
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

## 1. Description

## Block diagram



## Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
_ACQ_P5
Serial No
Test Engineer.....Xen
Date................18/5/10
```


## 2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz)
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	



## 3. Inspection

## Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.

## Links

Check that the links W2 and W4 are present on each channel.

## 4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)

## PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\checkmark$
2	PD2P	Photodiode B+	2	$\checkmark$
3	PD3P	Photodiode C+	3	$\checkmark$
4	PD4P	Photodiode D+	4	$\checkmark$
	5	OV	$\checkmark$	
6	PD1N	Photodiode A-	14	$\checkmark$
7	PD2N	Photodiode B-	15	$\checkmark$
8	PD3N	Photodiode C-	16	$\checkmark$
9	PD4N	Photodiode D-	17	$\checkmark$

## LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\checkmark$
2	Imon2P		6	$\checkmark$
3	Imon3P		7	$\checkmark$
4	Imon4P		8	$\checkmark$
	5	OV	$\checkmark$	
6	Imon1N		18	$\checkmark$
7	Imon2N		19	$\checkmark$
8	Imon3N		20	$\checkmark$
9	Imon4N		21	$\checkmark$

## PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
11	V - (TP2)	-17 v Supply	$\sqrt{ }$
12	V - (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	OV (TP3)		$\sqrt{ }$
24	OV (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

## 5. TEST SET UP



Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

## Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit.
```

$\qquad$

``` T_ACQ_P5
``` \(\qquad\)
```

Test Engineer.....Xen.
Date 18/5/10.

```

\section*{6. Power}

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents
\begin{tabular}{|c|c|}
\hline \(\mathbf{+ 1 6 . 5}\) supply current (mA) & - \(\mathbf{1 6 . 5}\) supply current (mA) \\
\hline 500 mA & 400 mA \\
\hline
\end{tabular}

Check that all power LEDs are illuminated.
\begin{tabular}{|c|c|c|}
\hline LEDs & Plus & Minus \\
\hline Front Panel & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Rear Panel & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.
Unit................T_ACQ_P5.............................Serial No...
Test Engineer....Xen.............................

Date 18/5/10

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\checkmark\) & \(\checkmark\) \\
\hline
\end{tabular}

\section*{TEST RELAYS}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|l|}{Indicator} & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch2 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch3 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch4 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline
\end{tabular}

\section*{ACQUISITION RELAYS}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|l|}{Indicator} & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\checkmark\) & \(\sqrt{ }\) & \(\checkmark\) \\
\hline Ch2 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch3 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch4 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline
\end{tabular}
```

Unit.
.T_ACQ_P5
Serial No
Test Engineer.....Xen
Date
18/5/10

```

\section*{8. Monitor Outputs}

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

\subsection*{8.1 Voltage Monitors}
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output: & \begin{tabular}{c} 
V, I and R.M.S \\
Monitor
\end{tabular} & Expected value & \begin{tabular}{c} 
Pass/Fail: \\
Equal? (+/-0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & 0.33 & 3 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 0.33 & 6 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 0.33 & 9 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 0.33 & 12 & 0.33 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

Adjust the input voltage until the voltage across the load resistor \(=1 \mathrm{v}\) r.m.s. Record the current monitor output values.
8.2 Current Monitors
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output & \begin{tabular}{c} 
V, I and R.M.S \\
Monitor
\end{tabular} & \begin{tabular}{c} 
Expected \\
Value
\end{tabular} & \begin{tabular}{c} 
Pass/Fail: \\
Equal? (+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & 1.91 & 2 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 1.92 & 5 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 1.91 & 8 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 1.91 & 11 & \(1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.3 R.M.S Monitors
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output & \begin{tabular}{c} 
V, I and R.M.S \\
Monitor
\end{tabular} & \begin{tabular}{c} 
Expected \\
Value
\end{tabular} & \begin{tabular}{c} 
Pass/Fail: \\
Equal? (+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & 1.94 & 1 & 1.86 vdc & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 1.96 & 4 & 1.86 vdc & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 1.95 & 7 & 1.86 vdc & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 1.95 & 10 & 1.86 vdc & \(\sqrt{ }\) \\
\hline
\end{tabular}

\subsection*{8.4 Noise Monitors}
- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in \(\mu \mathrm{V} \sqrt{ } \mathrm{Hz}\) on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \(\sqrt{\mathrm{Hz}}\) should give \(2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}\) out.
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c} 
Output \\
\((\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})\)
\end{tabular} & \begin{tabular}{c}
\(\div(\) Pre-amplifier \\
gain \()\)
\end{tabular} & \begin{tabular}{c} 
Expected \\
Value
\end{tabular} & Comparison \\
\hline \(\mathbf{1}\) & & 2.03 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & & 2.12 & \(2.9 \mu \mathrm{~V} \mathrm{~Hz}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & & 0.94 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & & 0.95 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit.

```
\(\qquad\)
```

 T_ACQ_P5
    ```
\(\qquad\)
```

 Serial No
 Test Engineer.....Xen.
Date
18/5/10

```

\section*{9. Distortion}
```

Switch the filters out. Increase input voltage to 5 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

```
\begin{tabular}{|c|c|c|}
\hline & \begin{tabular}{c} 
Acquisition Mode: \\
Distortion Free?
\end{tabular} & \begin{tabular}{c} 
Non-Acquisition Mode: \\
Distortion Free?
\end{tabular} \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{2}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit.

```
\(\qquad\)
```

 .T_ACQ_P5
 Test Engineer.....Xen.
Date
.18/5/10

```

10 Load tests and Frequency response check
Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

\subsection*{10.1 Noisy Mode}

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vo peak & Peak lo (Vo/20) & Specification & Pass/Fail \\
\hline Ch1 & 65 mV & 3.3 mA & >2.5mA peak & \(\checkmark\) \\
\hline Ch2 & 65 mV & 3.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch3 & 65 mV & 3.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch4 & 64.5 mV & 3.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline
\end{tabular}

10Hz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c} 
Peak lo \\
\((\) Vo/20 \() \times\) 1.414
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.064 & 4.5 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.064 & 4.5 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.064 & 4.5 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.064 & 4.5 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vor.m.s & \[
\begin{gathered}
\text { Peak lo } \\
(\mathrm{Vo} / 20) \times 1.414 \\
\hline
\end{gathered}
\] & Specification & Pass/Fail \\
\hline Ch1 & 0.321 & 22.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch2 & 0.323 & 22.8 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch3 & 0.321 & 22.9 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch4 & 0.320 & 22.6 mA & >2.5mA peak & \(\checkmark\) \\
\hline
\end{tabular}

200 Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vor.m.s & \[
\begin{gathered}
\text { Peak lo } \\
(\mathrm{Vo} / 20) \times 1.414
\end{gathered}
\] & Specification & Pass/Fail \\
\hline Ch1 & 0.389 & 27.5 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch2 & 0.390 & 27.6 mA & >2.5mA peak & \(\checkmark\) \\
\hline Ch3 & 0.389 & 27.5 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch4 & 0.388 & 27.4 mA & >2.5mA peak & \(\checkmark\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c} 
Peak lo \\
\((\) Vo/20 \() \times \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.414 & 29.3 mA & \(>\mathbf{2 . 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.415 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.415 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.414 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit.
T_ACQ_P5
Serial No
Test Engineer.....Xen
Date
18/5/10

```

\subsection*{10.2 Low noise Mode}

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo peak & \begin{tabular}{c} 
Peak lo \\
(Vo/20)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 45 mV & 2.3 mA & \(>\mathbf{2 . 5 m A}\) peak & \\
\hline Ch2 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch3 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch4 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo peak & \begin{tabular}{c} 
Peak lo \\
(Vo/20)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 14 mV & 700 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch2 & 14 mV & 700 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch3 & 14 mV & 700 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch4 & 14 mV & 700 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo r.m.s & \begin{tabular}{c} 
Peak lo \\
(Vo/20) \(\mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.125 & 8.8 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.132 & 9.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.128 & 9.0 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.130 & 9.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

200 Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo r.m.s & \begin{tabular}{c} 
Peak lo \\
(Vo/20) \(\mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.240 & 17.0 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.249 & 17.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.245 & 17.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.248 & 17.5 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo r.m.s & \begin{tabular}{c} 
Peak lo \\
(Vo/20) \(\mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.369 & 26.1 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.370 & 26.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.370 & 26.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.370 & 26.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit
T_ACQ_P5
Test Engineer.....Xen
Date 18/5/10

```

\subsection*{10.3 Acquisition Mode}

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100 Hz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c} 
Peak lo (Vo/20) \\
\(\mathbf{x} \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 2.0 & 2.8 & 141.4 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 2.0 & 2.8 & 141.4 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 2.0 & 2.8 & 141.4 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 2.0 & 2.8 & 141.4 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

200 Hz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c} 
Peak lo (Vo/20) \\
\(\mathbf{x} \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\sqrt{ }\) \\
\hline Ch2 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\sqrt{ }\) \\
\hline Ch3 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\sqrt{ }\) \\
\hline Ch4 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c} 
Peak lo (Vo/20) \\
\(\mathbf{x} \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 2.3 & 3.3 & 162.6 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\checkmark\) \\
\hline Ch2 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\checkmark\) \\
\hline Ch3 & 2.3 & 3.3 & 162.6 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\sqrt{ }\) \\
\hline Ch4 & 2.3 & 3.3 & 162.6 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

5 kHz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c} 
Peak lo (Vo/20) \\
\(\mathbf{x} 1.414\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 1.7 & 2.4 & 120.2 mA & >125mA peak & \\
\hline Ch2 & 1.7 & 2.4 & 120.2 mA & \(>125 \mathrm{~mA}\) peak & \\
\hline Ch3 & 1.7 & 2.4 & 120.2 mA & \(>125 \mathrm{~mA}\) peak & \\
\hline Ch4 & 1.7 & 2.4 & 120.2 mA & >125mA peak & \\
\hline
\end{tabular}
```

Unit
T_ACQ_P5
Test Engineer.....Xen
Date
18/5/10

```

\section*{11. Noise Measurements}

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.


Measure the noise output at 10 Hz .
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \begin{tabular}{c} 
Spec in \\
\(\mathrm{dB} V \mathrm{H} \mathrm{Hz}\)
\end{tabular} & \begin{tabular}{c} 
Measured @ \\
10 Hz
\end{tabular} & \(-60 \mathrm{~dB}=\) & \begin{tabular}{c} 
Measured in \\
\(\mathrm{nV} \sqrt{ } \mathrm{Hz}\)
\end{tabular} & OK? \\
\hline Ch1 & -143.5 & -92.3 & -152.3 & 24.3 & \(\sqrt{ }\) \\
\hline Ch2 & -143.5 & -90.4 & -150.4 & 30.2 & \(\sqrt{ }\) \\
\hline Ch3 & -143.5 & -92.7 & -152.7 & 23.2 & \(\sqrt{ }\) \\
\hline Ch4 & -143.5 & -92.0 & -152.0 & 25.1 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Notes:}

Specified noise output current at \(10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}\) (worst case)
Total resistance at 10 Hz , in Low noise mode \(=6.7 \mathrm{k}\)
Amplifier noise voltage should therefore be \(=67 \mathrm{nV} \sqrt{\mathrm{Hz}}\)
\(67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}\)

Unit
TACQ5
Serial No \(\qquad\)
Test Engineer RMC
Date 9/6/10

\section*{12. Final Assembly Tests}
1. Remove the lid of the box. \(\sqrt{ }\)
2. Unplug all external connections. \(\sqrt{ }\)
3. Check that the 9 mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \(\sqrt{ }\)
4. Check that all internal connectors are firmly mated. \(\sqrt{ }\)
5. Tighten the screw-locks holding all the external connectors. \(\sqrt{ }\)
6. Check that the nuts holding the tabs of the power drivers are secure tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis.
7. Check that all the LEDs are nicely centred. \(\sqrt{ }\)
8. Check that all links W4 are in place. \(\sqrt{ }\)
9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:
\begin{tabular}{|l|l|}
\hline UoB box ID & TACQ5 P \\
\hline Driver board ID & TACQ5 \\
\hline Driver board Drawing No/Issue No & D0901047_V2 \\
\hline Driver board Serial Number & TACQ5 \\
\hline Monitor board ID & MON135 \\
\hline Monitor board Drawing No/Issue No & D070480_4_K \\
\hline Monitor board Serial Number & MON135 \\
\hline
\end{tabular}
10. Check the security of any modification wires. None
11. Visually inspect. \(\sqrt{ }\)
12. Put the lid on and fasten all screws, \(\sqrt{ }\)

Check all external screws for tightness. \(\sqrt{ }\)

\section*{LIGO Laboratory / LIGO Scientific Collaboration}

\section*{Advanced LIGO UK}

March 2010

\section*{Triple Acquisition Driver Unit Test Report}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

\author{
Institute for Gravitational Research \\ University of Glasgow \\ Phone +44 (0) 1413305884 \\ Fax +44 (0) 1413306833 \\ E-mail k.strain@physics.gla.ac.uk \\ Engineering Department \\ CCLRC Rutherford Appleton Laboratory \\ Phone +44 (0) 1235445297 \\ Fax +44 (0) 1235445843 \\ E-mail J.Greenhalgh@rl.ac.uk
}

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT}
```

Test Engineer.....Xen.
Date................18/5/10

```

Drive Card ID......T ACQ6P
Monitor Card ID...Mon133.
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

\section*{1. Description}

\section*{Block diagram}


\section*{Description}

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.
```

Unit
T_ACQ_P6
Serial No
Test Engineer.....Xen.
Date
18/5/10

```

\section*{2. Test equipment}
```

Power supplies (At least $+/-20 v$ variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz)
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & ISO-TECH & ISR622 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77III & \\
\hline Signal analyzer & Agilent & 35670A & \\
\hline Pre-amplifier & Stanford Systems & SR560 & \\
\hline
\end{tabular}


\section*{3. Inspection}

\section*{Workmanship}

Inspect the general workmanship standard and comment: \(\sqrt{ }\)
Capacitors C35 and C27 have been changed to 1 nF on all channels.

\section*{Links:}

Check that the links W2 and W4 are present on each channel.

\section*{4. Continuity Checks}

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\checkmark\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\checkmark\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\checkmark\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\checkmark\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\checkmark\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\checkmark\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\checkmark\) \\
\hline
\end{tabular}

\section*{LED Mon}
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\checkmark\) \\
\hline 2 & Imon2P & & 6 & \(\checkmark\) \\
\hline 3 & Imon3P & & 7 & \(\checkmark\) \\
\hline 4 & Imon4P & & 8 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & Imon1N & & 18 & \(\checkmark\) \\
\hline 7 & Imon2N & & 19 & \(\checkmark\) \\
\hline 8 & Imon3N & & 20 & \(\checkmark\) \\
\hline 9 & Imon4N & & 21 & \(\checkmark\) \\
\hline
\end{tabular}

PD from Sat
\begin{tabular}{|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & \(\mathrm{~V}+\) (TP1) & +17 v Supply & \(\sqrt{ }\) \\
\hline 10 & \(\mathrm{~V}+\) (TP1) & +17 v Supply & \(\sqrt{ }\) \\
\hline 11 & V - (TP2) & -17 v Supply & \(\sqrt{ }\) \\
\hline 12 & V - (TP2) & -17 v Supply & \(\sqrt{ }\) \\
\hline 13 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 22 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 23 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 24 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}


Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, \(4=\) positive input
Drive Input J3 pins 6, 7, 8, \(9=\) negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, \(10=+16.5 \mathrm{v}\)
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, \(25=0 v\)
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin \(1 \quad\) Ch1 \(-=\mathrm{J} 4\) pin 9
Ch2 \(+=\mathrm{J} 4\) pin \(3 \quad\) Ch2- \(=\mathrm{J} 4\) pin 11
Ch3 \(+=\mathrm{J} 4\) pin \(5 \quad\) Ch3- \(=\mathrm{J} 4\) pin 13
Ch4+ = J4 pin \(7 \quad\) Ch4- \(=\mathrm{J} 4\) pin 15
```

Unit.
T_ACQ_P6

```
\(\qquad\)
```

Test Engineer.....Xen.
Date
17/5/10

```

\section*{6. Power}

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents
\begin{tabular}{|c|c|}
\hline \(\mathbf{+ 1 6 . 5}\) supply current (mA) & - \(\mathbf{1 6 . 5}\) supply current (mA) \\
\hline 500 mA & 400 mA \\
\hline
\end{tabular}

Check that all power LEDs are illuminated.
\begin{tabular}{|c|c|c|}
\hline LEDs & Plus & Minus \\
\hline Front Panel & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Rear Panel & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.
Unit.................T_ACQ_P6.............................Serial No.
Test Engineer....Xen.............................

Test Engineer......Xen..
Date 17/5/10

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{TEST RELAYS}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|l|}{Indicator} & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch2 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch3 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch4 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline
\end{tabular}

\section*{ACQUISITION RELAYS}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|l|}{Indicator} & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\checkmark\) & \(\sqrt{ }\) & \(\checkmark\) \\
\hline Ch2 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch3 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch4 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline
\end{tabular}
```

Unit.
.T_ACQ_P6
Serial No
Test Engineer.....Xen.
Date...............17/5/10

```

\section*{8. Monitor Outputs}

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

\subsection*{8.1 Voltage Monitors}
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output: & \begin{tabular}{c} 
V, I and R.M.S \\
Monitor
\end{tabular} & Expected value & \begin{tabular}{c} 
Pass/Fail: \\
Equal? (+/-0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & 0.33 & 3 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 0.33 & 6 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 0.33 & 9 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 0.33 & 12 & 0.33 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

Adjust the input voltage until the voltage across the load resistor \(=1 \mathrm{v}\) r.m.s. Record the current monitor output values.
8.2 Current Monitors
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output & \begin{tabular}{c} 
V, I and R.M.S \\
Monitor
\end{tabular} & \begin{tabular}{c} 
Expected \\
Value
\end{tabular} & \begin{tabular}{c} 
Pass/Fail: \\
Equal? (+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & 1.91 & 2 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 1.91 & 5 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 1.91 & 8 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 1.91 & 11 & \(1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.3 R.M.S Monitors
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output & \begin{tabular}{c} 
V, I and R.M.S \\
Monitor
\end{tabular} & \begin{tabular}{c} 
Expected \\
Value
\end{tabular} & \begin{tabular}{c} 
Pass/Fail: \\
Equal? (+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & 1.94 & 1 & 1.86 vdc & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 1.93 & 4 & 1.86 vdc & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 1.96 & 7 & 1.86 vdc & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 1.94 & 10 & 1.86 vdc & \(\sqrt{ }\) \\
\hline
\end{tabular}

\subsection*{8.4 Noise Monitors}
- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in \(\mu \mathrm{V} \sqrt{\mathrm{Hz}}\) on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \(\sqrt{ } \mathrm{Hz}\) should give \(2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}\) out.
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c} 
Output \\
\((\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})\)
\end{tabular} & \begin{tabular}{c}
\(\div(\) Pre-amplifier \\
gain)
\end{tabular} & \begin{tabular}{c} 
Expected \\
Value
\end{tabular} & Comparison \\
\hline \(\mathbf{1}\) & & 1.53 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & & 1.06 & \(2.9 \mu \mathrm{~V} \mathrm{~Hz}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & & 1.38 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & & 1.38 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit.
...............T_ACQ_P6
P6
Serial No
Test Engineer.....Xen.
Date.
3/6/10

```

\section*{9. Distortion}
```

Switch the filters out. Increase input voltage to 5 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

```
\begin{tabular}{|c|c|c|}
\hline & \begin{tabular}{c} 
Acquisition Mode: \\
Distortion Free?
\end{tabular} & \begin{tabular}{c} 
Non-Acquisition Mode: \\
Distortion Free?
\end{tabular} \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{2}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit.

```
\(\qquad\)
```

 .T_ACQ_P6
 Test Engineer.....Xen.
Date
.3/6/10

```
\(\qquad\)

10 Load tests and Frequency response check
Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

\subsection*{10.1 Noisy Mode}

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vo peak & Peak lo (Vol20) & Specification & Pass/Fail \\
\hline Ch1 & 65 mV & 3.3 mA & >2.5mA peak & \(\checkmark\) \\
\hline Ch2 & 65 mV & 3.3 mA & \(>2.5 \mathrm{~mA} \mathrm{peak}\) & \(\checkmark\) \\
\hline Ch3 & 65 mV & 3.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch4 & 65 mV & 3.3 mA & >2.5mA peak & \(\checkmark\) \\
\hline
\end{tabular}

10Hz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c} 
Peak lo \\
\((\) Vo/20 \() \times\) 1.414
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.065 & 4.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.064 & 4.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.064 & 4.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.064 & 4.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vor.m.s & \[
\begin{gathered}
\text { Peak lo } \\
(\mathrm{Vo} / 20) \times 1.414 \\
\hline
\end{gathered}
\] & Specification & Pass/Fail \\
\hline Ch1 & 0.324 & 22.9 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch2 & 0.323 & 22.8 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch3 & 0.323 & 22.8 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch4 & 0.322 & 22.8 mA & >2.5mA peak & \(\checkmark\) \\
\hline
\end{tabular}

200 Hz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c} 
Peak lo \\
\((\) Vo/20 \() \times\) 1.414
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.390 & 27.6 mA & \(\boldsymbol{> 2 . 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.390 & 27.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.390 & 27.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.389 & 27.5 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c} 
Peak lo \\
\((\) Vo/20 \() \times \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.415 & 29.3 mA & \(>\mathbf{2 . 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.416 & 29.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.415 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.414 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit.
.T_ACQ_P6
Test Engineer.....Xen.
Date.
3/6/10

```

\subsection*{10.2 Low noise Mode}

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo peak & \begin{tabular}{c} 
Peak lo \\
(Vo/20)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch2 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch3 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch4 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo peak & \begin{tabular}{c} 
Peak lo \\
\((\) Vo/20)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 16 mV & 800 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch2 & 16 mV & 800 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch3 & 16 mV & 800 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch4 & 16 mV & 800 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vo r.m.s & \begin{tabular}{c} 
Peak lo \\
(Vo/20) \(\mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.131 & 9.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.131 & 9.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.125 & 8.8 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.126 & 8.9 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

200 Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vo r.m.s & \begin{tabular}{c} 
Peak lo \\
(Vo/20) \(\mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.248 & 17.5 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.248 & 17.5 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.241 & 17.0 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.242 & 17.1 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c} 
Peak lo \\
(Vo/20) \(\mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.370 & 26.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.371 & 26.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.369 & 26.1 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.369 & 26.1 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit

```
\(\qquad\)
```

 .T_ACQ_P6
 6..
 Test Engineer.....Xen.
Date.
3/6/10

```

\subsection*{10.3 Acquisition Mode}

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100 Hz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c} 
Peak lo (Vo/20) \\
\(\mathbf{x} \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/FaiI \\
\hline Ch1 & 2.0 & 2.8 & 141.4 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 2.0 & 2.8 & 141.4 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 2.0 & 2.8 & 141.4 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 2.0 & 2.8 & 141.4 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

200 Hz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c} 
Peak lo (Vo/20) \\
\(\mathbf{x} 1.414\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\sqrt{ }\) \\
\hline Ch3 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\sqrt{ }\) \\
\hline Ch4 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA }}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c} 
Peak lo (Vo/20) \\
\(\mathbf{x} \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 2.3 & 3.3 & 162.6 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\checkmark\) \\
\hline Ch2 & 2.3 & 3.3 & 162.6 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\checkmark\) \\
\hline Ch3 & 2.3 & 3.3 & 162.6 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 2.3 & 3.3 & 162.6 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

5 kHz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c} 
Peak Io (Vo/20) \\
\(\mathbf{x} 1.414\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 1.7 & 2.4 & 120.2 mA & >125mA peak & \\
\hline Ch2 & 1.7 & 2.4 & 120.2 mA & \(>125 \mathrm{~mA}\) peak & \\
\hline Ch3 & 1.7 & 2.4 & 120.2 mA & \(>125 \mathrm{~mA}\) peak & \\
\hline Ch4 & 1.7 & 2.4 & 120.2 mA & >125mA peak & \\
\hline
\end{tabular}
```

Unit
T_ACQ_P6
Serial No
Test Engineer.....Xen.
Date
3/6/10

```

\section*{11. Noise Measurements}

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.


Measure the noise output at 10 Hz .
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \begin{tabular}{c} 
Spec in \\
\(\mathrm{dBV} \sqrt{ } \mathrm{Hz}\)
\end{tabular} & \begin{tabular}{c} 
Measured @ \\
10 Hz
\end{tabular} & \(-60 \mathrm{~dB}=\) & \begin{tabular}{c} 
Measured in \\
\(\mathrm{nV} \sqrt{ } \mathrm{Hz}\)
\end{tabular} & OK? \\
\hline Ch1 & -143.5 & -88.7 & -148.7 & 36.7 & \(\sqrt{ }\) \\
\hline Ch2 & -143.5 & -91.1 & -151.1 & 27.9 & \(\sqrt{ }\) \\
\hline Ch3 & -143.5 & -93.3 & -153.3 & 21.6 & \(\sqrt{ }\) \\
\hline Ch4 & -143.5 & -92.1 & -152.1 & 24.8 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Notes:}

Specified noise output current at \(10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}\) (worst case)
Total resistance at 10 Hz , in Low noise mode \(=6.7 \mathrm{k}\)
Amplifier noise voltage should therefore be \(=67 \mathrm{nV} \sqrt{\mathrm{Hz}}\)
\(67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{\mathrm{~Hz}}\)
```

Unit...........TACQ6 P

```
\(\qquad\)
``` Serial No
``` \(\qquad\)
```

Test Engineer RMC
Date 9/6/10

```

\section*{12. Final Assembly Tests}
1. Remove the lid of the box. \(\sqrt{ }\)
2. Unplug all external connections. \(\sqrt{ }\)
3. Check that the 9 mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \(\sqrt{ }\)
4. Check that all internal connectors are firmly mated. \(\sqrt{ }\)
5. Tighten the screw-locks holding all the external connectors. \(\sqrt{ }\)
6. Check that the nuts holding the tabs of the power drivers are secure tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis.
7. Check that all the LEDs are nicely centred. \(\sqrt{ }\)
8. Check that all links W4 are in place. \(\sqrt{ }\)
9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:
\begin{tabular}{|l|l|}
\hline UoB box ID & TACQ6 P \\
\hline Driver board ID & TACQ6 \\
\hline Driver board Drawing No/Issue No & D0901047_V2 \\
\hline Driver board Serial Number & TACQ6 \\
\hline Monitor board ID & MON133 \\
\hline Monitor board Drawing No/Issue No & D070480_4_K \\
\hline Monitor board Serial Number & MON133 \\
\hline
\end{tabular}
10. Check the security of any modification wires. None
11. Visually inspect. \(\sqrt{ }\)
12. Put the lid on and fasten all screws, \(\sqrt{ }\)

Check all external screws for tightness. \(\sqrt{ }\)

\section*{LIGO Laboratory / LIGO Scientific Collaboration}

\section*{Advanced LIGO UK}

March 2010

\section*{Triple Acquisition Driver Unit Test Report}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

\author{
Institute for Gravitational Research \\ University of Glasgow \\ Phone +44 (0) 1413305884 \\ Fax +44 (0) 1413306833 \\ E-mail k.strain@physics.gla.ac.uk \\ Engineering Department \\ CCLRC Rutherford Appleton Laboratory \\ Phone +44 (0) 1235445297 \\ Fax +44 (0) 1235445843 \\ E-mail J.Greenhalgh@rl.ac.uk
}

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT}


Drive Card ID......T ACQ11P
Monitor Card ID...Mon132

Contents

1 Description
2 Test Equipment

3 Inspection

4 Continuity Checks
\(5 \quad\) Test Set Up

6 Power

7 Relay operation

8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

\section*{1. Description}

\section*{Block diagram}


\section*{Description}

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.
```

Unit
T_ACQ_P7.
Serial No
Test Engineer.....Xen.
Date
17/5/10

```

\section*{2. Test equipment}
```

Power supplies (At least $+/-20 \mathrm{v}$ variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz)
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & ISO-TECH & ISR622 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77III & \\
\hline Signal analyzer & Agilent & 35670A & \\
\hline Pre-amplifier & Stanford Systems & SR560 & \\
\hline
\end{tabular}


\section*{3. Inspection}

\section*{Workmanship}

Inspect the general workmanship standard and comment: \(\sqrt{ }\)
Capacitors C35 and C27 have been changed to 1 nF on all channels.

\section*{Links}

Check that the links W2 and W4 are present on each channel.

\section*{4. Continuity Checks}

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\checkmark\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\checkmark\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\checkmark\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\checkmark\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\checkmark\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\checkmark\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\checkmark\) \\
\hline
\end{tabular}

\section*{LED Mon}
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\checkmark\) \\
\hline 2 & Imon2P & & 6 & \(\checkmark\) \\
\hline 3 & Imon3P & & 7 & \(\checkmark\) \\
\hline 4 & Imon4P & & 8 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & Imon1N & & 18 & \(\checkmark\) \\
\hline 7 & Imon2N & & 19 & \(\checkmark\) \\
\hline 8 & Imon3N & & 20 & \(\checkmark\) \\
\hline 9 & Imon4N & & 21 & \(\checkmark\) \\
\hline
\end{tabular}

PD from Sat
\begin{tabular}{|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & \(\mathrm{~V}+\) (TP1) & +17 v Supply & \(\sqrt{ }\) \\
\hline 10 & \(\mathrm{~V}+\) (TP1) & +17 v Supply & \(\sqrt{ }\) \\
\hline 11 & V - (TP2) & -17 v Supply & \(\sqrt{ }\) \\
\hline 12 & V - (TP2) & -17 v Supply & \(\sqrt{ }\) \\
\hline 13 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 22 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 23 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 24 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}


Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, \(4=\) positive input
Drive Input J3 pins 6, 7, 8, \(9=\) negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, \(10=+16.5 \mathrm{v}\)
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, \(25=0 v\)
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin \(1 \quad\) Ch1 \(-=\mathrm{J} 4\) pin 9
Ch2 \(+=\mathrm{J} 4\) pin \(3 \quad\) Ch2- \(=\mathrm{J} 4\) pin 11
Ch3 \(+=\mathrm{J} 4\) pin \(5 \quad\) Ch3- \(=\mathrm{J} 4\) pin 13
Ch4+ = J4 pin \(7 \quad\) Ch4- \(=\mathrm{J} 4\) pin 15
```

Unit.
T_ACQ_P7..
Serial No
Test Engineer.....Xen.
Date
17/5/10.

```

\section*{6. Power}

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents
\begin{tabular}{|c|c|}
\hline \(\mathbf{+ 1 6 . 5}\) supply current (mA) & - \(\mathbf{1 6 . 5}\) supply current (mA) \\
\hline 500 mA & 400 mA \\
\hline
\end{tabular}

Check that all power LEDs are illuminated.
\begin{tabular}{|c|c|c|}
\hline LEDs & Plus & Minus \\
\hline Front Panel & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Rear Panel & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.
```

Unit.
.T_ACQ_P7
Test Engineer.....Xen.

```

Date 17/5/10

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\checkmark\) & \(\checkmark\) \\
\hline
\end{tabular}

\section*{TEST RELAYS}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|l|}{Indicator} & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch2 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch3 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch4 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline
\end{tabular}

\section*{ACQUISITION RELAYS}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|l|}{Indicator} & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\checkmark\) & \(\sqrt{ }\) & \(\checkmark\) \\
\hline Ch2 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch3 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch4 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline
\end{tabular}
```

Unit.
.T_ACQ_P7
Serial No
Test Engineer.....Xen
Date...............17/5/10

```

\section*{8. Monitor Outputs}

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

\subsection*{8.1 Voltage Monitors}
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output: & \begin{tabular}{c} 
V, I and R.M.S \\
Monitor
\end{tabular} & Expected value & \begin{tabular}{c} 
Pass/Fail: \\
Equal? (+/-0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & 0.33 & 3 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 0.33 & 6 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 0.33 & 9 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 0.33 & 12 & 0.33 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

Adjust the input voltage until the voltage across the load resistor \(=1 \mathrm{v}\) r.m.s. Record the current monitor output values.
8.2 Current Monitors
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output & \begin{tabular}{c} 
V, I and R.M.S \\
Monitor
\end{tabular} & \begin{tabular}{c} 
Expected \\
Value
\end{tabular} & \begin{tabular}{c} 
Pass/Fail: \\
Equal? (+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & 1.91 & 2 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 1.91 & 5 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 1.91 & 8 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 1.91 & 11 & \(1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.3 R.M.S Monitors
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output & \begin{tabular}{c} 
V, I and R.M.S \\
Monitor
\end{tabular} & \begin{tabular}{c} 
Expected \\
Value
\end{tabular} & \begin{tabular}{c} 
Pass/Fail: \\
Equal? (+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & 1.95 & 1 & 1.86 vdc & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 1.95 & 4 & 1.86 vdc & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 1.95 & 7 & 1.86 vdc & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 1.96 & 10 & 1.86 vdc & \(\sqrt{ }\) \\
\hline
\end{tabular}

\subsection*{8.4 Noise Monitors}
- Monitor coil inputs to board were grounded for CH 2 .

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in \(\mu \mathrm{V} \sqrt{\mathrm{Hz}}\) on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \(\sqrt{ } \mathrm{Hz}\) should give \(2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}\) out.
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c} 
Output \\
\((\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})\)
\end{tabular} & \begin{tabular}{c}
\(\div(\) Pre-amplifier \\
gain)
\end{tabular} & \begin{tabular}{c} 
Expected \\
Value
\end{tabular} & Comparison \\
\hline \(\mathbf{1}\) & & 2.14 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & & 1.69 & \(2.9 \mu \mathrm{~V} \mathrm{~Hz}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & & 1.66 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & & 1.85 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit.

```
\(\qquad\)
``` T_ACQ_P7
``` \(\qquad\)
``` Serial No
```

Test Engineer. ..... Xen..
17/5/10

## 9. Distortion

```
Switch the filters out. Increase input voltage to 5 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.
```

	Acquisition Mode:   Distortion Free?	Non-Acquisition Mode:   Distortion Free?
Ch1	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{2}$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$

```
Unit
```

$\qquad$

```
 .T_ACQ_P7
Test Engineer.....Xen
Date...............17/5/10.
```

10 Load tests and Frequency response check
Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

### 10.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo (Vol20)	Specification	Pass/Fail
Ch1	64.5 mV	3.3 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch2	64.5 mV	3.3 mA	>2.5mA peak	$\checkmark$
Ch3	64.5 mV	3.3 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch4	64.5 mV	3.3 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$

10 Hz

	Vor.m.s	$\begin{gathered} \text { Peak lo } \\ (\mathrm{Vo} / 20) \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	0.064	4.5 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch2	0.064	4.5 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch3	0.064	4.5 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch4	0.064	4.5 mA	>2.5mA peak	$\checkmark$

100 Hz

Vo r.m.s	Peak lo   $(\mathrm{Vo/20}) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.320	22.6 mA	$>\mathbf{2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.322	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.322	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.320	22.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200Hz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.388	27.4 mA	$\boldsymbol{> 2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.390	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.390	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.388	27.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

Vo r.m.s	Peak lo   $(\mathbf{V o / 2 0}) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.415	29.3 mA	$\boldsymbol{> 2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.416	29.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

```
Unit.
T_ACQ_P7.
Serial No
Test Engineer.....Xen
Date...............17/5/10
```


### 10.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo   (Vo/20)	Specification	Pass/Fail
Ch1	45 mV	2.3 mA	$>\mathbf{2 . 5 m A}$ peak	
Ch2	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch3	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch4	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	

10 Hz

	Vo peak	Peak lo   (Vo/20)	Specification	Pass/Fail
Ch1	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch2	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch3	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch4	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	

100 Hz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	127 mV	9.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	128 mV	9.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	131 mV	9.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	130 mV	9.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.244	17.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.245	17.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.248	17.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.247	17.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.371	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.. .Xen
Date 17/5/10.

### 10.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	2.0	2.8	141.4 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	2.0	2.8	141.4 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	2.0	2.8	141.4 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	2.0	2.8	141.4 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA }}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	2.3	3.3	162.6 mA	>125mA peak	$\checkmark$
Ch2	2.3	3.3	162.6 mA	>125mA peak	$\checkmark$
Ch3	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$
Ch4	2.2	3.1	155.5 mA	>125mA peak	$\sqrt{ }$

5 kHz

	Vo r.m.s	Vo pk.	Peak Io (Vo/20)   $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	1.7	2.4	120.2 mA	>125mA peak	
Ch2	1.7	2.4	120.2 mA	$>125 \mathrm{~mA}$ peak	
Ch3	1.7	2.4	120.2 mA	$>125 \mathrm{~mA}$ peak	
Ch4	1.7	2.4	120.2 mA	>125mA peak	

Test Engineer.....Xen
Date 17/5/10.

## 11. Noise Measurements

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.


Measure the noise output at 10 Hz .

	Spec in   $\mathrm{dB} V \sqrt{ } \mathrm{~Hz}$	Measured @   10 Hz	$-60 \mathrm{~dB}=$	Measured in   $\mathrm{nV} \sqrt{ } \mathrm{Hz}$	OK?
Ch1	-143.5	-90.6	-150.6	31.6	$\sqrt{ }$
Ch2	-143.5	-92.1	-152.1	24.8	$\sqrt{ }$
Ch3	-143.5	-92.2	-152.2	24.5	$\sqrt{ }$
Ch4	-143.5	-92.0	-152.0	25.1	$\sqrt{ }$

## Notes:

Specified noise output current at $10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}$ (worst case)
Total resistance at 10 Hz , in Low noise mode $=6.7 \mathrm{k}$
Amplifier noise voltage should therefore be $=67 \mathrm{nV} \sqrt{\mathrm{Hz}}$
$67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}$

```
Unit................TACQ7 P
```

$\qquad$

``` Serial No
``` \(\qquad\)
```

Test EngineerRMC
Date
RMC
.10/6/10

```

\section*{12. Final Assembly Tests}
1. Remove the lid of the box. \(\sqrt{ }\)
2. Unplug all external connections. \(\sqrt{ }\)
3. Check that the 9 mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \(\sqrt{ }\)
4. Check that all internal connectors are firmly mated. \(\sqrt{ }\)
5. Tighten the screw-locks holding all the external connectors. \(\sqrt{ }\)
6. Check that the nuts holding the tabs of the power drivers are secure tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis.
7. Check that all the LEDs are nicely centred. \(\sqrt{ }\)
8. Check that all links W4 are in place. \(\sqrt{ }\)
9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. \(\sqrt{ }\) Record below:
\begin{tabular}{|l|l|}
\hline UoB box ID & TACQ7P \\
\hline Driver board ID & TACQ7 \\
\hline Driver board Drawing No/Issue No & D0901047_V2 \\
\hline Driver board Serial Number & TACQ7 \\
\hline Monitor board ID & MON132 \\
\hline Monitor board Drawing No/Issue No & D070480_4_K \\
\hline Monitor board Serial Number & MON132 \\
\hline
\end{tabular}
10. Check the security of any modification wires. None
11. Visually inspect. . V
12. Put the lid on and fasten all screws, \(\sqrt{ }\)

Check all external screws for tightness. \(\sqrt{ }\)

\section*{LIGO Laboratory / LIGO Scientific Collaboration}

\section*{Advanced LIGO UK}

March 2010

\section*{Triple Acquisition Driver Unit Test Report}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

\author{
Institute for Gravitational Research \\ University of Glasgow \\ Phone +44 (0) 1413305884 \\ Fax +44 (0) 1413306833 \\ E-mail k.strain@physics.gla.ac.uk \\ Engineering Department \\ CCLRC Rutherford Appleton Laboratory \\ Phone +44 (0) 1235445297 \\ Fax +44 (0) 1235445843 \\ E-mail J.Greenhalgh@rl.ac.uk
}

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT}


Drive Card ID.........T ACQ8P
Monitor Card ID......Mon131

Contents

1 Description

2 Test Equipment

3 Inspection

4 Continuity Checks
\(5 \quad\) Test Set Up
6 Power

7 Relay operation

8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

\section*{1. Description}

\section*{Block diagram}


\section*{Description}

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.
```

Unit
T_ACQ_P8.
Serial No
Test Engineer.....Xen.
Date
14/5/10.

```

\section*{2. Test equipment}
```

Power supplies (At least $+/-20 \mathrm{v}$ variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz)
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & ISO-TECH & ISR622 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77III & \\
\hline Signal analyzer & Agilent & 35670A & \\
\hline Pre-amplifier & Stanford Systems & SR560 & \\
\hline
\end{tabular}


\section*{3. Inspection}

\section*{Workmanship}

Inspect the general workmanship standard and comment: \(\sqrt{ }\)
Capacitors C35 and C27 have been changed to 1 nF on all channels.

\section*{Links}

Check that the links W2 and W4 are present on each channel.

\section*{4. Continuity Checks}

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\checkmark\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\checkmark\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\checkmark\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\checkmark\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\checkmark\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\checkmark\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\checkmark\) \\
\hline
\end{tabular}

\section*{LED Mon}
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\checkmark\) \\
\hline 2 & Imon2P & & 6 & \(\checkmark\) \\
\hline 3 & Imon3P & & 7 & \(\checkmark\) \\
\hline 4 & Imon4P & & 8 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & Imon1N & & 18 & \(\checkmark\) \\
\hline 7 & Imon2N & & 19 & \(\checkmark\) \\
\hline 8 & Imon3N & & 20 & \(\checkmark\) \\
\hline 9 & Imon4N & & 21 & \(\checkmark\) \\
\hline
\end{tabular}

PD from Sat
\begin{tabular}{|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & \(\mathrm{~V}+\) (TP1) & +17 v Supply & \(\sqrt{ }\) \\
\hline 10 & \(\mathrm{~V}+\) (TP1) & +17 v Supply & \(\sqrt{ }\) \\
\hline 11 & V - (TP2) & -17 v Supply & \(\sqrt{ }\) \\
\hline 12 & V - (TP2) & -17 v Supply & \(\sqrt{ }\) \\
\hline 13 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 22 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 23 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 24 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}


Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, \(4=\) positive input
Drive Input J3 pins 6, 7, 8, \(9=\) negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, \(10=+16.5 \mathrm{v}\)
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, \(25=0 v\)
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin \(1 \quad\) Ch1 \(-=\mathrm{J} 4\) pin 9
Ch2 \(+=\mathrm{J} 4\) pin \(3 \quad\) Ch2- \(=\mathrm{J} 4\) pin 11
Ch3 \(+=\mathrm{J} 4\) pin \(5 \quad\) Ch3- \(=\mathrm{J} 4\) pin 13
Ch4+ = J4 pin \(7 \quad\) Ch4- \(=\mathrm{J} 4\) pin 15
```

Unit.
T_ACQ_P8..
Serial No
Test Engineer.....Xen.
Date
14/5/10.

```

\section*{6. Power}

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents
\begin{tabular}{|c|c|}
\hline \(\mathbf{+ 1 6 . 5}\) supply current (mA) & - \(\mathbf{1 6 . 5}\) supply current (mA) \\
\hline 500 mA & 400 mA \\
\hline
\end{tabular}

Check that all power LEDs are illuminated.
\begin{tabular}{|c|c|c|}
\hline LEDs & Plus & Minus \\
\hline Front Panel & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Rear Panel & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.
Unit.................T_ACQ_P8..............................Serial No...
Test Engineer.....Xen............................

Date 14/5/10.

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{TEST RELAYS}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|l|}{Indicator} & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch2 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch3 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch4 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline
\end{tabular}

\section*{ACQUISITION RELAYS}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|l|}{Indicator} & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\checkmark\) & \(\sqrt{ }\) & \(\checkmark\) \\
\hline Ch2 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch3 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch4 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline
\end{tabular}
```

Unit.
.T_ACQ_P8
Serial No
Test Engineer.....Xen
Date
14/5/10

```

\section*{8. Monitor Outputs}

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

\subsection*{8.1 Voltage Monitors}
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output: & \begin{tabular}{c} 
V, I and R.M.S \\
Monitor
\end{tabular} & Expected value & \begin{tabular}{c} 
Pass/Fail: \\
Equal? (+/-0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & 0.33 & 3 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 0.33 & 6 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 0.33 & 9 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 0.33 & 12 & 0.33 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

Adjust the input voltage until the voltage across the load resistor \(=1 \mathrm{v}\) r.m.s. Record the current monitor output values.
8.2 Current Monitors
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output & \begin{tabular}{c} 
V, I and R.M.S \\
Monitor
\end{tabular} & \begin{tabular}{c} 
Expected \\
Value
\end{tabular} & \begin{tabular}{c} 
Pass/Fail: \\
Equal? ( \(+/ \mathbf{0 . 1 v})\)
\end{tabular} \\
\hline \(\mathbf{1}\) & 1.89 & 2 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 1.89 & 5 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 1.89 & 8 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 1.89 & 11 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.3 R.M.S Monitors
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output & \begin{tabular}{c} 
V, I and R.M.S \\
Monitor
\end{tabular} & \begin{tabular}{c} 
Expected \\
Value
\end{tabular} & \begin{tabular}{c} 
Pass/Fail: \\
Equal? (+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & 1.93 & 1 & 1.86 vdc & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 1.93 & 4 & 1.86 vdc & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 1.93 & 7 & 1.86 vdc & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 1.93 & 10 & 1.86 vdc & \(\sqrt{ }\) \\
\hline
\end{tabular}

\subsection*{8.4 Noise Monitors}

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in \(\mu \mathrm{V} \sqrt{\mathrm{Hz}}\) on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \(\sqrt{ } \mathrm{Hz}\) should give \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) out.
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c} 
Output \\
\((\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})\)
\end{tabular} & \begin{tabular}{c}
\(\div(\) Pre-amplifier \\
gain \()\)
\end{tabular} & \begin{tabular}{c} 
Expected \\
Value
\end{tabular} & Comparison \\
\hline \(\mathbf{1}\) & & 1.67 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & & 1.25 & \(2.9 \mu \mathrm{~V} \mathrm{~Hz}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & & 2.69 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & & 1.72 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit.

```
\(\qquad\)
``` T_ACQ_P8 8. Serial No
Test Engineer.....Xen.
Date.
14/5/10
```


## 9. Distortion

```
Switch the filters out. Increase input voltage to 5 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.
```

	Acquisition Mode:   Distortion Free?	Non-Acquisition Mode:   Distortion Free?
Ch1	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{2}$	$\sqrt{ }$

```
Unit.
```

$\qquad$

```
 .T_ACQ_P8
Test Engineer.....Xen.
Date
14/5/10
```

10 Load tests and Frequency response check
Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

### 10.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo   $($ Vo/20 $)$	Specification	Pass/Fail
Ch1	66 mV	3.3 mA	$\boldsymbol{> 2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	66 m V	3.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	66 m V	3.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	66 mV	3.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

10Hz

	Vo r.m.s	Peak lo   $($ Vo/20 $) \times$ 1.414	Specification	Pass/Fail
Ch1	0.067	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.067	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

100 Hz

	Vor.m.s	$\begin{gathered} \text { Peak lo } \\ (\mathrm{Vo} / 20) \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	0.327	23.1 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch2	0.325	23.0 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch3	0.327	23.1 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch4	0.325	23.0 mA	>2.5mA peak	$\checkmark$

200 Hz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times$ 1.414	Specification	Pass/Fail	
Ch1	0.393	27.8 mA	$\boldsymbol{> 2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.392	27.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.393	27.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.393	27.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.418	29.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.418	29.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.418	29.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.418	29.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

```
Unit.
.T_ACQ_P8
Serial No
Test Engineer.....Xen.
Date
14/5/10.
```


### 10.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo   (Vo/20)	Specification	Pass/Fail
Ch1	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch2	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch3	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch4	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	

10 Hz

	Vo peak	Peak lo   (Vo/20)	Specification	Pass/Fail
Ch1	15 mV	750 uA	$>2.5 \mathrm{~mA}$ peak	
Ch2	15 mV	750 uA	$>2.5 \mathrm{~mA}$ peak	
Ch3	15 mV	750 uA	$>2.5 \mathrm{~mA}$ peak	
Ch4	15 mV	750 uA	$>2.5 \mathrm{~mA}$ peak	

100 Hz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.129	9.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.131	9.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.126	8.9 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.129	9.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.246	17.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.249	17.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.242	17.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.247	17.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.373	26.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.373	26.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.372	26.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.373	26.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

```
Unit
T_ACQ_P8
Test Engineer.....Xen
Date
14/5/10
```


### 10.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	2.0	2.8	141.4 mA	>125mA peak	$\sqrt{ }$
Ch2	2.0	2.8	141.4 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	2.0	2.8	141.4 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	2.0	2.8	141.4 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\checkmark$
Ch2	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\checkmark$
Ch3	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\checkmark$
Ch4	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$

1 kHz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	2.3	3.3	162.6 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\checkmark$
Ch2	2.3	3.3	162.6 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\checkmark$
Ch3	2.3	3.3	162.6 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	2.3	3.3	162.6 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

5 kHz

	Vo r.m.s	Vo pk.	Peak Io (Vo/20)   $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	1.7	2.4	120.2 mA	>125mA peak	
Ch2	1.7	2.4	120.2 mA	$>125 \mathrm{~mA}$ peak	
Ch3	1.7	2.4	120.2 mA	$>125 \mathrm{~mA}$ peak	
Ch4	1.7	2.4	120.2 mA	>125mA peak	

```
Unit
 T_ACQ_P8.
Test Engineer.....Xen
Date
14/5/10
```


## 11. Noise Measurements

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.


Measure the noise output at 10 Hz .

	Spec in   $\mathrm{dB} V \mathrm{H} \mathrm{Hz}$	Measured @   10 Hz	$-60 \mathrm{~dB}=$	Measured in   $\mathrm{nV} \sqrt{ } \mathrm{Hz}$	OK?
Ch1	-143.5	-93.1	-153.1	22.1	$\sqrt{ }$
Ch2	-143.5	-91.6	-151.6	26.3	$\sqrt{ }$
Ch3	-143.5	-91.4	-151.4	26.9	$\sqrt{ }$
Ch4	-143.5	-90.5	-150.5	29.9	$\sqrt{ }$

## Notes:

Specified noise output current at $10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}$ (worst case)
Total resistance at 10 Hz , in Low noise mode $=6.7 \mathrm{k}$
Amplifier noise voltage should therefore be $=67 \mathrm{nV} \sqrt{\mathrm{Hz}}$
$67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}$

Unit $\qquad$
Test Engineer RMC
Date 10/6/10

## 12. Final Assembly Tests

1. Remove the lid of the box. $\sqrt{ }$
2. Unplug all external connections. $\sqrt{ }$
3. Check that the 9 mm pillars are in place in the corners of the Monitor Board towards the centre of the box. . V
4. Check that all internal connectors are firmly mated. . V
5. Tighten the screw-locks holding all the external connectors. $\sqrt{ }$
6. Check that the nuts holding the tabs of the power drivers are secure tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis.
7. Check that all the LEDs are nicely centred. $\sqrt{ }$
8. Check that all links W4 are in place. $\sqrt{ }$
9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. $\sqrt{ }$ Record below:

UoB box ID	TACQ8
Driver board ID	TACQ8 P
Driver board Drawing No/Issue No	D0901047_V2
Driver board Serial Number	TACQ8
Monitor board ID	MON131
Monitor board Drawing No/Issue No	D070480_4_K
Monitor board Serial Number	MON131

10. Check the security of any modification wires. None
11. Visually inspect.
12. Put the lid on and fasten all screws, $\sqrt{ }$

Check all external screws for tightness. $\sqrt{ }$

## LIGO Laboratory / LIGO Scientific Collaboration

## Advanced LIGO UK

March 2010

## Triple Acquisition Driver Unit Test Report

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research<br>University of Glasgow<br>Phone +44 (0) 1413305884<br>Fax +44 (0) 1413306833<br>E-mail k.strain@physics.gla.ac.uk<br>Engineering Department<br>CCLRC Rutherford Appleton Laboratory<br>Phone +44 (0) 1235445297<br>Fax +44 (0) 1235445843<br>E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT



Drive Card ID......T ACQ9P
Monitor Card ID...Mon130

Contents

1 Description

2 Test Equipment

3 Inspection

4 Continuity Checks
$5 \quad$ Test Set Up

6 Power

7 Relay operation

8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

## 1. Description

## Block diagram



## Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
T_ACQ_P9.
Serial No
Test Engineer.....Xen.
Date
14/5/10.
```


## 2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz)
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	



## 3. Inspection

## Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.

## Links

Check that the links W2 and W4 are present on each channel.

## 4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\checkmark$
2	PD2P	Photodiode B+	2	$\checkmark$
3	PD3P	Photodiode C+	3	$\checkmark$
4	PD4P	Photodiode D+	4	$\checkmark$
	5	OV	$\checkmark$	
6	PD1N	Photodiode A-	14	$\checkmark$
7	PD2N	Photodiode B-	15	$\checkmark$
8	PD3N	Photodiode C-	16	$\checkmark$
9	PD4N	Photodiode D-	17	$\checkmark$

## LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\checkmark$
2	Imon2P		6	$\checkmark$
3	Imon3P		7	$\checkmark$
4	Imon4P		8	$\checkmark$
	5	OV	$\checkmark$	
6	Imon1N		18	$\checkmark$
7	Imon2N		19	$\checkmark$
8	Imon3N		20	$\checkmark$
9	Imon4N		21	$\checkmark$

PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
11	V - (TP2)	-17 v Supply	$\sqrt{ }$
12	V - (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	0 V (TP3)		$\sqrt{ }$
24	0 V (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

## 5. TEST SET UP



Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

## Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit.
 T_ACQ_P9.
 Serial No
Test Engineer.....Xen.
Date
 14/5/10.
```


## 6. Power

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents

$\mathbf{+ 1 6 . 5}$ supply current (mA)	- $\mathbf{1 6 . 5}$ supply current (mA)
500 mA	400 mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	$\sqrt{ }$	$\sqrt{ }$
Rear Panel	$\sqrt{ }$	$\sqrt{ }$

If the supplies are correct, proceed to the next test.
Unit.................T_ACQ_P9..............................Serial No...
Test Engineer....Xen............................

Date 14/5/10.

## 7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{\|c\|}$	$\sqrt{ }$	$\sqrt{ }$

## TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\checkmark$	$\checkmark$	$\checkmark$
Ch2	$\checkmark$	$\checkmark$	$\checkmark$
Ch3	$\checkmark$	$\checkmark$	$\checkmark$
Ch4	$\checkmark$	$\checkmark$	$\checkmark$

## ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\checkmark$	$\sqrt{ }$	$\checkmark$
Ch2	$\checkmark$	$\checkmark$	$\checkmark$
Ch3	$\checkmark$	$\checkmark$	$\checkmark$
Ch4	$\checkmark$	$\checkmark$	$\checkmark$

```
Unit.
.T_ACQ_P9
Serial No
Test Engineer.....Xen
Date
14/5/10
```


## 8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

### 8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S   Monitor	Expected value	Pass/Fail:   Equal? (+/-0.1v)
$\mathbf{1}$	0.33	3	0.33 v	$\sqrt{ }$
$\mathbf{2}$	0.33	6	0.33 v	$\sqrt{ }$
$\mathbf{3}$	0.33	9	0.33 v	$\sqrt{ }$
$\mathbf{4}$	0.33	12	0.33 v	$\sqrt{ }$

Adjust the input voltage until the voltage across the load resistor $=1 \mathrm{v}$ r.m.s. Record the current monitor output values.
8.2 Current Monitors

Ch.	Output	V, I and R.M.S   Monitor	Expected   Value	Pass/Fail:   Equal? ( $+/ \mathbf{0 . 1 v})$
$\mathbf{1}$	1.89	2	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{2}$	1.89	5	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{3}$	1.89	8	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{4}$	1.89	11	1.86 v r.m.s	$\sqrt{ }$

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S   Monitor	Expected   Value	Pass/Fail:   Equal? (+/- 0.1v)
$\mathbf{1}$	1.92	1	1.86 vdc	$\sqrt{ }$
$\mathbf{2}$	1.93	4	1.86 vdc	$\sqrt{ }$
$\mathbf{3}$	1.93	7	1.86 vdc	$\sqrt{ }$
$\mathbf{4}$	1.93	10	1.86 vdc	$\sqrt{ }$

### 8.4 Noise Monitors

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu \mathrm{V} \sqrt{\mathrm{Hz}}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA $\sqrt{ } \mathrm{Hz}$ should give $2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}$ out.

Ch.	Output   $(\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})$	$\div($ Pre-amplifier   gain)	Expected   Value	Comparison
$\mathbf{1}$		1.12	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{2}$		1.22	$2.9 \mu \mathrm{~V} \mathrm{~Hz}$	$\sqrt{ }$
$\mathbf{3}$		1.71	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{4}$		1.27	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$

```
Unit.
```

$\qquad$

```
 T_ACQ_P9
Test Engineer.....Xen.
Date.
14/5/10
```


## 9. Distortion

```
Switch the filters out. Increase input voltage to 5 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.
```

	Acquisition Mode:   Distortion Free?	Non-Acquisition Mode:   Distortion Free?
Ch1	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{2}$	$\sqrt{ }$

```
Unit.
```

$\qquad$

```
 .T_ACQ_P9
Test Engineer.....Xen.
Date
14/5/10
```

10 Load tests and Frequency response check
Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

### 10.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo   $($ Vo/20 $)$	Specification	Pass/Fail
Ch1	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

10Hz

	Vor.m.s	$\begin{gathered} \text { Peak lo } \\ (\mathrm{Vo} / 20) \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	0.067	4.7 mA	$>2.5 \mathrm{~mA} \mathrm{peak}$	$\checkmark$
Ch2	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch3	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch4	0.067	4.7 mA	>2.5mA peak	$\checkmark$

100 Hz

	Vor.m.s	$\begin{gathered} \text { Peak lo } \\ (\mathrm{Vo} / 20) \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	0.327	23.1 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch2	0.324	22.9 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch3	0.324	22.9 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch4	0.326	23.0 mA	>2.5mA peak	$\checkmark$

200Hz

Vo r.m.s	Peak lo   $(\mathbf{V o / 2 0}) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.394	27.9 mA	$\boldsymbol{> 2 . 5 m A}$ peak	$\checkmark$
Ch2	0.392	27.7 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch3	0.391	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.393	27.8 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$

1 kHz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times$ 1.414	Specification	Pass/Fail	
Ch1	0.418	29.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.418	29.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.417	29.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.418	29.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

```
Unit.
.T_ACQ_P9
Serial No
Test Engineer.....Xen.
Date
14/5/10.
```


### 10.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo   (Vo/20)	Specification	Pass/Fail
Ch1	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch2	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch3	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch4	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	

10 Hz

	Vo peak	Peak lo   (Vo/20)	Specification	Pass/Fail
Ch1	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch2	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch3	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch4	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	

100 Hz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.129	9.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.132	9.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.126	8.9 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.128	9.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.246	17.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.252	17.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.244	17.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.246	17.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.373	26.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.374	26.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.373	26.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.374	26.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

```
Unit
T_ACQ_P9
Test Engineer.....Xen
Date
14/5/10
```


### 10.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	2.0	2.8	141.4 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	2.0	2.8	141.4 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch3	2.0	2.8	141.4 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch4	2.0	2.8	141.4 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch2	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$

1 kHz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/FaiI
Ch1	2.3	3.3	162.6 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\checkmark$
Ch2	2.3	3.3	162.6 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\checkmark$
Ch3	2.3	3.3	162.6 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	2.3	3.3	162.6 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

5 kHz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	1.7	2.4	120.2 mA	>125mA peak	
Ch2	1.7	2.4	120.2 mA	$>125 \mathrm{~mA}$ peak	
Ch3	1.7	2.4	120.2 mA	$>125 \mathrm{~mA}$ peak	
Ch4	1.7	2.4	120.2 mA	>125mA peak	

```
Unit
 T_ACQ_P9
\(\qquad\)

\section*{11. Noise Measurements}

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

Measure the noise output at 10 Hz .
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \begin{tabular}{c}
Spec in \\
\(\mathrm{dB} V \sqrt{ } \mathrm{~Hz}\)
\end{tabular} & \begin{tabular}{c}
Measured @ \\
10 Hz
\end{tabular} & \(-60 \mathrm{~dB}=\) & \begin{tabular}{c}
Measured in \\
\(\mathrm{nV} \sqrt{ } \mathrm{Hz}\)
\end{tabular} & OK? \\
\hline Ch1 & -143.5 & -91.4 & -151.4 & 26.9 & \(\sqrt{ }\) \\
\hline Ch2 & -143.5 & -91.8 & -151.8 & 25.7 & \(\sqrt{ }\) \\
\hline Ch3 & -143.5 & -92.8 & -152.8 & 22.9 & \(\sqrt{ }\) \\
\hline Ch4 & -143.5 & -92.9 & -152.9 & 22.6 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Notes:}

Specified noise output current at \(10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}\) (worst case)
Total resistance at 10 Hz , in Low noise mode \(=6.7 \mathrm{k}\)
Amplifier noise voltage should therefore be \(=67 \mathrm{nV} \sqrt{\mathrm{Hz}}\)
\(67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{\mathrm{~Hz}}\)
```

Unit

```
\(\qquad\)
\(\qquad\)
``` Serial No
``` \(\qquad\)
```Test EngineerRMCDate10/6/10
```


12. Final Assembly Tests

1. Remove the lid of the box. $\sqrt{ }$
2. Unplug all external connections. $\sqrt{ }$
3. Check that the 9 mm pillars are in place in the corners of the Monitor Board towards the centre of the box. $\sqrt{ }$
4. Check that all internal connectors are firmly mated. $\sqrt{ }$
5. Tighten the screw-locks holding all the external connectors. $\sqrt{ }$
6. Check that the nuts holding the tabs of the power drivers are secure tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis.
7. Check that all the LEDs are nicely centred. $\sqrt{ }$
8. Check that all links W4 are in place. $\sqrt{ }$
9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. $\sqrt{ }$ Record below:

UoB box ID	TACQ9 P
Driver board ID	TACQ9
Driver board Drawing No/Issue No	D0901047_V2
Driver board Serial Number	TACQ9
Monitor board ID	MON130
Monitor board Drawing No/Issue No	D070480_4_K
Monitor board Serial Number	MON130

10. Check the security of any modification wires. None
11. Visually inspect.
12. Put the lid on and fasten all screws,

Check all external screws for tightness.

LIGO Laboratory / LIGO Scientific Collaboration

Advanced LIGO UK

March 2010

Triple Acquisition Driver Unit Test Report

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT

```
Unit...............T_ACQ_P10
```

\qquad

```
Test Engineer.....Xen.
Date
```

\qquad

Drive Card ID......T_ACQ11P
Monitor Card ID...Mon129.
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

1. Description

Block diagram

Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
_ACQ_P10
```

\qquad

``` Serial No
Test Engineer.....Xen.
Date 14/5/10
```


2. Test equipment

```
Power supplies (At least \(+/-20 v\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz )
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 changed to 1 nF on all channels.

Links

Check that the links W2 and W4 are present on each channel.

Test Engineer.. Xen.
Date
12/5/10. \qquad

4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	OV	\checkmark	
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	\checkmark
2	Imon2P		6	\checkmark
3	Imon3P		7	\checkmark
4	Imon4P		8	\checkmark
	5	OV	\checkmark	
6	Imon1N		18	\checkmark
7	Imon2N		19	\checkmark
8	Imon3N		20	\checkmark
9	Imon4N		21	\checkmark

PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
11	V - (TP2)	-17 v Supply	$\sqrt{ }$
12	V - (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	0 V (TP3)		$\sqrt{ }$
24	0 V (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

5. TEST SET UP

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit
```

\qquad

``` T_ACQ_P10
``` \(\qquad\)
\(\qquad\)
```

Test Engineer.....Xen.
Date
12/5/10

``` \(\qquad\)

\section*{6. Power}

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents
\begin{tabular}{|c|c|}
\hline \(\mathbf{+ 1 6 . 5}\) supply current (mA) & - \(\mathbf{1 6 . 5}\) supply current (mA) \\
\hline 500 mA & 400 mA \\
\hline
\end{tabular}

Check that all power LEDs are illuminated.
\begin{tabular}{|c|c|c|}
\hline LEDs & Plus & Minus \\
\hline Front Panel & \(\sqrt{2}\) & \(\sqrt{ }\) \\
\hline Rear Panel & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.
```

Unit.

```
\(\qquad\)
``` T_ACQ_P10
``` \(\qquad\)
``` Serial No
Test Engineer.....Xen.
Date 12/5/10
```


7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{\|c\|}$	$\sqrt{ }$	$\sqrt{ }$

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	,

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

```
Unit
```

\qquad

```
                            T_ACQ_P10
                                    Serial No
Test Engineer.....Xen.
Date
.12/5/10
```

\qquad

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S Monitor	Expected value	Pass/Fail: Equal? (+/-0.1v)
$\mathbf{1}$	0.33	3	0.33 v	$\sqrt{ }$
$\mathbf{2}$	0.33	6	0.33 v	$\sqrt{ }$
$\mathbf{3}$	0.33	9	0.33 v	$\sqrt{ }$
$\mathbf{4}$	0.33	12	0.33 v	$\sqrt{ }$

Adjust the input voltage until the voltage across the load resistor $=1 \mathrm{v}$ r.m.s. Record the current monitor output values.
8.2 Current Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	1.91	2	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{2}$	1.91	5	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{3}$	1.91	8	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{4}$	1.91	11	$1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}$	$\sqrt{ }$

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	Pass/Fail: Equal? $\mathbf{(+ / - 0 . 1 v)}$
$\mathbf{1}$	1.95	1	1.86 vdc	$\sqrt{ }$
$\mathbf{2}$	1.95	4	1.86 vdc	$\sqrt{ }$
$\mathbf{3}$	1.94	7	1.86 v dc	$\sqrt{ }$
$\mathbf{4}$	1.93	10	1.86 vdc	$\sqrt{ }$

8.4 Noise Monitors

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu \mathrm{V} \sqrt{\mathrm{Hz}}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA $\sqrt{ } \mathrm{Hz}$ should give $2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}$ out.

Ch.	Output $(\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})$	$\div($ Pre-amplifier gain)	Expected Value	Comparison
$\mathbf{1}$		1.28	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{2}$		1.58	$2.9 \mu \mathrm{~V} \mathrm{~Hz}$	$\sqrt{ }$
$\mathbf{3}$		1.37	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{4}$		1.90	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$

```
Unit
...............T_ACQ_P10
0..
Serial No
Test Engineer.....Xen.
Date.
13/5/10
```


9. Distortion

```
Switch the filters out. Increase input voltage to 5 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.
```

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{2}$	$\sqrt{ }$

```
Unit
```

\qquad

```
                            .T_ACQ_P10.
Test Engineer.....Xen.
Date
.13/5/10
```

\qquad

10 Load tests and Frequency response check
Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

10.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo (Vo/20)	Specification	Pass/Fail
Ch1	64.5 mV	3.2 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch2	64.5 mV	3.2 mA	>2.5mA peak	\checkmark
Ch3	64.5 mV	3.2 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch4	64.5 mV	3.2 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark

10Hz

Vo r.m.s	Peak lo $(\mathrm{Vo/20}) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.064	4.5 mA	$>\mathbf{2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.064	4.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.064	4.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.064	4.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

100 Hz

	Vor.m.s	$\begin{gathered} \text { Peak lo } \\ (\mathrm{Vo} / 20) \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	0.321	22.7 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch2	0.322	22.8 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch3	0.322	22.8 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch4	0.320	22.6 mA	>2.5mA peak	1

200 Hz

Vo r.m.s	Peak lo $($ Vo/20 $) \times$ 1.414	Specification	Pass/Fail	
Ch1	0.389	27.5 mA	$\boldsymbol{> 2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.390	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.390	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.388	27.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

Vo r.m.s	Peak lo $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.415	29.3 mA	$>\mathbf{2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.416	29.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Unit.
T_ACQ_P10
Serial No
Test Engineer.....Xen.
Date.
.13/5/10.

10.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo (Vo/20)	Specification	Pass/Fail
Ch1	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch2	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch3	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch4	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	

10 Hz

	Vo peak	Peak lo $($ Vo/20 $)$	Specification	Pass/Fail
Ch1	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch2	12 mV	600 uA	$>2.5 \mathrm{~mA}$ peak	
Ch3	16 mV	800 uA	$>2.5 \mathrm{~mA}$ peak	
Ch4	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	

100 Hz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.126	8.9 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.126	8.9 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.128	9.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.124	8.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.242	17.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.242	17.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.245	17.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.239	16.9 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.372	26.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.372	26.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.372	26.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.372	26.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Unit. T_ACQ_P10 Serial No
Test Engineer.. Xen.
Date. 13/5/10.

10.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	2.0	2.8	141.4 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	2.0	2.8	141.4 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	2.0	2.8	141.4 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	2.0	2.8	141.4 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA }}$ peak	$\sqrt{ }$

1 kHz

	Vor.m.s	Vo pk.	$\begin{gathered} \text { Peak lo (Vo/20) } \\ \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	2.3	3.3	162.6 mA	$>125 \mathrm{~mA}$ peak	\checkmark
Ch2	2.3	3.3	162.6 mA	$>125 \mathrm{~mA}$ peak	\checkmark
Ch3	2.3	3.3	162.6 mA	$>125 \mathrm{~mA}$ peak	\checkmark
Ch4	2.3	3.3	162.6 mA	>125mA peak	\checkmark

5 kHz

	Vo r.m.s	Vo pk.	Peak Io (Vo/20) $\mathbf{x ~ 1 . 4 1 4 ~}$	Specification	Pass/Fail
Ch1	1.7	2.4	120.2 mA	$>125 \mathrm{~mA}$ peak	
Ch2	1.7	2.4	120.2 mA	$>125 \mathrm{~mA}$ peak	
Ch3	1.7	2.4	120.2 mA	$>125 \mathrm{~mA}$ peak	
Ch4	1.7	2.4	120.2 mA	$>125 \mathrm{~mA}$ peak	

```
Unit
                                T_ACQ_P10
                                    Serial No
Test Engineer.....Xen
Date
14/5/10
```

\qquad

11. Noise Measurements

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

Measure the noise output at 10 Hz .

	Spec in $\mathrm{dB} \mathrm{V} / \sqrt{\mathrm{Hz}}$	Measured @ 10 Hz	$-60 \mathrm{~dB}=$	Measured in $\mathrm{nV} \sqrt{\mathrm{Hz}}$	OK?
Ch1	-143.5	-92.9	-152.9	22.6	$\sqrt{ }$
Ch2	-143.5	-91.8	-151.8	25.7	$\sqrt{ }$
Ch3	-143.5	-92.0	-152.0	25.1	$\sqrt{ }$
Ch4	-143.5	-90.4	-150.4	30.2	$\sqrt{ }$

Notes:

Specified noise output current at $10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}$ (worst case)
Total resistance at 10 Hz , in Low noise mode $=6.7 \mathrm{k}$
Amplifier noise voltage should therefore be $=67 \mathrm{nV} \sqrt{\mathrm{Hz}}$
$67 \mathrm{nV} \sqrt{\mathrm{Hz}}=-143.5 \mathrm{~dB} \sqrt{\mathrm{~Hz}}$

```
Unit.
                TACQ10 P
```

\qquad

``` Serial No
``` \(\qquad\)
```

Test Engineer .........RMC
Date
.10/6/10

```

\section*{12. Final Assembly Tests}
1. Remove the lid of the box. \(\sqrt{ }\)
2. Unplug all external connections. \(\sqrt{ }\)
3. Check that the 9 mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \(\sqrt{ }\)
4. Check that all internal connectors are firmly mated. \(\sqrt{ }\)
5. Tighten the screw-locks holding all the external connectors. \(\sqrt{ }\)
6. Check that the nuts holding the tabs of the power drivers are secure tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis.
7. Check that all the LEDs are nicely centred. \(V\)
8. Check that all links W4 are in place. \(\sqrt{ }\)
9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. \(\sqrt{ }\) Record below:
\begin{tabular}{|l|l|}
\hline UoB box ID & TACQ10 P \\
\hline Driver board ID & TACQ10 \\
\hline Driver board Drawing No/Issue No & D0901047_V2 \\
\hline Driver board Serial Number & TACQ10 \\
\hline Monitor board ID & MON129 \\
\hline Monitor board Drawing No/Issue No & D070480_4_K \\
\hline Monitor board Serial Number & MON129 \\
\hline
\end{tabular}
10. Check the security of any modification wires. None
11. Visually inspect.
12. Put the lid on and fasten all screws, \(\sqrt{ }\)

Check all external screws for tightness. \(\sqrt{ }\)

\section*{LIGO Laboratory / LIGO Scientific Collaboration}

\section*{Advanced LIGO UK}

March 2010

\section*{Triple Acquisition Driver Unit Test Report}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

\author{
Institute for Gravitational Research \\ University of Glasgow \\ Phone +44 (0) 1413305884 \\ Fax +44 (0) 1413306833 \\ E-mail k.strain@physics.gla.ac.uk \\ Engineering Department \\ CCLRC Rutherford Appleton Laboratory \\ Phone +44 (0) 1235445297 \\ Fax +44 (0) 1235445843 \\ E-mail J.Greenhalgh@rl.ac.uk
}

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT}

Drive Card ID......T ACQ11P
Monitor Card ID...Mon128
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

\section*{1. Description}

\section*{Block diagram}

\section*{Description}

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.
```

Unit
ACQ_P11
1.
Test Engineer.....Xen.
Date
12/5/10

```

\section*{2. Test equipment}
```

Power supplies (At least $+/-20 \mathrm{v}$ variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz )
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & ISO-TECH & ISR622 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77III & \\
\hline Signal analyzer & Agilent & 35670A & \\
\hline Pre-amplifier & Stanford Systems & SR560 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|r|}{\multirow[t]{3}{*}{Unit..................T_ACQ_P11. Test Engineer.....Xen}} \\
\hline & & & & \\
\hline & & & & \\
\hline
\end{tabular}

\section*{3. Inspection}

\section*{Workmanship}

Inspect the general workmanship standard and comment: \(\sqrt{ }\)
Capacitors C35 and C27 have been changed on all channels to 1 nF .

\section*{Links}

Check that the links W2 and W4 are present on each channel.

Test Engineer.
Date
11/5/10. \(\qquad\)

\section*{4. Continuity Checks}

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\checkmark\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\checkmark\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\checkmark\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\checkmark\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\checkmark\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\checkmark\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\checkmark\) \\
\hline
\end{tabular}

\section*{LED Mon}
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\checkmark\) \\
\hline 2 & Imon2P & & 6 & \(\checkmark\) \\
\hline 3 & Imon3P & & 7 & \(\checkmark\) \\
\hline 4 & Imon4P & & 8 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & Imon1N & & 18 & \(\checkmark\) \\
\hline 7 & Imon2N & & 19 & \(\checkmark\) \\
\hline 8 & Imon3N & & 20 & \(\checkmark\) \\
\hline 9 & Imon4N & & 21 & \(\checkmark\) \\
\hline
\end{tabular}

\section*{PD from Sat}
\begin{tabular}{|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & \(\mathrm{~V}+\) (TP1) & +17 v Supply & \(\sqrt{ }\) \\
\hline 10 & \(\mathrm{~V}+\) (TP1) & +17 v Supply & \(\sqrt{ }\) \\
\hline 11 & V - (TP2) & -17 v Supply & \(\sqrt{ }\) \\
\hline 12 & V - (TP2) & -17 v Supply & \(\sqrt{ }\) \\
\hline 13 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 22 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 23 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, \(4=\) positive input
Drive Input J3 pins 6, 7, 8, \(9=\) negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, \(10=+16.5 \mathrm{v}\)
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, \(25=0 v\)
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin \(1 \quad\) Ch1 \(-=\mathrm{J} 4\) pin 9
Ch2 \(+=\mathrm{J} 4\) pin \(3 \quad\) Ch2- \(=\mathrm{J} 4\) pin 11
Ch3 \(+=\mathrm{J} 4\) pin \(5 \quad\) Ch3- \(=\mathrm{J} 4\) pin 13
Ch4+ = J4 pin \(7 \quad\) Ch4- \(=\mathrm{J} 4\) pin 15
```

Unit.
.T_ACQ_P11
1..
$\qquad$

```
Test Engineer.....Xen.
Date
11/5/10.
```


## 6. Power

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents

$\mathbf{+ 1 6 . 5}$ supply current (mA)	- $\mathbf{1 6 . 5}$ supply current (mA)
500 mA	400 mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	$\sqrt{ }$	$\sqrt{ }$
Rear Panel	$\sqrt{ }$	$\sqrt{ }$

If the supplies are correct, proceed to the next test.

```
Unit.
```

$\qquad$

``` T_ACQ_P11
``` \(\qquad\)
Test Engineer.....Xen.
Date 11/5/10
```


7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{\|c\|}$	$\sqrt{ }$	$\sqrt{ }$

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$

```
Unit.
                T_ACQ_P11
Test Engineer.....Xen
Date
11/5/10
```

\qquad

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S Monitor	Expected value	Pass/Fail: Equal? (+/-0.1v)
$\mathbf{1}$	3.32	3	0.33 v	$\sqrt{ }$
$\mathbf{2}$	3.31	6	0.33 v	$\sqrt{ }$
$\mathbf{3}$	3.32	9	0.33 v	$\sqrt{ }$
$\mathbf{4}$	3.31	12	0.33 v	$\sqrt{ }$

Adjust the input voltage until the voltage across the load resistor $=1 \mathrm{v}$ r.m.s. Record the current monitor output values.
8.2 Current Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	Pass/Fail: Equal? ($+/-\mathbf{0 . 1 v})$
$\mathbf{1}$	1.91	2	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{2}$	1.91	5	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{3}$	1.91	8	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{4}$	1.91	11	1.86 v r.m.s	$\sqrt{ }$

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	1.95	1	1.86 vdc	$\sqrt{ }$
$\mathbf{2}$	1.95	4	1.86 vdc	$\sqrt{ }$
$\mathbf{3}$	1.95	7	1.86 vdc	$\sqrt{ }$
$\mathbf{4}$	1.95	10	1.86 vdc	$\sqrt{ }$

8.4 Noise Monitors

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $u \mathrm{~V} / \mathrm{JHz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA $\sqrt{ } \mathrm{Hz}$ should give $2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}$ out.

Ch.	Output $(\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})$	$\dot{\div}$ (Pre-amplifier gain)	Expected Value	Comparison
$\mathbf{1}$		1.89	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{2}$		1.45	$2.9 \mu \mathrm{~V} \mathrm{~Hz}$	$\sqrt{ }$
$\mathbf{3}$		1.73	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{4}$		1.37	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$

```
Unit.
..............T_ACQ_P11
```

\qquad
Test Engineer.....Xen.
Date
11/5/10.

```

\section*{9. Distortion}
```

Switch the filters out. Increase input voltage to 5 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

```
\begin{tabular}{|c|c|c|}
\hline & \begin{tabular}{c} 
Acquisition Mode: \\
Distortion Free?
\end{tabular} & \begin{tabular}{c} 
Non-Acquisition Mode: \\
Distortion Free?
\end{tabular} \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{2}\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{2}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit

```
\(\qquad\)
```

 T_ACQ_P11
 1..
 Test Engineer.....Xen.
Date
.11/5/10

```
\(\qquad\)

10 Load tests and Frequency response check
Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

\subsection*{10.1 Noisy Mode}

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vo peak & Peak lo (Vol20) & Specification & Pass/Fail \\
\hline Ch1 & 65 mV & 3.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch2 & 65 mV & 3.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch3 & 65 mV & 3.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 65 mV & 3.3 mA & >2.5mA peak & \(\checkmark\) \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c} 
Peak lo \\
\((\) Vo/20 \() \times \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.064 & 4.5 mA & \(>\mathbf{2 . 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.065 & 4.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.065 & 4.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.064 & 4.5 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c} 
Peak lo \\
\((\mathrm{Vo/20}) \times \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.322 & 22.8 mA & \(>\mathbf{2 . 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.324 & 22.9 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.324 & 22.9 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.321 & 22.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

200Hz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c} 
Peak lo \\
\((\) Vo/20 \() \times \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.389 & 27.5 mA & \(\boldsymbol{> 2 . 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.390 & 27.6 mA & \(>\mathbf{2 . 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.390 & 27.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.389 & 27.5 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c} 
Peak lo \\
\((\) Vo/20 \() \times\) 1.414
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.414 & 29.3 mA & \(>\mathbf{~ 2 . 5 m A ~ p e a k ~}\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.415 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.414 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.414 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit

```
\(\qquad\)
```

 .T_ACQ_P11
    ```
\(\qquad\)
Test Engineer.....Xen
Date.
.12/5/10.
```


10.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below.
For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

| | Vo peak | Peak lo
 $($ Vo/20) | Specification | Pass/Fail |
| :--- | :---: | :---: | :---: | :---: |
| Ch1 | 45 mV | 2.3 mA | $>2.5 \mathrm{~mA}$ peak | |
| Ch2 | 45 mV | 2.3 mA | $>2.5 \mathrm{~mA}$ peak | |
| Ch3 | 45 mV | 2.3 mA | $>2.5 \mathrm{~mA}$ peak | |
| Ch4 | 45 mV | 2.3 mA | $>2.5 \mathrm{~mA}$ peak | |

10 Hz

| | Vo peak | Peak lo
 $($ Vo/20 $)$ | Specification | Pass/Fail |
| :--- | :---: | :---: | :---: | :---: |
| Ch1 | 16 mV | 800 uA | $>2.5 \mathrm{~mA}$ peak | |
| Ch2 | 16 mV | 800 uA | $>2.5 \mathrm{~mA}$ peak | |
| Ch3 | 14 mV | 700 uA | $>2.5 \mathrm{~mA}$ peak | |
| Ch4 | 14 mV | 700 uA | $>2.5 \mathrm{~mA}$ peak | |

100 Hz

| | Vo r.m.s | Peak lo
 $($ Vo/20) $\mathbf{1} \mathbf{1 . 4 1 4}$ | Specification | Pass/Fail |
| :--- | :---: | :---: | :---: | :---: |
| Ch1 | 0.127 | 9.0 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |
| Ch2 | 0.126 | 8.9 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |
| Ch3 | 0.130 | 9.2 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |
| Ch4 | 0.132 | 9.3 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |

200 Hz

| | Vo r.m.s | Peak lo
 (Vo/20) $\mathbf{1 . 4 1 4}$ | Specification | Pass/Fail |
| :---: | :---: | :---: | :---: | :---: |
| Ch1 | 0.243 | 17.2 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |
| Ch2 | 0.241 | 17.0 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |
| Ch3 | 0.246 | 17.4 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |
| Ch4 | 0.249 | 17.6 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |

1 kHz

| Ch1 | Vo r.m.s | Peak lo
 (Vo/20) $\mathbf{x} \mathbf{1 . 4 1 4}$ | Specification | Pass/Fail |
| :--- | :---: | :---: | :---: | :---: |
| Ch2 | 0.370 | 26.2 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |
| Ch3 | 0.370 | 26.2 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |
| Ch4 | 0.370 | 26.2 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |

Test Engineer.. Xen
Date.
12/5/10.

10.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100Hz

| | Vo r.m.s | Vo pk. | Peak lo (Vo/20)
 $\mathbf{x 1 . 4 1 4}$ | Specification | Pass/Fail |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Ch1 | 1.97 | 2.79 | 139 mA | $\boldsymbol{> 1 2 5 m A}$ peak | \checkmark |
| Ch2 | 1.96 | 2.77 | 139 mA | $\boldsymbol{> 1 2 5 m A}$ peak | \checkmark |
| Ch3 | 1.96 | 2.77 | 139 mA | $\boldsymbol{> 1 2 5 m A}$ peak | \checkmark |
| Ch4 | 1.97 | 2.79 | 139 mA | $\boldsymbol{> 1 2 5 m A}$ peak | $\sqrt{ }$ |

200 Hz

| | Vo r.m.s | Vo pk. | Peak lo (Vo/20)
 $\mathbf{x} 1.414$ | Specification | Pass/Fail |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Ch1 | 2.2 | 3.1 | 156 mA | >125mA peak | \checkmark |
| Ch2 | 2.2 | 3.1 | 156 mA | $>125 \mathrm{~mA}$ peak | $\sqrt{ }$ |
| Ch3 | 2.2 | 3.1 | 156 mA | $>125 \mathrm{~mA}$ peak | $\sqrt{ }$ |
| Ch4 | 2.2 | 3.1 | 156 mA | >125mA peak | $\sqrt{ }$ |

1 kHz

| | Vo r.m.s | Vo pk. | Peak lo (Vo/20)
 $\mathbf{x} 1.414$ | Specification | Pass/Fail |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Ch1 | 2.2 | 3.1 | 156 mA | >125mA peak | $\sqrt{ }$ |
| Ch2 | 2.3 | 3.3 | 163 mA | >125mA peak | $\sqrt{ }$ |
| Ch3 | 2.2 | 3.1 | 156 mA | >125mA peak | $\sqrt{ }$ |
| Ch4 | 2.3 | 3.3 | 163 mA | >125mA peak | $\sqrt{ }$ |

5 kHz

| | Vo r.m.s | Vo pk. | Peak Io (Vo/20)
 $\mathbf{x} 1.414$ | Specification | Pass/Fail |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Ch1 | 1.7 | 2.4 | 120.2 mA | $>125 \mathrm{~mA}$ peak | |
| Ch2 | 1.7 | 2.4 | 120.2 mA | $>125 \mathrm{~mA}$ peak | |
| Ch3 | 1.7 | 2.4 | 120.2 mA | $>125 \mathrm{~mA}$ peak | |
| Ch4 | 1.7 | 2.4 | 120.2 mA | >125mA peak | |

```
Unit
                                T_ACQ_P11
Test Engineer.....Xen
Date..................12/5/10
```


11. Noise Measurements

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

Measure the noise output at 10 Hz .

| | Spec in
 $\mathrm{dB} \mathrm{V} / \sqrt{ } \mathrm{Hz}$ | Measured @
 10 Hz | $-60 \mathrm{~dB}=$ | Measured in
 $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ | OK? |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Ch1 | -143.5 | -91.3 | -151.3 | 27.2 | $\sqrt{ }$ |
| Ch2 | -143.5 | -92.2 | -152.2 | 24.5 | $\sqrt{ }$ |
| Ch3 | -143.5 | -92.5 | -152.5 | 23.7 | $\sqrt{ }$ |
| Ch4 | -143.5 | -90.3 | -150.3 | 30.5 | $\sqrt{ }$ |

Notes:

Specified noise output current at $10 \mathrm{~Hz}=10 \mathrm{pA} /$ root Hz (worst case)
Total resistance at 10 Hz , in Low noise mode $=6.7 \mathrm{k}$
Amplifier noise voltage should therefore be $=67 \mathrm{nV} / \mathrm{VHz}$
$67 \mathrm{nV} / \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} / \sqrt{ } \mathrm{Hz}$

```
Unit...................TACQ11 P.....................Serial No ....
Test Engineer .........RMC
Date
10/6/10
```


12. Final Assembly Tests

1. Remove the lid of the box. $\sqrt{ }$
2. Unplug all external connections. $\sqrt{ }$
3. Check that the 9 mm pillars are in place in the corners of the Monitor Board towards the centre of the box. $\sqrt{ }$
4. Check that all internal connectors are firmly mated. $\sqrt{ }$
5. Tighten the screw-locks holding all the external connectors. $\sqrt{ }$
6. Check that the nuts holding the tabs of the power drivers are secure tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis.
7. Check that all the LEDs are nicely centred. $\sqrt{ }$
8. Check that all links W4 are in place. $\sqrt{ }$
9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

| UoB box ID | TACQ11 P |
| :--- | :--- |
| Driver board ID | TACQ11 |
| Driver board Drawing No/Issue No | D0901047_V2 |
| Driver board Serial Number | TACQ11 |
| Monitor board ID | MON128 |
| Monitor board Drawing No/Issue No | D |
| Monitor board Serial Number | MON128 |

10. Check the security of any modification wires. None
11. Visually inspect.
12. Put the lid on and fasten all screws, $\sqrt{ }$

Check all external screws for tightness. $\sqrt{ }$

LIGO Laboratory / LIGO Scientific Collaboration

Advanced LIGO UK

March 2010

Triple Acquisition Driver Unit Test Report

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT

```
Unit...............T ACQ P12...........................Serial No.
Test Engineer.....Xe=n.
Date................6/8/10
```

Drive Card ID.......T ACQ12
Monitor Card ID....Mon146.
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

1. Description

Block diagram

Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
```

\qquad

```
                            T_ACQ_P12
                        12..
                                    Serial No
Test Engineer.....Xen.
Date
6/8/10
```


2. Test equipment

```
Power supplies (At least \(+/-20 v\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz )
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

| Unit (e.g. DVM) | Manufacturer | Model | Serial Number |
| :---: | :---: | :---: | :---: |
| Signal Generator | Agilent | 33250 A | |
| Oscilloscope | ISO-TECH | ISR622 | |
| PSU*2 | Farnell | L30-2 | |
| DVM | Fluke | 77III | |
| Signal analyzer | Agilent | 35670A | |
| Pre-amplifier | Stanford Systems | SR560 | |

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.

Links

Check that the links W2 and W4 are present on each channel.

Test Engineer..
Date.

4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

| PIN | SIGNAL | DESCRIPTION | To J1 PIN | OK? |
| :---: | :---: | :---: | :---: | :---: |
| 1 | PD1P | Photodiode A+ | 1 | $\sqrt{ }$ |
| 2 | PD2P | Photodiode B+ | 2 | $\sqrt{ }$ |
| 3 | PD3P | Photodiode C+ | 3 | $\sqrt{ }$ |
| 4 | PD4P | Photodiode D+ | 4 | $\sqrt{l \mid}$ |
| 5 | 0V | \sqrt{l} | | |
| 6 | PD1N | Photodiode A- | 14 | $\sqrt{ }$ |
| 7 | PD2N | Photodiode B- | 15 | $\sqrt{ }$ |
| 8 | PD3N | Photodiode C- | 16 | $\sqrt{ }$ |
| 9 | PD4N | Photodiode D- | 17 | $\sqrt{ }$ |

LED Mon

| PIN | SIGNAL | | To J1 PIN | OK? |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Imon1P | | 5 | $\sqrt{ }$ |
| 2 | Imon2P | | 6 | $\sqrt{ }$ |
| 3 | Imon3P | | 7 | $\sqrt{ }$ |
| 4 | Imon4P | | 8 | $\sqrt{ }$ |
| 5 | 0V | $\sqrt{\|c\|}$ | | |
| 6 | Imon1N | | 18 | $\sqrt{ }$ |
| 7 | Imon2N | | 19 | $\sqrt{ }$ |
| 8 | Imon3N | | 20 | $\sqrt{ }$ |
| 9 | Imon4N | | 21 | $\sqrt{ }$ |

PD from Sat

| PIN | SIGNAL | DESCRIPTION | OK? |
| :---: | :---: | :---: | :---: |
| 9 | $\mathrm{~V}+$ (TP1) | +17 v Supply | $\sqrt{ }$ |
| 10 | $\mathrm{~V}+$ (TP1) | +17 v Supply | $\sqrt{ }$ |
| 11 | V - (TP2) | -17 v Supply | $\sqrt{ }$ |
| 12 | V - (TP2) | -17 v Supply | $\sqrt{ }$ |
| 13 | 0 V (TP3) | | $\sqrt{ }$ |
| 22 | 0 V (TP3) | | $\sqrt{ }$ |
| 23 | 0 V (TP3) | | $\sqrt{ }$ |
| 24 | 0 V (TP3) | | $\sqrt{ }$ |
| 25 | OV (TP3) | | $\sqrt{ }$ |

5. TEST SET UP

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit
```

\qquad

```
                            T_ACQ_P12
                        12..
                                    Serial No.
Test Engineer.....Xen.
Date.
.4/8/10
```


6. Power

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents

| $\mathbf{+ 1 6 . 5}$ supply current (mA) | - 16.5 supply current (mA) |
| :---: | :---: |
| 500 mA | 400 mA |

Check that all power LEDs are illuminated.

| LEDs | Plus | Minus |
| :---: | :---: | :---: |
| Front Panel | $\sqrt{ }$ | $\sqrt{ }$ |
| Rear Panel | $\sqrt{ }$ | $\sqrt{ }$ |

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen.
Date. .4/8/10

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER

| Channel | Indicator | | OK? |
| :---: | :---: | :---: | :---: |
| | ON | OFF | |
| Ch1 | \checkmark | \checkmark | \checkmark |
| Ch2 | \checkmark | \checkmark | \checkmark |
| Ch3 | \checkmark | \checkmark | \checkmark |
| Ch4 | \checkmark | \checkmark | \checkmark |

TEST RELAYS

| Channel | Indicator | | OK? |
| :---: | :---: | :---: | :---: |
| Ch1 | ON | OFF | |
| Ch2 | $\sqrt{ }$ | $\sqrt{ }$ | $\sqrt{ }$ |
| Ch3 | $\sqrt{ }$ | $\sqrt{ }$ | $\sqrt{ }$ |
| Ch4 | $\sqrt{ }$ | $\sqrt{ }$ | $\sqrt{ }$ |

ACQUISITION RELAYS

| Channel | Indicator | | OK? |
| :---: | :---: | :---: | :---: |
| | ON | OFF | |
| Ch1 | \checkmark | \checkmark | \checkmark |
| Ch2 | \checkmark | \checkmark | \checkmark |
| Ch3 | \checkmark | \checkmark | \checkmark |
| Ch4 | \checkmark | \checkmark | \checkmark |

```
Unit
.T_ACQ_P12.
Serial No
Test Engineer.....Xen
```

Date. .4/8/10

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

8.1 Voltage Monitors

| Ch. | Output: | V, I and R.M.S
 Monitor | Expected value | Pass/Fail:
 Equal? (+/-0.1v) |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | 0.33 | 3 | 0.33 v | $\sqrt{ }$ |
| $\mathbf{2}$ | 0.33 | 6 | 0.33 v | $\sqrt{ }$ |
| $\mathbf{3}$ | 0.33 | 9 | 0.33 v | $\sqrt{ }$ |
| $\mathbf{4}$ | 0.33 | 12 | 0.33 v | $\sqrt{ }$ |

Adjust the input voltage until the voltage across the load resistor $=1 \mathrm{v}$ r.m.s. Record the current monitor output values.
8.2 Current Monitors

| Ch. | Output | V, I and R.M.S
 Monitor | Expected
 Value | Pass/Fail:
 Equal? (+/- 0.1v) |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | 1.91 | $\mathbf{2}$ | 1.86 v r.m.s | $\sqrt{ }$ |
| $\mathbf{2}$ | 1.91 | 5 | 1.86 v r.m.s | $\sqrt{ }$ |
| $\mathbf{3}$ | 1.91 | 8 | 1.86 v r.m.s | $\sqrt{ }$ |
| $\mathbf{4}$ | 1.91 | 11 | 1.86 v r.m.s | $\sqrt{ }$ |

8.3 R.M.S Monitors

| Ch. | Output | V, I and R.M.S
 Monitor | Expected
 Value | Pass/Fail:
 Equal? (+/- 0.1v) |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | 1.94 | 1 | 1.86 vdc | $\sqrt{ }$ |
| $\mathbf{2}$ | 1.94 | 4 | 1.86 vdc | $\sqrt{ }$ |
| $\mathbf{3}$ | 1.95 | 7 | 1.86 vdc | $\sqrt{ }$ |
| $\mathbf{4}$ | 1.94 | 10 | 1.86 vdc | $\sqrt{ }$ |

8.4 Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu \mathrm{V} \sqrt{\mathrm{Hz}}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA $\sqrt{ } \mathrm{Hz}$ should give $2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}$ out.

| Ch. | Output
 $(\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z})}$ | \div (Pre-amplifier
 gain) | Expected
 Value | Comparison |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | | 1.60 | $2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$ | $\sqrt{ }$ |
| $\mathbf{2}$ | | 1.39 | $2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$ | $\sqrt{ }$ |
| $\mathbf{3}$ | | 1.82 | $2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$ | $\sqrt{ }$ |
| $\mathbf{4}$ | | 0.80 | $2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$ | $\sqrt{ }$ |

```
Unit
```

\qquad

```
                T_ACQ_P12
```

\qquad

```
                                    Serial No
Test Engineer.....Xen.
Date
5/8/10
```


9. Distortion

```
Switch the filters out. Increase input voltage to 5 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.
```

| | Acquisition Mode:
 Distortion Free? | Non-Acquisition Mode:
 Distortion Free? |
| :---: | :---: | :---: |
| Ch1 | $\sqrt{ }$ | $\sqrt{ }$ |
| Ch2 | $\sqrt{ }$ | $\sqrt{ }$ |
| Ch3 | $\sqrt{ }$ | $\sqrt{ }$ |
| Ch4 | $\sqrt{2}$ | $\sqrt{ }$ |

Unit.
T_ACQ_P12. Serial No
Test Engineer.....Xen.
Date. .5/8/10

10 Load tests and Frequency response check

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

10.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

| | Vo peak | Peak lo (Vo/20) | Specification | Pass/Fail |
| :---: | :---: | :---: | :---: | :---: |
| Ch1 | 67.5 mV | 3.4 mA | $>2.5 \mathrm{~mA}$ peak | \checkmark |
| Ch2 | 67.5 mV | 3.4 mA | $>2.5 \mathrm{~mA}$ peak | \checkmark |
| Ch3 | 67.5 mV | 3.4 mA | $>2.5 \mathrm{~mA}$ peak | \checkmark |
| Ch4 | 67.5 mV | 3.4 mA | >2.5mA peak | \checkmark |

10Hz

| Vo r.m.s | Peak lo
 $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$ | Specification | Pass/Fail | |
| :---: | :---: | :---: | :---: | :---: |
| Ch1 | 0.066 | 4.7 mA | $>\mathbf{~ 2 . 5 m A ~ p e a k ~}$ | $\sqrt{ }$ |
| Ch2 | 0.066 | 4.7 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |
| Ch3 | 0.066 | 4.7 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |
| Ch4 | 0.066 | 4.7 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |

100 Hz

| Vo r.m.s | Peak lo
 $(\mathrm{Vo/20}) \times \mathbf{1 . 4 1 4}$ | Specification | Pass/Fail | |
| :---: | :---: | :---: | :---: | :---: |
| Ch1 | 0.324 | 22.9 mA | $>\mathbf{2 . 5 m A}$ peak | $\sqrt{ }$ |
| Ch2 | 0.322 | 22.8 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |
| Ch3 | 0.323 | 22.8 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |
| Ch4 | 0.323 | 22.8 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |

200 Hz

| Vo r.m.s | Peak lo
 $($ Vo/20 $) \times$ 1.414 | Specification | Pass/Fail | |
| :---: | :---: | :---: | :---: | :---: |
| Ch1 | 0.391 | 27.6 mA | $\boldsymbol{> 2 . 5 m A}$ peak | $\sqrt{ }$ |
| Ch2 | 0.390 | 27.6 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |
| Ch3 | 0.390 | 27.6 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |
| Ch4 | 0.390 | 27.6 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |

1 kHz

| Vo r.m.s | Peak lo
 $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$ | Specification | Pass/Fail | |
| :---: | :---: | :---: | :---: | :---: |
| Ch1 | 0.415 | 29.3 mA | $>\mathbf{2 . 5 m A}$ peak | $\sqrt{ }$ |
| Ch2 | 0.416 | 29.4 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |
| Ch3 | 0.415 | 29.3 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |
| Ch4 | 0.415 | 29.3 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |

Unit. T_ACQ_P12. Serial No
Test Engineer.. .Xen.
Date .5/8/10

10.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

| | Vo peak | Peak lo
 (Vo/20) | Specification | Pass/Fail |
| :--- | :---: | :---: | :---: | :---: |
| Ch1 | 45 mV | 2.3 mA | $>2.5 \mathrm{~mA}$ peak | |
| Ch2 | 45 mV | 2.3 mA | $>2.5 \mathrm{~mA}$ peak | |
| Ch3 | 45 mV | 2.3 mA | $>2.5 \mathrm{~mA}$ peak | |
| Ch4 | 45 mV | 2.3 mA | $>2.5 \mathrm{~mA}$ peak | |

10 Hz

| | Vo peak | Peak lo
 $($ Vo/20) | Specification | Pass/Fail |
| :---: | :---: | :---: | :---: | :---: |
| Ch1 | 14 mV | 700 uA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |
| Ch2 | 14 mV | 700 uA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |
| Ch3 | 14 mV | 700 uA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |
| Ch4 | 14 mV | 700 uA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |

100 Hz

| | Vo r.m.s | Peak lo
 (Vo/20) $\mathbf{1 . 4 1 4}$ | Specification | Pass/Fail |
| :---: | :---: | :---: | :---: | :---: |
| Ch1 | 0.130 | 9.2 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |
| Ch2 | 0.130 | 9.2 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |
| Ch3 | 0.132 | 9.3 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |
| Ch4 | 0.132 | 9.3 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |

200 Hz

| | Vo r.m.s | Peak lo
 (Vo/20) $\mathbf{1 . 4 1 4}$ | Specification | Pass/Fail |
| :--- | :---: | :---: | :---: | :---: |
| Ch1 | 0.247 | 17.5 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |
| Ch2 | 0.248 | 17.5 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |
| Ch3 | 0.250 | 17.7 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |
| Ch4 | 0.249 | 17.6 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |

1 kHz

| | Vo r.m.s | Peak lo
 (Vo/20) $\mathbf{1 . 4 1 4}$ | Specification | Pass/Fail |
| :--- | :---: | :---: | :---: | :---: |
| Ch1 | 0.370 | 26.2 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |
| Ch2 | 0.371 | 26.2 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |
| Ch3 | 0.370 | 26.2 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |
| Ch4 | 0.370 | 26.2 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |

Test Engineer.. Xen.
Date 5/8/10

10.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100Hz

| | Vo r.m.s | Vo pk. | Peak lo (Vo/20)
 $\mathbf{x} \mathbf{1 . 4 1 4}$ | Specification | Pass/Fail |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Ch1 | 1.98 | 2.8 | 140.0 mA | $\boldsymbol{> 1 2 5 m A}$ peak | $\sqrt{ }$ |
| Ch2 | 1.98 | 2.8 | 140.0 mA | $\boldsymbol{> 1 2 5 m A}$ peak | $\sqrt{ }$ |
| Ch3 | 1.97 | 2.8 | 140.0 mA | $\boldsymbol{> 1 2 5 m A}$ peak | $\sqrt{ }$ |
| Ch4 | 1.97 | 2.8 | 140.0 mA | $\boldsymbol{> 1 2 5 m A}$ peak | $\sqrt{ }$ |

200 Hz

| | Vo r.m.s | Vo pk. | Peak lo (Vo/20)
 $\mathbf{x} 1.414$ | Specification | Pass/Fail |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Ch1 | 2.2 | 3.1 | 155.5 mA | $\boldsymbol{> 1 2 5 m A}$ peak | $\sqrt{ }$ |
| Ch2 | 2.2 | 3.1 | 155.5 mA | $\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$ | $\sqrt{ }$ |
| Ch3 | 2.2 | 3.1 | 155.5 mA | $\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$ | $\sqrt{ }$ |
| Ch4 | 2.2 | 3.1 | 155.5 mA | $\boldsymbol{> 1 2 5 \mathrm { mA }}$ peak | $\sqrt{ }$ |

1 kHz

| | Vo r.m.s | Vo pk. | Peak lo (Vo/20)
 $\mathbf{x} \mathbf{1 . 4 1 4}$ | Specification | Pass/Fail |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Ch1 | 2.3 | 3.3 | 162.6 mA | >125mA peak | \checkmark |
| Ch2 | 2.3 | 3.3 | 162.6 mA | >125mA peak | \checkmark |
| Ch3 | 2.3 | 3.3 | 162.6 mA | >125mA peak | $\sqrt{ }$ |
| Ch4 | 2.3 | 3.3 | 162.6 mA | >125mA peak | $\sqrt{ }$ |

5 kHz

| | Vo r.m.s | Vo pk. | Peak Io (Vo/20)
 $\mathbf{x} 1.414$ | Specification | Pass/Fail |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Ch1 | 1.68 | 2.4 | 118.8 mA | >125mA peak | \checkmark |
| Ch2 | 1.68 | 2.4 | 118.8 mA | >125mA peak | $\sqrt{ }$ |
| Ch3 | 1.67 | 2.4 | 118.1 mA | >125mA peak | $\sqrt{ }$ |
| Ch4 | 1.68 | 2.4 | 118.8 mA | >125mA peak | $\sqrt{ }$ |

11. Noise Measurements

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

Measure the noise output at 10 Hz .

| | Spec in
 $\mathrm{dB} V \sqrt{ } \mathrm{~Hz}$ | Measured @
 10 Hz | $-60 \mathrm{~dB}=$ | Measured in
 $\mathrm{nV} \sqrt{ } \mathrm{Hz}$ | OK? |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Ch1 | -143.5 | -90.8 | -150.8 | 28.8 | $\sqrt{ }$ |
| Ch2 | -143.5 | -91.0 | -151.0 | 28.2 | $\sqrt{ }$ |
| Ch3 | -143.5 | -92.5 | -152.5 | 23.7 | $\sqrt{ }$ |
| Ch4 | -143.5 | -92.6 | -152.6 | 23.4 | $\sqrt{ }$ |

Notes:

Specified noise output current at $10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}$ (worst case)
Total resistance at 10 Hz , in Low noise mode $=6.7 \mathrm{k}$
Amplifier noise voltage should therefore be $=67 \mathrm{nV} \sqrt{ } \mathrm{Hz}$
$67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{\mathrm{~Hz}}$

```
Unit.
                                TACQ12.
                                Serial No
```

\qquad

```
Test Engineer .........RMC
Date
.2/11/10
```


12. Final Assembly Tests

1. Remove the lid of the box. $\sqrt{ }$
2. Unplug all external connections. $\sqrt{ }$
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight.
4. Check that all internal connectors are firmly mated. $\sqrt{ }$
5. Tighten the screw-locks holding all the external connectors. $\sqrt{ }$
6. Check that all the LEDs are nicely centred.
7. Check that all links W4 are in place. $\sqrt{ }$
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

| UoB box ID | TACQ12P |
| :--- | :--- |
| Driver board ID | TACQ12 |
| Driver board Drawing No/Issue No | D0901047_V4 |
| Monitor board ID | MON146 |
| Monitor board Drawing No/Issue No | D070480_4_K |

9. Check the security of any modification wires. None
10. Visually inspect. \downarrow
11. Put the lid on and fasten all screws, $\sqrt{ }$

Check all external screws for tightness. $\sqrt{ }$

LIGO Laboratory / LIGO Scientific Collaboration

Advanced LIGO UK

March 2010

Triple Acquisition Driver Unit Test Report

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT

```
Unit...............T_ACQ_P13............................Serial No.
Test Engineer.....Xen.
Date.n................
```

Drive Card ID......T ACQ13
Monitor Card ID...Mon186
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

1. Description

Block diagram

Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
```

\qquad

```
                            T_ACQ_P13
                        3..
                                    Serial No
Test Engineer.....Xen.
Date
.6/8/10
```


2. Test equipment

```
Power supplies (At least \(+/-20 v\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz )
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

| Unit (e.g. DVM) | Manufacturer | Model | Serial Number |
| :---: | :---: | :---: | :---: |
| Signal Generator | Agilent | 33250 A | |
| Oscilloscope | ISO-TECH | ISR622 | |
| PSU*2 | Farnell | L30-2 | |
| DVM | Fluke | 77III | |
| Signal analyzer | Agilent | 35670A | |
| Pre-amplifier | Stanford Systems | SR560 | |

```
Unit.
```

\qquad

```
                            .T_ACQ_P13
```

\qquad

``` Serial No
Test Engineer.....Xen.
Date 3/8/10
```


3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.

Links:

Check that the links W2 and W4 are present on each channel.

Test Engineer..
Date.

4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{l \mid}$
5	0V	\sqrt{l}		
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
5	0V	$\sqrt{\|c\|}$		
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	$\sqrt{ }$

PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
11	V - (TP2)	-17 v Supply	$\sqrt{ }$
12	V - (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	0 V (TP3)		$\sqrt{ }$
24	0 V (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

5. TEST SET UP

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit.
```

\qquad

``` T_ACQ_P13
``` \(\qquad\)
``` Serial No
Test Engineer.....Xen.
Date. 3/8/10
```


6. Power

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents

$\mathbf{+ 1 6 . 5}$ supply current (mA)	- $\mathbf{1 6 . 5}$ supply current (mA)
500 mA	400 mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	$\sqrt{ }$	$\sqrt{ }$
Rear Panel	$\sqrt{ }$	$\sqrt{ }$

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen.
Date. 3/8/10

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
Ch1	ON	OFF	
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

```
Unit. T_ACQ_P13 Serial No
Test Engineer.....Xen.
```

Date. .3/8/10

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S Monitor	Expected value	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	0.33	3	0.33 v	
$\mathbf{2}$	0.33	6	0.33 v	
$\mathbf{3}$	0.33	9	0.33 v	
$\mathbf{4}$	0.33	12	0.33 v	

Adjust the input voltage until the voltage across the load resistor $=1 \mathrm{v}$ r.m.s. Record the current monitor output values.
8.2 Current Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	1.93	2	1.86 v r.m.s	
$\mathbf{2}$	1.93	5	1.86 v r.m.s	
$\mathbf{3}$	1.92	8	1.86 v r.m.s	
$\mathbf{4}$	1.92	11	$1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}$	

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	Pass/Fail: Equal? (+/- 0.1v)
1	1.97	1	1.86 v dc	The output is slightly high due to the output of the driver being 1.2\% higher than calculated.
2	1.97	4	1.86 v dc	
3	1.97	7	1.86 v dc	
4	1.96	10	1.86 v dc	,

8.4 Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu \mathrm{V} V \mathrm{~Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA $\sqrt{ } \mathrm{Hz}$ should give $2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$ out.

Ch.	Output $(\boldsymbol{\mu} \mathbf{V} V \mathbf{H z})$	\div (Pre-amplifier gain)	Expected Value	Comparison
$\mathbf{1}$		1.36	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{2}$		1.38	$2.9 \mu \mathrm{~V} \mathrm{~Hz}$	$\sqrt{ }$
$\mathbf{3}$		1.11	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{4}$		1.49	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$

```
Unit.
...............T_ACQ_P13
```

\qquad

```
Serial No
Test Engineer.....Xen.
Date
3/8/10
```


9. Distortion

```
Switch the filters out. Increase input voltage to 5 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.
```

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{2}$	$\sqrt{ }$

Unit.

T_ACQ_P13 Serial No
Test Engineer.....Xen.
Date. .3/8/10

10 Load tests and Frequency response check

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

10.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo (Vo/20)	Specification	Pass/Fail
Ch1	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

10 Hz

	Vo r.m.s	Peak lo $($ Vo/20 $) \times 1.414$	Specification	Pass/Fail
Ch1	0.065	4.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

100 Hz

	Vo r.m.s	Peak lo $($ Vo/20 $) \times 1.414$	Specification	Pass/Fail
Ch1	0.321	22.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.323	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.325	23.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.324	22.9 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Peak lo $($ Vo/20 $) \times 1.414$	Specification	Pass/Fail
Ch1	0.388	27.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.389	27.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.391	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.390	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Peak lo (Vo/20) $\times 1.414$	Specification	Pass/Fail
Ch1	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Unit.
.T_ACQ_P13. Serial No
Test Engineer.. ..Xen.
Date 3/8/10

10.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo (Vo/20)	Specification	Pass/Fail
Ch1	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch2	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch3	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch4	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	

10 Hz

	Vo peak	Peak lo $($ Vo/20 $)$	Specification	Pass/Fail
Ch1	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch2	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch3	16 mV	800 uA	$>2.5 \mathrm{~mA}$ peak	
Ch4	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	

100 Hz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.130	9.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.123	8.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.128	9.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.128	9.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.247	17.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.237	16.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.244	17.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.243	17.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.368	26.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.. Xen.
Date 3/8/10

10.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	2.00	2.8	141.4 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA }}$ peak	$\sqrt{ }$

1 kHz

	Vor.m.s	Vo pk.	$\begin{gathered} \hline \text { Peak lo (Vo/20) } \\ \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	>125mA peak	\checkmark
Ch2	2.2	3.1	155.5 mA	>125mA peak	\checkmark
Ch3	2.3	3.3	155.5 mA	$>125 \mathrm{~mA}$ peak	\checkmark
Ch4	2.3	3.3	155.5 mA	>125mA peak	\checkmark

5 kHz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	1.66	2.3	117.4 mA	>125mA peak	\checkmark
Ch2	1.66	2.3	117.4 mA	>125mA peak	\checkmark
Ch3	1.70	2.4	120.2 mA	>125mA peak	\checkmark
Ch4	1.67	2.4	118.1 mA	>125mA peak	\checkmark

11. Noise Measurements

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

Measure the noise output at 10 Hz .

	Spec in $\mathrm{dB} V \sqrt{ } \mathrm{~Hz}$	Measured @ 10 Hz	$-60 \mathrm{~dB}=$	Measured in $\mathrm{nV} \sqrt{ } \mathrm{Hz}$	OK?
Ch1	-143.5	-92.1	-152.1	24.8	$\sqrt{ }$
Ch2	-143.5	-92.5	-152.5	23.7	$\sqrt{ }$
Ch3	-143.5	-91.0	-151.0	28.2	$\sqrt{ }$
Ch4	-143.5	-93.5	-153.5	21.1	$\sqrt{ }$

Notes:

Specified noise output current at $10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}$ (worst case)
Total resistance at 10 Hz , in Low noise mode $=6.7 \mathrm{k}$
Amplifier noise voltage should therefore be $=67 \mathrm{nV} \sqrt{\mathrm{Hz}}$ $67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}$

```
Unit.
                                TACQ13
                                    Serial No
```

\qquad

```
Test Engineer .........RMC
Date
.2/11/10
```


12. Final Assembly Tests

1. Remove the lid of the box. $\sqrt{ }$
2. Unplug all external connections. $\sqrt{ }$
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight.
4. Check that all internal connectors are firmly mated. $\sqrt{ }$
5. Tighten the screw-locks holding all the external connectors. $\sqrt{ }$
6. Check that all the LEDs are nicely centred.
7. Check that all links $W 4$ are in place. $\sqrt{ }$
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TACQ13P
Driver board ID	TACQ13
Driver board Drawing No/Issue No	D0901047_V4
Monitor board ID	MON186__
Monitor board Drawing No/Issue No	D070480_4_K

9. Check the security of any modification wires. None
10. Visually inspect. None
11. Put the lid on and fasten all screws, \downarrow

Check all external screws for tightness. $\sqrt{ }$

LIGO Laboratory / LIGO Scientific Collaboration

Advanced LIGO UK

March 2010

Triple Acquisition Driver Unit Test Report

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT

```
Unit...............T_ACQ_P14............................Serial No.
Test Engineer.....Xen.
Date................6/8/10.
```

Drive Card ID......T ACQ14
Monitor Card ID...Mon187
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

1. Description

Block diagram

Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
```

\qquad

```
                            T_ACQ_P14
```

\qquad

```
Serial No
Test Engineer.....Xen.
Date
6/8/10
```


2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz )
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.

Links:

Check that the links W2 and W4 are present on each channel.

Test Engineer..
.Xen.
Date. 2/8/10

4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{l \mid}$
5	0V	\sqrt{l}		
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
5	0V	$\sqrt{\|c\|}$		
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	$\sqrt{ }$

PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
11	V - (TP2)	-17 v Supply	$\sqrt{ }$
12	V - (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	0 V (TP3)		$\sqrt{ }$
24	0 V (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

5. TEST SET UP

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit
```

\qquad

```
                T_ACQ_P14
```

\qquad
Date

6. Power

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents

$\mathbf{+ 1 6 . 5}$ supply current (mA)	- $\mathbf{1 6 . 5}$ supply current (mA)
500 mA	400 mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	$\sqrt{2}$	$\sqrt{ }$
Rear Panel	$\sqrt{ }$	$\sqrt{ }$

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen.
Date. 2/8/10

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
Ch1	ON	OFF	
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

```
Unit
.T_ACQ_P14
Serial No
Test Engineer.....Xen.
```

Date.
3/8/10

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S Monitor	Expected value	Pass/Fail: Equal? (+/-0.1v)
$\mathbf{1}$	0.33	3	0.33 v	$\sqrt{ }$
$\mathbf{2}$	0.33	6	0.33 v	$\sqrt{ }$
$\mathbf{3}$	0.33	9	0.33 v	$\sqrt{ }$
$\mathbf{4}$	0.33	12	0.33 v	$\sqrt{ }$

Adjust the input voltage until the voltage across the load resistor $=1 \mathrm{v}$ r.m.s. Record the current monitor output values.
8.2 Current Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	1.93	2	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{2}$	1.93	5	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{3}$	1.93	8	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{4}$	1.93	11	$1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}$	$\sqrt{ }$

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	1.97	1	1.86 v dc	The output is slightly high due to the output of the driver being 1.2% higher than calculated.
$\mathbf{2}$	1.97	4	1.86 v dc	1.86 v dc
$\mathbf{3}$	1.97	7	1.86 vdc	
$\mathbf{4}$	1.97	10		

8.4 Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu \mathrm{V} \sqrt{\mathrm{Hz}}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA $\sqrt{ } \mathrm{Hz}$ should give $2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}$ out.

Ch.	Output $(\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})$	$\div($ Pre-amplifier gain $)$	Expected Value	Comparison
$\mathbf{1}$		1.04	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{2}$		1.03	$2.9 \mu \mathrm{~V} \mathrm{~Hz}$	$\sqrt{ }$
$\mathbf{3}$		1.21	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{4}$		1.56	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$

```
Unit
..............T_ACQ_P14
4.
Serial No.
Test Engineer.....Xen.
Date
.4/8/10
```


9. Distortion

```
Switch the filters out. Increase input voltage to 5 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.
```

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{2}$	$\sqrt{ }$

Test Engineer.....Xen.
Date 4/8/10

10 Load tests and Frequency response check

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

10.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo (Vo/20)	Specification	Pass/Fail
Ch1	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch2	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch3	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch4	67.5 mV	3.4 mA	>2.5mA peak	\checkmark

10Hz

Vo r.m.s	Peak lo $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.066	4.7 mA	$>\mathbf{~ 2 . 5 m A ~ p e a k ~}$	$\sqrt{ }$
Ch2	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

100 Hz

	Vor.m.s	$\begin{gathered} \text { Peak lo } \\ (\mathrm{Vo} / 20) \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	0.322	22.8 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch2	0.324	22.9 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch3	0.322	22.8 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch4	0.323	22.8 mA	>2.5mA peak	1

200 Hz

	Vor.m.s	$\begin{gathered} \text { Peak lo } \\ (\mathrm{Vo} / 20) \times 1.414 \end{gathered}$	Specification	Pass/Fail
Ch1	0.389	27.5 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch2	0.390	27.6 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch3	0.389	27.5 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch4	0.389	27.5 mA	>2.5mA peak	\checkmark

1 kHz

Vo r.m.s	Peak lo $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.414	29.3 mA	$>\mathbf{2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.....Xen.
Date.
4/8/10

10.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo (Vo/20)	Specification	Pass/Fail
Ch1	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch2	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch3	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch4	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	

10 Hz

	Vo peak	Peak Io (Vo/20)	Specification	Pass/Fail
Ch1	16 mV	800 uA	$>2.5 \mathrm{~mA}$ peak	
Ch2	12 mV	600 uA	$>2.5 \mathrm{~mA}$ peak	
Ch3	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch4	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	

100 Hz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.129	9.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.127	9.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.123	8.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.130	9.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.245	17.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.243	17.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.238	16.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.247	17.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch2	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.. Xen.
Date 4/8/10

10.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	1.96	2.8	138.6 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch3	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch4	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA }}$ peak	$\sqrt{ }$

1 kHz

	Vor.m.s	Vo pk.	$\begin{gathered} \hline \text { Peak lo (Vo/20) } \\ \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	>125mA peak	\checkmark
Ch2	2.2	3.1	155.5 mA	>125mA peak	\checkmark
Ch3	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$
Ch4	2.3	3.3	162.6 mA	>125mA peak	\checkmark

5 kHz

	Vo r.m.s	Vo pk.	Peak Io (Vo/20) $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	1.66	2.3	117.4 mA	>125mA peak	
Ch2	1.66	2.3	117.4 mA	>125mA peak	
Ch3	1.67	2.4	118.1 mA	$>125 \mathrm{~mA}$ peak	
Ch4	1.67	2.4	118.1 mA	>125mA peak	

11. Noise Measurements

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

Measure the noise output at 10 Hz .

	Spec in $\mathrm{dB} V \sqrt{ } \mathrm{~Hz}$	Measured @ 10 Hz	$-60 \mathrm{~dB}=$	Measured in $\mathrm{nV} \sqrt{ } \mathrm{Hz}$	OK?
Ch1	-143.5	-92.7	-152.7	23.2	$\sqrt{ }$
Ch2	-143.5	-93.1	-153.1	22.1	$\sqrt{ }$
Ch3	-143.5	-91.3	-151.3	27.2	$\sqrt{ }$
Ch4	-143.5	-93.2	-153.2	21.9	$\sqrt{ }$

Notes:

Specified noise output current at $10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}$ (worst case)
Total resistance at 10 Hz , in Low noise mode $=6.7 \mathrm{k}$
Amplifier noise voltage should therefore be $=67 \mathrm{nV} \sqrt{\mathrm{Hz}}$
$67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}$

```
Unit
                TACQ14P
                                    Serial No
```

\qquad

```
Test Engineer
    RMC
Date
1/11/10
```


12. Final Assembly Tests

1. Remove the lid of the box. $\sqrt{ }$
2. Unplug all external connections. $\sqrt{ }$
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight. $\sqrt{ }$
4. Check that all internal connectors are firmly mated. V
5. Tighten the screw-locks holding all the external connectors. $\sqrt{ }$
6. Check that all the LEDs are nicely centred. $\sqrt{ }$
7. Check that all links W4 are in place. $\sqrt[V]{ }$
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TACQ14P
Driver board ID	TACQ14P
Driver board Drawing No/Issue No	D0901047_V4
Monitor board ID	MON187
Monitor board Drawing No/Issue No	D070480_4_K

9. Check the security of any modification wires. None
10. Visually inspect. $\sqrt{ }$
11. Put the lid on and fasten all screws, $\sqrt{ }$

Check all external screws for tightness. $\sqrt{ }$

Check all external screws for tightness.

LIGO Laboratory / LIGO Scientific Collaboration

Advanced LIGO UK

March 2010

Triple Acquisition Driver Unit Test Report

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT

```
Unit...............T ACQ P15............................S..Serial No.
Test Engineer.....Xe=n.
Date..................
```

Drive Card ID.......T ACQ15
Monitor Card ID....Mon155
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

1. Description

Block diagram

Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
```

\qquad

```
                            T_ACQ_P15
                        5..
                                    Serial No
Test Engineer.....Xen.
Date
6/8/10
```


2. Test equipment

```
Power supplies (At least \(+/-20 v\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz )
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.

Links

Check that the links W2 and W4 are present on each channel.

Test Engineer..
Date

4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{l \mid}$
5	0V	\sqrt{l}		
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
5	0V	$\sqrt{\|c\|}$		
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	$\sqrt{ }$

PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
11	V - (TP2)	-17 v Supply	$\sqrt{ }$
12	V - (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	0 V (TP3)		$\sqrt{ }$
24	0 V (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

5. TEST SET UP

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit
```

\qquad

``` T_ACQ_P15
``` \(\qquad\)

\section*{6. Power}

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents
\begin{tabular}{|c|c|}
\hline \(\mathbf{+ 1 6 . 5}\) supply current (mA) & - \(\mathbf{1 6 . 5}\) supply current (mA) \\
\hline 500 mA & 400 mA \\
\hline
\end{tabular}

Check that all power LEDs are illuminated.
\begin{tabular}{|c|c|c|}
\hline LEDs & Plus & Minus \\
\hline Front Panel & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Rear Panel & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen.
Date. .4/8/10

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|l|}{Indicator} & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch2 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch3 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch4 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline
\end{tabular}

TEST RELAYS
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline Ch1 & ON & OFF & \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{ACQUISITION RELAYS}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|l|}{Indicator} & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch2 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch3 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch4 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline
\end{tabular}
```

Unit
.T_ACQ_P15
Test Engineer.....Xen

```

Date. 4/8/10

\section*{8. Monitor Outputs}

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

\subsection*{8.1 Voltage Monitors}
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output: & \begin{tabular}{c}
V, I and R.M.S \\
Monitor
\end{tabular} & Expected value & \begin{tabular}{c}
Pass/Fail: \\
Equal? (+/-0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & 0.33 & 3 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 0.33 & 6 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 0.33 & 9 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 0.33 & 12 & 0.33 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

Adjust the input voltage until the voltage across the load resistor \(=1 \mathrm{v}\) r.m.s. Record the current monitor output values.
8.2 Current Monitors
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output & \begin{tabular}{c}
V, I and R.M.S \\
Monitor
\end{tabular} & \begin{tabular}{c}
Expected \\
Value
\end{tabular} & \begin{tabular}{c}
Pass/Fail: \\
Equal? (+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & 1.91 & 2 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 1.91 & 5 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 1.91 & 8 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 1.90 & 11 & \(1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.3 R.M.S Monitors
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output & \begin{tabular}{c}
V, I and R.M.S \\
Monitor
\end{tabular} & \begin{tabular}{c}
Expected \\
Value
\end{tabular} & \begin{tabular}{c}
Pass/Fail: \\
Equal? (\(+/ \mathbf{0 . 1 v})\)
\end{tabular} \\
\hline \(\mathbf{1}\) & 1.94 & 1 & 1.86 v dc & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 1.95 & 4 & 1.86 vdc & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 1.94 & 7 & 1.86 v dc & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 1.93 & 10 & 1.86 vdc & \(\sqrt{ }\) \\
\hline
\end{tabular}

\subsection*{8.4 Noise Monitors}
- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in \(\mu \mathrm{V} \sqrt{ } \mathrm{Hz}\) on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \(\sqrt{ } \mathrm{Hz}\) should give \(2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}\) out.
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c}
Output \\
\((\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})\)
\end{tabular} & \begin{tabular}{c}
\(\div(\) Pre-amplifier \\
gain \()\)
\end{tabular} & \begin{tabular}{c}
Expected \\
Value
\end{tabular} & Comparison \\
\hline \(\mathbf{1}\) & & 1.47 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & & 0.92 & \(2.9 \mu \mathrm{~V} \mathrm{~Hz}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & & 1.37 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & & 1.31 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit
..............T_ACQ_P15

```
\(\qquad\)
```

Serial No
Test Engineer.....Xen.
Date
.4/8/10

```

\section*{9. Distortion}
```

Switch the filters out. Increase input voltage to 5 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

```
\begin{tabular}{|c|c|c|}
\hline & \begin{tabular}{c}
Acquisition Mode: \\
Distortion Free?
\end{tabular} & \begin{tabular}{c}
Non-Acquisition Mode: \\
Distortion Free?
\end{tabular} \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{2}\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit.

```
\(\qquad\)
```

                            .T_ACQ_P15
    ```
\(\qquad\)
Test Engineer.....Xen.
Date 4/8/10.
```

10 Load tests and Frequency response check
Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

### 10.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

|  | Vo peak | Peak lo <br> (Vo/20) | Specification | Pass/Fail |
| :---: | :---: | :---: | :---: | :---: |
| Ch1 | 67.5 mV | 3.4 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |
| Ch2 | 67.5 mV | 3.4 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |
| Ch3 | 67.5 mV | 3.4 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |
| Ch4 | 67.5 mV | 3.4 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |

10 Hz

| Vo r.m.s | Peak lo <br> $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$ | Specification | Pass/Fail |  |
| :---: | :---: | :---: | :---: | :---: |
| Ch1 | 0.066 | 4.7 mA | $>\mathbf{2 . 5 m A}$ peak | $\sqrt{ }$ |
| Ch2 | 0.066 | 4.7 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |
| Ch3 | 0.066 | 4.7 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |
| Ch4 | 0.066 | 4.7 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |

100 Hz

| Vo r.m.s | Peak lo <br> $(\mathrm{Vo/20}) \times \mathbf{1 . 4 1 4}$ | Specification | Pass/Fail |  |
| :---: | :---: | :---: | :---: | :---: |
| Ch1 | 0.322 | 22.8 mA | $>\mathbf{2 . 5 m A}$ peak | $\sqrt{ }$ |
| Ch2 | 0.323 | 22.8 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |
| Ch3 | 0.322 | 22.8 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |
| Ch4 | 0.321 | 22.7 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |

200Hz

| Vo r.m.s | Peak lo <br> $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$ | Specification | Pass/Fail |  |
| :---: | :---: | :---: | :---: | :---: |
| Ch1 | 0.389 | 27.5 mA | $\boldsymbol{> 2 . 5 m A}$ peak | $\sqrt{ }$ |
| Ch2 | 0.390 | 27.6 mA | $>\mathbf{2 . 5 m A}$ peak | $\sqrt{ }$ |
| Ch3 | 0.389 | 27.5 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |
| Ch4 | 0.388 | 27.4 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |

1 kHz

|  | Vo r.m.s | Peak lo <br> $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$ | Specification | Pass/Fail |
| :--- | :---: | :---: | :---: | :---: |
| Ch1 | 0.417 | 29.5 mA | $>\mathbf{2 . 5 m A}$ peak | $\sqrt{ }$ |
| Ch2 | 0.417 | 29.5 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |
| Ch3 | 0.416 | 29.4 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |
| Ch4 | 0.416 | 29.4 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |

Test Engineer.....Xen.
Date.
4/8/10.

### 10.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

|  | Vo peak | Peak lo <br> (Vo/20) | Specification | Pass/Fail |
| :--- | :---: | :---: | :---: | :---: |
| Ch1 | 45 mV | 2.3 mA | $>2.5 \mathrm{~mA}$ peak |  |
| Ch2 | 45 mV | 2.3 mA | $>2.5 \mathrm{~mA}$ peak |  |
| Ch3 | 45 mV | 2.3 mA | $>2.5 \mathrm{~mA}$ peak |  |
| Ch4 | 45 mV | 2.3 mA | $>2.5 \mathrm{~mA}$ peak |  |

10 Hz

|  | Vo peak | Peak Io <br> (Vo/20) | Specification | Pass/Fail |
| :---: | :---: | :---: | :---: | :---: |
| Ch1 | 14 mV | 700 uA | $>2.5 \mathrm{~mA}$ peak |  |
| Ch2 | 14 mV | 700 uA | $>2.5 \mathrm{~mA}$ peak |  |
| Ch3 | 16 mV | 800 uA | $>2.5 \mathrm{~mA}$ peak |  |
| Ch4 | 14 mV | 700 uA | $>2.5 \mathrm{~mA}$ peak |  |

100 Hz

|  | Vo r.m.s | Peak lo <br> (Vo/20) $\mathbf{1 . 4 1 4}$ | Specification | Pass/Fail |
| :--- | :---: | :---: | :---: | :---: |
| Ch1 | 0.129 | 9.1 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |
| Ch2 | 0.132 | 9.3 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |
| Ch3 | 0.130 | 9.2 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |
| Ch4 | 0.125 | 8.8 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |

200 Hz

|  | Vo r.m.s | Peak lo <br> (Vo/20) $\mathbf{1 . 4 1 4}$ | Specification | Pass/Fail |
| :--- | :---: | :---: | :---: | :---: |
| Ch1 | 0.245 | 17.3 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |
| Ch2 | 0.249 | 17.6 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |
| Ch3 | 0.247 | 17.5 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |
| Ch4 | 0.241 | 17.0 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |

1 kHz

| Vo r.m.s | Peak lo <br> (Vo/20) $\mathbf{1 . 4 1 4}$ | Specification | Pass/Fail |  |
| :---: | :---: | :---: | :---: | :---: |
| Ch1 | 0.370 | 26.2 mA | $>2.5 \mathrm{~mA}$ peak | $\checkmark$ |
| Ch2 | 0.370 | 26.2 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |
| Ch3 | 0.370 | 26.2 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |
| Ch4 | 0.369 | 26.1 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |

Test Engineer.. Xen.
Date 4/8/10

### 10.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100Hz

|  | Vo r.m.s | Vo pk. | Peak lo (Vo/20) <br> $\mathbf{x} \mathbf{1 . 4 1 4}$ | Specification | Pass/Fail |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Ch1 | 1.98 | 2.8 | 140.0 mA | $\boldsymbol{> 1 2 5 m A}$ peak | $\sqrt{ }$ |
| Ch2 | 1.98 | 2.8 | 140.0 mA | $\boldsymbol{> 1 2 5 m A}$ peak | $\sqrt{ }$ |
| Ch3 | 1.97 | 2.8 | 139.3 mA | $\boldsymbol{> 1 2 5 m A}$ peak | $\sqrt{ }$ |
| Ch4 | 1.97 | 2.8 | 139.3 mA | $\boldsymbol{> 1 2 5 m A}$ peak | $\sqrt{ }$ |

200 Hz

|  | Vo r.m.s | Vo pk. | Peak lo (Vo/20) <br> $\mathbf{x} 1.414$ | Specification | Pass/Fail |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Ch1 | 2.2 | 3.1 | 155.5 mA | $\boldsymbol{> 1 2 5 m A}$ peak | $\sqrt{ }$ |
| Ch2 | 2.2 | 3.1 | 155.5 mA | $\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$ | $\sqrt{ }$ |
| Ch3 | 2.2 | 3.1 | 155.5 mA | $\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$ | $\sqrt{ }$ |
| Ch4 | 2.2 | 3.1 | 155.5 mA | $\boldsymbol{> 1 2 5 \mathrm { mA }}$ peak | $\sqrt{ }$ |

1 kHz

|  | Vo r.m.s | Vo pk. | Peak lo (Vo/20) <br> $\mathbf{x} \mathbf{1 . 4 1 4}$ | Specification | Pass/Fail |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Ch1 | 2.3 | 3.3 | 162.6 mA | >125mA peak | $\checkmark$ |
| Ch2 | 2.3 | 3.3 | 162.6 mA | >125mA peak | $\checkmark$ |
| Ch3 | 2.3 | 3.3 | 162.6 mA | >125mA peak | $\sqrt{ }$ |
| Ch4 | 2.3 | 3.3 | 162.6 mA | >125mA peak | $\sqrt{ }$ |

5 kHz

|  | Vo r.m.s | Vo pk. | Peak Io (Vo/20) <br> $\mathbf{x} 1.414$ | Specification | Pass/Fail |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Ch1 | 1.68 | 2.4 | 118.8 mA | >125mA peak | $\checkmark$ |
| Ch2 | 1.67 | 2.4 | 118.1 mA | >125mA peak | $\sqrt{ }$ |
| Ch3 | 1.67 | 2.4 | 118.1 mA | >125mA peak | $\sqrt{ }$ |
| Ch4 | 1.67 | 2.4 | 118.1 mA | >125mA peak | $\sqrt{ }$ |

## 11. Noise Measurements

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.


Measure the noise output at 10 Hz .

|  | Spec in <br> $\mathrm{dB} V \sqrt{ } \mathrm{~Hz}$ | Measured @ <br> 10 Hz | $-60 \mathrm{~dB}=$ | Measured in <br> $\mathrm{nV} \sqrt{ } \mathrm{Hz}$ | OK? |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Ch1 | -143.5 | -92.0 | -152.0 | 25.1 | $\sqrt{ }$ |
| Ch2 | -143.5 | -92.0 | -152.0 | 25.1 | $\sqrt{ }$ |
| Ch3 | -143.5 | -91.7 | -151.7 | 26.0 | $\sqrt{ }$ |
| Ch4 | -143.5 | -92.3 | -152.3 | 24.3 | $\sqrt{ }$ |

## Notes:

Specified noise output current at $10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}$ (worst case)
Total resistance at 10 Hz , in Low noise mode $=6.7 \mathrm{k}$
Amplifier noise voltage should therefore be $=67 \mathrm{nV} \sqrt{\mathrm{Hz}}$
$67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}$

```
Unit
 TACQ15P
```

$\qquad$

``` Serial No
``` \(\qquad\)
```Test EngineerRMC
Date 1/11/10
```


## 12. Final Assembly Tests

1. Remove the lid of the box. $\sqrt{ }$
2. Unplug all external connections. $\sqrt{ }$
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight. $\sqrt{ }$
4. Check that all internal connectors are firmly mated. $\sqrt{ }$
5. Tighten the screw-locks holding all the external connectors. $\sqrt{ }$
6. Check that all the LEDs are nicely centred. $\sqrt{ }$
7. Check that all links $W 4$ are in place. $\sqrt{ }$
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TACQ15P
Driver board ID	TACQ15
Driver board Drawing No/Issue No	D0901047_V4
Monitor board ID	MON155
Monitor board Drawing No/Issue No	D070480_4_K

9. Check the security of any modification wires. None
10. Visually inspect. $\sqrt{ }$
11. Put the lid on and fasten all screws, $\sqrt{ }$

Check all external screws for tightness. $\sqrt{ }$

## LIGO Laboratory / LIGO Scientific Collaboration

## Advanced LIGO UK

March 2010

## Triple Acquisition Driver Unit Test Report

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research<br>University of Glasgow<br>Phone +44 (0) 1413305884<br>Fax +44 (0) 1413306833<br>E-mail k.strain@physics.gla.ac.uk<br>Engineering Department<br>CCLRC Rutherford Appleton Laboratory<br>Phone +44 (0) 1235445297<br>Fax +44 (0) 1235445843<br>E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT

```
Unit...............T ACQ P16............................S.Serial No.
Test Engineer.....Xen.
Date.n...............
```

Drive Card ID.......T ACQ16
Monitor Card ID....Mon159
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

## 1. Description

## Block diagram



## Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
```

$\qquad$

```
 T_ACQ_P16
 6.
 Serial No
Test Engineer.....Xen.
Date
4/8/10
```


## 2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz)
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	



## 3. Inspection

## Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.

## Links

Check that the links W2 and W4 are present on each channel.

Test Engineer..
Date.
4/8/10

## 4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{l \mid}$
5	0V	$\sqrt{l}$		
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

## LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
5	0V	$\sqrt{\|c\|}$		
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	$\sqrt{ }$

## PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	$\checkmark$
10	$\mathrm{V}+$ (TP1)	+17v Supply	$\checkmark$
11	V - (TP2)	-17v Supply	$\checkmark$
12	V- (TP2)	-17v Supply	$\checkmark$
13	0V (TP3)		$\checkmark$
22	0V (TP3)		$\checkmark$
23	0V (TP3)		$\checkmark$
24	0V (TP3)		$\checkmark$
25	0V (TP3)		$\checkmark$

## 5. TEST SET UP



Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

## Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit
```

$\qquad$

``` T_ACQ_P16
``` \(\qquad\)

\section*{6. Power}

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents
\begin{tabular}{|c|c|}
\hline \(\mathbf{+ 1 6 . 5}\) supply current (mA) & - \(\mathbf{1 6 . 5}\) supply current (mA) \\
\hline 500 mA & 400 mA \\
\hline
\end{tabular}

Check that all power LEDs are illuminated.
\begin{tabular}{|c|c|c|}
\hline LEDs & Plus & Minus \\
\hline Front Panel & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Rear Panel & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen.
Date. .4/8/10

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{|l|}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

TEST RELAYS
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{ACQUISITION RELAYS}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|l|}{Indicator} & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch2 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch3 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch4 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline
\end{tabular}
```

Unit
.T_ACQ_P16
Test Engineer.....Xen.

```

Date.
4/8/10

\section*{8. Monitor Outputs}

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

\subsection*{8.1 Voltage Monitors}
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output: & \begin{tabular}{c} 
V, I and R.M.S \\
Monitor
\end{tabular} & Expected value & \begin{tabular}{c} 
Pass/Fail: \\
Equal? (+/-0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & 0.33 & 3 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 0.33 & 6 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 0.33 & 9 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 0.33 & 12 & 0.33 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

Adjust the input voltage until the voltage across the load resistor \(=1 \mathrm{v}\) r.m.s. Record the current monitor output values.
8.2 Current Monitors
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output & \begin{tabular}{c} 
V, I and R.M.S \\
Monitor
\end{tabular} & \begin{tabular}{c} 
Expected \\
Value
\end{tabular} & \begin{tabular}{c} 
Pass/Fail: \\
Equal? (+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & 1.92 & 2 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 1.92 & 5 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 1.92 & 8 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 1.92 & 11 & \(1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.3 R.M.S Monitors
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output & \begin{tabular}{c} 
V, I and R.M.S \\
Monitor
\end{tabular} & \begin{tabular}{c} 
Expected \\
Value
\end{tabular} & \begin{tabular}{c} 
Pass/Fail: \\
Equal? ( \(+/ \mathbf{0 . 1 v})\)
\end{tabular} \\
\hline \(\mathbf{1}\) & 1.96 & 1 & 1.86 v dc & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 1.96 & 4 & 1.86 vdc & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 1.96 & 7 & 1.86 v dc & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 1.95 & 10 & 1.86 vdc & \(\sqrt{ }\) \\
\hline
\end{tabular}

\subsection*{8.4 Noise Monitors}
- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in \(\mu \mathrm{V} \sqrt{ } \mathrm{Hz}\) on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \(\sqrt{ } \mathrm{Hz}\) should give \(2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}\) out.
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c} 
Output \\
\((\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})\)
\end{tabular} & \begin{tabular}{c}
\(\div(\) Pre-amplifier \\
gain \()\)
\end{tabular} & \begin{tabular}{c} 
Expected \\
Value
\end{tabular} & Comparison \\
\hline \(\mathbf{1}\) & & 1.30 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & & 1.24 & \(2.9 \mu \mathrm{~V} \mathrm{~Hz}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & & 0.92 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & & 1.45 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit
..............T_ACQ_P16

```
\(\qquad\)
```

Serial No
Test Engineer.....Xen.
Date
.4/8/10

```

\section*{9. Distortion}
```

Switch the filters out. Increase input voltage to 5 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

```
\begin{tabular}{|c|c|c|}
\hline & \begin{tabular}{c} 
Acquisition Mode: \\
Distortion Free?
\end{tabular} & \begin{tabular}{c} 
Non-Acquisition Mode: \\
Distortion Free?
\end{tabular} \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{2}\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit

```
\(\qquad\)
```

 .T_ACQ_P16
 6..
 Serial No
 Test Engineer.....Xen.
Date
4/8/10.

```

10 Load tests and Frequency response check
Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

\subsection*{10.1 Noisy Mode}

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vo peak & \begin{tabular}{l}
Peak lo \\
(Vol20)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 67.5 mV & 3.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch2 & 67.5 mV & 3.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch3 & 67.5 mV & 3.4 mA & >2.5mA peak & \(\checkmark\) \\
\hline Ch4 & 67.5 mV & 3.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline
\end{tabular}

10Hz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c} 
Peak lo \\
\((\) Vo/20 \() \times \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.066 & 4.7 mA & \(>\mathbf{~ 2 . 5 m A ~ p e a k ~}\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.066 & 4.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.066 & 4.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.065 & 4.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vor.m.s & \[
\begin{gathered}
\text { Peak lo } \\
(\mathrm{Vo} / 20) \times 1.414 \\
\hline
\end{gathered}
\] & Specification & Pass/Fail \\
\hline Ch1 & 0.322 & 22.8 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch2 & 0.322 & 22.8 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch3 & 0.324 & 22.9 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch4 & 0.320 & 22.6 mA & >2.5mA peak & 1 \\
\hline
\end{tabular}

200 Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vor.m.s & \[
\begin{gathered}
\text { Peak lo } \\
(\mathrm{Vo} / 20) \times 1.414
\end{gathered}
\] & Specification & Pass/Fail \\
\hline Ch1 & 0.389 & 27.5 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch2 & 0.389 & 27.5 mA & >2.5mA peak & \(\checkmark\) \\
\hline Ch3 & 0.390 & 27.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch4 & 0.388 & 27.4 mA & >2.5mA peak & \(\checkmark\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c} 
Peak lo \\
\((\) Vo/20 \() \times \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.414 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.415 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.414 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.414 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Engineer.....Xen.
Date.
4/8/10.

\subsection*{10.2 Low noise Mode}

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo peak & \begin{tabular}{c} 
Peak lo \\
(Vo/20)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch2 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch3 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch4 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo peak & \begin{tabular}{c} 
Peak lo \\
\((\) Vo/20)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 14 mV & 700 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch2 & 16 mV & 800 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch3 & 16 mV & 800 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch4 & 14 mV & 700 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo r.m.s & \begin{tabular}{c} 
Peak lo \\
\((\) Vo/20) \(\mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.130 & 9.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.131 & 9.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.127 & 9.0 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.130 & 9.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

200 Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo r.m.s & \begin{tabular}{c} 
Peak lo \\
(Vo/20) \(\mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.247 & 17.5 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.248 & 17.5 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.243 & 17.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.247 & 17.5 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c} 
Peak lo \\
(Vo/20) \(\mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.369 & 26.1 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch2 & 0.370 & 26.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.369 & 26.1 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.369 & 26.1 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Engineer.. Xen.
Date 4/8/10

\subsection*{10.3 Acquisition Mode}

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100Hz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c} 
Peak lo (Vo/20) \\
\(\mathbf{x} \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 1.97 & 2.8 & 139.3 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 1.98 & 2.8 & 139.3 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 1.97 & 2.8 & 139.3 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 1.97 & 2.8 & 139.3 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

200 Hz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c} 
Peak lo (Vo/20) \\
\(\mathbf{x} 1.414\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\sqrt{ }\) \\
\hline Ch3 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\sqrt{ }\) \\
\hline Ch4 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA }}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Vor.m.s & Vo pk. & \[
\begin{gathered}
\hline \text { Peak lo (Vo/20) } \\
\times 1.414 \\
\hline
\end{gathered}
\] & Specification & Pass/Fail \\
\hline Ch1 & 2.2 & 3.1 & 155.5 mA & >125mA peak & \(\checkmark\) \\
\hline Ch2 & 2.3 & 3.3 & 162.6 mA & >125mA peak & \(\checkmark\) \\
\hline Ch3 & 2.3 & 3.3 & 162.6 mA & \(>125 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 2.3 & 3.3 & 162.6 mA & >125mA peak & \(\checkmark\) \\
\hline
\end{tabular}

5 kHz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c} 
Peak Io (Vo/20) \\
\(\mathbf{x 1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 1.66 & 2.3 & 117.4 mA & >125mA peak & \\
\hline Ch2 & 1.68 & 2.4 & 118.8 mA & >125mA peak & \\
\hline Ch3 & 1.67 & 2.4 & 118.1 mA & >125mA peak & \\
\hline Ch4 & 1.67 & 2.4 & 118.1 mA & >125mA peak & \\
\hline
\end{tabular}

\section*{11. Noise Measurements}

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.


Measure the noise output at 10 Hz .
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \begin{tabular}{c} 
Spec in \\
\(\mathrm{dB} V \sqrt{ } \mathrm{~Hz}\)
\end{tabular} & \begin{tabular}{c} 
Measured @ \\
10 Hz
\end{tabular} & \(-60 \mathrm{~dB}=\) & \begin{tabular}{c} 
Measured in \\
\(\mathrm{nV} \sqrt{ } \mathrm{Hz}\)
\end{tabular} & OK? \\
\hline Ch1 & -143.5 & -91.8 & -151.8 & 25.7 & \(\sqrt{ }\) \\
\hline Ch2 & -143.5 & -91.6 & -151.6 & 26.3 & \(\sqrt{ }\) \\
\hline Ch3 & -143.5 & -91.5 & -151.5 & 26.6 & \(\sqrt{ }\) \\
\hline Ch4 & -143.5 & -92.5 & -152.5 & 23.7 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Notes:}

Specified noise output current at \(10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}\) (worst case)
Total resistance at 10 Hz , in Low noise mode \(=6.7 \mathrm{k}\)
Amplifier noise voltage should therefore be \(=67 \mathrm{nV} \sqrt{\mathrm{Hz}}\)
\(67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}\)
```

Unit
TACQ16P
Serial No

```
\(\qquad\)
```

Test Engineer
RMC
Date
1/11/10

```

\section*{12. Final Assembly Tests}
1. Remove the lid of the box. \(\sqrt{ }\)
2. Unplug all external connections. \(\sqrt{ }\)
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight. \(\sqrt{ }\)
4. Check that all internal connectors are firmly mated. \(\sqrt{ }\)
5. Tighten the screw-locks holding all the external connectors. \(\sqrt{ }\)
6. Check that all the LEDs are nicely centred. \(V\)
7. Check that all links W4 are in place. \(\sqrt[V]{ }\)
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:
\begin{tabular}{|l|l|}
\hline UoB box ID & TACQ16P \\
\hline Driver board ID & TACQ16P \\
\hline Driver board Drawing No/Issue No & D0901047_V4 \\
\hline Monitor board ID & MON159 \\
\hline Monitor board Drawing No/Issue No & D070480_4_K \\
\hline
\end{tabular}
9. Check the security of any modification wires. None
10. Visually inspect. \(\sqrt{ }\)
11. Put the lid on and fasten all screws, \(\sqrt{ }\)

Check all external screws for tightness. \(\sqrt{ } \downarrow\)

\section*{LIGO Laboratory / LIGO Scientific Collaboration}

\section*{Advanced LIGO UK}

March 2010

\section*{Triple Acquisition Driver Unit Test Report}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

\author{
Institute for Gravitational Research \\ University of Glasgow \\ Phone +44 (0) 1413305884 \\ Fax +44 (0) 1413306833 \\ E-mail k.strain@physics.gla.ac.uk \\ Engineering Department \\ CCLRC Rutherford Appleton Laboratory \\ Phone +44 (0) 1235445297 \\ Fax +44 (0) 1235445843 \\ E-mail J.Greenhalgh@rl.ac.uk
}

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT}
```

Unit................T ACQ P17............................Serial No
Test Engineer.....Xen.
Date................15/9/10

```

Drive Card ID.......T ACQ17
Monitor Card ID....Mon245
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

\section*{1. Description}

\section*{Block diagram}


\section*{Description}

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.
```

Unit
ACQ_P17
Serial No
Test Engineer.....Xen.
Date................15/9/10

```

\section*{2. Test equipment}
```

Power supplies (At least $+/-20 \mathrm{v}$ variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz)
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & ISO-TECH & ISR622 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77III & \\
\hline Signal analyzer & Agilent & 35670A & \\
\hline Pre-amplifier & Stanford Systems & SR560 & \\
\hline
\end{tabular}


\section*{3. Inspection}

\section*{Workmanship}

Inspect the general workmanship standard and comment: \(\sqrt{ }\)
Capacitors C35 and C27 have been changed to 1 nF on all channels.

\section*{Links:}

Check that the links W2 and W4 are present on each channel.

\section*{4. Continuity Checks}

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\sqrt{ }\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\sqrt{ }\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\sqrt{ }\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\sqrt{l \mid}\) \\
\hline 5 & 0V & \(\sqrt{l}\) \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\sqrt{ }\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\sqrt{ }\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\sqrt{ }\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{LED Mon}
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\sqrt{ }\) \\
\hline 2 & Imon2P & & 6 & \(\sqrt{ }\) \\
\hline 3 & Imon3P & & 7 & \(\sqrt{ }\) \\
\hline 4 & Imon4P & & 8 & \(\sqrt{ }\) \\
\hline 5 & 0V & \(\sqrt{|c|}\) \\
\hline 6 & Imon1N & & 18 & \(\sqrt{ }\) \\
\hline 7 & Imon2N & & 19 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 20 & \(\sqrt{ }\) \\
\hline 9 & Imon4N & & 21 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{PD from Sat}
\begin{tabular}{|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & \(\mathrm{~V}+\) (TP1) & +17 v Supply & \(\sqrt{ }\) \\
\hline 10 & \(\mathrm{~V}+\) (TP1) & +17 v Supply & \(\sqrt{ }\) \\
\hline 11 & V - (TP2) & -17 v Supply & \(\sqrt{ }\) \\
\hline 12 & V - (TP2) & -17 v Supply & \(\sqrt{ }\) \\
\hline 13 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 22 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 23 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 24 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}


Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, \(4=\) positive input
Drive Input J3 pins 6, 7, 8, \(9=\) negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, \(10=+16.5 \mathrm{v}\)
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, \(25=0 v\)
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin \(1 \quad\) Ch1 \(-=\mathrm{J} 4\) pin 9
Ch2 \(+=\mathrm{J} 4\) pin \(3 \quad\) Ch2- \(=\mathrm{J} 4\) pin 11
Ch3 \(+=\mathrm{J} 4\) pin \(5 \quad\) Ch3- \(=\mathrm{J} 4\) pin 13
Ch4+ = J4 pin \(7 \quad\) Ch4- \(=\mathrm{J} 4\) pin 15
```

Unit

```
\(\qquad\)
``` T_ACQ_P17
``` \(\qquad\)
``` Serial No
Test Engineer.....Xen.
Date 14/9/10
```


## 6. Power

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents

$\mathbf{+ 1 6 . 5}$ supply current (mA)	- $\mathbf{1 6 . 5}$ supply current (mA)
500 mA	400 mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	$\sqrt{ }$	$\sqrt{ }$
Rear Panel	$\sqrt{ }$	$\sqrt{ }$

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen..
Date. 14/9/10

## 7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\checkmark$	$\checkmark$	$\checkmark$
Ch2	$\sqrt{ }$	$\checkmark$	$\checkmark$
Ch3	$\checkmark$	$\checkmark$	$\checkmark$
Ch4	$\sqrt{ }$	$\checkmark$	$\checkmark$

TEST RELAYS

Channel	Indicator		OK?
Ch1	ON	OFF	
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

## ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\checkmark$	$\checkmark$	$\checkmark$
Ch2	$\checkmark$	$\checkmark$	$\checkmark$
Ch3	$\checkmark$	$\checkmark$	$\checkmark$
Ch4	$\checkmark$	$\checkmark$	$\checkmark$

```
Unit.
 .T_ACQ_P17.
 Serial No
Test Engineer.....Xen
```

Date
14/9/10

## 8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

### 8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S   Monitor	Expected value	Pass/Fail:   Equal? (+/-0.1v)
$\mathbf{1}$	0.33	3	0.33 v	$\sqrt{ }$
$\mathbf{2}$	0.33	6	0.33 v	$\sqrt{ }$
$\mathbf{3}$	0.33	9	0.33 v	$\sqrt{ }$
$\mathbf{4}$	0.33	12	0.33 v	$\sqrt{ }$

Adjust the input voltage until the voltage across the load resistor $=1 \mathrm{v}$ r.m.s. Record the current monitor output values.
8.2 Current Monitors

Ch.	Output	V, I and R.M.S   Monitor	Expected   Value	Pass/Fail:   Equal? (+/- 0.1v)
$\mathbf{1}$	1.91	2	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{2}$	1.91	5	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{3}$	1.91	8	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{4}$	1.91	11	$1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}$	$\sqrt{ }$

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S   Monitor	Expected   Value	Pass/Fail:   Equal? $\mathbf{( + / - 0 . 1 v )}$
$\mathbf{1}$	1.95	1	1.86 vdc	$\sqrt{ }$
$\mathbf{2}$	1.95	4	1.86 vdc	$\sqrt{ }$
$\mathbf{3}$	1.95	7	1.86 v dc	$\sqrt{ }$
$\mathbf{4}$	1.95	10	1.86 vdc	$\sqrt{ }$

### 8.4 Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu \mathrm{V} \sqrt{ } \mathrm{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA $\sqrt{\mathrm{Hz}}$ should give $2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}$ out.

Ch.	Output   $(\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})$	$\div($ Pre-amplifier   gain $)$	Expected   Value	Comparison
$\mathbf{1}$		1.81	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{2}$		1.80	$2.9 \mu \mathrm{~V} \mathrm{~Hz}$	$\sqrt{ }$
$\mathbf{3}$		1.43	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{4}$		1.63	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$

```
Unit
...............T_ACQ_P17
```

$\qquad$

```
Serial No
Test Engineer.....Xen.
Date
15/9/10
```


## 9. Distortion

```
Switch the filters out. Increase input voltage to 5 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.
```

	Acquisition Mode:   Distortion Free?	Non-Acquisition Mode:   Distortion Free?
Ch1	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{2}$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$

## Unit.

.T_ACQ_P17.
Test Engineer.....Xen
Date.
15/9/10.
10 Load tests and Frequency response check
Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

### 10.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo   $($ Vo/20 $)$	Specification	Pass/Fail
Ch1	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

10Hz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.066	4.7 mA	$>\mathbf{~ 2 . 5 m A ~ p e a k ~}$	$\sqrt{ }$
Ch2	0.067	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

100 Hz

	Vor.m.s	$\begin{gathered} \text { Peak lo } \\ (\mathrm{Vo} / 20) \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	0.322	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch2	0.328	23.2 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch3	0.324	22.9 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch4	0.323	22.8 mA	>2.5mA peak	1

200Hz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times$ 1.414	Specification	Pass/Fail	
Ch1	0.389	27.5 mA	$\boldsymbol{> 2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.392	27.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.390	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.389	27.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.414	29.3 mA	$>\mathbf{2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.....Xen.
Date.
15/9/10.

### 10.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo   (Vo/20)	Specification	Pass/Fail
Ch1	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch2	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch3	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch4	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	

10 Hz

	Vo peak	Peak lo   $($ Vo/20 $)$	Specification	Pass/Fail
Ch1	15 mV	750 uA	$>2.5 \mathrm{~mA}$ peak	
Ch2	16 mV	800 uA	$>2.5 \mathrm{~mA}$ peak	
Ch3	15 mV	750 uA	$>2.5 \mathrm{~mA}$ peak	
Ch4	15 mV	750 uA	$>2.5 \mathrm{~mA}$ peak	

100 Hz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.130	9.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.128	9.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.130	9.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.127	9.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.247	17.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.243	17.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.247	17.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.242	17.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.. Xen.
Date 15/9/10.

### 10.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch3	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch4	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

200 Hz

	Vor.m.s	Vo pk.	$\begin{gathered} \hline \text { Peak lo }(\text { Vo/20 }) \\ \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	$>125 \mathrm{~mA}$ peak	$\checkmark$
Ch2	2.2	3.1	155.5 mA	$>125 \mathrm{~mA}$ peak	$\checkmark$
Ch3	2.2	3.1	155.5 mA	$>125 \mathrm{~mA}$ peak	$\checkmark$
Ch4	2.2	3.1	155.5 mA	>125mA peak	$\checkmark$

1 kHz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	2.3	3.3	162.6 mA	>125mA peak	$\checkmark$
Ch2	2.3	3.3	162.6 mA	>125mA peak	$\checkmark$
Ch3	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$
Ch4	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$

5 kHz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x 1 . 4 1 4}$	Specification	Pass/Fail
Ch1	1.67	2.4	118.1 mA	>125mA peak	
Ch2	1.68	2.4	118.8 mA	>125mA peak	
Ch3	1.68	2.4	118.8 mA	>125mA peak	
Ch4	1.67	2.4	118.1 mA	>125mA peak	

Test Engineer.....Xen
Date 15/9/10.

## 11. Noise Measurements

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.


Measure the noise output at 10 Hz .

	Spec in   $\mathrm{dB} V \sqrt{ } \mathrm{~Hz}$	Measured @   10 Hz	$-60 \mathrm{~dB}=$	Measured in   $\mathrm{nV} \sqrt{ } \mathrm{Hz}$	OK?
Ch1	-143.5	-93.1	-153.1	22.1	$\sqrt{ }$
Ch2	-143.5	-92.5	-152.5	23.7	$\sqrt{ }$
Ch3	-143.5	-93.7	-153.7	20.7	$\sqrt{ }$
Ch4	-143.5	-91.9	-151.9	25.4	$\sqrt{ }$

## Notes:

Specified noise output current at $10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}$ (worst case)
Total resistance at 10 Hz , in Low noise mode $=6.7 \mathrm{k}$
Amplifier noise voltage should therefore be $=67 \mathrm{nV} \sqrt{\mathrm{Hz}}$
$67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}$

```
Unit.
 TACQ17P
```

$\qquad$

``` Serial No
``` \(\qquad\)
```Test EngineerRMC
Date 1/11/10
```


## 12. Final Assembly Tests

1. Remove the lid of the box. $\sqrt{ }$
2. Unplug all external connections. $\sqrt{ }$
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight. $\sqrt{ }$
4. Check that all internal connectors are firmly mated. $V$
5. Tighten the screw-locks holding all the external connectors. $\sqrt{ }$
6. Check that all the LEDs are nicely centred. $\sqrt{ }$
7. Check that all links W4 are in place. $\sqrt[V]{ }$
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TACQ17P
Driver board ID	TACQ17
Driver board Drawing No/Issue No	D0901047_V4
Monitor board ID	MON245
Monitor board Drawing No/Issue No	D070480_5_K

9. Check the security of any modification wires. None
10. Visually inspect. $\sqrt{ }$
11. Put the lid on and fasten all screws, $\sqrt{ }$

Check all external screws for tightness. $\sqrt{ }$

## LIGO Laboratory / LIGO Scientific Collaboration

## Advanced LIGO UK

March 2010

## Triple Acquisition Driver Unit Test Report

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research<br>University of Glasgow<br>Phone +44 (0) 1413305884<br>Fax +44 (0) 1413306833<br>E-mail k.strain@physics.gla.ac.uk<br>Engineering Department<br>CCLRC Rutherford Appleton Laboratory<br>Phone +44 (0) 1235445297<br>Fax +44 (0) 1235445843<br>E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT

```
Unit................T ACQ P18.............................Serial No
Test Engineer.....Xen
Date................14/9/10
```

Drive Card ID.......T ACQ18
Monitor Card ID....Mon246
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

## 1. Description

## Block diagram



## Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
T_ACQ_P18
```

$\qquad$

```
Serial No
Test Engineer.....Xen.
Date
14/9/10
```


## 2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz)
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	



## 3. Inspection

## Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.

## Links:

Check that the links W2 and W4 are present on each channel.

Test Engineer.....Xen.
Date.
14/9/10.

## 4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{l \mid}$
5	0V	$\sqrt{l}$		
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

## LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
5	0V	$\sqrt{\|c\|}$		
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	$\sqrt{ }$

## PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
11	V - (TP2)	-17 v Supply	$\sqrt{ }$
12	V - (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	0 V (TP3)		$\sqrt{ }$
24	0 V (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

## 5. TEST SET UP



Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

## Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit.
```

$\qquad$

``` T_ACQ_P18
``` \(\qquad\)
Date
                    14/9/10
```


6. Power

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents

$\mathbf{+ 1 6 . 5}$ supply current (mA)	- $\mathbf{1 6 . 5}$ supply current (mA)
500 mA	400 mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	$\sqrt{ }$	$\sqrt{ }$
Rear Panel	$\sqrt{ }$	$\sqrt{ }$

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen..
Date. 14/9/10

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	\checkmark	\checkmark
Ch2	$\sqrt{ }$	\checkmark	$\sqrt{ }$
Ch3	$\sqrt{ }$	\checkmark	$\sqrt{ }$
Ch4	$\sqrt{ }$	\checkmark	$\sqrt{ }$

```
Unit.
                            .T_ACQ_P18
                                    Serial No
Test Engineer.....Xen.
```

Date
14/9/10

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S Monitor	Expected value	Pass/Fail: Equal? (+/-0.1v)
$\mathbf{1}$	0.33	3	0.33 v	$\sqrt{ }$
$\mathbf{2}$	0.33	6	0.33 v	$\sqrt{ }$
$\mathbf{3}$	0.33	9	0.33 v	$\sqrt{ }$
$\mathbf{4}$	0.33	12	0.33 v	$\sqrt{ }$

Adjust the input voltage until the voltage across the load resistor $=1 \mathrm{v}$ r.m.s. Record the current monitor output values.
8.2 Current Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	1.91	2	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{2}$	1.91	5	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{3}$	1.91	8	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{4}$	1.91	11	$1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}$	$\sqrt{ }$

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	Pass/Fail: Equal? $(+/-\mathbf{0 . 1 v})$
$\mathbf{1}$	1.94	1	1.86 v dc	$\sqrt{ }$
$\mathbf{2}$	1.95	4	1.86 vdc	$\sqrt{ }$
$\mathbf{3}$	1.95	7	1.86 v dc	$\sqrt{ }$
$\mathbf{4}$	1.95	10	1.86 vdc	$\sqrt{ }$

8.4 Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu \mathrm{V} \sqrt{ } \mathrm{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA $\sqrt{ } \mathrm{Hz}$ should give $2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}$ out.

Ch.	Output $(\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})$	$\div($ Pre-amplifier gain)	Expected Value	Comparison
$\mathbf{1}$		1.80	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{2}$		1.72	$2.9 \mu \mathrm{~V} \mathrm{~Hz}$	$\sqrt{ }$
$\mathbf{3}$		1.78	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{4}$		1.74	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$

```
Unit
..............T_ACQ_P18
```

\qquad

```
Serial No
Test Engineer.....Xen.
Date
14/9/10
```


9. Distortion

```
Switch the filters out. Increase input voltage to 5 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.
```

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{2}$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$

```
Unit
```

\qquad

```
                            .T_ACQ_P18.
Test Engineer.....Xen.
```

Date
14/9/10.
10 Load tests and Frequency response check
Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

10.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo (Vo/20)	Specification	Pass/Fail
Ch1	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

10Hz

	Vor.m.s	$\begin{gathered} \text { Peak lo } \\ (\mathrm{Vo} / 20) \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	0.066	4.7 mA	$>2.5 \mathrm{~mA} \mathrm{peak}$	\checkmark
Ch2	0.067	4.7 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch3	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch4	0.066	4.7 mA	>2.5mA peak	\checkmark

100 Hz

	Vor.m.s	$\begin{gathered} \text { Peak lo } \\ (\mathrm{Vo} / 20) \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	0.323	22.8 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch2	0.326	23.0 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch3	0.325	23.0 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch4	0.324	22.9 mA	>2.5mA peak	\checkmark

200Hz

Vo r.m.s	Peak lo $(\mathbf{V o / 2 0}) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.389	27.5 mA	$\boldsymbol{> 2 . 5 m A}$ peak	\checkmark
Ch2	0.391	27.6 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch3	0.390	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.390	27.6 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark

1 kHz

Vo r.m.s	Peak lo $($ Vo/20 $) \times$ 1.414	Specification	Pass/Fail	
Ch1	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.....Xen.
Date.
14/9/10.

10.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo (Vo/20)	Specification	Pass/Fail
Ch1	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch2	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch3	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch4	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	

10 Hz

	Vo peak	Peak Io (Vo/20)	Specification	Pass/Fail
Ch1	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch2	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch3	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch4	16 mV	800 uA	$>2.5 \mathrm{~mA}$ peak	

100 Hz

	Vo r.m.s	Peak lo $($ Vo/20 $) \times$ 1.414	Specification	Pass/Fail
Ch1	0.132	9.3 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch2	0.134	9.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.127	9.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.134	9.5 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark

200 Hz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.249	17.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.251	17.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.242	17.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.251	17.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch2	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.. Xen.
Date 14/9/10.

10.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	1.96	2.8	138.6 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch3	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch4	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA }}$ peak	$\sqrt{ }$

1 kHz

	Vor.m.s	Vo pk.	$\begin{gathered} \hline \text { Peak lo (Vo/20) } \\ \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	>125mA peak	\checkmark
Ch2	2.3	3.3	162.6 mA	>125mA peak	\checkmark
Ch3	2.3	3.3	162.6 mA	$>125 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	2.3	3.3	162.6 mA	>125mA peak	\checkmark

5 kHz

	Vo r.m.s	Vo pk.	Peak Io (Vo/20) $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	1.66	2.3	117.4 mA	>125mA peak	
Ch2	1.66	2.3	117.4 mA	>125mA peak	
Ch3	1.67	2.4	118.1 mA	$>125 \mathrm{~mA}$ peak	
Ch4	1.68	2.4	118.8 mA	>125mA peak	

```
Unit
                T_ACQ_P18
Test Engineer.....Xen
Date 14/9/10.
```


11. Noise Measurements

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

Measure the noise output at 10 Hz .

	Spec in $\mathrm{dB} V \sqrt{ } \mathrm{~Hz}$	Measured @ 10 Hz	$-60 \mathrm{~dB}=$	Measured in $\mathrm{nV} \sqrt{ } \mathrm{Hz}$	OK?
Ch1	-143.5	-91.4	-151.4	26.9	\checkmark
Ch2	-143.5	-93.1	-153.1	22.1	$\sqrt{ }$
Ch3	-143.5	-92.9	-152.9	22.6	$\sqrt{ }$
Ch4	-143.5	-92.7	-152.7	23.2	$\sqrt{ }$

Notes:

Specified noise output current at $10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}$ (worst case)
Total resistance at 10 Hz , in Low noise mode $=6.7 \mathrm{k}$
Amplifier noise voltage should therefore be $=67 \mathrm{nV} \sqrt{\mathrm{Hz}}$
$67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}$

```
Unit
                TACQ18P
```

\qquad

``` Serial No
``` \(\qquad\)
```Test EngineerRMCDate 1/11/10
```


12. Final Assembly Tests

1. Remove the lid of the box. $\sqrt{ }$
2. Unplug all external connections. $\sqrt{ }$
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight. $\sqrt{ }$
4. Check that all internal connectors are firmly mated. V
5. Tighten the screw-locks holding all the external connectors. $\sqrt{ }$
6. Check that all the LEDs are nicely centred. $\sqrt{ }$
7. Check that all links W4 are in place. $\sqrt[V]{ }$
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TACQ18P
Driver board ID	TACQ18
Driver board Drawing No/Issue No	D0901047_V4
Monitor board ID	MON246__
Monitor board Drawing No/Issue No	D070480_5_K

9. Check the security of any modification wires. None
10. Visually inspect. $\sqrt{ }$
11. Put the lid on and fasten all screws, $\sqrt{ }$

Check all external screws for tightness. $\sqrt{ }$

LIGO Laboratory / LIGO Scientific Collaboration

Advanced LIGO UK

March 2010

Triple Acquisition Driver Unit Test Report

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT

```
Unit...............T ACQ P19............................Serial No.
Test Engineer.....Xen
Date................16/9/10
```

Drive Card ID.......T ACQ19
Monitor Card ID....Mon248
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

1. Description

Block diagram

Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
_ACQ_P19
```

\qquad

```
Serial No
Test Engineer.....Xen.
Date
16/9/10
```


2. Test equipment

```
Power supplies (At least \(+/-20 v\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz )
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.

Links:

Check that the links W2 and W4 are present on each channel.

4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{l \mid}$
5	0V	\sqrt{l}		
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
5	0V	$\sqrt{\|c\|}$		
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	$\sqrt{ }$

PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
11	V - (TP2)	-17 v Supply	$\sqrt{ }$
12	V - (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	0 V (TP3)		$\sqrt{ }$
24	0 V (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

5. TEST SET UP

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit.
```

\qquad

``` T_ACQ_P19
``` \(\qquad\)
Test Engineer.....Xen.
Date 16/9/10
```


## 6. Power

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents

$\mathbf{+ 1 6 . 5}$ supply current (mA)	- $\mathbf{1 6 . 5}$ supply current (mA)
500 mA	400 mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	$\sqrt{ }$	$\sqrt{ }$
Rear Panel	$\sqrt{ }$	$\sqrt{ }$

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen..
Date. 16/9/10

## 7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{\|l\|}$	$\sqrt{ }$	$\sqrt{ }$

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

## ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\checkmark$	$\checkmark$
Ch2	$\sqrt{ }$	$\checkmark$	$\sqrt{ }$
Ch3	$\checkmark$	$\checkmark$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\checkmark$	$\sqrt{ }$

```
Unit.
 .T_ACQ_P19
 Serial No
Test Engineer.....Xen.
```

Date
16/9/10

## 8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

### 8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S   Monitor	Expected value	Pass/Fail:   Equal? (+/-0.1v)
$\mathbf{1}$	0.33	3	0.33 v	$\sqrt{ }$
$\mathbf{2}$	0.33	6	0.33 v	$\sqrt{ }$
$\mathbf{3}$	0.33	9	0.33 v	$\sqrt{ }$
$\mathbf{4}$	0.33	12	0.33 v	$\sqrt{ }$

Adjust the input voltage until the voltage across the load resistor $=1 \mathrm{v}$ r.m.s. Record the current monitor output values.
8.2 Current Monitors

Ch.	Output	V, I and R.M.S   Monitor	Expected   Value	Pass/Fail:   Equal? (+/- 0.1v)
$\mathbf{1}$	1.92	2	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{2}$	1.92	5	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{3}$	1.92	8	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{4}$	1.92	11	$1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}$	$\sqrt{ }$

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S   Monitor	Expected   Value	Pass/Fail:   Equal? (+/-0.1v)
$\mathbf{1}$	1.96	1	1.86 vdc	$\sqrt{ }$
$\mathbf{2}$	1.96	4	1.86 vdc	$\sqrt{ }$
$\mathbf{3}$	1.96	7	1.86 vdc	$\sqrt{ }$
$\mathbf{4}$	1.96	10	1.86 vdc	$\sqrt{ }$

### 8.4 Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu \mathrm{V} \sqrt{\mathrm{Hz}}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA $\sqrt{ } \mathrm{Hz}$ should give $2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}$ out.

Ch.	Output   $(\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})$	$\div($ Pre-amplifier   gain)	Expected   Value	Comparison
$\mathbf{1}$		1.47	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{2}$		1.68	$2.9 \mu \mathrm{~V} \mathrm{~Hz}$	$\sqrt{ }$
$\mathbf{3}$		1.55	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{4}$		1.56	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$

```
Unit.
..............T_ACQ_P19
```

$\qquad$

```
Serial No
Test Engineer.....Xen.
Date
16/9/10
```


## 9. Distortion

```
Switch the filters out. Increase input voltage to 5 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.
```

	Acquisition Mode:   Distortion Free?	Non-Acquisition Mode:   Distortion Free?
Ch1	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{2}$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$

```
Unit.
``` \(\qquad\)
``` T_ACQ_P19.
Test Engineer.....Xen.
Date .16/9/10
```


## 10 Load tests and Frequency response check

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

### 10.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo   (Vo/20)	Specification	Pass/Fail
Ch1	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

10Hz

	Vor.m.s	$\begin{gathered} \text { Peak lo } \\ (\mathrm{Vo} / 20) \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	0.066	4.7 mA	$>2.5 \mathrm{~mA} \mathrm{peak}$	$\checkmark$
Ch2	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch3	0.065	4.6 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch4	0.066	4.7 mA	>2.5mA peak	$\checkmark$

100 Hz

	Vor.m.s	$\begin{gathered} \text { Peak lo } \\ (\mathrm{Vo} / 20) \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	0.325	23.0 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch2	0.323	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch3	0.321	22.7 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch4	0.324	22.9 mA	>2.5mA peak	$\checkmark$

200Hz

Vo r.m.s	Peak lo   $(\mathbf{V o / 2 0}) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.390	27.6 mA	$\boldsymbol{> 2 . 5 m A}$ peak	$\checkmark$
Ch2	0.390	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch3	0.389	27.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.389	27.5 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$

1 kHz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times$ 1.414	Specification	Pass/Fail	
Ch1	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.413	29.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.....Xen.
Date.
16/9/10.

### 10.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo   (Vo/20)	Specification	Pass/Fail
Ch1	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch2	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch3	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch4	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	

10 Hz

	Vo peak	Peak lo   $($ Vo/20)	Specification	Pass/Fail
Ch1	16 mV	800 uA	$>2.5 \mathrm{~mA}$ peak	
Ch2	16 mV	800 uA	$>2.5 \mathrm{~mA}$ peak	
Ch3	13 mV	650 uA	$>2.5 \mathrm{~mA}$ peak	
Ch4	16 mV	800 uA	$>2.5 \mathrm{~mA}$ peak	

100 Hz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.128	9.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.126	8.9 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.123	8.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.128	9.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.243	17.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.241	17.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.238	16.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.244	17.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.368	26.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.. Xen.
Date 16/9/10.

### 10.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	1.99	2.8	140.7 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch3	1.99	2.8	140.7 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch4	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA }}$ peak	$\sqrt{ }$

1 kHz

	Vor.m.s	Vo pk.	$\begin{gathered} \hline \text { Peak lo }(\text { Vo/20 }) \\ \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	2.3	3.3	162.6 mA	$>125 \mathrm{~mA}$ peak	$\checkmark$
Ch2	2.3	3.3	162.6 mA	$>125 \mathrm{~mA}$ peak	$\checkmark$
Ch3	2.3	3.3	162.6 mA	$>125 \mathrm{~mA}$ peak	$\checkmark$
Ch4	2.2	3.1	155.5 mA	>125mA peak	$\checkmark$

5 kHz

	Vo r.m.s	Vo pk.	Peak Io (Vo/20)   $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	1.67	2.4	118.1 mA	>125mA peak	
Ch2	1.67	2.4	118.1 mA	$>125 \mathrm{~mA}$ peak	
Ch3	1.68	2.4	118.8 mA	$>125 \mathrm{~mA}$ peak	
Ch4	1.66	2.3	117.4 mA	>125mA peak	

```
Unit
 T_ACQ_P19
Test Engineer.....Xen
Date 16/9/10.
```


## 11. Noise Measurements

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.


Measure the noise output at 10 Hz .

	Spec in   $\mathrm{dB} V \sqrt{ } \mathrm{~Hz}$	Measured @   10 Hz	$-60 \mathrm{~dB}=$	Measured in   $\mathrm{nV} \sqrt{ } \mathrm{Hz}$	OK?
Ch1	-143.5	-92.5	-152.5	23.7	$\sqrt{ }$
Ch2	-143.5	-91.1	-151.1	27.9	$\sqrt{ }$
Ch3	-143.5	-92.6	-152.6	23.4	$\sqrt{ }$
Ch4	-143.5	-93.2	-153.2	21.9	$\sqrt{ }$

## Notes:

Specified noise output current at $10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}$ (worst case)
Total resistance at 10 Hz , in Low noise mode $=6.7 \mathrm{k}$
Amplifier noise voltage should therefore be $=67 \mathrm{nV} \sqrt{\mathrm{Hz}}$
$67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}$

```
Unit.
 TACQ19P
```

$\qquad$

``` Serial No
``` \(\qquad\)
```

Test Engineer .RMC
Date

``` \(\qquad\)

\section*{12. Final Assembly Tests}
1. Remove the lid of the box. \(\sqrt{ }\)
2. Unplug all external connections. \(\sqrt{ }\)
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight. \(\sqrt{ }\)
4. Check that all internal connectors are firmly mated. \(V\)
5. Tighten the screw-locks holding all the external connectors. \(\sqrt{ }\)
6. Check that all the LEDs are nicely centred. \(\sqrt{ }\)
7. Check that all links W4 are in place. \(\sqrt[V]{ }\)
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:
\begin{tabular}{|l|l|}
\hline UoB box ID & TACQ19P \\
\hline Driver board ID & TACQ19 \\
\hline Driver board Drawing No/Issue No & D0901047_V4 \\
\hline Monitor board ID & MON248 \\
\hline Monitor board Drawing No/Issue No & D070480_5_K \\
\hline
\end{tabular}
9. Check the security of any modification wires. None
10. Visually inspect. \(\sqrt{ }\)
11. Put the lid on and fasten all screws, \(\sqrt{ }\)

Check all external screws for tightness. \(\sqrt{ }\)

\section*{LIGO Laboratory / LIGO Scientific Collaboration}

\section*{Advanced LIGO UK}

March 2010

\section*{Triple Acquisition Driver Unit Test Report}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

\author{
Institute for Gravitational Research \\ University of Glasgow \\ Phone +44 (0) 1413305884 \\ Fax +44 (0) 1413306833 \\ E-mail k.strain@physics.gla.ac.uk \\ Engineering Department \\ CCLRC Rutherford Appleton Laboratory \\ Phone +44 (0) 1235445297 \\ Fax +44 (0) 1235445843 \\ E-mail J.Greenhalgh@rl.ac.uk
}

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT}
```

Unit...............T ACQ P20...........................S..Serial No.
Test Engineer.....Xen.
Date................16/9/10.

```

Drive Card ID.......T_ACQ20
Monitor Card ID....Mon247
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

\section*{1. Description}

\section*{Block diagram}


\section*{Description}

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.
```

Unit
_ACQ_P20

```
\(\qquad\)
```

Serial No
Test Engineer.....Xen.
Date
16/9/10

```

\section*{2. Test equipment}
```

Power supplies (At least $+/-20 \mathrm{v}$ variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz)
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & ISO-TECH & ISR622 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77III & \\
\hline Signal analyzer & Agilent & 35670A & \\
\hline Pre-amplifier & Stanford Systems & SR560 & \\
\hline
\end{tabular}


\section*{3. Inspection}

\section*{Workmanship}

Inspect the general workmanship standard and comment: \(\sqrt{ }\)
Capacitors C35 and C27 have been changed to 1 nF on all channels.

\section*{Links:}

Check that the links W2 and W4 are present on each channel.

\section*{4. Continuity Checks}

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\sqrt{ }\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\sqrt{ }\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\sqrt{ }\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\sqrt{l \mid}\) \\
\hline 5 & 0V & \(\sqrt{l}\) \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\sqrt{ }\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\sqrt{ }\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\sqrt{ }\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{LED Mon}
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\sqrt{ }\) \\
\hline 2 & Imon2P & & 6 & \(\sqrt{ }\) \\
\hline 3 & Imon3P & & 7 & \(\sqrt{ }\) \\
\hline 4 & Imon4P & & 8 & \(\sqrt{ }\) \\
\hline 5 & 0V & \(\sqrt{|c|}\) \\
\hline 6 & Imon1N & & 18 & \(\sqrt{ }\) \\
\hline 7 & Imon2N & & 19 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 20 & \(\sqrt{ }\) \\
\hline 9 & Imon4N & & 21 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{PD from Sat}
\begin{tabular}{|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & \(\mathrm{~V}+\) (TP1) & +17 v Supply & \(\sqrt{ }\) \\
\hline 10 & \(\mathrm{~V}+\) (TP1) & +17 v Supply & \(\sqrt{ }\) \\
\hline 11 & V - (TP2) & -17 v Supply & \(\sqrt{ }\) \\
\hline 12 & V - (TP2) & -17 v Supply & \(\sqrt{ }\) \\
\hline 13 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 22 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 23 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 24 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}


Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, \(4=\) positive input
Drive Input J3 pins 6, 7, 8, \(9=\) negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, \(10=+16.5 \mathrm{v}\)
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, \(25=0 v\)
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin \(1 \quad\) Ch1 \(-=\mathrm{J} 4\) pin 9
Ch2 \(+=\mathrm{J} 4\) pin \(3 \quad\) Ch2- \(=\mathrm{J} 4\) pin 11
Ch3 \(+=\mathrm{J} 4\) pin \(5 \quad\) Ch3- \(=\mathrm{J} 4\) pin 13
Ch4+ = J4 pin \(7 \quad\) Ch4- \(=\mathrm{J} 4\) pin 15
```

Unit

```
\(\qquad\)
``` T_ACQ_P20
``` \(\qquad\)
Test Engineer.....Xen.
Date
15/9/10
```


6. Power

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents

$\mathbf{+ 1 6 . 5}$ supply current (mA)	- $\mathbf{1 6 . 5}$ supply current (mA)
500 mA	400 mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	$\sqrt{ }$	$\sqrt{ }$
Rear Panel	$\sqrt{ }$	$\sqrt{ }$

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen..
Date. 15/9/10

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
Ch1	ON	OFF	
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

```
Unit
                .T_ACQ_P20
Test Engineer.....Xen.
```

Date
15/9/10

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S Monitor	Expected value	Pass/Fail: Equal? (+/-0.1v)
$\mathbf{1}$	0.33	3	0.33 v	$\sqrt{ }$
$\mathbf{2}$	0.33	6	0.33 v	$\sqrt{ }$
$\mathbf{3}$	0.33	9	0.33 v	$\sqrt{ }$
$\mathbf{4}$	0.33	12	0.33 v	$\sqrt{ }$

Adjust the input voltage until the voltage across the load resistor $=1 \mathrm{v}$ r.m.s. Record the current monitor output values.
8.2 Current Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	1.92	2	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{2}$	1.92	5	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{3}$	1.92	8	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{4}$	1.92	11	$1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}$	$\sqrt{ }$

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	1.96	1	1.86 vdc	$\sqrt{ }$
$\mathbf{2}$	1.95	4	1.86 vdc	$\sqrt{ }$
$\mathbf{3}$	1.96	7	1.86 vdc	$\sqrt{ }$
$\mathbf{4}$	1.95	10	1.86 vdc	$\sqrt{ }$

8.4 Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu \mathrm{V} \sqrt{ } \mathrm{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA $\sqrt{ } \mathrm{Hz}$ should give $2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}$ out.

Ch.	Output $(\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})$	$\div($ Pre-amplifier gain $)$	Expected Value	Comparison
$\mathbf{1}$		1.52	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{2}$		1.40	$2.9 \mu \mathrm{~V} \mathrm{~Hz}$	$\sqrt{ }$
$\mathbf{3}$		1.68	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{4}$		1.44	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$

```
Unit
```

\qquad

```
                T_ACQ_P20
```

\qquad

```
                                    Serial No
Test Engineer.....Xen.
Date
15/9/10
```


9. Distortion

```
Switch the filters out. Increase input voltage to 5 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.
```

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{2}$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$

```
Unit
                            _ACQ_P20
Test Engineer.....Xen.
Date
15/9/10
```

10 Load tests and Frequency response check
Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

10.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo (Vol20)	Specification	Pass/Fail
Ch1	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch2	67.5 mV	3.4 mA	>2.5mA peak	\checkmark
Ch3	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch4	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark

10 Hz

Vo r.m.s	Peak lo $(\mathrm{Vo/20}) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.066	4.7 mA	$>\mathbf{~ 2 . 5 m A ~ p e a k ~}$	$\sqrt{ }$
Ch2	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

100 Hz

	Vo r.m.s	Peak lo $(\mathrm{Vo/20}) \times$ 1.414	Specification	Pass/Fail
Ch1	0.322	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.321	22.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.323	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.323	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

	Vor.m.s	$\begin{gathered} \text { Peak lo } \\ (\mathrm{Vo} / 20) \times 1.414 \end{gathered}$	Specification	Pass/Fail
Ch1	0.389	27.5 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch2	0.389	27.5 mA	>2.5mA peak	\checkmark
Ch3	0.389	27.5 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch4	0.389	27.5 mA	>2.5mA peak	\checkmark

1 kHz

Vo r.m.s	Peak lo $($ Vo/20 $) \times$ 1.414	Specification	Pass/Fail	
Ch1	0.414	29.3 mA	$\boldsymbol{> 2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.....Xen.
Date.
16/9/10.

10.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo (Vo/20)	Specification	Pass/Fail
Ch1	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch2	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch3	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch4	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	

10 Hz

	Vo peak	Peak lo $($ Vo/20)	Specification	Pass/Fail
Ch1	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch2	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch3	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch4	15 mV	750 uA	$>2.5 \mathrm{~mA}$ peak	

100 Hz

	Vo r.m.s	Peak lo $($ Vo/20 $) \times$ 1.414	Specification	Pass/Fail
Ch1	0.132	9.3 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch2	0.130	9.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.127	9.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.129	9.1 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark

200 Hz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.249	17.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.247	17.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.243	17.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.246	17.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch2	0.371	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.....Xen
Date. 16/9/10.

10.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA }}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	2.3	3.3	162.6 mA	>125mA peak	\checkmark
Ch2	2.3	3.3	162.6 mA	>125mA peak	\checkmark
Ch3	2.2	3.1	155.5 mA	>125mA peak	$\sqrt{ }$
Ch4	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$

5 kHz

	Vo r.m.s	Vo pk.	Peak Io (Vo/20) $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	1.67	2.4	118.1 mA	>125mA peak	
Ch2	1.68	2.4	118.8 mA	$>125 \mathrm{~mA}$ peak	
Ch3	1.66	2.3	117.4 mA	$>125 \mathrm{~mA}$ peak	
Ch4	1.68	2.4	118.8 mA	>125mA peak	

```
Unit.

\section*{11. Noise Measurements}

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.


Measure the noise output at 10 Hz .
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \begin{tabular}{c} 
Spec in \\
\(\mathrm{dB} V \sqrt{ } \mathrm{~Hz}\)
\end{tabular} & \begin{tabular}{c} 
Measured @ \\
10 Hz
\end{tabular} & \(-60 \mathrm{~dB}=\) & \begin{tabular}{c} 
Measured in \\
\(\mathrm{nV} \sqrt{ } \mathrm{Hz}\)
\end{tabular} & OK? \\
\hline Ch1 & -143.5 & -92.9 & -152.9 & 22.6 & \(\sqrt{ }\) \\
\hline Ch2 & -143.5 & -92.4 & -152.4 & 24.0 & \(\sqrt{ }\) \\
\hline Ch3 & -143.5 & -90.2 & -150.2 & 30.9 & \(\sqrt{ }\) \\
\hline Ch4 & -143.5 & -92.4 & -152.4 & 24.0 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Notes:}

Specified noise output current at \(10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}\) (worst case)
Total resistance at 10 Hz , in Low noise mode \(=6.7 \mathrm{k}\)
Amplifier noise voltage should therefore be \(=67 \mathrm{nV} \sqrt{\mathrm{Hz}}\)
\(67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}\)
```

Unit
TACQ20P

```
\(\qquad\)
\(\qquad\)
```Test EngineerRMCDate13/10/10
```


## 12. Final Assembly Tests

1. Remove the lid of the box. $\sqrt{ }$
2. Unplug all external connections. $\sqrt{ }$
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight. $\sqrt{ }$
4. Check that all internal connectors are firmly mated. $V$
5. Tighten the screw-locks holding all the external connectors. $\sqrt{ }$
6. Check that all the LEDs are nicely centred. $\sqrt{ }$
7. Check that all links $W 4$ are in place. $\sqrt{ }$
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TACQ20P
Driver board ID	TACQ20
Driver board Drawing No/Issue No	D0901047_V4
Monitor board ID	MON247
Monitor board Drawing No/Issue No	D070480_4_K

9. Check the security of any modification wires. None
10. Visually inspect. $\sqrt{ }$
11. Put the lid on and fasten all screws,

Check all external screws for tightness.

## LIGO Laboratory / LIGO Scientific Collaboration

## Advanced LIGO UK

March 2010

## Triple Acquisition Driver Unit Test Report

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research<br>University of Glasgow<br>Phone +44 (0) 1413305884<br>Fax +44 (0) 1413306833<br>E-mail k.strain@physics.gla.ac.uk<br>Engineering Department<br>CCLRC Rutherford Appleton Laboratory<br>Phone +44 (0) 1235445297<br>Fax +44 (0) 1235445843<br>E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT

```
Unit...............T_ACQ_P21............................Serial No.
Test Engineer.....Xen
Date................13/9/10
```

Drive Card ID.......T ACQ21
Monitor Card ID....Mon237
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

## 1. Description

## Block diagram



## Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
 ACQ_P21
```

$\qquad$

```
Serial No
Test Engineer.....Xen.
Date
13/9/10
```


## 2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz)
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	



## 3. Inspection

## Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.

## Links:

Check that the links W2 and W4 are present on each channel.

Test Engineer.. Xen.
Date 13/9/10

## 4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{l \mid}$
5	0V	$\sqrt{l}$		
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

## LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
5	0V	$\sqrt{\|c\|}$		
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	$\sqrt{ }$

## PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
11	V - (TP2)	-17 v Supply	$\sqrt{ }$
12	V - (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	0 V (TP3)		$\sqrt{ }$
24	0 V (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

## 5. TEST SET UP



Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

## Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit
```

$\qquad$

``` T_ACQ_P21
``` \(\qquad\)
Test Engineer.....Xen.
Date 13/9/10
```


6. Power

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents

$\mathbf{+ 1 6 . 5}$ supply current (mA)	- $\mathbf{1 6 . 5}$ supply current (mA)
500 mA	400 mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	$\sqrt{ }$	$\sqrt{ }$
Rear Panel	$\sqrt{ }$	$\sqrt{ }$

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen..
Date. 13/9/10

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

```
Unit
                .T_ACQ_P21
                                    Serial No
Test Engineer.....Xen.
```

Date.
13/9/10

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S Monitor	Expected value	Pass/Fail: Equal? (+/-0.1v)
$\mathbf{1}$	0.33	3	0.33 v	$\sqrt{ }$
$\mathbf{2}$	0.33	6	0.33 v	$\sqrt{ }$
$\mathbf{3}$	0.33	9	0.33 v	$\sqrt{ }$
$\mathbf{4}$	0.33	12	0.33 v	$\sqrt{ }$

Adjust the input voltage until the voltage across the load resistor $=1 \mathrm{v}$ r.m.s. Record the current monitor output values.
8.2 Current Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	1.92	2	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{2}$	1.92	5	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{3}$	1.92	8	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{4}$	1.91	11	$1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}$	$\sqrt{ }$

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	1.95	1	1.86 vdc	$\sqrt{ }$
$\mathbf{2}$	1.95	4	1.86 vdc	$\sqrt{ }$
$\mathbf{3}$	1.95	7	1.86 vdc	$\sqrt{ }$
$\mathbf{4}$	1.95	10	1.86 vdc	$\sqrt{ }$

8.4 Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu \mathrm{V} \sqrt{ } \mathrm{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA $\sqrt{ } \mathrm{Hz}$ should give $2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}$ out.

Ch.	Output $(\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})$	$\div($ Pre-amplifier gain $)$	Expected Value	Comparison
$\mathbf{1}$		1.50	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{2}$		1.65	$2.9 \mu \mathrm{~V} \mathrm{~Hz}$	$\sqrt{ }$
$\mathbf{3}$		1.74	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{4}$		1.49	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$

```
Unit.
```

\qquad

```
                T_ACQ_P21
```

\qquad

```
                                    Serial No
Test Engineer.....Xen.
Date
13/9/10
```


9. Distortion

```
Switch the filters out. Increase input voltage to 5 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.
```

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{2}$	$\sqrt{ }$

Test Engineer.....Xen.
Date.
.13/9/10.

10 Load tests and Frequency response check

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

10.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo $($ Vo/20 $)$	Specification	Pass/Fail
Ch1	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

10Hz

Vo r.m.s	Peak lo $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.066	4.7 mA	$>\mathbf{~ 2 . 5 m A ~ p e a k ~}$	$\sqrt{ }$
Ch2	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

100 Hz

	Vor.m.s	$\begin{gathered} \text { Peak lo } \\ (\mathrm{Vo} / 20) \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	0.323	22.8 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch2	0.325	23.0 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch3	0.322	22.8 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch4	0.324	22.9 mA	>2.5mA peak	\checkmark

200 Hz

	Vor.m.s	$\begin{gathered} \text { Peak lo } \\ (\mathrm{Vo} / 20) \times 1.414 \end{gathered}$	Specification	Pass/Fail
Ch1	0.389	27.5 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch2	0.391	27.6 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch3	0.389	27.5 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch4	0.390	27.6 mA	>2.5mA peak	\checkmark

1 kHz

Vo r.m.s	Peak lo $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.....Xen.
Date.
13/9/10.

10.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1 Hz

	Vo peak	Peak lo (Vo/20)	Specification	Pass/Fail
Ch1	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch2	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch3	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch4	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	

10 Hz

	Vo peak	Peak lo $($ Vo/20 $)$	Specification	Pass/Fail
Ch1	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch2	15 mV	750 uA	$>2.5 \mathrm{~mA}$ peak	
Ch3	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch4	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	

100 Hz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.129	9.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.131	9.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.130	9.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.129	9.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.245	17.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.248	17.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.247	17.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.245	17.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.. .Xen.
Date. 13/9/10.

10.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA }}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	2.3	3.1	162.6 mA	>125mA peak	\checkmark
Ch2	2.3	3.1	162.6 mA	>125mA peak	\checkmark
Ch3	2.3	3.1	162.6 mA	>125mA peak	$\sqrt{ }$
Ch4	2.3	3.1	162.6 mA	>125mA peak	$\sqrt{ }$

5 kHz

	Vo r.m.s	Vo pk.	Peak Io (Vo/20) $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	1.67	2.4	118.1 mA	>125mA peak	
Ch2	1.67	2.4	118.1 mA	$>125 \mathrm{~mA}$ peak	
Ch3	1.67	2.4	118.1 mA	$>125 \mathrm{~mA}$ peak	
Ch4	1.67	2.4	118.1 mA	>125mA peak	

Test Engineer.....Xen
Date
13/9/10.

11. Noise Measurements

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

Measure the noise output at 10 Hz .

	Spec in $\mathrm{dB} V \sqrt{ } \mathrm{~Hz}$	Measured @ 10 Hz	$-60 \mathrm{~dB}=$	Measured in $\mathrm{nV} \sqrt{ } \mathrm{Hz}$	OK?
Ch1	-143.5	-93.8	-153.8	20.4	\checkmark
Ch2	-143.5	-92.8	-152.8	22.9	$\sqrt{ }$
Ch3	-143.5	-93.6	-153.6	20.9	$\sqrt{ }$
Ch4	-143.5	-94.0	-154.0	20.0	$\sqrt{ }$

Notes:

Specified noise output current at $10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}$ (worst case)
Total resistance at 10 Hz , in Low noise mode $=6.7 \mathrm{k}$
Amplifier noise voltage should therefore be $=67 \mathrm{nV} \sqrt{\mathrm{Hz}}$
$67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}$

12. Final Assembly Tests

1. Remove the lid of the box. $\sqrt{ }$
2. Unplug all external connections. $\sqrt{ }$
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight. $\sqrt{ }$
4. Check that all internal connectors are firmly mated. $\sqrt{ }$
5. Tighten the screw-locks holding all the external connectors. $\sqrt{ }$
6. Check that all the LEDs are nicely centred. $\sqrt{ }$
7. Check that all links $W 4$ are in place. V
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TACQ21P
Driver board ID	TACQ21P
Driver board Drawing No/Issue No	D0901047_V4
Monitor board ID	MON237
Monitor board Drawing No/Issue No	D070480_5_K

9. Check the security of any modification wires. $\sqrt{ }$
10. Visually inspect. $\sqrt{ }$
11. Put the lid on and fasten all screws,

Check all external screws for tightness.

LIGO Laboratory / LIGO Scientific Collaboration

Advanced LIGO UK

March 2010

Triple Acquisition Driver Unit Test Report

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT

```
Unit................T_ACQ_P22............................Serial No.
Test Engineer.....Xen.
Date................13/9/10
```

Drive Card ID.......T ACQ22
Monitor Card ID....Mon238
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

1. Description

Block diagram

Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
                _ACQ_P22
Serial No
Test Engineer.....Xen.
Date
13/9/10
```


2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz )
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.

Links:

Check that the links W2 and W4 are present on each channel.

Test Engineer.....Xen..
Date. 13/9/10.

4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{l \mid}$
5	0V	\sqrt{l}		
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
5	0V	$\sqrt{\|c\|}$		
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	$\sqrt{ }$

PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	\checkmark
10	V+ (TP1)	+17 v Supply	$\sqrt{ }$
11	V- (TP2)	-17 v Supply	\checkmark
12	$\mathrm{~V}-$ (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	OV (TP3)		$\sqrt{ }$
24	OV (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

5. TEST SET UP

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit
```

\qquad

``` T_ACQ_P22
Test Engineer.....Xen.
Date
13/9/10
```


6. Power

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
500 mA	400 mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	$\sqrt{ }$	$\sqrt{ }$
Rear Panel	$\sqrt{ }$	$\sqrt{ }$

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen..
Date. 13/9/10

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

```
Unit
                .T_ACQ_P22.
                                    Serial No
Test Engineer.....Xen.
```

Date.
13/9/10

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S Monitor	Expected value	Pass/Fail: Equal? (+/-0.1v)
$\mathbf{1}$	0.33	3	0.33 v	$\sqrt{ }$
$\mathbf{2}$	0.33	6	0.33 v	$\sqrt{ }$
$\mathbf{3}$	0.33	9	0.33 v	$\sqrt{ }$
$\mathbf{4}$	0.33	12	0.33 v	$\sqrt{ }$

Adjust the input voltage until the voltage across the load resistor $=1 \mathrm{v}$ r.m.s. Record the current monitor output values.
8.2 Current Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	1.92	2	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{2}$	1.91	5	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{3}$	1.92	8	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{4}$	1.91	11	$1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}$	$\sqrt{ }$

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	Pass/Fail: Equal? $\mathbf{(+ / - 0 . 1 v)}$
$\mathbf{1}$	1.95	1	1.86 vdc	$\sqrt{ }$
$\mathbf{2}$	1.95	4	1.86 vdc	$\sqrt{ }$
$\mathbf{3}$	1.95	7	1.86 v dc	$\sqrt{ }$
$\mathbf{4}$	1.95	10	1.86 vdc	$\sqrt{ }$

8.4 Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu \mathrm{V} \sqrt{ } \mathrm{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA $\sqrt{ } \mathrm{Hz}$ should give $2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}$ out.

Ch.	Output $(\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})$	$\div($ Pre-amplifier gain)	Expected Value	Comparison
$\mathbf{1}$		1.66	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{2}$		1.59	$2.9 \mu \mathrm{~V} \mathrm{~Hz}$	$\sqrt{ }$
$\mathbf{3}$		1.60	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{4}$		1.84	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$

```
Unit.
```

\qquad

```
                T_ACQ_P22.
                                    Serial No.
Test Engineer.....Xen.
Date
13/9/10
```


9. Distortion

```
Switch the filters out. Increase input voltage to 5 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.
```

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{2}$	$\sqrt{ }$

Test Engineer.....Xen.
Date
.13/9/10.

10 Load tests and Frequency response check

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

10.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo $($ Vo/20 $)$	Specification	Pass/Fail
Ch1	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

10Hz

Vo r.m.s	Peak lo $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.066	4.7 mA	$>\mathbf{~ 2 . 5 m A ~ p e a k ~}$	$\sqrt{ }$
Ch2	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

100 Hz

	Vor.m.s	$\begin{gathered} \text { Peak lo } \\ (\mathrm{Vo} / 20) \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	0.323	22.8 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch2	0.325	23.0 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch3	0.322	22.8 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch4	0.324	22.9 mA	>2.5mA peak	\checkmark

200Hz

Vo r.m.s	Peak lo $($ Vo/20 $) \times$ 1.414	Specification	Pass/Fail	
Ch1	0.390	27.6 mA	$\boldsymbol{> 2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.391	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.389	27.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.390	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

Vo r.m.s	Peak lo $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.415	29.3 mA	$>\mathbf{2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.416	29.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.....Xen.
Date.
13/9/10.

10.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo (Vo/20)	Specification	Pass/Fail
Ch1	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch2	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch3	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch4	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	

10 Hz

	Vo peak	Peak lo $($ Vo/20 $)$	Specification	Pass/Fail
Ch1	16 mV	800 uA	$>2.5 \mathrm{~mA}$ peak	
Ch2	13 mV	650 uA	$>2.5 \mathrm{~mA}$ peak	
Ch3	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch4	12 mV	600 uA	$>2.5 \mathrm{~mA}$ peak	

100 Hz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.132	9.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.128	9.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.129	9.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.128	9.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.249	17.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.244	17.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.246	17.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.244	17.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.. .Xen.
Date. 13/9/10.

10.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	1.99	2.8	140.7 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA }}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	2.3	3.1	162.6 mA	>125mA peak	\checkmark
Ch2	2.3	3.1	162.6 mA	>125mA peak	\checkmark
Ch3	2.3	3.1	162.6 mA	>125mA peak	$\sqrt{ }$
Ch4	2.3	3.1	162.6 mA	>125mA peak	$\sqrt{ }$

5 kHz

	Vo r.m.s	Vo pk.	Peak Io (Vo/20) $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	1.67	2.4	118.1 mA	>125mA peak	
Ch2	1.68	2.4	118.8 mA	$>125 \mathrm{~mA}$ peak	
Ch3	1.67	2.4	118.1 mA	$>125 \mathrm{~mA}$ peak	
Ch4	1.68	2.4	118.8 mA	>125mA peak	

Test Engineer.....Xen
Date.................13/9/10

11. Noise Measurements

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

Measure the noise output at 10 Hz .

	Spec in $\mathrm{dB} V \sqrt{ } \mathrm{~Hz}$	Measured @ 10 Hz	$-60 \mathrm{~dB}=$	Measured in $\mathrm{nV} \sqrt{ } \mathrm{Hz}$	OK?
Ch1	-143.5	-91.1	-151.1	27.9	$\sqrt{ }$
Ch2	-143.5	-92.0	-152.0	25.1	$\sqrt{ }$
Ch3	-143.5	-84.7	-144.7	58.2	$\sqrt{ }$
Ch4	-143.5	-91.6	-151.6	26.3	$\sqrt{ }$

Notes:

Specified noise output current at $10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}$ (worst case)
Total resistance at 10 Hz , in Low noise mode $=6.7 \mathrm{k}$
Amplifier noise voltage should therefore be $=67 \mathrm{nV} \sqrt{\mathrm{Hz}}$
$67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}$

```
Unit
                TACQ22P
                                    Serial No
```

\qquad

```
Test Engineer
    RMC
Date
13/10/10
```


12. Final Assembly Tests

1. Remove the lid of the box. $\sqrt{ }$
2. Unplug all external connections. $\sqrt{ }$
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight. $\sqrt{ }$
4. Check that all internal connectors are firmly mated. V
5. Tighten the screw-locks holding all the external connectors. $\sqrt{ }$
6. Check that all the LEDs are nicely centred. $\sqrt{ }$
7. Check that all links W4 are in place. $\sqrt[V]{ }$
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TACQ22P
Driver board ID	TACQ22
Driver board Drawing No/Issue No	D0901047_V4
Monitor board ID	MON238
Monitor board Drawing No/Issue No	D070480_5_K

9. Check the security of any modification wires. None
10. Visually inspect. $\sqrt{ }$
11. Put the lid on and fasten all screws, $\sqrt{ }$

Check all external screws for tightness. $\sqrt{ }$

LIGO Laboratory / LIGO Scientific Collaboration

Advanced LIGO UK

March 2010

Triple Acquisition Driver Unit Test Report

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT

```
Unit................T ACQ P23.............................Serial No.
Test Engineer.....Xen.
Date................24/9/10
```

Drive Card ID.......T ACQ23
Monitor Card ID....Mon259
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

1. Description

Block diagram

Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
```

\qquad

```
                            T_ACQ_P23.
                                    Serial No
Test Engineer.....Xen.
Date................24/9/10
```


2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz )
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	$33250 A$	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.

Links

Check that the links W2 and W4 are present on each channel.

Test Engineer.....Xen..
Date.

4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{l \mid}$
5	0V	\sqrt{l}		
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
5	0V	$\sqrt{\|c\|}$		
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	$\sqrt{ }$

PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	\checkmark
10	V+ (TP1)	+17 v Supply	$\sqrt{ }$
11	V- (TP2)	-17 v Supply	\checkmark
12	$\mathrm{~V}-$ (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	OV (TP3)		$\sqrt{ }$
24	OV (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

5. TEST SET UP

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit
```

\qquad

```
                            T_ACQ_P23
                23.
                                    Serial No
Test Engineer.....Xen.
Date...............24/9/10
```


6. Power

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents

$\mathbf{+ 1 6 . 5}$ supply current (mA)	- $\mathbf{1 6 . 5}$ supply current (mA)
500 mA	400 mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	$\sqrt{ }$	$\sqrt{ }$
Rear Panel	$\sqrt{ }$	$\sqrt{ }$

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen.
Date. 24/9/10

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

```
Unit
                            .T_ACQ_P23
Test Engineer.....Xen.
```

Date 24/9/10

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S Monitor	Expected value	Pass/Fail: Equal? (+/-0.1v)
$\mathbf{1}$	0.33	3	0.33 v	$\sqrt{ }$
$\mathbf{2}$	0.33	6	0.33 v	$\sqrt{ }$
$\mathbf{3}$	0.33	9	0.33 v	$\sqrt{ }$
$\mathbf{4}$	0.33	12	0.33 v	$\sqrt{ }$

Adjust the input voltage until the voltage across the load resistor $=1 \mathrm{v}$ r.m.s. Record the current monitor output values.
8.2 Current Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	1.91	2	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{2}$	1.91	5	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{3}$	1.91	8	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{4}$	1.91	11	$1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}$	$\sqrt{ }$

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	1.94	1	1.86 vdc	$\sqrt{ }$
$\mathbf{2}$	1.95	4	1.86 vdc	$\sqrt{ }$
$\mathbf{3}$	1.94	7	1.86 vdc	$\sqrt{ }$
$\mathbf{4}$	1.95	10	1.86 vdc	$\sqrt{ }$

8.4 Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu \mathrm{V} \sqrt{ } \mathrm{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA $\sqrt{\mathrm{Hz}}$ should give $2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}$ out.

Ch.	Output $(\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})$	$\div($ Pre-amplifier gain $)$	Expected Value	Comparison
$\mathbf{1}$		1.69	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{2}$		1.86	$2.9 \mu \mathrm{~V} \mathrm{~Hz}$	$\sqrt{ }$
$\mathbf{3}$		1.44	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{4}$		1.42	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$

```
Unit
...............T_ACQ_P23
23.
Serial No
Test Engineer.....Xen.
Date................24/9/10.
```


9. Distortion

```
Switch the filters out. Increase input voltage to 5 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.
```

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{2}$	$\sqrt{ }$

```
Unit
                            T_ACQ_P23
Test Engineer.....Xen.
Date
24/9/10
```

10 Load tests and Frequency response check
Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

10.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo (Vol20)	Specification	Pass/Fail
Ch1	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch2	67.5 mV	3.4 mA	>2.5mA peak	\checkmark
Ch3	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch4	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark

10 Hz

Vo r.m.s	Peak lo $(V o / 20) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.066	4.7 mA	$>\mathbf{2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

100 Hz

	Vo r.m.s	Peak lo $(\mathrm{Vo/20}) \times$ 1.414	Specification	Pass/Fail
Ch1	0.322	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.322	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.325	23.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.321	22.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

Vo r.m.s	Peak lo $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.389	27.5 mA	$\boldsymbol{> 2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.390	27.6 mA	$>\mathbf{2 . 5 m A}$ peak	$\sqrt{ }$
Ch3	0.391	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.388	27.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

Vo r.m.s	Peak lo $($ Vo/20 $) \times$ 1.414	Specification	Pass/Fail	
Ch1	0.415	29.3 mA	$\boldsymbol{> 2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Unit.
Test Engineer.....Xen.
Date. .24/9/10

10.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo (Vo/20)	Specification	Pass/Fail
Ch1	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch2	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch3	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch4	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	

10 Hz

	Vo peak	Peak lo $($ Vo/20)	Specification	Pass/Fail
Ch1	16 mV	800 uA	$>2.5 \mathrm{~mA}$ peak	
Ch2	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch3	16 mV	800 uA	$>2.5 \mathrm{~mA}$ peak	
Ch4	16 mV	800 uA	$>2.5 \mathrm{~mA}$ peak	

100 Hz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.129	9.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.134	9.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.128	9.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.128	9.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.246	17.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.252	17.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.244	17.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.244	17.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.371	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.....Xen..
Date. 24/9/10.

10.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x 1 . 4 1 4}$	Specification	Pass/Fail
Ch1	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch3	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch4	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA }}$ peak	$\sqrt{ }$

1 kHz

	Vor.m.s	Vo pk.	$\begin{gathered} \hline \text { Peak lo }(\text { Vo/20 }) \\ \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	2.3	3.3	162.6 mA	$>125 \mathrm{~mA}$ peak	\checkmark
Ch2	2.3	3.3	162.6 mA	$>125 \mathrm{~mA}$ peak	\checkmark
Ch3	2.3	3.3	162.6 mA	$>125 \mathrm{~mA}$ peak	\checkmark
Ch4	2.2	3.1	155.5 mA	>125mA peak	\checkmark

5 kHz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x 1 . 4 1 4}$	Specification	Pass/Fail
Ch1	1.67	2.4	118.1 mA	>125mA peak	
Ch2	1.67	2.4	118.1 mA	>125mA peak	
Ch3	1.67	2.4	118.1 mA	>125mA peak	
Ch4	1.66	2.3	117.4 mA	>125mA peak	

11. Noise Measurements

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

Measure the noise output at 10 Hz .

	Spec in $\mathrm{dB} V \sqrt{ } \mathrm{~Hz}$	Measured @ 10 Hz	$-60 \mathrm{~dB}=$	Measured in $\mathrm{nV} \sqrt{ } \mathrm{Hz}$	OK?
Ch1	-143.5	-92.4	-152.4	24.0	$\sqrt{ }$
Ch2	-143.5	-92.5	-152.5	23.7	$\sqrt{ }$
Ch3	-143.5	-92.9	-152.9	22.9	$\sqrt{ }$
Ch4	-143.5	-93.5	-153.5	21.1	$\sqrt{ }$

Notes:

Specified noise output current at $10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}$ (worst case)
Total resistance at 10 Hz , in Low noise mode $=6.7 \mathrm{k}$
Amplifier noise voltage should therefore be $=67 \mathrm{nV} \sqrt{\mathrm{Hz}}$
$67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}$

```
Unit
                TACQ23P
                                    Serial No
```

\qquad

```
Test Engineer
RMC
Date
13/10/10
```


12. Final Assembly Tests

1. Remove the lid of the box. $\sqrt{ }$
2. Unplug all external connections. $\sqrt{ }$
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight. $\sqrt{ }$
4. Check that all internal connectors are firmly mated. V
5. Tighten the screw-locks holding all the external connectors. $\sqrt{ }$
6. Check that all the LEDs are nicely centred. $\sqrt{ }$
7. Check that all links W4 are in place. $\sqrt[V]{ }$
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TACQ23P
Driver board ID	TACQ23
Driver board Drawing No/Issue No	D0901047_V4
Monitor board ID	MON259
Monitor board Drawing No/Issue No	D070480 5 K

9. Check the security of any modification wires. None
10. Visually inspect. $\sqrt{ }$
11. Put the lid on and fasten all screws, $\sqrt{ }$

Check all external screws for tightness. $\sqrt{ }$

LIGO Laboratory / LIGO Scientific Collaboration

Advanced LIGO UK

March 2010

Triple Acquisition Driver Unit Test Report

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT

```
Unit...............T ACQ P24.............................Serial No.
Test Engineer.....Xen.
Date................24/9/10
```

Drive Card ID.......T ACQ24
Monitor Card ID....Mon260
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

1. Description

Block diagram

Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
```

\qquad

```
                            T_ACQ_P24
                        4..
                                    Serial No
Test Engineer.....Xen.
Date................24/9/10
```


2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz )
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.

Links

Check that the links W2 and W4 are present on each channel.

Test Engineer.....Xen..
Date.

4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{l \mid}$
5	0V	\sqrt{l}		
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
5	0V	$\sqrt{\|c\|}$		
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	$\sqrt{ }$

PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
11	V - (TP2)	-17 v Supply	$\sqrt{ }$
12	V - (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	0 V (TP3)		$\sqrt{ }$
24	0 V (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

5. TEST SET UP

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit
```

\qquad

```
                            T_ACQ_P24
                24
                                    Serial No
Test Engineer.....Xen.
Date...............24/9/10
```


6. Power

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
500 mA	400 mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	$\sqrt{ }$	$\sqrt{ }$
Rear Panel	$\sqrt{ }$	$\sqrt{ }$

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen.
Date. 24/9/10

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
Ch1	ON	OFF	
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

```
Unit
                            .T_ACQ_P24
                                    Serial No
Test Engineer.....Xen.
```

Date
24/9/10

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S Monitor	Expected value	Pass/Fail: Equal? (+/-0.1v)
$\mathbf{1}$	0.33	3	0.33 v	$\sqrt{ }$
$\mathbf{2}$	0.33	6	0.33 v	$\sqrt{ }$
$\mathbf{3}$	0.33	9	0.33 v	$\sqrt{ }$
$\mathbf{4}$	0.33	12	0.33 v	$\sqrt{ }$

Adjust the input voltage until the voltage across the load resistor $=1 \mathrm{v}$ r.m.s. Record the current monitor output values.
8.2 Current Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	1.90	2	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{2}$	1.91	5	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{3}$	1.90	8	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{4}$	1.90	11	$1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}$	$\sqrt{ }$

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	Pass/Fail: Equal? $(+/-\mathbf{0 . 1 v})$
$\mathbf{1}$	1.93	1	1.86 v dc	$\sqrt{ }$
$\mathbf{2}$	1.94	4	1.86 vdc	$\sqrt{ }$
$\mathbf{3}$	1.94	7	1.86 v dc	$\sqrt{ }$
$\mathbf{4}$	1.94	10	1.86 vdc	$\sqrt{ }$

8.4 Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu \mathrm{V} \sqrt{ } \mathrm{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA $\sqrt{ } \mathrm{Hz}$ should give $2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}$ out.

Ch.	Output $(\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})$	$\div($ Pre-amplifier gain)	Expected Value	Comparison
$\mathbf{1}$		1.82	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{2}$		1.77	$2.9 \mu \mathrm{~V} \mathrm{~Hz}$	$\sqrt{ }$
$\mathbf{3}$		1.63	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{4}$		1.51	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$

```
Unit
...............T_ACQ_P24
4.
Serial No.
Test Engineer.....Xen.
Date................24/9/10.
```


9. Distortion

```
Switch the filters out. Increase input voltage to 5 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.
```

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{2}$	$\sqrt{ }$

Unit.

.T_ACQ_P24. Serial No
Test Engineer.....Xen.
Date 24/9/10.

10 Load tests and Frequency response check

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

10.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo (Vo/20)	Specification	Pass/Fail
Ch1	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch2	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch3	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch4	67.5 mV	3.4 mA	>2.5mA peak	\checkmark

10Hz

Vo r.m.s	Peak lo $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.067	4.7 mA	$>\mathbf{~ 2 . 5 m A ~ p e a k ~}$	$\sqrt{ }$
Ch2	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

100 Hz

	Vor.m.s	$\begin{gathered} \text { Peak lo } \\ (\mathrm{Vo} / 20) \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	0.326	23.0 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch2	0.325	23.0 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch3	0.324	22.9 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch4	0.322	22.8 mA	>2.5mA peak	\checkmark

200 Hz

Vo r.m.s	Peak lo $($ Vo/20 $) \times$ 1.414	Specification	Pass/Fail	
Ch1	0.391	27.6 mA	$\boldsymbol{> 2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.391	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.390	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.389	27.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

Vo r.m.s	Peak lo $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.415	29.3 mA	$>\mathbf{2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.....Xen.
Date. .24/9/10

10.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo (Vo/20)	Specification	Pass/Fail
Ch1	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch2	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch3	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch4	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	

10 Hz

	Vo peak	Peak lo $($ Vo/20 $)$	Specification	Pass/Fail
Ch1	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch2	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch3	16 mV	800 uA	$>2.5 \mathrm{~mA}$ peak	
Ch4	16 mV	800 uA	$>2.5 \mathrm{~mA}$ peak	

100 Hz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.131	9.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.124	8.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.130	9.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.132	9.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.247	17.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.239	16.9 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.246	17.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.250	17.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.. Xen.
Date. 24/9/10.

10.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	1.99	2.8	140.7 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch3	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch4	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA }}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	2.3	3.3	162.6 mA	>125mA peak	\checkmark
Ch2	2.3	3.3	162.6 mA	>125mA peak	\checkmark
Ch3	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$
Ch4	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$

5 kHz

	Vo r.m.s	Vo pk.	Peak Io (Vo/20) $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	1.67	2.4	118.1 mA	>125mA peak	
Ch2	1.68	2.4	118.8 mA	$>125 \mathrm{~mA}$ peak	
Ch3	1.67	2.4	118.1 mA	$>125 \mathrm{~mA}$ peak	
Ch4	1.67	2.4	118.1 mA	>125mA peak	

11. Noise Measurements

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

Measure the noise output at 10 Hz .

	Spec in $\mathrm{dB} V \sqrt{ } \mathrm{~Hz}$	Measured @ 10 Hz	$-60 \mathrm{~dB}=$	Measured in $\mathrm{nV} \sqrt{ } \mathrm{Hz}$	OK?
Ch1	-143.5	-93.0	-153.0	22.4	$\sqrt{ }$
Ch2	-143.5	-93.6	-153.6	20.9	$\sqrt{ }$
Ch3	-143.5	-94.3	-154.3	19.3	$\sqrt{ }$
Ch4	-143.5	-93.4	-153.4	21.4	$\sqrt{ }$

Notes:

Specified noise output current at $10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}$ (worst case)
Total resistance at 10 Hz , in Low noise mode $=6.7 \mathrm{k}$
Amplifier noise voltage should therefore be $=67 \mathrm{nV} \sqrt{\mathrm{Hz}}$
$67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}$

```
Unit.
                TACQ24P
```

\qquad

``` Serial No
``` \(\qquad\)
```

Test Engineer .........RMC
Date
13/10/10

```

\section*{12. Final Assembly Tests}
1. Remove the lid of the box. \(\sqrt{ }\)
2. Unplug all external connections. \(\sqrt{ }\)
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight. \(\sqrt{ }\)
4. Check that all internal connectors are firmly mated. \(V\)
5. Tighten the screw-locks holding all the external connectors. \(\sqrt{ }\)
6. Check that all the LEDs are nicely centred.
7. Check that all links W4 are in place. \(\sqrt[V]{ }\)
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:
\begin{tabular}{|l|l|}
\hline UoB box ID & TACQ24P \\
\hline Driver board ID & TACQ24 \\
\hline Driver board Drawing No/Issue No & D0901047_V4 \\
\hline Monitor board ID & MON260 \\
\hline Monitor board Drawing No/Issue No & D070480 5 K \\
\hline
\end{tabular}
9. Check the security of any modification wires. None
10. Visually inspect. \(\sqrt{ }\)
11. Put the lid on and fasten all screws, \(\sqrt{ }\)

Check all external screws for tightness. \(\sqrt{ }\)

\section*{LIGO Laboratory / LIGO Scientific Collaboration}

\section*{Advanced LIGO UK}

March 2010

\section*{Triple Acquisition Driver Unit Test Report}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

\author{
Institute for Gravitational Research \\ University of Glasgow \\ Phone +44 (0) 1413305884 \\ Fax +44 (0) 1413306833 \\ E-mail k.strain@physics.gla.ac.uk \\ Engineering Department \\ CCLRC Rutherford Appleton Laboratory \\ Phone +44 (0) 1235445297 \\ Fax +44 (0) 1235445843 \\ E-mail J.Greenhalgh@rl.ac.uk
}

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT}
```

Unit...............T ACQ P25...........................S..Serial No.
Test Engineer.....Xen.
Date................25/8/10

```

Drive Card ID.......T ACQ25
Monitor Card ID....Mon150
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

\section*{1. Description}

\section*{Block diagram}

\section*{Description}

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.
```

Unit

```
\(\qquad\)
```

                            T_ACQ_P25
    ```
\(\qquad\)
Test Engineer.. Xen
```Date..................25/8/10
```


2. Test equipment

```
Power supplies (At least \(+/-20 v\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz )
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.

Links:

Check that the links W2 and W4 are present on each channel.

Test Engineer.....Xen.
Date.

4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{l \mid}$
5	0V	\sqrt{l}		
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
5	0V	$\sqrt{\|c\|}$		
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	$\sqrt{ }$

PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
11	V - (TP2)	-17 v Supply	$\sqrt{ }$
12	V - (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	0 V (TP3)		$\sqrt{ }$
24	0 V (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

5. TEST SET UP

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit................T_ACQ_P25.
                                    Serial No
Test Engineer.....Xen.
Date................25/8/10
```


6. Power

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents

$\mathbf{+ 1 6 . 5}$ supply current (mA)	- $\mathbf{1 6 . 5}$ supply current (mA)
500 mA	400 mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	$\sqrt{ }$	$\sqrt{ }$
Rear Panel	$\sqrt{ }$	$\sqrt{ }$

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen..
Date. 25/8/10

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
Ch1	ON	OFF	
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	\checkmark	$\sqrt{ }$

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{\|l\|}$	$\sqrt{ }$	$\sqrt{ }$

```
Unit
.T_ACQ_P25
Test Engineer.....Xen
```

Date 25/8/10

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S Monitor	Expected value	Pass/Fail: Equal? (+/-0.1v)
$\mathbf{1}$	0.33	3	0.33 v	$\sqrt{ }$
$\mathbf{2}$	0.33	6	0.33 v	$\sqrt{ }$
$\mathbf{3}$	0.33	9	0.33 v	$\sqrt{ }$
$\mathbf{4}$	0.33	12	0.33 v	$\sqrt{ }$

Adjust the input voltage until the voltage across the load resistor $=1 \mathrm{v}$ r.m.s. Record the current monitor output values.
8.2 Current Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	1.91	2	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{2}$	1.91	5	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{3}$	1.91	8	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{4}$	1.91	11	$1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}$	$\sqrt{ }$

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	Pass/Fail: Equal? ($+/ \mathbf{0 . 1 v})$
$\mathbf{1}$	1.94	1	1.86 vdc	$\sqrt{ }$
$\mathbf{2}$	1.94	4	1.86 vdc	$\sqrt{ }$
$\mathbf{3}$	1.95	7	1.86 v dc	$\sqrt{ }$
$\mathbf{4}$	1.95	10	1.86 vdc	$\sqrt{ }$

8.4 Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu \mathrm{V} \sqrt{ } \mathrm{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA $\sqrt{\mathrm{Hz}}$ should give $2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}$ out.

Ch.	Output $(\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})$	$\div($ Pre-amplifier gain $)$	Expected Value	Comparison
$\mathbf{1}$		1.55	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{2}$		1.39	$2.9 \mu \mathrm{~V} \mathrm{~Hz}$	$\sqrt{ }$
$\mathbf{3}$		1.01	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{4}$		1.41	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$

```
Unit
..............T_ACQ_P25
5.
Serial No
Test Engineer.....Xen.
Date................25/8/10.
```


9. Distortion

```
Switch the filters out. Increase input voltage to 5 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.
```

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{2}$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$

```
Unit.
                            T_ACQ_P25
Test Engineer.....Xen.
Date 25/8/10
```


10 Load tests and Frequency response check

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

10.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo (Vol20)	Specification	Pass/Fail
Ch1	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch2	67.5 mV	3.4 mA	>2.5mA peak	\checkmark
Ch3	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch4	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark

10 Hz

Vo r.m.s	Peak lo $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.066	4.7 mA	$>\mathbf{2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

100 Hz

Vo r.m.s	Peak lo $(\mathrm{Vo/20}) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.323	22.8 mA	$>\mathbf{2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.322	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.323	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.322	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200Hz

Vo r.m.s	Peak lo $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.390	27.6 mA	$\boldsymbol{> 2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.390	27.6 mA	$>\mathbf{2 . 5 m A}$ peak	$\sqrt{ }$
Ch3	0.389	27.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.389	27.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

Vo r.m.s	Peak lo $(\mathbf{V o / 2 0}) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.414	29.3 mA	$\boldsymbol{> 2 . 5 m A}$ peak	\checkmark
Ch2	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.413	29.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.....Xen.
Date. .25/8/10.

10.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo (Vo/20)	Specification	Pass/Fail
Ch1	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch2	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch3	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch4	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	

10 Hz

	Vo peak	Peak lo $($ Vo/20 $)$	Specification	Pass/Fail
Ch1	16 mV	800 uA	$>2.5 \mathrm{~mA}$ peak	
Ch2	13.5 mV	675 uA	$>2.5 \mathrm{~mA}$ peak	
Ch3	13.5 mV	675 uA	$>2.5 \mathrm{~mA}$ peak	
Ch4	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	

100 Hz

	Vo r.m.s	Peak lo $($ Vo/20 $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	0.131	9.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.125	8.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.123	8.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.127	9.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.248	17.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.241	17.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.238	16.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.242	17.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.368	26.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.368	26.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.. Xen.
Date 25/8/10.

10.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch3	1.96	2.8	138.6 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch4	1.96	2.8	138.6 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA }}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	2.3	3.3	162.6 mA	>125mA peak	\checkmark
Ch2	2.3	3.3	162.6 mA	>125mA peak	\checkmark
Ch3	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$
Ch4	2.2	3.1	155.5 mA	>125mA peak	$\sqrt{ }$

5 kHz

	Vo r.m.s	Vo pk.	Peak Io (Vo/20) $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	1.67	2.4	118.1 mA	>125mA peak	
Ch2	1.67	2.4	118.1 mA	$>125 \mathrm{~mA}$ peak	
Ch3	1.67	2.4	118.1 mA	$>125 \mathrm{~mA}$ peak	
Ch4	1.66	2.3	117.4 mA	>125mA peak	

11. Noise Measurements

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

Measure the noise output at 10 Hz .

	Spec in $\mathrm{dB} V \sqrt{ } \mathrm{~Hz}$	Measured @ 10 Hz	$-60 \mathrm{~dB}=$	Measured in $\mathrm{nV} \sqrt{ } \mathrm{Hz}$	OK?
Ch1	-143.5	-93.3	-153.3	21.6	$\sqrt{ }$
Ch2	-143.5	-94.3	-154.3	19.3	$\sqrt{ }$
Ch3	-143.5	-91.8	-151.8	25.7	$\sqrt{ }$
Ch4	-143.5	-91.9	-151.9	25.4	$\sqrt{ }$

Notes:

Specified noise output current at $10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}$ (worst case)
Total resistance at 10 Hz , in Low noise mode $=6.7 \mathrm{k}$
Amplifier noise voltage should therefore be $=67 \mathrm{nV} \sqrt{ } \mathrm{Hz}$
$67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}$

```
Unit
                TACQ25P
                                    Serial No
```

\qquad

```
Test Engineer .........RMC
Date
14/10/10
```


12. Final Assembly Tests

1. Remove the lid of the box. $\sqrt{ }$
2. Unplug all external connections. $\sqrt{ }$
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight. $\sqrt{ }$
4. Check that all internal connectors are firmly mated. V
5. Tighten the screw-locks holding all the external connectors. $\sqrt{ }$
6. Check that all the LEDs are nicely centred.
7. Check that all links $W 4$ are in place. $\sqrt{ }$
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TACQ25P
Driver board ID	TACQ25P
Driver board Drawing No/Issue No	D0901047_V4
Monitor board ID	MON150__
Monitor board Drawing No/Issue No	D070480_4_K

9. Check the security of any modification wires. None
10. Visually inspect. $\sqrt{ }$
11. Put the lid on and fasten all screws, $\sqrt{ }$

Check all external screws for tightness. $\sqrt{ }$

LIGO Laboratory / LIGO Scientific Collaboration

Advanced LIGO UK

March 2010

Triple Acquisition Driver Unit Test Report

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT

```
Unit...............T ACQ P26...........................S..Serial No.
Test Engineer.....Xen.
Date................25/8/10.
```

Drive Card ID.......T_ACQ26
Monitor Card ID....Mon151
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

1. Description

Block diagram

Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
```

\qquad

``` T_ACQ_P26
``` \(\qquad\)
``` Serial No
Test Engineer.....Xen.
Date 25/8/10
```


2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz )
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.

Links:

Check that the links W2 and W4 are present on each channel.

Test Engineer.....Xen.
Date.

4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{l \mid}$
5	0V	\sqrt{l}		
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
5	0V	$\sqrt{\|c\|}$		
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	$\sqrt{ }$

PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
11	V - (TP2)	-17 v Supply	$\sqrt{ }$
12	V - (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	0 V (TP3)		$\sqrt{ }$
24	0 V (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

5. TEST SET UP

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit.
```

\qquad

```
                            T_ACQ_P26.
                                    Serial No
Test Engineer.....Xen.
Date...............25/8/10.
```


6. Power

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
500 mA	400 mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	$\sqrt{ }$	$\sqrt{ }$
Rear Panel	$\sqrt{ }$	$\sqrt{ }$

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen...
Date. 25/8/10

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
Ch1	ON	OFF	
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	\checkmark	$\sqrt{ }$

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{\|l\|}$	$\sqrt{ }$	$\sqrt{ }$

```
Unit
                            .T_ACQ_P26
Test Engineer.....Xen.
```

Date 25/8/10

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S Monitor	Expected value	Pass/Fail: Equal? (+/-0.1v)
$\mathbf{1}$	0.33	3	0.33 v	$\sqrt{ }$
$\mathbf{2}$	0.33	6	0.33 v	$\sqrt{ }$
$\mathbf{3}$	0.33	9	0.33 v	$\sqrt{ }$
$\mathbf{4}$	0.33	12	0.33 v	$\sqrt{ }$

Adjust the input voltage until the voltage across the load resistor $=1 \mathrm{v}$ r.m.s. Record the current monitor output values.
8.2 Current Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	1.91	2	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{2}$	1.91	5	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{3}$	1.91	8	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{4}$	1.91	11	$1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}$	$\sqrt{ }$

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	Pass/Fail: Equal? $(+/-\mathbf{0 . 1 v})$
$\mathbf{1}$	1.94	1	1.86 v dc	$\sqrt{ }$
$\mathbf{2}$	1.95	4	1.86 vdc	$\sqrt{ }$
$\mathbf{3}$	1.95	7	1.86 v dc	$\sqrt{ }$
$\mathbf{4}$	1.95	10	1.86 vdc	$\sqrt{ }$

8.4 Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu \mathrm{V} \sqrt{ } \mathrm{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA $\sqrt{\mathrm{Hz}}$ should give $2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}$ out.

Ch.	Output $(\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})$	$\div($ Pre-amplifier gain)	Expected Value	Comparison
$\mathbf{1}$		1.47	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{2}$		1.37	$2.9 \mu \mathrm{~V} \mathrm{~Hz}$	$\sqrt{ }$
$\mathbf{3}$		0.96	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{4}$		1.88	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$

```
Unit
..............T_ACQ_P26
```

\qquad

```
Serial No
Test Engineer.....Xen.
Date................25/8/10
```


9. Distortion

```
Switch the filters out. Increase input voltage to 5 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.
```

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{2}$	$\sqrt{ }$

```
Unit
                            T_ACQ_P26
Test Engineer.....Xen.
Date 25/8/10
```

10 Load tests and Frequency response check
Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

10.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo (Vo/20)	Specification	Pass/Fail
Ch1	67.5 mV	3.4 mA	$>\mathbf{2 . 5 m A}$ peak	\checkmark
Ch2	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

10 Hz

Vo r.m.s	Peak lo $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.066	4.7 mA	$>\mathbf{2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

100 Hz

Vo r.m.s	Peak lo $(\mathrm{Vo/20}) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.322	22.8 mA	$>\mathbf{2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.322	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.321	22.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.323	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200Hz

	Vor.m.s	$\begin{gathered} \text { Peak lo } \\ (\mathrm{Vo} / 20) \times 1.414 \end{gathered}$	Specification	Pass/Fail
Ch1	0.389	27.5 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch2	0.390	27.6 mA	>2.5mA peak	\checkmark
Ch3	0.389	27.5 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch4	0.389	27.5 mA	>2.5mA peak	\checkmark

1 kHz

Vo r.m.s	Peak lo $($ Vo/20 $) \times$ 1.414	Specification	Pass/Fail	
Ch1	0.415	29.3 mA	$>\mathbf{~ 2 . 5 m A ~ p e a k ~}$	$\sqrt{ }$
Ch2	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.413	29.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Unit.
.T_ACQ_P26.
Test Engineer.....Xen.
Date. .25/8/10.

10.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1 Hz

	Vo peak	Peak lo (Vo/20)	Specification	Pass/Fail
Ch1	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch2	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch3	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch4	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	

10 Hz

	Vo peak	Peak lo (Vo/20)	Specification	Pass/Fail
Ch1	16 mV	800 uA	$>2.5 \mathrm{~mA}$ peak	
Ch2	15 mV	750 uA	$>2.5 \mathrm{~mA}$ peak	
Ch3	15 mV	750 uA	$>2.5 \mathrm{~mA}$ peak	
Ch4	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	

100 Hz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.128	9.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.131	9.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.127	9.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.128	9.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.244	17.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.248	17.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.243	17.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.244	17.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.371	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.368	26.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.. Xen.
Date 25/8/10.

10.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch3	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch4	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA }}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$
Ch2	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$
Ch3	2.2	3.1	155.5 mA	>125mA peak	$\sqrt{ }$
Ch4	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

5 kHz

	Vo r.m.s	Vo pk.	Peak Io (Vo/20) $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	1.67	2.4	118.1 mA	>125mA peak	\checkmark
Ch2	1.68	2.4	118.8 mA	>125mA peak	$\sqrt{ }$
Ch3	1.66	2.3	117.4 mA	>125mA peak	$\sqrt{ }$
Ch4	1.66	2.3	117.4 mA	>125mA peak	$\sqrt{ }$

```
Unit
                T_ACQ_P26

\section*{11. Noise Measurements}

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.


Measure the noise output at 10 Hz .
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \begin{tabular}{c} 
Spec in \\
\(\mathrm{dB} V \sqrt{ } \mathrm{~Hz}\)
\end{tabular} & \begin{tabular}{c} 
Measured @ \\
10 Hz
\end{tabular} & \(-60 \mathrm{~dB}=\) & \begin{tabular}{c} 
Measured in \\
\(\mathrm{nV} \sqrt{ } \mathrm{Hz}\)
\end{tabular} & OK? \\
\hline Ch1 & -143.5 & -91.4 & -151.4 & 26.9 & \(\checkmark\) \\
\hline Ch2 & -143.5 & -91.1 & -151.1 & 27.9 & \(\sqrt{ }\) \\
\hline Ch3 & -143.5 & -93.0 & -153.0 & 22.4 & \(\sqrt{ }\) \\
\hline Ch4 & -143.5 & -93.1 & -153.1 & 22.1 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Notes:}

Specified noise output current at \(10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}\) (worst case)
Total resistance at 10 Hz , in Low noise mode \(=6.7 \mathrm{k}\)
Amplifier noise voltage should therefore be \(=67 \mathrm{nV} \sqrt{ } \mathrm{Hz}\)
\(67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}\)
```

Unit
TACQ26P

```
\(\qquad\)
\(\qquad\)
```Test EngineerRMCDate14/10/10
```


## 12. Final Assembly Tests

1. Remove the lid of the box. $\sqrt{ }$
2. Unplug all external connections. $\sqrt{ }$
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight. $\sqrt{ }$
4. Check that all internal connectors are firmly mated. $V$
5. Tighten the screw-locks holding all the external connectors. $\sqrt{ }$
6. Check that all the LEDs are nicely centred.
7. Check that all links $W 4$ are in place. $\sqrt{ }$
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TACQ26P
Driver board ID	TACQ26
Driver board Drawing No/Issue No	D0901047_V4
Monitor board ID	MON151
Monitor board Drawing No/Issue No	D070480/4/K

9. Check the security of any modification wires. None
10. Visually inspect. $\sqrt{ }$
11. Put the lid on and fasten all screws, $\sqrt{ }$

Check all external screws for tightness. $\sqrt{ }$

## LIGO Laboratory / LIGO Scientific Collaboration

## Advanced LIGO UK

March 2010

## Triple Acquisition Driver Unit Test Report

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research<br>University of Glasgow<br>Phone +44 (0) 1413305884<br>Fax +44 (0) 1413306833<br>E-mail k.strain@physics.gla.ac.uk<br>Engineering Department<br>CCLRC Rutherford Appleton Laboratory<br>Phone +44 (0) 1235445297<br>Fax +44 (0) 1235445843<br>E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT

```
Unit................T ACQ P27.............................Serial No..
Test Engineer.....Xen.
```

Date..................6/8/10

Drive Card ID.......T ACQ27
Monitor Card ID....Mon144.
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
$5 \quad$ Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

## 1. Description

## Block diagram



## Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
```

$\qquad$

```
 T_ACQ_P27
```

$\qquad$

``` Serial No
Test Engineer.....Xen.
Date 6/8/10
```


## 2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz)
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	



## 3. Inspection

## Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.

## Links:

Check that the links W2 and W4 are present on each channel.

Test Engineer..

## 4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{l \mid}$
5	0V	$\sqrt{l}$		
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

## LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
5	0V	$\sqrt{\|c\|}$		
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	$\sqrt{ }$

## PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
11	V - (TP2)	-17 v Supply	$\sqrt{ }$
12	V - (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	0 V (TP3)		$\sqrt{ }$
24	0 V (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

## 5. TEST SET UP



Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

## Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit
```

$\qquad$

```
 T_ACQ_P27
 Serial No
Test Engineer.....Xen.
Date
5/8/10
```


## 6. Power

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents

$\mathbf{+ 1 6 . 5}$ supply current (mA)	- 16.5 supply current (mA)
500 mA	400 mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	$\sqrt{ }$	$\sqrt{ }$
Rear Panel	$\sqrt{ }$	$\sqrt{ }$

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen.
Date. 5/8/10

## 7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\checkmark$	$\checkmark$	$\checkmark$
Ch2	$\checkmark$	$\checkmark$	$\checkmark$
Ch3	$\checkmark$	$\checkmark$	$\checkmark$
Ch4	$\checkmark$	$\checkmark$	$\checkmark$

TEST RELAYS

Channel	Indicator		OK?
Ch1	ON	OFF	
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

## ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\checkmark$	$\checkmark$	$\checkmark$
Ch2	$\checkmark$	$\checkmark$	$\checkmark$
Ch3	$\checkmark$	$\checkmark$	$\checkmark$
Ch4	$\checkmark$	$\checkmark$	$\checkmark$

## 8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to 0 v for each channel.

### 8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S   Monitor	Expected value	Pass/Fail:   Equal? (+/- 0.1v)
$\mathbf{1}$	0.33	3	0.33 v	$\sqrt{ }$
$\mathbf{2}$	0.33	6	0.33 v	$\sqrt{ }$
$\mathbf{3}$	0.33	9	0.33 v	$\sqrt{ }$
$\mathbf{4}$	0.33	12	0.33 v	$\sqrt{ }$

Adjust the input voltage until the voltage across the load resistor $=1 \mathrm{v}$ r.m.s. Record the current monitor output values.
8.2 Current Monitors

Ch.	Output	V, I and R.M.S   Monitor	Expected   Value	Pass/Fail:   Equal? (+/- 0.1v)
$\mathbf{1}$	1.93	2	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{2}$	1.93	5	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{3}$	1.93	8	$1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}$	$\sqrt{ }$
$\mathbf{4}$	1.92	11	1.86 v r.m.s	$\sqrt{ }$

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S   Monitor	Expected   Value	Pass/Fail:   Equal? (+/-0.1v)
$\mathbf{1}$	1.96	1	1.86 vdc	$\sqrt{ }$
$\mathbf{2}$	1.96	4	1.86 vdc	$\sqrt{ }$
$\mathbf{3}$	1.96	7	1.86 vdc	$\sqrt{ }$
$\mathbf{4}$	1.96	10	1.86 vdc	$\sqrt{ }$

### 8.4 Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu \mathrm{V} V \mathrm{~Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA $\sqrt{ } \mathrm{Hz}$ should give $2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}$ out.

Ch.	Output   $(\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})$	$\div($ Pre-amplifier   gain)	Expected   Value	Comparison
$\mathbf{1}$		1.05	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{2}$		0.99	$2.9 \mu \mathrm{~V} \mathrm{~Hz}$	$\sqrt{ }$
$\mathbf{3}$		1.14	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{4}$		1.51	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$

```
Unit
```

$\qquad$

```
 T_ACQ_P27
```

$\qquad$

```
 Serial No
Test Engineer.....Xen.
Date
5/8/10
```


## 9. Distortion

```
Switch the filters out. Increase input voltage to 5 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.
```

	Acquisition Mode:   Distortion Free?	Non-Acquisition Mode:   Distortion Free?
Ch1	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{2}$	$\sqrt{ }$

Unit. .T_ACQ_P27. Serial No
Test Engineer.....Xen.
Date. .5/8/10

## 10 Load tests and Frequency response check

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

### 10.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo   (Vo/20)	Specification	Pass/Fail
Ch1	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

10 Hz

	Vo r.m.s	Peak lo   $($ Vo/20 $) \times 1.414$	Specification	Pass/Fail
Ch1	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.065	4.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

100 Hz

	Vo r.m.s	Peak lo   $($ Vo/20 $) \times 1.414$	Specification	Pass/Fail
Ch1	0.323	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.321	22.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.322	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.322	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Peak lo   $($ Vo/20 $) \times 1.414$	Specification	Pass/Fail
Ch1	0.389	27.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.389	27.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.389	27.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.389	27.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Peak lo   $($ Vo/20 $) \times 1.414$	Specification	Pass/Fail
Ch1	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.. Xen.
Date 5/8/10

### 10.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo   (Vo/20)	Specification	Pass/Fail
Ch1	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch2	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch3	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch4	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	

10 Hz

	Vo peak	Peak Io   (Vo/20)	Specification	Pass/Fail
Ch1	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch2	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch3	16 mV	800 uA	$>2.5 \mathrm{~mA}$ peak	
Ch4	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	

100 Hz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.130	9.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.129	9.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.127	9.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.129	9.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.247	17.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.246	17.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.243	17.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.246	17.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch2	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.. Xen.
Date 5/8/10

### 10.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch3	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch4	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA }}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	2.3	3.3	162.6 mA	>125mA peak	$\checkmark$
Ch2	2.3	3.3	162.6 mA	>125mA peak	$\checkmark$
Ch3	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$
Ch4	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$

5 kHz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x 1 . 4 1 4}$	Specification	Pass/Fail
Ch1	1.67	2.4	118.1 mA	>125mA peak	
Ch2	1.67	2.4	118.1 mA	>125mA peak	
Ch3	1.67	2.4	118.1 mA	>125mA peak	
Ch4	1.67	2.4	118.1 mA	>125mA peak	

Test Engineer.....Xen
Date 5/8/10

## 11. Noise Measurements

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.


Measure the noise output at 10 Hz .

	Spec in   $\mathrm{dB} V \sqrt{ } \mathrm{~Hz}$	Measured @   10 Hz	$-60 \mathrm{~dB}=$	Measured in   $\mathrm{nV} \sqrt{ } \mathrm{Hz}$	OK?
Ch1	-143.5	-92.8	-152.8	22.9	$\sqrt{ }$
Ch2	-143.5	-92.3	-152.3	24.3	$\sqrt{ }$
Ch3	-143.5	-92.0	-152.0	25.1	$\sqrt{ }$
Ch4	-143.5	-92.5	-152.5	23.7	$\sqrt{ }$

## Notes:

Specified noise output current at $10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}$ (worst case)
Total resistance at 10 Hz , in Low noise mode $=6.7 \mathrm{k}$
Amplifier noise voltage should therefore be $=67 \mathrm{nV} \sqrt{\mathrm{Hz}}$
$67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}$

```
Unit.
 .TACQ27P.
 Serial No
```

$\qquad$

```Test EngineerRMCDate14/10/10
```


## 12. Final Assembly Tests

1. Remove the lid of the box. $\sqrt{ }$
2. Unplug all external connections. $\sqrt{ }$
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight. $\sqrt{ }$
4. Check that all internal connectors are firmly mated. $V$
5. Tighten the screw-locks holding all the external connectors. $\sqrt{ }$
6. Check that all the LEDs are nicely centred. $\sqrt{ }$
7. Check that all links W4 are in place. $\sqrt[V]{ }$
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TACQ27P
Driver board ID	TACQ27
Driver board Drawing No/Issue No	D0901047_V4
Monitor board ID	MON144
Monitor board Drawing No/Issue No	D070480_4_K

9. Check the security of any modification wires. None
10. Visually inspect. $\sqrt{ }$
11. Put the lid on and fasten all screws, $\sqrt{ }$

Check all external screws for tightness. $\sqrt{ }$

## LIGO Laboratory / LIGO Scientific Collaboration

## Advanced LIGO UK

March 2010

## Triple Acquisition Driver Unit Test Report

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research<br>University of Glasgow<br>Phone +44 (0) 1413305884<br>Fax +44 (0) 1413306833<br>E-mail k.strain@physics.gla.ac.uk<br>Engineering Department<br>CCLRC Rutherford Appleton Laboratory<br>Phone +44 (0) 1235445297<br>Fax +44 (0) 1235445843<br>E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT

```
Unit...............T ACQ P28............................Serial No.
Test Engineer.....Xen.
Date................8/10/10
```

Drive Card ID......T ACQ28
Monitor Card ID...Mon216.
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

## 1. Description

## Block diagram



## Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
```

$\qquad$

``` T_ACQ_P28 Serial No
Test Engineer.....Xen.
Date 8/10/10
```


## 2. Test equipment

```
Power supplies (At least \(+/-20 v\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz)
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	



## 3. Inspection

## Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.

## Links:

Check that the links W2 and W4 are present on each channel.
$\qquad$

## 4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\checkmark$
2	PD2P	Photodiode B+	2	$\checkmark$
3	PD3P	Photodiode C+	3	$\checkmark$
4	PD4P	Photodiode D+	4	$\checkmark$
	5	OV	$\checkmark$	
6	PD1N	Photodiode A-	14	$\checkmark$
7	PD2N	Photodiode B-	15	$\checkmark$
8	PD3N	Photodiode C-	16	$\checkmark$
9	PD4N	Photodiode D-	17	$\checkmark$

## LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\checkmark$
2	Imon2P		6	$\checkmark$
3	Imon3P		7	$\checkmark$
4	Imon4P		8	$\checkmark$
	5	OV	$\checkmark$	
6	Imon1N		18	$\checkmark$
7	Imon2N		19	$\checkmark$
8	Imon3N		20	$\checkmark$
9	Imon4N		21	$\checkmark$

PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
11	V - (TP2)	-17 v Supply	$\sqrt{ }$
12	V - (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	0 V (TP3)		$\sqrt{ }$
24	0 V (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

## 5. TEST SET UP



Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

## Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit
```

$\qquad$
$\qquad$

```
Date
```


## 6. Power

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents

$\mathbf{+ 1 6 . 5}$ supply current (mA)	- $\mathbf{1 6 . 5}$ supply current (mA)
500 mA	400 mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	$\sqrt{ }$	$\sqrt{ }$
Rear Panel	$\sqrt{ }$	$\sqrt{ }$

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen.. .7/10/10

## 7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\checkmark$	$\checkmark$	$\checkmark$
Ch2	$\checkmark$	$\checkmark$	$\checkmark$
Ch3	$\checkmark$	$\checkmark$	$\checkmark$
Ch4	$\checkmark$	$\checkmark$	$\checkmark$

TEST RELAYS

Channel	Indicator		OK?
Ch1	ON	OFF	
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\checkmark$	$\sqrt{ }$

## ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{\|l\|}$	$\sqrt{ }$	$\sqrt{ }$

```
Unit. T_ACQ_P28. Serial No
Test Engineer.....Xen.
```

Date .7/10/10

## 8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

### 8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S   Monitor	Expected value	Pass/Fail:   Equal? (+/- 0.1v)
$\mathbf{1}$	0.33	3	0.33 v	$\sqrt{ }$
$\mathbf{2}$	0.33	6	0.33 v	$\sqrt{ }$
$\mathbf{3}$	0.33	9	0.33 v	$\sqrt{ }$
$\mathbf{4}$	0.33	12	0.33 v	$\sqrt{ }$

Adjust the input voltage until the voltage across the load resistor $=1 \mathrm{v}$ r.m.s. Record the current monitor output values.
8.2 Current Monitors

Ch.	Output	V, I and R.M.S   Monitor	Expected   Value	Pass/Fail:   Equal? (+/- 0.1v)
$\mathbf{1}$	1.91	2	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{2}$	1.91	5	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{3}$	1.91	8	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{4}$	1.91	11	$1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}$	$\sqrt{ }$

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S   Monitor	Expected   Value	Pass/Fail:   Equal? $\mathbf{( + / - 0 . 1 v )}$
$\mathbf{1}$	1.95	1	1.86 vdc	$\sqrt{ }$
$\mathbf{2}$	1.95	4	1.86 vdc	$\sqrt{ }$
$\mathbf{3}$	1.94	7	1.86 v dc	$\sqrt{ }$
$\mathbf{4}$	1.95	10	1.86 vdc	$\sqrt{ }$

### 8.4 Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu \mathrm{V} \sqrt{\mathrm{Hz}}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA $\sqrt{ } \mathrm{Hz}$ should give $2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}$ out.

Ch.	Output   $(\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})$	$\div($ Pre-amplifier   gain)	Expected   Value	Comparison
$\mathbf{1}$		1.45	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{2}$		1.55	$2.9 \mu \mathrm{~V} \mathrm{~Hz}$	$\sqrt{ }$
$\mathbf{3}$		1.38	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{4}$		1.53	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$

```
Unit.
```

$\qquad$

```
 T_ACQ_P28.
 Serial No
Test Engineer.....Xen.
Date
 8/10/10
```


## 9. Distortion

```
Switch the filters out. Increase input voltage to 5 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.
```

	Acquisition Mode:   Distortion Free?	Non-Acquisition Mode:   Distortion Free?
Ch1	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{2}$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$

Unit.
.T_ACQ_P28.
Test Engineer.....Xen.
Date.
.8/10/10.

## 10 Load tests and Frequency response check

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

### 10.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo (Vo/20)	Specification	Pass/Fail
Ch1	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch2	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch3	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch4	67.5 mV	3.4 mA	>2.5mA peak	$\checkmark$

10Hz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.066	4.7 mA	$>\mathbf{~ 2 . 5 m A ~ p e a k ~}$	$\sqrt{ }$
Ch2	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

100 Hz

	Vor.m.s	$\begin{gathered} \text { Peak lo } \\ (\mathrm{Vo} / 20) \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	0.324	22.9 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch2	0.323	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch3	0.322	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch4	0.324	22.9 mA	>2.5mA peak	1

200 Hz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times$ 1.414	Specification	Pass/Fail	
Ch1	0.391	27.6 mA	$\boldsymbol{> 2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.391	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.390	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.390	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.415	29.3 mA	$>\mathbf{2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.416	29.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Unit.
.T_ACQ_P28.
Serial No
Test Engineer.....Xen
Date.
.8/10/10.

### 10.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1 Hz

	Vo peak	Peak lo   (Vo/20)	Specification	Pass/Fail
Ch1	45 mV	2.3 mA	$>\mathbf{2 . 5 m A}$ peak	
Ch2	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch3	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch4	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	

10 Hz

	Vo peak	Peak lo   $($ Vo/20 $)$	Specification	Pass/Fail
Ch1	16 mV	800 uA	$>2.5 \mathrm{~mA}$ peak	
Ch2	16 mV	800 uA	$>2.5 \mathrm{~mA}$ peak	
Ch3	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch4	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	

100 Hz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.132	9.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.127	9.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.129	9.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.131	9.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.249	17.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.243	17.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.246	17.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.247	17.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer..
Xen.
Date.
.8/10/10.

### 10.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA }}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	2.3	3.3	162.6 mA	>125mA peak	$\checkmark$
Ch2	2.3	3.3	162.6 mA	>125mA peak	$\checkmark$
Ch3	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$
Ch4	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$

5 kHz

	Vo r.m.s	Vo pk.	Peak Io (Vo/20)   $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	1.68	2.4	118.8 mA	>125mA peak	
Ch2	1.68	2.4	118.8 mA	$>125 \mathrm{~mA}$ peak	
Ch3	1.67	2.4	118.1 mA	$>125 \mathrm{~mA}$ peak	
Ch4	1.67	2.4	118.1 mA	>125mA peak	

Test Engineer.....Xen
Date .7/10/10.

## 11. Noise Measurements

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.


Measure the noise output at 10 Hz .

	Spec in   $\mathrm{dB} V \mathrm{~V} \mathrm{~Hz}$	Measured @   10 Hz	$-60 \mathrm{~dB}=$	Measured in   $\mathrm{nV} \sqrt{ } \mathrm{Hz}$	OK?
Ch1	-143.5	-92.5	-152.5	23.7	$\checkmark$
Ch2	-143.5	-92.3	-152.3	24.3	$\sqrt{ }$
Ch3	-143.5	-92.3	-152.3	24.3	$\sqrt{ }$
Ch4	-143.5	-91.8	-151.8	25.7	$\sqrt{ }$

## Notes:

Specified noise output current at $10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}$ (worst case)
Total resistance at 10 Hz , in Low noise mode $=6.7 \mathrm{k}$
Amplifier noise voltage should therefore be $=67 \mathrm{nV} \sqrt{ } \mathrm{Hz}$
$67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{\mathrm{~Hz}}$

```
Unit.
 TACQ29P
```

$\qquad$

``` Serial No
``` \(\qquad\)
```

Test EngineerRMC
Date
4/10/10

```

\section*{12. Final Assembly Tests}
1. Remove the lid of the box. \(\sqrt{ }\)
2. Unplug all external connections. \(\sqrt{ }\)
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight. \(\sqrt{ }\)
4. Check that all internal connectors are firmly mated. \(V\)
5. Tighten the screw-locks holding all the external connectors. \(\sqrt{ }\)
6. Check that all the LEDs are nicely centred. \(\sqrt{ }\)
7. Check that all links W4 are in place. \(\sqrt[V]{ }\)
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:
\begin{tabular}{|l|l|}
\hline UoB box ID & TACQ29P \\
\hline Driver board ID & TACQ29P \\
\hline Driver board Drawing No/Issue No & D0901047v4 \\
\hline Monitor board ID & MON244 \\
\hline Monitor board Drawing No/Issue No & DO7O480_5_K \\
\hline
\end{tabular}
9. Check the security of any modification wires. None
10. Visually inspect. \(\sqrt{ }\)
11. Put the lid on and fasten all screws, \(\sqrt{ }\)

Check all external screws for tightness. \(\sqrt{ }\)

\section*{LIGO Laboratory / LIGO Scientific Collaboration}

\section*{Advanced LIGO UK}

March 2010

\section*{Triple Acquisition Driver Unit Test Report}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

\author{
Institute for Gravitational Research \\ University of Glasgow \\ Phone +44 (0) 1413305884 \\ Fax +44 (0) 1413306833 \\ E-mail k.strain@physics.gla.ac.uk \\ Engineering Department \\ CCLRC Rutherford Appleton Laboratory \\ Phone +44 (0) 1235445297 \\ Fax +44 (0) 1235445843 \\ E-mail J.Greenhalgh@rl.ac.uk
}

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT}
```

Unit...............T_ACQ_P29.............................Serial No.
Test Engineer.....Xen
Date................14/9/10

```

Drive Card ID......T ACQ29
Monitor Card ID...Mon244
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

\section*{1. Description}

\section*{Block diagram}


\section*{Description}

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.
```

Unit
_ACQ_P29

```
\(\qquad\)
```

Serial No
Test Engineer.....Xen.
Date
14/9/10

```

\section*{2. Test equipment}
```

Power supplies (At least $+/-20 \mathrm{v}$ variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz)
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & ISO-TECH & ISR622 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77III & \\
\hline Signal analyzer & Agilent & 35670A & \\
\hline Pre-amplifier & Stanford Systems & SR560 & \\
\hline
\end{tabular}


\section*{3. Inspection}

\section*{Workmanship}

Inspect the general workmanship standard and comment: \(\sqrt{ }\)
Capacitors C35 and C27 have been changed to 1 nF on all channels.

\section*{Links:}

Check that the links W2 and W4 are present on each channel.

Test Engineer.....Xen.
Date.
14/9/10.

\section*{4. Continuity Checks}

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\checkmark\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\checkmark\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\checkmark\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\checkmark\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\checkmark\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\checkmark\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\checkmark\) \\
\hline
\end{tabular}

\section*{LED Mon}
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\checkmark\) \\
\hline 2 & Imon2P & & 6 & \(\checkmark\) \\
\hline 3 & Imon3P & & 7 & \(\checkmark\) \\
\hline 4 & Imon4P & & 8 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & Imon1N & & 18 & \(\checkmark\) \\
\hline 7 & Imon2N & & 19 & \(\checkmark\) \\
\hline 8 & Imon3N & & 20 & \(\checkmark\) \\
\hline 9 & Imon4N & & 21 & \(\checkmark\) \\
\hline
\end{tabular}

PD from Sat
\begin{tabular}{|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & \(\mathrm{~V}+\) (TP1) & +17 v Supply & \(\sqrt{ }\) \\
\hline 10 & \(\mathrm{~V}+\) (TP1) & +17 v Supply & \(\sqrt{ }\) \\
\hline 11 & V - (TP2) & -17 v Supply & \(\sqrt{ }\) \\
\hline 12 & V - (TP2) & -17 v Supply & \(\sqrt{ }\) \\
\hline 13 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 22 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 23 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 24 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}


Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, \(4=\) positive input
Drive Input J3 pins 6, 7, 8, \(9=\) negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, \(10=+16.5 \mathrm{v}\)
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, \(25=0 v\)
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin \(1 \quad\) Ch1 \(-=\mathrm{J} 4\) pin 9
Ch2 \(+=\mathrm{J} 4\) pin \(3 \quad\) Ch2- \(=\mathrm{J} 4\) pin 11
Ch3 \(+=\mathrm{J} 4\) pin \(5 \quad\) Ch3- \(=\mathrm{J} 4\) pin 13
Ch4+ = J4 pin \(7 \quad\) Ch4- \(=\mathrm{J} 4\) pin 15
```

Unit

```
\(\qquad\)
``` T_ACQ_P29 29. \(\qquad\)
```

Test Engineer.....Xen.
Date
14/9/10.

```

\section*{6. Power}

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents
\begin{tabular}{|c|c|}
\hline \(\mathbf{+ 1 6 . 5}\) supply current (mA) & - \(\mathbf{1 6 . 5}\) supply current (mA) \\
\hline 500 mA & 400 mA \\
\hline
\end{tabular}

Check that all power LEDs are illuminated.
\begin{tabular}{|c|c|c|}
\hline LEDs & Plus & Minus \\
\hline Front Panel & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Rear Panel & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen..
Date. 14/9/10

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|l|}{Indicator} & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch2 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch3 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch4 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline
\end{tabular}

TEST RELAYS
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline Ch1 & ON & OFF & \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{ACQUISITION RELAYS}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|l|}{Indicator} & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch2 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch3 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch4 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline
\end{tabular}
```

Unit.
.T_ACQ_P29
Serial No.
Test Engineer.....Xen.

```
Date
14/9/10

\section*{8. Monitor Outputs}

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

\subsection*{8.1 Voltage Monitors}
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output: & \begin{tabular}{c}
V, I and R.M.S \\
Monitor
\end{tabular} & Expected value & \begin{tabular}{c}
Pass/Fail: \\
Equal? (+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & 0.33 & 3 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 0.33 & 6 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 0.33 & 9 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 0.33 & 12 & 0.33 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

Adjust the input voltage until the voltage across the load resistor \(=1 \mathrm{v}\) r.m.s. Record the current monitor output values.
8.2 Current Monitors
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output & \begin{tabular}{c}
V, I and R.M.S \\
Monitor
\end{tabular} & \begin{tabular}{c}
Expected \\
Value
\end{tabular} & \begin{tabular}{c}
Pass/Fail: \\
Equal? (+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & 1.91 & 2 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 1.92 & 5 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 1.92 & 8 & \(1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 1.92 & 11 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.3 R.M.S Monitors
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output & \begin{tabular}{c}
V, I and R.M.S \\
Monitor
\end{tabular} & \begin{tabular}{c}
Expected \\
Value
\end{tabular} & \begin{tabular}{c}
Pass/Fail: \\
Equal? \(\mathbf{(+ / - 0 . 1 v)}\)
\end{tabular} \\
\hline \(\mathbf{1}\) & 1.95 & 1 & 1.86 vdc & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 1.95 & 4 & 1.86 vdc & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 1.95 & 7 & 1.86 v dc & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 1.95 & 10 & 1.86 vdc & \(\sqrt{ }\) \\
\hline
\end{tabular}

\subsection*{8.4 Noise Monitors}
- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in \(\mu \mathrm{V} \sqrt{ } \mathrm{Hz}\) on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \(\sqrt{ } \mathrm{Hz}\) should give \(2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}\) out.
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c}
Output \\
\((\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})\)
\end{tabular} & \begin{tabular}{c}
\(\div(\) Pre-amplifier \\
gain)
\end{tabular} & \begin{tabular}{c}
Expected \\
Value
\end{tabular} & Comparison \\
\hline \(\mathbf{1}\) & & 1.52 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & & 1.46 & \(2.9 \mu \mathrm{~V} \mathrm{~Hz}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & & 1.78 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & & 1.65 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit.
...............T_ACQ_P29
29.
Serial No
Test Engineer.....Xen.
Date
14/9/10

```

\section*{9. Distortion}
```

Switch the filters out. Increase input voltage to 5 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

```
\begin{tabular}{|c|c|c|}
\hline & \begin{tabular}{c}
Acquisition Mode: \\
Distortion Free?
\end{tabular} & \begin{tabular}{c}
Non-Acquisition Mode: \\
Distortion Free?
\end{tabular} \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{2}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Unit.}

T_ACQ_P29
Test Engineer.....Xen.
Date
14/9/10.
10 Load tests and Frequency response check
Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

\subsection*{10.1 Noisy Mode}

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vo peak & \begin{tabular}{c}
Peak lo \\
\((\) Vo/20 \()\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 67.5 mV & 3.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 67.5 mV & 3.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 67.5 mV & 3.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 67.5 mV & 3.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

10Hz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c}
Peak lo \\
\((\) Vo/20 \() \times \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.066 & 4.7 mA & \(>\mathbf{~ 2 . 5 m A ~ p e a k ~}\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.066 & 4.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.066 & 4.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.066 & 4.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vor.m.s & \[
\begin{gathered}
\text { Peak lo } \\
(\mathrm{Vo} / 20) \times 1.414 \\
\hline
\end{gathered}
\] & Specification & Pass/Fail \\
\hline Ch1 & 0.321 & 22.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch2 & 0.323 & 22.8 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch3 & 0.321 & 22.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch4 & 0.322 & 22.8 mA & >2.5mA peak & 1 \\
\hline
\end{tabular}

200Hz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c}
Peak lo \\
\((\) Vo/20 \() \times\) 1.414
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.388 & 27.4 mA & \(\boldsymbol{> 2 . 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.390 & 27.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.388 & 27.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.388 & 27.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c}
Peak lo \\
\((\) Vo/20 \() \times\) 1.414
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.414 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.414 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.414 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.412 & 29.1 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Engineer.....Xen.
Date.
14/9/10.

\subsection*{10.2 Low noise Mode}

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo peak & \begin{tabular}{c}
Peak lo \\
(Vo/20)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch2 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch3 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch4 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo peak & \begin{tabular}{c}
Peak Io \\
(Vo/20)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 16 mV & 800 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch2 & 14 mV & 700 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch3 & 15 mV & 750 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch4 & 14 mV & 700 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vo r.m.s & \begin{tabular}{c}
Peak lo \\
\((\) Vo/20 \() \times\) 1.414
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.128 & 9.0 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch2 & 0.131 & 9.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.132 & 9.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.127 & 9.0 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline
\end{tabular}

200 Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vo r.m.s & \begin{tabular}{c}
Peak lo \\
(Vo/20) \(\mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.245 & 17.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.248 & 17.5 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.249 & 17.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.243 & 17.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo r.m.s & \begin{tabular}{c}
Peak lo \\
(Vo/20) \(\mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.369 & 26.1 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.370 & 26.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.370 & 26.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.368 & 26.0 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Engineer.. Xen.
Date 14/9/10.

\subsection*{10.3 Acquisition Mode}

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100Hz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c}
Peak lo (Vo/20) \\
\(\mathbf{x} \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 1.97 & 2.8 & 139.3 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 1.98 & 2.8 & 140.0 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 1.97 & 2.8 & 139.3 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 1.96 & 2.8 & 138.6 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

200 Hz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c}
Peak lo (Vo/20) \\
\(\mathbf{x} 1.414\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\sqrt{ }\) \\
\hline Ch3 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\sqrt{ }\) \\
\hline Ch4 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA }}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c}
Peak lo (Vo/20) \\
\(\mathbf{x} 1.414\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 2.3 & 3.3 & 162.6 mA & >125mA peak & \(\sqrt{ }\) \\
\hline Ch2 & 2.3 & 3.3 & 162.6 mA & >125mA peak & \(\sqrt{ }\) \\
\hline Ch3 & 2.2 & 3.1 & 155.5 mA & >125mA peak & \(\sqrt{ }\) \\
\hline Ch4 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

5 kHz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c}
Peak Io (Vo/20) \\
\(\mathbf{x} 1.414\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 1.67 & 2.4 & 118.1 mA & >125mA peak & \\
\hline Ch2 & 1.67 & 2.4 & 118.1 mA & \(>125 \mathrm{~mA}\) peak & \\
\hline Ch3 & 1.66 & 2.4 & 117.4 mA & \(>125 \mathrm{~mA}\) peak & \\
\hline Ch4 & 1.65 & 2.3 & 116.7 mA & >125mA peak & \\
\hline
\end{tabular}

Test Engineer.....Xen
Date 14/9/10.

\section*{11. Noise Measurements}

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

Measure the noise output at 10 Hz .
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \begin{tabular}{c}
Spec in \\
\(\mathrm{dB} V \mathrm{~V} \mathrm{~Hz}\)
\end{tabular} & \begin{tabular}{c}
Measured @ \\
10 Hz
\end{tabular} & \(-60 \mathrm{~dB}=\) & \begin{tabular}{c}
Measured in \\
\(\mathrm{nV} \sqrt{ } \mathrm{Hz}\)
\end{tabular} & OK? \\
\hline Ch1 & -143.5 & -91.3 & -151.3 & 27.2 & \(\checkmark\) \\
\hline Ch2 & -143.5 & -92.2 & -152.2 & 24.5 & \(\sqrt{ }\) \\
\hline Ch3 & -143.5 & -91.2 & -151.2 & 27.5 & \(\sqrt{ }\) \\
\hline Ch4 & -143.5 & -92.7 & -152.7 & 23.2 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Notes:}

Specified noise output current at \(10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}\) (worst case)
Total resistance at 10 Hz , in Low noise mode \(=6.7 \mathrm{k}\)
Amplifier noise voltage should therefore be \(=67 \mathrm{nV} \sqrt{\mathrm{Hz}}\)
\(67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}\)
```

Unit.
TACQ28P
Serial No

```
\(\qquad\)
```Test EngineerRMC
Date 14/10//10
```


12. Final Assembly Tests

1. Remove the lid of the box. $\sqrt{ }$
2. Unplug all external connections. $\sqrt{ }$
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight. $\sqrt{ }$
4. Check that all internal connectors are firmly mated. V
5. Tighten the screw-locks holding all the external connectors. $\sqrt{ }$
6. Check that all the LEDs are nicely centred. $\sqrt{ }$
7. Check that all links W4 are in place. $\sqrt[V]{ }$
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TACQ28P
Driver board ID	TACQ28
Driver board Drawing No/Issue No	D0901047_V4
Monitor board ID	MON216__5_K
Monitor board Drawing No/Issue No	D070480_5_K

9. Check the security of any modification wires. None
10. Visually inspect. $\sqrt{ }$
11. Put the lid on and fasten all screws,

Check all external screws for tightness.

LIGO Laboratory / LIGO Scientific Collaboration

Advanced LIGO UK

March 2010

Triple Acquisition Driver Unit Test Report

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT

```
Unit................T ACQ P30.............................Serial No.
Test Engineer.....Xen.
Date................14/9/10
```

Drive Card ID......T ACQ30
Monitor Card ID...Mon241
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

1. Description

Block diagram

Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
_ACQ_P30
```

\qquad

```
Serial No
Test Engineer.....Xen.
Date
14/9/10
```


2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz )
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.

Links:

Check that the links W2 and W4 are present on each channel.

Test Engineer.. Xen.
Date 13/9/10.

4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{l \mid}$
5	0V	\sqrt{l}		
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
5	0V	$\sqrt{\|c\|}$		
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	$\sqrt{ }$

PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	\checkmark
10	V+ (TP1)	+17 v Supply	$\sqrt{ }$
11	V- (TP2)	-17 v Supply	\checkmark
12	$\mathrm{~V}-$ (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	OV (TP3)		$\sqrt{ }$
24	OV (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

5. TEST SET UP

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit.
```

\qquad

``` T_ACQ_P30
``` \(\qquad\)
Test Engineer.....Xen.
Date 13/9/10
```


## 6. Power

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents

$\mathbf{+ 1 6 . 5}$ supply current (mA)	- $\mathbf{1 6 . 5}$ supply current (mA)
500 mA	400 mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	$\sqrt{ }$	$\sqrt{ }$
Rear Panel	$\sqrt{ }$	$\sqrt{ }$

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen.
Date. 13/9/10

## 7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\checkmark$	$\checkmark$	$\checkmark$
Ch2	$\checkmark$	$\checkmark$	$\checkmark$
Ch3	$\checkmark$	$\checkmark$	$\checkmark$
Ch4	$\checkmark$	$\checkmark$	$\checkmark$

TEST RELAYS

Channel	Indicator		OK?
Ch1	ON	OFF	
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

## ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\checkmark$	$\checkmark$	$\checkmark$
Ch2	$\checkmark$	$\checkmark$	$\checkmark$
Ch3	$\checkmark$	$\checkmark$	$\checkmark$
Ch4	$\checkmark$	$\checkmark$	$\checkmark$

```
Unit
 .T_ACQ_P30
 Serial No
Test Engineer.....Xen.
```

Date
.13/9/10

## 8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

### 8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S   Monitor	Expected value	Pass/Fail:   Equal? (+/-0.1v)
$\mathbf{1}$	0.33	3	0.33 v	$\sqrt{ }$
$\mathbf{2}$	0.33	6	0.33 v	$\sqrt{ }$
$\mathbf{3}$	0.33	9	0.33 v	$\sqrt{ }$
$\mathbf{4}$	0.33	12	0.33 v	$\sqrt{ }$

Adjust the input voltage until the voltage across the load resistor $=1 \mathrm{v}$ r.m.s. Record the current monitor output values.
8.2 Current Monitors

Ch.	Output	V, I and R.M.S   Monitor	Expected   Value	Pass/Fail:   Equal? (+/- 0.1v)
$\mathbf{1}$	1.91	2	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{2}$	1.91	5	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{3}$	1.91	8	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{4}$	1.91	11	$1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}$	$\sqrt{ }$

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S   Monitor	Expected   Value	Pass/Fail:   Equal? (+/- 0.1v)
$\mathbf{1}$	1.95	1	1.86 vdc	$\sqrt{ }$
$\mathbf{2}$	1.95	4	1.86 vdc	$\sqrt{ }$
$\mathbf{3}$	1.95	7	1.86 vdc	$\sqrt{ }$
$\mathbf{4}$	1.95	10	1.86 vdc	$\sqrt{ }$

### 8.4 Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu \mathrm{V} \sqrt{ } \mathrm{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA $\sqrt{\mathrm{Hz}}$ should give $2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}$ out.

Ch.	Output   $(\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})$	$\div($ Pre-amplifier   gain)	Expected   Value	Comparison
$\mathbf{1}$		1.52	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{2}$		1.39	$2.9 \mu \mathrm{~V} \mathrm{~Hz}$	$\sqrt{ }$
$\mathbf{3}$		1.55	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{4}$		1.69	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$

```
Unit
..............T_ACQ_P30
0..
Serial No
Test Engineer.....Xen.
Date
14/9/10
```


## 9. Distortion

```
Switch the filters out. Increase input voltage to 5 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.
```

	Acquisition Mode:   Distortion Free?	Non-Acquisition Mode:   Distortion Free?
Ch1	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{2}$	$\sqrt{ }$

## Unit.

T_ACQ_P30
Test Engineer.....Xen.
Date
14/9/10.
10 Load tests and Frequency response check
Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

### 10.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo   $($ Vo/20 $)$	Specification	Pass/Fail
Ch1	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

10Hz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.066	4.7 mA	$>\mathbf{~ 2 . 5 m A ~ p e a k ~}$	$\sqrt{ }$
Ch2	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.067	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

100 Hz

	Vor.m.s	$\begin{gathered} \text { Peak lo } \\ (\mathrm{Vo} / 20) \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	0.324	22.9 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch2	0.322	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch3	0.327	23.1 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch4	0.322	22.8 mA	>2.5mA peak	$\checkmark$

200Hz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times$ 1.414	Specification	Pass/Fail	
Ch1	0.390	27.6 mA	$\boldsymbol{> 2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.389	27.5 mA	$\boldsymbol{> 2 . 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	0.391	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.389	27.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.414	29.3 mA	$>\mathbf{2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.....Xen.
Date.
14/9/10.

### 10.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1 Hz

	Vo peak	Peak lo   (Vo/20)	Specification	Pass/Fail
Ch1	45 mV	2.3 mA	$>\mathbf{2 . 5 m A}$ peak	
Ch2	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch3	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch4	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	

10 Hz

	Vo peak	Peak lo   $($ Vo/20 $)$	Specification	Pass/Fail
Ch1	16 mV	800 uA	$>2.5 \mathrm{~mA}$ peak	
Ch2	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch3	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch4	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	

100 Hz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.127	9.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.128	9.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.132	9.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.132	9.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.242	17.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.245	17.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.248	17.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.249	17.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.. Xen.
Date 14/9/10.

### 10.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch3	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch4	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA }}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	2.3	3.3	162.6 mA	>125mA peak	$\checkmark$
Ch2	2.3	3.3	162.6 mA	>125mA peak	$\checkmark$
Ch3	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$
Ch4	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$

5 kHz

	Vo r.m.s	Vo pk.	Peak Io (Vo/20)   $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	1.67	2.4	118.1 mA	>125mA peak	
Ch2	1.67	2.4	118.1 mA	$>125 \mathrm{~mA}$ peak	
Ch3	1.67	2.4	118.1 mA	$>125 \mathrm{~mA}$ peak	
Ch4	1.67	2.4	118.1 mA	>125mA peak	

Test Engineer.....Xen
Date 14/9/10.

## 11. Noise Measurements

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.


Measure the noise output at 10 Hz .

	Spec in   $\mathrm{dB} V \mathrm{~V} \mathrm{~Hz}$	Measured @   10 Hz	$-60 \mathrm{~dB}=$	Measured in   $\mathrm{nV} \sqrt{ } \mathrm{Hz}$	OK?
Ch1	-143.5	-86.4	-146.4	47.9	$\checkmark$
Ch2	-143.5	-92.1	-152.1	24.8	$\sqrt{ }$
Ch3	-143.5	-93.9	-153.9	20.2	$\sqrt{ }$
Ch4	-143.5	-92.8	-152.8	22.9	$\sqrt{ }$

## Notes:

Specified noise output current at $10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}$ (worst case)
Total resistance at 10 Hz , in Low noise mode $=6.7 \mathrm{k}$
Amplifier noise voltage should therefore be $=67 \mathrm{nV} \sqrt{\mathrm{Hz}}$
$67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}$

```UnitTACQ30PSerial No
```

$\qquad$

```Test EngineerRMCDate18/10/10
```


## 12. Final Assembly Tests

1. Remove the lid of the box. $\sqrt{ }$
2. Unplug all external connections. $\sqrt{ }$
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight. $\sqrt{ }$
4. Check that all internal connectors are firmly mated. $V$
5. Tighten the screw-locks holding all the external connectors. $\sqrt{ }$
6. Check that all the LEDs are nicely centred. $\sqrt{ }$
7. Check that all links W4 are in place. $\sqrt[V]{ }$
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TACQ30P
Driver board ID	TACQ30
Driver board Drawing No/Issue No	D090147_V4
Monitor board ID	MON241
Monitor board Drawing No/Issue No	D070480_5_K

9. Check the security of any modification wires. None
10. Visually inspect. $\sqrt{ }$
11. Put the lid on and fasten all screws, $\sqrt{ }$

Check all external screws for tightness. $\sqrt{ }$

## LIGO Laboratory / LIGO Scientific Collaboration

## Advanced LIGO UK

March 2010

## Triple Acquisition Driver Unit Test Report

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research<br>University of Glasgow<br>Phone +44 (0) 1413305884<br>Fax +44 (0) 1413306833<br>E-mail k.strain@physics.gla.ac.uk<br>Engineering Department<br>CCLRC Rutherford Appleton Laboratory<br>Phone +44 (0) 1235445297<br>Fax +44 (0) 1235445843<br>E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT

```
Unit................T ACQ P31.............................Serial No..
Test Engineer.....Xen.
Date................5/8/10
```

Drive Card ID.......T ACQ31
Monitor Card ID....Mon172.
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

## 1. Description

## Block diagram



## Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
_ACQ_P31
```

$\qquad$
Test Engineer.....Xen.
Date
5/8/10

```

\section*{2. Test equipment}
```

Power supplies (At least $+/-20 \mathrm{v}$ variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz )
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & ISO-TECH & ISR622 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77III & \\
\hline Signal analyzer & Agilent & 35670A & \\
\hline Pre-amplifier & Stanford Systems & SR560 & \\
\hline
\end{tabular}

\section*{3. Inspection}

\section*{Workmanship}

Inspect the general workmanship standard and comment: \(\sqrt{ }\)
Capacitors C35 and C27 have been changed to 1 nF on all channels.

\section*{Links:}

Check that the links W2 and W4 are present on each channel.

Test Engineer..
Date

\section*{4. Continuity Checks}

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\checkmark\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\checkmark\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\checkmark\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\checkmark\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\checkmark\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\checkmark\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\checkmark\) \\
\hline
\end{tabular}

\section*{LED Mon}
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\checkmark\) \\
\hline 2 & Imon2P & & 6 & \(\checkmark\) \\
\hline 3 & Imon3P & & 7 & \(\checkmark\) \\
\hline 4 & Imon4P & & 8 & \(\checkmark\) \\
\hline & 5 & OV & \(\checkmark\) & \\
\hline 6 & Imon1N & & 18 & \(\checkmark\) \\
\hline 7 & Imon2N & & 19 & \(\checkmark\) \\
\hline 8 & Imon3N & & 20 & \(\checkmark\) \\
\hline 9 & Imon4N & & 21 & \(\checkmark\) \\
\hline
\end{tabular}

PD from Sat
\begin{tabular}{|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & \(\mathrm{~V}+\) (TP1) & +17 v Supply & \(\sqrt{ }\) \\
\hline 10 & \(\mathrm{~V}+\) (TP1) & +17 v Supply & \(\sqrt{ }\) \\
\hline 11 & V - (TP2) & -17 v Supply & \(\sqrt{ }\) \\
\hline 12 & V - (TP2) & -17 v Supply & \(\sqrt{ }\) \\
\hline 13 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 22 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 23 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 24 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, \(4=\) positive input
Drive Input J3 pins 6, 7, 8, \(9=\) negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, \(10=+16.5 \mathrm{v}\)
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, \(25=0 v\)
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin \(1 \quad\) Ch1 \(-=\mathrm{J} 4\) pin 9
Ch2 \(+=\mathrm{J} 4\) pin \(3 \quad\) Ch2- \(=\mathrm{J} 4\) pin 11
Ch3 \(+=\mathrm{J} 4\) pin \(5 \quad\) Ch3- \(=\mathrm{J} 4\) pin 13
Ch4+ = J4 pin \(7 \quad\) Ch4- \(=\mathrm{J} 4\) pin 15
```

Unit.

```
\(\qquad\)
``` T_ACQ_P31
``` \(\qquad\)
``` Serial No
Test Engineer.....Xen.
Date 5/8/10.
```


6. Power

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents

$\mathbf{+ 1 6 . 5}$ supply current (mA)	- 16.5 supply current (mA)
500 mA	400 mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	$\sqrt{ }$	$\sqrt{ }$
Rear Panel	$\sqrt{ }$	$\sqrt{ }$

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen.
Date. 5/8/10

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
Ch1	ON	OFF	
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

```
Unit.
                T_ACQ_P31
                                    Serial No
Test Engineer.....Xen.
Date
5/8/10
```


8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S Monitor	Expected value	Pass/Fail: Equal? (+/-0.1v)
$\mathbf{1}$	0.33	3	0.33 v	$\sqrt{ }$
$\mathbf{2}$	0.33	6	0.33 v	$\sqrt{ }$
$\mathbf{3}$	0.33	9	0.33 v	$\sqrt{ }$
$\mathbf{4}$	0.33	12	0.33 v	$\sqrt{ }$

Adjust the input voltage until the voltage across the load resistor $=1 \mathrm{v}$ r.m.s. Record the current monitor output values.
8.2 Current Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	1.91	2	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{2}$	1.91	5	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{3}$	1.91	8	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{4}$	1.91	11	$1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}$	$\sqrt{ }$

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	Pass/Fail: Equal? (+/-0.1v)
$\mathbf{1}$	1.94	1	1.86 vdc	$\sqrt{ }$
$\mathbf{2}$	1.95	4	1.86 vdc	$\sqrt{ }$
$\mathbf{3}$	1.95	7	1.86 v dc	$\sqrt{ }$
$\mathbf{4}$	1.94	10	1.86 vdc	$\sqrt{ }$

8.4 Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu \mathrm{V} \sqrt{ } \mathrm{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA $\sqrt{ } \mathrm{Hz}$ should give $2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}$ out.

Ch.	Output $(\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})$	$\div($ Pre-amplifier gain $)$	Expected Value	Comparison
$\mathbf{1}$		1.11	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{2}$		1.07	$2.9 \mu \mathrm{~V} \mathrm{~Hz}$	$\sqrt{ }$
$\mathbf{3}$		1.24	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{4}$		1.10	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$

```
Unit
..............T_ACQ_P31
```

\qquad

```
Serial No
Test Engineer.....Xen.
Date
5/8/10
```


9. Distortion

```
Switch the filters out. Increase input voltage to 5 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.
```

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{2}$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$

Unit.
.T_ACQ_P31 Serial No
Test Engineer.....Xen.
Date .5/8/10

10 Load tests and Frequency response check

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

10.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo (Vo/20)	Specification	Pass/Fail
Ch1	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

10 Hz

	Vo r.m.s	Peak lo $($ Vo/20 $) \times 1.414$	Specification	Pass/Fail
Ch1	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

100 Hz

	Vo r.m.s	Peak lo $($ Vo/20 $) \times 1.414$	Specification	Pass/Fail
Ch1	0.322	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.322	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.322	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.322	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Peak lo $($ Vo/20 $) \times 1.414$	Specification	Pass/Fail
Ch1	0.389	27.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.389	27.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.389	27.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.389	27.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Peak lo $($ Vo/20 $) \times 1.414$	Specification	Pass/Fail
Ch1	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.. Xen.
Date 5/8/10

10.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo (Vo/20)	Specification	Pass/Fail
Ch1	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch2	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch3	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch4	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	

10 Hz

	Vo peak	Peak lo $($ Vo/20 $)$	Specification	Pass/Fail
Ch1	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch2	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch3	16 mV	800 uA	$>2.5 \mathrm{~mA}$ peak	
Ch4	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	

100 Hz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.126	8.9 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.121	8.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.123	8.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.129	9.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.242	17.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.235	16.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.238	16.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.246	17.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.368	26.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.368	26.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Unit. T_ACQ_P31
Test Engineer.. Xen.
Date 5/8/10

10.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

200 Hz

	Vor.m.s	Vo pk.	$\begin{gathered} \hline \text { Peak lo }(\text { Vo/20 }) \\ \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	$>125 \mathrm{~mA}$ peak	\checkmark
Ch2	2.2	3.1	155.5 mA	$>125 \mathrm{~mA}$ peak	\checkmark
Ch3	2.2	3.1	155.5 mA	$>125 \mathrm{~mA}$ peak	\checkmark
Ch4	2.2	3.1	155.5 mA	>125mA peak	\checkmark

1 kHz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	2.3	3.3	162.6 mA	>125mA peak	\checkmark
Ch2	2.3	3.3	162.6 mA	>125mA peak	\checkmark
Ch3	2.2	3.1	155.5 mA	>125mA peak	$\sqrt{ }$
Ch4	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$

5 kHz

	Vo r.m.s	Vo pk.	Peak Io (Vo/20) $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	1.67	2.4	118.1 mA	>125mA peak	\checkmark
Ch2	1.67	2.4	118.1 mA	>125mA peak	\checkmark
Ch3	1.66	2.3	117.4 mA	>125mA peak	$\sqrt{ }$
Ch4	1.67	2.4	118.1 mA	>125mA peak	$\sqrt{ }$

Test Engineer.....Xen
Date 5/8/10

11. Noise Measurements

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

Measure the noise output at 10 Hz .

	Spec in $\mathrm{dB} V \sqrt{ } \mathrm{~Hz}$	Measured @ 10 Hz	$-60 \mathrm{~dB}=$	Measured in $\mathrm{nV} \sqrt{ } \mathrm{Hz}$	OK?
Ch1	-143.5	-92.4	-152.4	24.0	$\sqrt{ }$
Ch2	-143.5	-93.3	-153.3	21.6	$\sqrt{ }$
Ch3	-143.5	-93.2	-153.2	21.9	$\sqrt{ }$
Ch4	-143.5	-91.3	-151.3	27.2	$\sqrt{ }$

Notes:

Specified noise output current at $10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}$ (worst case)
Total resistance at 10 Hz , in Low noise mode $=6.7 \mathrm{k}$
Amplifier noise voltage should therefore be $=67 \mathrm{nV} \sqrt{\mathrm{Hz}}$
$67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}$

```
Unit.
```

\qquad

``` TACQ31P
``` \(\qquad\)
``` Serial No
``` \(\qquad\)
```

Test Engineer RMC
Date 18/10/10

```

\section*{12. Final Assembly Tests}
1. Remove the lid of the box. \(\sqrt{ }\)
2. Unplug all external connections. \(\sqrt{ }\)
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight. \(\sqrt{ }\)
4. Check that all internal connectors are firmly mated. \(V\)
5. Tighten the screw-locks holding all the external connectors. \(\sqrt{ }\)
6. Check that all the LEDs are nicely centred. \(\sqrt{ }\)
7. Check that all links W4 are in place. \(\sqrt[V]{ }\)
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:
\begin{tabular}{|l|l|}
\hline UoB box ID & TACQ31P \\
\hline Driver board ID & TACQ31 \\
\hline Driver board Drawing No/Issue No & D0901047_V4 \\
\hline Monitor board ID & MON172 \\
\hline Monitor board Drawing No/Issue No & D070480_04_K \\
\hline
\end{tabular}
9. Check the security of any modification wires. None
10. Visually inspect. \(\sqrt{ }\)
11. Put the lid on and fasten all screws, \(\sqrt{ }\)

Check all external screws for tightness. \(\sqrt{ }\)

\section*{LIGO Laboratory / LIGO Scientific Collaboration}

\section*{Advanced LIGO UK}

March 2010

\section*{Triple Acquisition Driver Unit Test Report}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

\author{
Institute for Gravitational Research \\ University of Glasgow \\ Phone +44 (0) 1413305884 \\ Fax +44 (0) 1413306833 \\ E-mail k.strain@physics.gla.ac.uk \\ Engineering Department \\ CCLRC Rutherford Appleton Laboratory \\ Phone +44 (0) 1235445297 \\ Fax +44 (0) 1235445843 \\ E-mail J.Greenhalgh@rl.ac.uk
}

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT}
```

Unit...............T ACQ P32...........................Serial No.
Test Engineer.....Xen.
Date................6/8/10

```

Drive Card ID.......T ACQ32
Monitor Card ID....Mon173.
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

\section*{1. Description}

\section*{Block diagram}

\section*{Description}

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.
```

Unit

```
\(\qquad\)
```

                            T_ACQ_P32.
                                    Serial No
    Test Engineer.....Xen.
Date
6/8/10

```

\section*{2. Test equipment}
```

Power supplies (At least $+/-20 v$ variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz )
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & ISO-TECH & ISR622 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77III & \\
\hline Signal analyzer & Agilent & 35670A & \\
\hline Pre-amplifier & Stanford Systems & SR560 & \\
\hline
\end{tabular}

\section*{3. Inspection}

\section*{Workmanship}

Inspect the general workmanship standard and comment: \(\sqrt{ }\)
Capacitors C35 and C27 have been changed to 1 nF on all channels.

\section*{Links:}

Check that the links W2 and W4 are present on each channel.

Test Engineer..
Date

\section*{4. Continuity Checks}

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\sqrt{ }\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\sqrt{ }\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\sqrt{ }\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\sqrt{l \mid}\) \\
\hline 5 & 0V & \(\sqrt{l}\) \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\sqrt{ }\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\sqrt{ }\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\sqrt{ }\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{LED Mon}
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\sqrt{ }\) \\
\hline 2 & Imon2P & & 6 & \(\sqrt{ }\) \\
\hline 3 & Imon3P & & 7 & \(\sqrt{ }\) \\
\hline 4 & Imon4P & & 8 & \(\sqrt{ }\) \\
\hline 5 & 0V & \(\sqrt{|c|}\) \\
\hline 6 & Imon1N & & 18 & \(\sqrt{ }\) \\
\hline 7 & Imon2N & & 19 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 20 & \(\sqrt{ }\) \\
\hline 9 & Imon4N & & 21 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{PD from Sat}
\begin{tabular}{|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & \(\mathrm{~V}+\) (TP1) & +17 v Supply & \(\checkmark\) \\
\hline 10 & V+ (TP1) & +17 v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17 v Supply & \(\checkmark\) \\
\hline 12 & \(\mathrm{~V}-\) (TP2) & -17 v Supply & \(\sqrt{ }\) \\
\hline 13 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 22 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, \(4=\) positive input
Drive Input J3 pins 6, 7, 8, \(9=\) negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, \(10=+16.5 \mathrm{v}\)
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, \(25=0 v\)
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin \(1 \quad\) Ch1 \(-=\mathrm{J} 4\) pin 9
Ch2 \(+=\mathrm{J} 4\) pin \(3 \quad\) Ch2- \(=\mathrm{J} 4\) pin 11
Ch3 \(+=\mathrm{J} 4\) pin \(5 \quad\) Ch3- \(=\mathrm{J} 4\) pin 13
Ch4+ = J4 pin \(7 \quad\) Ch4- \(=\mathrm{J} 4\) pin 15
```

Unit

```
\(\qquad\)
```

                            T_ACQ_P32.
                                    Serial No
    Test Engineer.....Xen.
Date
5/8/10

```

\section*{6. Power}

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents
\begin{tabular}{|c|c|}
\hline \(\mathbf{+ 1 6 . 5}\) supply current (mA) & - 16.5 supply current (mA) \\
\hline 500 mA & 400 mA \\
\hline
\end{tabular}

Check that all power LEDs are illuminated.
\begin{tabular}{|c|c|c|}
\hline LEDs & Plus & Minus \\
\hline Front Panel & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Rear Panel & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen.
Date. 5/8/10

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|l|}{Indicator} & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch2 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch3 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch4 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline
\end{tabular}

TEST RELAYS
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline Ch1 & ON & OFF & \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{ACQUISITION RELAYS}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\checkmark\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\checkmark\) & \(\checkmark\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\checkmark\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Engineer.. ..Xen.
Date. .6/8/10

\section*{8. Monitor Outputs}

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to 0 v for each channel.

\subsection*{8.1 Voltage Monitors}
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output: & \begin{tabular}{c}
V, I and R.M.S \\
Monitor
\end{tabular} & Expected value & \begin{tabular}{c}
Pass/Fail: \\
Equal? (+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & 0.33 & 3 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 0.33 & 6 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 0.33 & 9 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 0.33 & 12 & 0.33 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

Adjust the input voltage until the voltage across the load resistor \(=1 \mathrm{v}\) r.m.s. Record the current monitor output values.
8.2 Current Monitors
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output & \begin{tabular}{c}
V, I and R.M.S \\
Monitor
\end{tabular} & \begin{tabular}{c}
Expected \\
Value
\end{tabular} & \begin{tabular}{c}
Pass/Fail: \\
Equal? (+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & 1.91 & 2 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 1.91 & 5 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 1.91 & 8 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 1.91 & 11 & \(1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.3 R.M.S Monitors
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output & \begin{tabular}{c}
V, I and R.M.S \\
Monitor
\end{tabular} & \begin{tabular}{c}
Expected \\
Value
\end{tabular} & \begin{tabular}{c}
Pass/Fail: \\
Equal? (+/-0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & 1.93 & 1 & 1.86 vdc & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 1.94 & 4 & 1.86 vdc & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 1.95 & 7 & 1.86 vdc & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 1.95 & 10 & 1.86 vdc & \(\sqrt{ }\) \\
\hline
\end{tabular}

\subsection*{8.4 Noise Monitors}
- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in \(\mu \mathrm{V} V \mathrm{~Hz}\) on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \(\sqrt{ } \mathrm{Hz}\) should give \(2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}\) out.
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c}
Output \\
\((\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})\)
\end{tabular} & \begin{tabular}{c}
\(\div(\) Pre-amplifier \\
gain)
\end{tabular} & \begin{tabular}{c}
Expected \\
Value
\end{tabular} & Comparison \\
\hline \(\mathbf{1}\) & & 1.35 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & & 1.99 & \(2.9 \mu \mathrm{~V} \mathrm{~Hz}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & & 1.30 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & & 1.06 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit
...............T_ACQ_P32
P32.
Serial No
Test Engineer.....Xen.
Date
6/8/10

```

\section*{9. Distortion}
```

Switch the filters out. Increase input voltage to 5 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

```
\begin{tabular}{|c|c|c|}
\hline & \begin{tabular}{c}
Acquisition Mode: \\
Distortion Free?
\end{tabular} & \begin{tabular}{c}
Non-Acquisition Mode: \\
Distortion Free?
\end{tabular} \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{2}\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit.
T_ACQ_P32. Serial No
Test Engineer.....Xen.
Date.
.6/8/10

\section*{10 Load tests and Frequency response check}

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

\subsection*{10.1 Noisy Mode}

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vo peak & Peak lo (Vo/20) & Specification & Pass/Fail \\
\hline Ch1 & 67.5 mV & 3.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch2 & 67.5 mV & 3.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch3 & 67.5 mV & 3.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch4 & 67.5 mV & 3.4 mA & >2.5mA peak & \(\checkmark\) \\
\hline
\end{tabular}

10Hz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c}
Peak lo \\
\((\) Vo/20 \() \times \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.066 & 4.7 mA & \(>\mathbf{~ 2 . 5 m A ~ p e a k ~}\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.067 & 4.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.066 & 4.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.066 & 4.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vor.m.s & \[
\begin{gathered}
\text { Peak lo } \\
(\mathrm{Vo} / 20) \times 1.414 \\
\hline
\end{gathered}
\] & Specification & Pass/Fail \\
\hline Ch1 & 0.325 & 23.0 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch2 & 0.325 & 23.0 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch3 & 0.321 & 22.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch4 & 0.321 & 22.7 mA & >2.5mA peak & \(\checkmark\) \\
\hline
\end{tabular}

200 Hz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c}
Peak lo \\
\((\) Vo/20 \() \times\) 1.414
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.390 & 27.6 mA & \(\boldsymbol{> 2 . 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.391 & 27.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.389 & 27.5 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.388 & 27.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c}
Peak lo \\
\((\) Vo/20 \() \times \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.415 & 29.3 mA & \(>\mathbf{2 . 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.415 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.414 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.413 & 29.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit.
T_ACQ_P32. Serial No
Test Engineer..
.Xen.
Date.
.6/8/10

\subsection*{10.2 Low noise Mode}

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo peak & \begin{tabular}{c}
Peak lo \\
(Vo/20)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch2 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch3 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch4 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo peak & \begin{tabular}{c}
Peak lo \\
\((\) Vo/20 \()\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 15 mV & 750 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch2 & 15 mV & 750 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch3 & 16 mV & 800 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch4 & 14 mV & 700 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vo r.m.s & \begin{tabular}{c}
Peak lo \\
(Vo/20) \(\mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.131 & 9.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.129 & 9.1 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.129 & 9.1 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.130 & 9.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

200 Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo r.m.s & \begin{tabular}{c}
Peak lo \\
(Vo/20) \(\mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.248 & 17.5 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.246 & 17.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.246 & 17.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.247 & 17.5 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo r.m.s & \begin{tabular}{c}
Peak lo \\
(Vo/20) \(\mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.370 & 26.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.370 & 26.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.369 & 26.1 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.369 & 26.1 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit.
T_ACQ_P32.
Test Engineer.. Xen.
Date. .6/8/10

\subsection*{10.3 Acquisition Mode}

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100 Hz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c}
Peak lo (Vo/20) \\
\(\mathbf{x} \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 1.97 & 2.8 & 139.3 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 1.97 & 2.8 & 139.3 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 1.97 & 2.8 & 139.3 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 1.96 & 2.8 & 138.6 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

200 Hz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c}
Peak lo (Vo/20) \\
\(\mathbf{x} 1.414\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\sqrt{ }\) \\
\hline Ch3 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\sqrt{ }\) \\
\hline Ch4 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA }}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c}
Peak lo (Vo/20) \\
\(\mathbf{x} 1.414\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 2.3 & 3.3 & 162.6 mA & >125mA peak & \(\sqrt{ }\) \\
\hline Ch2 & 2.3 & 3.3 & 162.6 mA & >125mA peak & \(\sqrt{ }\) \\
\hline Ch3 & 2.2 & 3.1 & 155.5 mA & >125mA peak & \(\sqrt{ }\) \\
\hline Ch4 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

5 kHz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c}
Peak Io (Vo/20) \\
\(\mathbf{x} 1.414\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 1.67 & 2.4 & 118.1 mA & >125mA peak & \\
\hline Ch2 & 1.68 & 2.4 & 118.8 mA & \(>125 \mathrm{~mA}\) peak & \\
\hline Ch3 & 1.66 & 2.3 & 117.4 mA & \(>125 \mathrm{~mA}\) peak & \\
\hline Ch4 & 1.66 & 2.3 & 117.4 mA & >125mA peak & \\
\hline
\end{tabular}

Test Engineer.....Xen
Date 6/8/10.

\section*{11. Noise Measurements}

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

Measure the noise output at 10 Hz .
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \begin{tabular}{c}
Spec in \\
\(\mathrm{dB} V \sqrt{ } \mathrm{~Hz}\)
\end{tabular} & \begin{tabular}{c}
Measured @ \\
10 Hz
\end{tabular} & \(-60 \mathrm{~dB}=\) & \begin{tabular}{c}
Measured in \\
\(\mathrm{nV} \sqrt{ } \mathrm{Hz}\)
\end{tabular} & OK? \\
\hline Ch1 & -143.5 & -91.9 & -151.9 & 25.4 & \(\sqrt{ }\) \\
\hline Ch2 & -143.5 & -93.2 & -153.2 & 21.9 & \(\sqrt{ }\) \\
\hline Ch3 & -143.5 & -92.0 & -152.0 & 25.1 & \(\sqrt{ }\) \\
\hline Ch4 & -143.5 & -93.2 & -153.2 & 21.9 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Notes:}

Specified noise output current at \(10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}\) (worst case)
Total resistance at 10 Hz , in Low noise mode \(=6.7 \mathrm{k}\)
Amplifier noise voltage should therefore be \(=67 \mathrm{nV} \sqrt{\mathrm{Hz}}\)
\(67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}\)
```

Unit.
TACQ32P
Serial No

```
\(\qquad\)
```

Test Engineer
RMC
Date
.18/10/10

```

\section*{12. Final Assembly Tests}
1. Remove the lid of the box. \(\sqrt{ }\)
2. Unplug all external connections. \(\sqrt{ }\)
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight. \(\sqrt{ }\)
4. Check that all internal connectors are firmly mated. \(\sqrt{ }\)
5. Tighten the screw-locks holding all the external connectors. \(\sqrt{ }\)
6. Check that all the LEDs are nicely centred. \(\sqrt{ }\)
7. Check that all links \(W 4\) are in place. \(\sqrt{ }\)
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:
\begin{tabular}{|l|l|}
\hline UoB box ID & TACQ32P \\
\hline Driver board ID & TACQ32 \\
\hline Driver board Drawing No/Issue No & D0901047_V4 \\
\hline Monitor board ID & MON173__ \\
\hline Monitor board Drawing No/Issue No & D070480_4_K \\
\hline
\end{tabular}
9. Check the security of any modification wires. \(\sqrt{ }\)
10. Visually inspect. \(\sqrt{ }\)
11. Put the lid on and fasten all screws, \(\sqrt{ }\)

Check all external screws for tightness. \(\sqrt{ }\)

\section*{LIGO Laboratory / LIGO Scientific Collaboration}

\section*{Advanced LIGO UK}

March 2010

\section*{Triple Acquisition Driver Unit Test Report}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

\author{
Institute for Gravitational Research \\ University of Glasgow \\ Phone +44 (0) 1413305884 \\ Fax +44 (0) 1413306833 \\ E-mail k.strain@physics.gla.ac.uk \\ Engineering Department \\ CCLRC Rutherford Appleton Laboratory \\ Phone +44 (0) 1235445297 \\ Fax +44 (0) 1235445843 \\ E-mail J.Greenhalgh@rl.ac.uk
}

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT}
```

Unit................T ACQ P33.............................Serial No.
Test Engineer.....Xen
Date

```
\(\qquad\)

Drive Card ID......T ACQ33
Monitor Card ID...Mon227
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

\section*{1. Description}

\section*{Block diagram}

\section*{Description}

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.
```

Unit
_ACQ_P33

```
\(\qquad\)
```

                                    Serial No
    Test Engineer.....Xen.
Date
19/8/10

```

\section*{2. Test equipment}
```

Power supplies (At least $+/-20 \mathrm{v}$ variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz )
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & ISO-TECH & ISR622 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77III & \\
\hline Signal analyzer & Agilent & 35670A & \\
\hline Pre-amplifier & Stanford Systems & SR560 & \\
\hline
\end{tabular}

\section*{3. Inspection}

\section*{Workmanship}

Inspect the general workmanship standard and comment: \(\sqrt{ }\)
Capacitors C35 and C27 have been changed to 1 nF on all channels.

\section*{Links}

Check that the links W2 and W4 are present on each channel.

Test Engineer.. Xen.
Date .19/8/10.

\section*{4. Continuity Checks}

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\sqrt{ }\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\sqrt{ }\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\sqrt{ }\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\sqrt{l \mid}\) \\
\hline 5 & 0V & \(\sqrt{l}\) \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\sqrt{ }\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\sqrt{ }\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\sqrt{ }\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{LED Mon}
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\sqrt{ }\) \\
\hline 2 & Imon2P & & 6 & \(\sqrt{ }\) \\
\hline 3 & Imon3P & & 7 & \(\sqrt{ }\) \\
\hline 4 & Imon4P & & 8 & \(\sqrt{ }\) \\
\hline 5 & 0V & \(\sqrt{|c|}\) \\
\hline 6 & Imon1N & & 18 & \(\sqrt{ }\) \\
\hline 7 & Imon2N & & 19 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 20 & \(\sqrt{ }\) \\
\hline 9 & Imon4N & & 21 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{PD from Sat}
\begin{tabular}{|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & \(\mathrm{~V}+\) (TP1) & +17 v Supply & \(\checkmark\) \\
\hline 10 & V+ (TP1) & +17 v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17 v Supply & \(\checkmark\) \\
\hline 12 & \(\mathrm{~V}-\) (TP2) & -17 v Supply & \(\sqrt{ }\) \\
\hline 13 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 22 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, \(4=\) positive input
Drive Input J3 pins 6, 7, 8, \(9=\) negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, \(10=+16.5 \mathrm{v}\)
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, \(25=0 v\)
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin \(1 \quad\) Ch1 \(-=\mathrm{J} 4\) pin 9
Ch2 \(+=\mathrm{J} 4\) pin \(3 \quad\) Ch2- \(=\mathrm{J} 4\) pin 11
Ch3 \(+=\mathrm{J} 4\) pin \(5 \quad\) Ch3- \(=\mathrm{J} 4\) pin 13
Ch4+ = J4 pin \(7 \quad\) Ch4- \(=\mathrm{J} 4\) pin 15
```

Unit

```
\(\qquad\)
``` T_ACQ_P33
Test Engineer.....Xen.
Date 19/8/10
```


6. Power

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents

$\mathbf{+ 1 6 . 5}$ supply current (mA)	- $\mathbf{1 6 . 5}$ supply current (mA)
500 mA	400 mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	$\sqrt{ }$	$\sqrt{ }$
Rear Panel	$\sqrt{ }$	$\sqrt{ }$

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen..
Date. 19/8/10

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
Ch1	ON	OFF	
Ch2	$\sqrt{ }$	\checkmark	\checkmark
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

```
Unit
Test Engineer.....Xen.
Date. .19/8/10
```


8. Monitor Outputs

 T_ACQ_P33
 Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S Monitor	Expected value	Pass/Fail: Equal? (+/-0.1v)
$\mathbf{1}$	0.33	3	0.33 v	$\sqrt{ }$
$\mathbf{2}$	0.33	6	0.33 v	$\sqrt{ }$
$\mathbf{3}$	0.33	9	0.33 v	$\sqrt{ }$
$\mathbf{4}$	0.33	12	0.33 v	$\sqrt{ }$

Adjust the input voltage until the voltage across the load resistor $=1 \mathrm{v}$ r.m.s. Record the current monitor output values.
8.2 Current Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	1.91	2	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{2}$	1.91	5	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{3}$	1.91	8	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{4}$	1.91	11	$1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}$	$\sqrt{ }$

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	Pass/Fail: Equal? (+/-0.1v)
$\mathbf{1}$	1.94	1	1.86 vdc	$\sqrt{ }$
$\mathbf{2}$	1.94	4	1.86 vdc	$\sqrt{ }$
$\mathbf{3}$	1.94	7	1.86 vdc	$\sqrt{ }$
$\mathbf{4}$	1.94	10	1.86 vdc	$\sqrt{ }$

8.4 Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu \mathrm{V} \sqrt{\mathrm{Hz}}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA $\sqrt{ } \mathrm{Hz}$ should give $2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}$ out.

Ch.	Output $(\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})$	$\div($ Pre-amplifier gain)	Expected Value	Comparison
$\mathbf{1}$		1.57	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{2}$		1.68	$2.9 \mu \mathrm{~V} \mathrm{~Hz}$	$\sqrt{ }$
$\mathbf{3}$		1.56	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{4}$		1.39	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$

```
Unit
```

\qquad

```
                T_ACQ_P33
```

\qquad

```
                                    Serial No
Test Engineer.....Xen.
Date
19/8/10
```


9. Distortion

```
Switch the filters out. Increase input voltage to 5 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.
```

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{2}$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$

Test Engineer.....Xen.
Date
19/8/10.

10 Load tests and Frequency response check

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

10.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo $($ Vo/20 $)$	Specification	Pass/Fail
Ch1	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

10Hz

Vo r.m.s	Peak lo $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.066	4.7 mA	$>\mathbf{~ 2 . 5 m A ~ p e a k ~}$	$\sqrt{ }$
Ch2	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.065	4.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

100 Hz

	Vor.m.s	$\begin{gathered} \text { Peak lo } \\ (\mathrm{Vo} / 20) \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	0.322	22.8 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch2	0.323	22.8 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch3	0.326	23.0 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch4	0.321	22.7 mA	>2.5mA peak	\checkmark

200Hz

Vo r.m.s	Peak lo $($ Vo/20 $) \times$ 1.414	Specification	Pass/Fail	
Ch1	0.389	27.5 mA	$\boldsymbol{> 2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.390	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.391	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.388	27.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

Vo r.m.s	Peak lo $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.413	29.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.. .Xen
Date
19/8/10.

10.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo (Vo/20)	Specification	Pass/Fail
Ch1	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch2	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch3	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch4	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	

10 Hz

	Vo peak	Peak lo $($ Vo/20 $)$	Specification	Pass/Fail
Ch1	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch2	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch3	15 mV	750 uA	$>2.5 \mathrm{~mA}$ peak	
Ch4	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	

100 Hz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.127	9.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.125	8.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.125	8.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.125	8.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Peak lo $($ Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.243	17.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.241	17.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.240	17.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.241	17.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.368	26.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.. Xen.
Date. 19/8/10.

10.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch3	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch4	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

200 Hz

	Vor.m.s	Vo pk.	$\begin{gathered} \hline \text { Peak lo }(\text { Vo/20 }) \\ \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	$>125 \mathrm{~mA}$ peak	\checkmark
Ch2	2.2	3.1	155.5 mA	$>125 \mathrm{~mA}$ peak	\checkmark
Ch3	2.2	3.1	155.5 mA	$>125 \mathrm{~mA}$ peak	\checkmark
Ch4	2.2	3.1	155.5 mA	>125mA peak	\checkmark

1 kHz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	2.3	3.3	162.6 mA	>125mA peak	\checkmark
Ch2	2.3	3.3	162.6 mA	>125mA peak	\checkmark
Ch3	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$
Ch4	2.2	3.1	155.5 mA	>125mA peak	$\sqrt{ }$

5 kHz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x 1 . 4 1 4}$	Specification	Pass/Fail
Ch1	1.68	2.4	118.8 mA	>125mA peak	
Ch2	1.68	2.4	118.8 mA	>125mA peak	
Ch3	1.67	2.4	118.1 mA	>125mA peak	
Ch4	1.66	2.3	117.4 mA	>125mA peak	

Test Engineer.....Xen
Date 19/8/10.

11. Noise Measurements

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

Measure the noise output at 10 Hz .

	Spec in $\mathrm{dB} V \mathrm{~V} \mathrm{~Hz}$	Measured @ 10 Hz	$-60 \mathrm{~dB}=$	Measured in $\mathrm{nV} \sqrt{ } \mathrm{Hz}$	OK?
Ch1	-143.5	-92.0	-152.0	25.1	\checkmark
Ch2	-143.5	-92.7	-152.7	23.2	$\sqrt{ }$
Ch3	-143.5	-91.7	-151.7	26.0	$\sqrt{ }$
Ch4	-143.5	-92.7	-152.7	23.2	$\sqrt{ }$

Notes:

Specified noise output current at $10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}$ (worst case)
Total resistance at 10 Hz , in Low noise mode $=6.7 \mathrm{k}$
Amplifier noise voltage should therefore be $=67 \mathrm{nV} \sqrt{\mathrm{Hz}}$
$67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}$

```UnitTACQ33PSerial No
```

\qquad
Test Engineer RMC

```Date19/10/10
```


12. Final Assembly Tests

1. Remove the lid of the box. $\sqrt{ }$
2. Unplug all external connections. $\sqrt{ }$
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight. $\sqrt{ }$
4. Check that all internal connectors are firmly mated. V
5. Tighten the screw-locks holding all the external connectors. $\sqrt{ }$
6. Check that all the LEDs are nicely centred. $\sqrt{ }$
7. Check that all links W4 are in place. $\sqrt[V]{ }$
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TACQ33P
Driver board ID	TACQ33
Driver board Drawing No/Issue No	D0901047_V4
Monitor board ID	MON227
Monitor board Drawing No/Issue No	D070480_5_K

9. Check the security of any modification wires. None
10. Visually inspect. $\sqrt{ }$
11. Put the lid on and fasten all screws, $\sqrt{ }$

Check all external screws for tightness. $\sqrt{ }$

LIGO Laboratory / LIGO Scientific Collaboration

Advanced LIGO UK

March 2010

Triple Acquisition Driver Unit Test Report

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT

```
Unit................T ACQ P34............................Serial No.
Test Engineer.....Xen
Date
```

\qquad

Drive Card ID......T ACQ34
Monitor Card ID...Mon226
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

1. Description

Block diagram

Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
                ACQ_P34
```

\qquad

```
                                    Serial No
Test Engineer.....Xen.
Date
19/8/10
```


2. Test equipment

```
Power supplies (At least \(+/-20 v\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz )
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.

Links:

Check that the links W2 and W4 are present on each channel.

Test Engineer.. Xen.
Date .19/8/10.

4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{l \mid}$
5	0V	\sqrt{l}		
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
5	0V	$\sqrt{\|c\|}$		
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	$\sqrt{ }$

PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	\checkmark
10	V+ (TP1)	+17 v Supply	$\sqrt{ }$
11	V- (TP2)	-17 v Supply	\checkmark
12	$\mathrm{~V}-$ (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	OV (TP3)		$\sqrt{ }$
24	OV (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

5. TEST SET UP

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit
```

\qquad

``` T_ACQ_P34
``` \(\qquad\)
Test Engineer.....Xen.
Date 19/8/10
```


## 6. Power

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents

$\mathbf{+ 1 6 . 5}$ supply current (mA)	- $\mathbf{1 6 . 5}$ supply current (mA)
500 mA	400 mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	$\sqrt{2}$	$\sqrt{ }$
Rear Panel	$\sqrt{ }$	$\sqrt{ }$

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen..
Date. 19/8/10

## 7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\checkmark$	$\checkmark$	$\checkmark$
Ch2	$\checkmark$	$\checkmark$	$\checkmark$
Ch3	$\checkmark$	$\checkmark$	$\checkmark$
Ch4	$\checkmark$	$\checkmark$	$\checkmark$

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

## ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\checkmark$	$\checkmark$	$\checkmark$
Ch2	$\checkmark$	$\checkmark$	$\checkmark$
Ch3	$\checkmark$	$\checkmark$	$\checkmark$
Ch4	$\checkmark$	$\checkmark$	$\checkmark$

```
Unit
Test Engineer.....Xen.
Date
19/8/10.
```


## 8. Monitor Outputs

                T_ACQ_P34
                                    Serial No
    Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

### 8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S   Monitor	Expected value	Pass/Fail:   Equal? (+/-0.1v)
$\mathbf{1}$	0.33	3	0.33 v	$\sqrt{ }$
$\mathbf{2}$	0.33	6	0.33 v	$\sqrt{ }$
$\mathbf{3}$	0.33	9	0.33 v	$\sqrt{ }$
$\mathbf{4}$	0.33	12	0.33 v	$\sqrt{ }$

Adjust the input voltage until the voltage across the load resistor $=1 \mathrm{v}$ r.m.s. Record the current monitor output values.
8.2 Current Monitors

Ch.	Output	V, I and R.M.S   Monitor	Expected   Value	Pass/Fail:   Equal? (+/- 0.1v)
$\mathbf{1}$	1.91	2	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{2}$	1.91	5	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{3}$	1.92	8	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{4}$	1.91	11	$1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}$	$\sqrt{ }$

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S   Monitor	Expected   Value	Pass/Fail:   Equal? $(+/-\mathbf{0 . 1 v})$
$\mathbf{1}$	1.95	1	1.86 v dc	$\sqrt{ }$
$\mathbf{2}$	1.94	4	1.86 vdc	$\sqrt{ }$
$\mathbf{3}$	1.95	7	1.86 v dc	$\sqrt{ }$
$\mathbf{4}$	1.94	10	1.86 vdc	$\sqrt{ }$

### 8.4 Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu \mathrm{V} \sqrt{\mathrm{Hz}}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA $\sqrt{ } \mathrm{Hz}$ should give $2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}$ out.

Ch.	Output   $(\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})$	$\div($ Pre-amplifier   gain)	Expected   Value	Comparison
$\mathbf{1}$		1.60	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{2}$		1.94	$2.9 \mu \mathrm{~V} \mathrm{~Hz}$	$\sqrt{ }$
$\mathbf{3}$		1.79	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{4}$		1.62	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$

```
Unit
```

$\qquad$

```
 T_ACQ_P34
 4..
 Serial No.
Test Engineer.....Xen.
Date.
 19/8/10
```


## 9. Distortion

```
Switch the filters out. Increase input voltage to 5 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.
```

	Acquisition Mode:   Distortion Free?	Non-Acquisition Mode:   Distortion Free?
Ch1	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{2}$	$\sqrt{ }$

```
Unit.
``` \(\qquad\)
``` .T_ACQ_P34. Serial No
Test Engineer.....Xen.
Date
.19/8/10.
```


## 10 Load tests and Frequency response check

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

### 10.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo   (Vo/20)	Specification	Pass/Fail
Ch1	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

10Hz

	Vor.m.s	$\begin{gathered} \text { Peak lo } \\ (\mathrm{Vo} / 20) \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	0.066	4.7 mA	$>2.5 \mathrm{~mA} \mathrm{peak}$	$\checkmark$
Ch2	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch3	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch4	0.066	4.7 mA	>2.5mA peak	$\checkmark$

100 Hz

	Vor.m.s	$\begin{gathered} \text { Peak lo } \\ (\mathrm{Vo} / 20) \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	0.322	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch2	0.323	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch3	0.322	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch4	0.323	22.8 mA	>2.5mA peak	1

200Hz

Vo r.m.s	Peak lo   $(\mathbf{V o / 2 0}) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.389	27.5 mA	$\boldsymbol{> 2 . 5 m A}$ peak	$\checkmark$
Ch2	0.390	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch3	0.389	27.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.390	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$

1 kHz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times$ 1.414	Specification	Pass/Fail	
Ch1	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.. .Xen
Date
19/8/10.

### 10.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo   (Vo/20)	Specification	Pass/Fail
Ch1	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch2	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch3	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch4	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	

10 Hz

	Vo peak	Peak lo   $($ Vo/20 $)$	Specification	Pass/Fail
Ch1	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch2	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch3	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch4	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	

100 Hz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.123	8.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.122	8.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.120	8.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.126	8.9 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.238	16.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.237	16.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.233	16.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.242	17.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.368	26.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.368	26.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.. Xen.
Date 19/8/10.

### 10.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	1.99	2.8	140.7 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	1.99	2.8	140.7 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch3	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch4	2.00	2.8	141.4 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA }}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	2.3	3.3	162.6 mA	>125mA peak	$\checkmark$
Ch2	2.3	3.3	162.6 mA	>125mA peak	$\checkmark$
Ch3	2.2	3.1	155.5 mA	>125mA peak	$\sqrt{ }$
Ch4	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$

5 kHz

	Vo r.m.s	Vo pk.	Peak Io (Vo/20)   $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	1.68	2.4	118.8 mA	>125mA peak	
Ch2	1.68	2.4	118.8 mA	$>125 \mathrm{~mA}$ peak	
Ch3	1.66	2.3	117.4 mA	$>125 \mathrm{~mA}$ peak	
Ch4	1.68	2.4	118.8 mA	>125mA peak	

```
Unit
Test Engineer.....Xen
Date 19/8/10.
```


## 11. Noise Measurements

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.


Measure the noise output at 10 Hz .

	Spec in   $\mathrm{dB} V \sqrt{ } \mathrm{~Hz}$	Measured @   10 Hz	$-60 \mathrm{~dB}=$	Measured in   $\mathrm{nV} \sqrt{ } \mathrm{Hz}$	OK?
Ch1	-143.5	-91.4	-151.4	26.9	$\checkmark$
Ch2	-143.5	-92.9	-152.9	22.6	$\sqrt{ }$
Ch3	-143.5	-89.3	-149.3	34.3	$\sqrt{ }$
Ch4	-143.5	-92.5	-152.5	23.7	$\sqrt{ }$

## Notes:

Specified noise output current at $10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}$ (worst case)
Total resistance at 10 Hz , in Low noise mode $=6.7 \mathrm{k}$
Amplifier noise voltage should therefore be $=67 \mathrm{nV} \sqrt{\mathrm{Hz}}$
$67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}$

```UnitTACQ34PSerial No
```

$\qquad$

```Test EngineerRMCDate19/10/10
```


## 12. Final Assembly Tests

1. Remove the lid of the box. $\sqrt{ }$
2. Unplug all external connections. $\sqrt{ }$
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight. $\sqrt{ }$
4. Check that all internal connectors are firmly mated. $V$
5. Tighten the screw-locks holding all the external connectors. $\sqrt{ }$
6. Check that all the LEDs are nicely centred. $\sqrt{ }$
7. Check that all links W4 are in place. $\sqrt[V]{ }$
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TACQ34P
Driver board ID	TACQ34
Driver board Drawing No/Issue No	D0901047_V4
Monitor board ID	MON226__05_K
Monitor board Drawing No/Issue No	D070480_05_K

9. Check the security of any modification wires. None
10. Visually inspect. $\sqrt{ }$
11. Put the lid on and fasten all screws, $\sqrt{ }$

Check all external screws for tightness. $\sqrt{ }$

## LIGO Laboratory / LIGO Scientific Collaboration

## Advanced LIGO UK

March 2010

## Triple Acquisition Driver Unit Test Report

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research<br>University of Glasgow<br>Phone +44 (0) 1413305884<br>Fax +44 (0) 1413306833<br>E-mail k.strain@physics.gla.ac.uk<br>Engineering Department<br>CCLRC Rutherford Appleton Laboratory<br>Phone +44 (0) 1235445297<br>Fax +44 (0) 1235445843<br>E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT

```
Unit................T ACQ P35.............................Serial No.
Test Engineer.....Xen.
Date................18/7/10
```

Drive Card ID..........T_ACQ35
Monitor Card ID.......Mon225

Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

## 1. Description

## Block diagram



## Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
_ACQ_P35
```

$\qquad$

```
Serial No
Test Engineer.....Xen
Date
18/7/10
```


## 2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz)
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	$33250 A$	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	



## 3. Inspection

## Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.

## Links:

Check that the links W2 and W4 are present on each channel.

Test Engineer..
Date

## 4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\checkmark$
2	PD2P	Photodiode B+	2	$\checkmark$
3	PD3P	Photodiode C+	3	$\checkmark$
4	PD4P	Photodiode D+	4	$\checkmark$
	5	OV	$\checkmark$	
6	PD1N	Photodiode A-	14	$\checkmark$
7	PD2N	Photodiode B-	15	$\checkmark$
8	PD3N	Photodiode C-	16	$\checkmark$
9	PD4N	Photodiode D-	17	$\checkmark$

## LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\checkmark$
2	Imon2P		6	$\checkmark$
3	Imon3P		7	$\checkmark$
4	Imon4P		8	$\checkmark$
	5	OV	$\checkmark$	
6	Imon1N		18	$\checkmark$
7	Imon2N		19	$\checkmark$
8	Imon3N		20	$\checkmark$
9	Imon4N		21	$\checkmark$

## PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
11	V - (TP2)	-17 v Supply	$\sqrt{ }$
12	V - (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	0 V (TP3)		$\sqrt{ }$
24	0 V (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

## 5. TEST SET UP



Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

## Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit.
```

$\qquad$

``` T_ACQ_P35
``` \(\qquad\)
Date
18/7/10.
```


6. Power

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents

$\mathbf{+ 1 6 . 5}$ supply current (mA)	- $\mathbf{1 6 . 5}$ supply current (mA)
500 mA	400 mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	$\sqrt{ }$	$\sqrt{ }$
Rear Panel	$\sqrt{ }$	$\sqrt{ }$

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen.
Date. 18/7/10

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
Ch1	ON	OFF	
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

```
Unit.
Test Engineer.....Xen
Date. 18/7/10
```


8. Monitor Outputs

 .T_ACQ_P35.
 Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S Monitor	Expected value	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	0.33	3	0.33 v	$\sqrt{ }$
$\mathbf{2}$	0.33	6	0.33 v	$\sqrt{ }$
$\mathbf{3}$	0.33	9	0.33 v	$\sqrt{ }$
$\mathbf{4}$	0.33	12	0.33 v	$\sqrt{ }$

Adjust the input voltage until the voltage across the load resistor $=1 \mathrm{v}$ r.m.s. Record the current monitor output values.
8.2 Current Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	Pass/Fail: Equal? ($+/-\mathbf{0 . 1 v})$
$\mathbf{1}$	1.91	2	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{2}$	1.91	5	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{3}$	1.91	8	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{4}$	1.91	11	$1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}$	$\sqrt{ }$

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	Pass/Fail: Equal? $\mathbf{(+ / - 0 . 1 v)}$
$\mathbf{1}$	1.95	1	1.86 vdc	$\sqrt{ }$
$\mathbf{2}$	1.95	4	1.86 vdc	$\sqrt{ }$
$\mathbf{3}$	1.95	7	1.86 v dc	$\sqrt{ }$
$\mathbf{4}$	1.95	10	1.86 vdc	$\sqrt{ }$

8.4 Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu \mathrm{V} \sqrt{\mathrm{Hz}}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA $\sqrt{ } \mathrm{Hz}$ should give $2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}$ out.

Ch.	Output $(\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})$	$\div($ Pre-amplifier gain)	Expected Value	Comparison
$\mathbf{1}$		1.62	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{2}$		1.91	$2.9 \mu \mathrm{~V} \mathrm{~Hz}$	$\sqrt{ }$
$\mathbf{3}$		1.60	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{4}$		1.59	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$

```
Unit
                T_ACQ_P35
```

\qquad

```
                                    Serial No
Test Engineer.....Xen.
Date
18/7/10.
```


9. Distortion

```
Switch the filters out. Increase input voltage to 5 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.
```

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{2}$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$

Test Engineer．．．．．Xen
Date 18／7／10．

10 Load tests and Frequency response check

Plug in the 20 Ohm 5W loads．Ensure the links W4 are in place．

10．1 Noisy Mode

With the acquisition mode switched out，and filters switched out，apply 5 v peak at the input to the drive unit．Measure the r．m．s differential voltage across each load resistor in turn using a true r．m．s meter，at the frequencies below．For 1 Hz ，use the oscilloscope．Calculate the output current in each case（Vout／20）．

1Hz

	Vo peak	Peak lo $($ Vo／20 $)$	Specification	Pass／Fail
Ch1	65 mV	3.3 mA	$\boldsymbol{> 2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	65 mV	3.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	65 mV	3.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	65 mV	3.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

10Hz

Vo r．m．s	Peak lo $($ Vo／20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass／Fail	
Ch1	0.066	4.7 mA	$>\mathbf{~ 2 . 5 m A ~ p e a k ~}$	$\sqrt{ }$
Ch2	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

100 Hz

	Vo r．m．s	Peak lo $($ Vo／20 $) \times$ 1．414	Specification	Pass／Fail
Ch1	0.321	22.7 mA	$\boldsymbol{> 2 . 5 \mathrm { mA } \text { peak }} ⿻ ⿻ 一 ㇂ ㇒ 丶 𠃌 ⿴$	
Ch2	0.321	22.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.323	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.321	22.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200Hz

	Vor．m．s	$\begin{gathered} \text { Peak lo } \\ (\mathrm{Vo} / 20) \times 1.414 \end{gathered}$	Specification	Pass／Fail
Ch1	0.389	27.5 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch2	0.389	27.5 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch3	0.390	27.6 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch4	0.389	27.5 mA	＞2．5mA peak	\checkmark

1 kHz

Vo r．m．s	Peak lo $($ Vo／20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass／Fail	
Ch1	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.....Xen
Date.
18/7/10.

10.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo (Vo/20)	Specification	Pass/Fail
Ch1	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch2	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch3	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch4	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	

10 Hz

	Vo peak	Peak lo $($ Vo/20 $)$	Specification	Pass/Fail
Ch1	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch2	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch3	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch4	15 mV	750 uA	$>2.5 \mathrm{~mA}$ peak	

100 Hz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.122	8.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.128	9.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.127	9.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.129	9.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.236	16.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.244	17.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.243	17.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.246	17.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.368	26.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.. Xen.
Date 18/7/10.

10.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	1.99	2.8	140.7 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	1.99	2.8	140.7 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	1.99	2.8	140.7 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA }}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	2.3	3.3	162.6 mA	>125mA peak	\checkmark
Ch2	2.3	3.3	162.6 mA	>125mA peak	\checkmark
Ch3	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$
Ch4	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$

5 kHz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x 1 . 4 1 4}$	Specification	Pass/Fail
Ch1	1.67	2.4	118.1 mA	>125mA peak	
Ch2	1.68	2.4	118.8 mA	>125mA peak	
Ch3	1.68	2.4	118.8 mA	>125mA peak	
Ch4	1.67	2.4	118.1 mA	>125mA peak	

```
Unit
Test Engineer.....Xen
Date 18/7/10.
```


11. Noise Measurements

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

Measure the noise output at 10 Hz .

	Spec in $\mathrm{dB} V \mathrm{~V} \mathrm{~Hz}$	Measured @ 10 Hz	$-60 \mathrm{~dB}=$	Measured in $\mathrm{nV} \sqrt{ } \mathrm{Hz}$	OK?
Ch1	-143.5	-94.0	-154.0	20.0	\checkmark
Ch2	-143.5	-93.2	-153.2	21.9	$\sqrt{ }$
Ch3	-143.5	-91.0	-151.0	28.2	$\sqrt{ }$
Ch4	-143.5	-92.8	-152.8	22.9	$\sqrt{ }$

Notes:

Specified noise output current at $10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}$ (worst case)
Total resistance at 10 Hz , in Low noise mode $=6.7 \mathrm{k}$
Amplifier noise voltage should therefore be $=67 \mathrm{nV} \sqrt{\mathrm{Hz}}$
$67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}$

```UnitTACQ35PSerial No
```

\qquad
Test Engineer RMC

```Date19/10/10
```


12. Final Assembly Tests

1. Remove the lid of the box. $\sqrt{ }$
2. Unplug all external connections. $\sqrt{ }$
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight. $\sqrt{ }$
4. Check that all internal connectors are firmly mated. V
5. Tighten the screw-locks holding all the external connectors. $\sqrt{ }$
6. Check that all the LEDs are nicely centred. $\sqrt{ }$
7. Check that all links W4 are in place. $\sqrt[V]{ }$
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TACQ35P
Driver board ID	TACQ35
Driver board Drawing No/Issue No	D0901047_V4
Monitor board ID	MON225
Monitor board Drawing No/Issue No	D070480_5_K

9. Check the security of any modification wires. $\sqrt{ }$
10. Visually inspect. $\sqrt{ }$
11. Put the lid on and fasten all screws, $\sqrt{ }$

Check all external screws for tightness. $\sqrt{ }$

LIGO Laboratory / LIGO Scientific Collaboration

Advanced LIGO UK

March 2010

Triple Acquisition Driver Unit Test Report

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT

```
Unit................T ACQ P36.............................Serial No.
Test Engineer.....Xen.
Date................18/8/10
```

Drive Card ID.......T ACQ36
Monitor Card ID....Mon223
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

1. Description

Block diagram

Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
ACQ_P36
```

\qquad

```
Serial No
Test Engineer.....Xen
Date
18/8/10
```


2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz )
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.

Links:

Check that the links W2 and W4 are present on each channel.

Test Engineer.. Xen.
Date 17/8/10.

4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{l \mid}$
5	0V	\sqrt{l}		
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
5	0V	$\sqrt{\|c\|}$		
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	$\sqrt{ }$

PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
11	V - (TP2)	-17 v Supply	$\sqrt{ }$
12	V - (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	0 V (TP3)		$\sqrt{ }$
24	0 V (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

5. TEST SET UP

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit.
```

\qquad

``` T_ACQ_P36
``` \(\qquad\)
Test Engineer.....Xen.
Date 17/8/10.
```


## 6. Power

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents

$\mathbf{+ 1 6 . 5}$ supply current (mA)	- $\mathbf{1 6 . 5}$ supply current (mA)
500 mA	400 mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	$\sqrt{2}$	$\sqrt{ }$
Rear Panel	$\sqrt{ }$	$\sqrt{ }$

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen..
Date. 17/8/10

## 7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\checkmark$	$\checkmark$	$\checkmark$
Ch2	$\checkmark$	$\checkmark$	$\checkmark$
Ch3	$\checkmark$	$\checkmark$	$\checkmark$
Ch4	$\checkmark$	$\checkmark$	$\checkmark$

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

## ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\checkmark$	$\checkmark$	$\checkmark$
Ch2	$\checkmark$	$\checkmark$	$\checkmark$
Ch3	$\checkmark$	$\checkmark$	$\checkmark$
Ch4	$\checkmark$	$\checkmark$	$\checkmark$

```
Unit
 .T_ACQ_P36
Test Engineer.....Xen
```

Date .17/8/10

## 8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

### 8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S   Monitor	Expected value	Pass/Fail:   Equal? (+/-0.1v)
$\mathbf{1}$	0.33	3	0.33 v	$\sqrt{ }$
$\mathbf{2}$	0.33	6	0.33 v	$\sqrt{ }$
$\mathbf{3}$	0.33	9	0.33 v	$\sqrt{ }$
$\mathbf{4}$	0.33	12	0.33 v	$\sqrt{ }$

Adjust the input voltage until the voltage across the load resistor $=1 \mathrm{v}$ r.m.s. Record the current monitor output values.
8.2 Current Monitors

Ch.	Output	V, I and R.M.S   Monitor	Expected   Value	Pass/Fail:   Equal? (+/- 0.1v)
$\mathbf{1}$	1.92	2	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{2}$	1.92	5	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{3}$	1.92	8	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{4}$	1.92	11	$1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}$	$\sqrt{ }$

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S   Monitor	Expected   Value	Pass/Fail:   Equal? (+/-0.1v)
$\mathbf{1}$	1.96	1	1.86 vdc	$\sqrt{ }$
$\mathbf{2}$	1.96	4	1.86 vdc	$\sqrt{ }$
$\mathbf{3}$	1.96	7	1.86 vdc	$\sqrt{ }$
$\mathbf{4}$	1.96	10	1.86 vdc	$\sqrt{ }$

### 8.4 Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu \mathrm{V} \sqrt{ } \mathrm{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA $\sqrt{\mathrm{Hz}}$ should give $2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}$ out.

Ch.	Output   $(\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})$	$\div($ Pre-amplifier   gain $)$	Expected   Value	Comparison
$\mathbf{1}$		1.62	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{2}$		1.32	$2.9 \mu \mathrm{~V} \mathrm{~Hz}$	$\sqrt{ }$
$\mathbf{3}$		1.25	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{4}$		1.44	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$

```
Unit
 T_ACQ_P36
```

$\qquad$

```
 Serial No
Test Engineer.....Xen.
Date
18/8/10
```


## 9. Distortion

```
Switch the filters out. Increase input voltage to 5 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.
```

	Acquisition Mode:   Distortion Free?	Non-Acquisition Mode:   Distortion Free?
Ch1	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{2}$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$

Test Engineer.....Xen.
Date.
18/8/10.

## 10 Load tests and Frequency response check

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

### 10.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo   $($ Vo/20 $)$	Specification	Pass/Fail
Ch1	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

10Hz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.066	4.7 mA	$>\mathbf{~ 2 . 5 m A ~ p e a k ~}$	$\sqrt{ }$
Ch2	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

100 Hz

	Vor.m.s	$\begin{gathered} \text { Peak lo } \\ (\mathrm{Vo} / 20) \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	0.325	23.0 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch2	0.322	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch3	0.323	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch4	0.321	22.7 mA	>2.5mA peak	$\checkmark$

200 Hz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times$ 1.414	Specification	Pass/Fail	
Ch1	0.390	27.6 mA	$\boldsymbol{> 2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.389	27.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.390	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.388	27.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.414	29.3 mA	$>\mathbf{2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.....Xen.
Date.
18/8/10.

### 10.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo   (Vo/20)	Specification	Pass/Fail
Ch1	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch2	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch3	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch4	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	

10 Hz

	Vo peak	Peak lo   $($ Vo/20 $)$	Specification	Pass/Fail
Ch1	16 mV	800 uA	$>2.5 \mathrm{~mA}$ peak	
Ch2	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch3	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch4	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	

100 Hz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.131	9.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.132	9.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.126	8.9 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.131	9.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.247	17.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.249	17.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.242	17.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.248	17.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.. Xen.
Date. 18/8/10.

### 10.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch3	2.00	2.8	141.4 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch4	2.00	2.8	141.4 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA }}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	2.3	3.3	162.6 mA	>125mA peak	$\checkmark$
Ch2	2.3	3.3	162.6 mA	>125mA peak	$\checkmark$
Ch3	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$
Ch4	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$

5 kHz

	Vo r.m.s	Vo pk.	Peak Io (Vo/20)   $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	1.67	2.4	118.1 mA	>125mA peak	$\checkmark$
Ch2	1.68	2.4	118.8 mA	>125mA peak	$\sqrt{ }$
Ch3	1.68	2.4	118.8 mA	>125mA peak	$\sqrt{ }$
Ch4	1.68	2.4	118.8 mA	>125mA peak	$\sqrt{ }$

Test Engineer.....Xen
Date 17/8/10.

## 11. Noise Measurements

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.


Measure the noise output at 10 Hz .

	Spec in   $\mathrm{dB} V \sqrt{ } \mathrm{~Hz}$	Measured @   10 Hz	$-60 \mathrm{~dB}=$	Measured in   $\mathrm{nV} \sqrt{ } \mathrm{Hz}$	OK?
Ch1	-143.5	-90.3	-150.3	30.5	$\sqrt{ }$
Ch2	-143.5	-92.7	-152.7	23.2	$\sqrt{ }$
Ch3	-143.5	-92.2	-152.2	24.5	$\sqrt{ }$
Ch4	-143.5	-93.1	-153.1	22.1	$\sqrt{ }$

## Notes:

Specified noise output current at $10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}$ (worst case)
Total resistance at 10 Hz , in Low noise mode $=6.7 \mathrm{k}$
Amplifier noise voltage should therefore be $=67 \mathrm{nV} \sqrt{ } \mathrm{Hz}$
$67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}$

```UnitTACQ36PSerial No
```

$\qquad$

```Test EngineerRMCDate19/10/10
```


## 12. Final Assembly Tests

1. Remove the lid of the box. $\sqrt{ }$
2. Unplug all external connections. $\sqrt{ }$
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight. $\sqrt{ }$
4. Check that all internal connectors are firmly mated. $\sqrt{ }$
5. Tighten the screw-locks holding all the external connectors. $\sqrt{ }$
6. Check that all the LEDs are nicely centred. $\sqrt{ }$
7. Check that all links W4 are in place. $\sqrt{ }$
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TACQ36P
Driver board ID	TACQ36
Driver board Drawing No/Issue No	D0901047_V4
Monitor board ID	MON223
Monitor board Drawing No/Issue No	D070480_05_K

9. Check the security of any modification wires. $\sqrt{ }$
10. Visually inspect. $\sqrt{ }$
11. Put the lid on and fasten all screws, $\sqrt{ }$

Check all external screws for tightness.

## LIGO Laboratory / LIGO Scientific Collaboration

## Advanced LIGO UK

March 2010

## Triple Acquisition Driver Unit Test Report

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research<br>University of Glasgow<br>Phone +44 (0) 1413305884<br>Fax +44 (0) 1413306833<br>E-mail k.strain@physics.gla.ac.uk<br>Engineering Department<br>CCLRC Rutherford Appleton Laboratory<br>Phone +44 (0) 1235445297<br>Fax +44 (0) 1235445843<br>E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT

```
Unit................T ACQ P37.............................Serial No.
Test Engineer.....Xen.
Date................17/8/10
```

Drive Card ID......T ACQ37
Monitor Card ID...Mon224
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

## 1. Description

## Block diagram



## Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
ACQ_P37
Serial No
Test Engineer.....Xen.
Date
17/8/10
```


## 2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz)
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	



## 3. Inspection

## Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.

## Links:

Check that the links W2 and W4 are present on each channel.

Test Engineer.. Xen.
Date 17/8/10.

## 4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{l \mid}$
5	0V	$\sqrt{l}$		
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

## LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
5	0V	$\sqrt{\|c\|}$		
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	$\sqrt{ }$

## PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\checkmark$
10	V+ (TP1)	+17 v Supply	$\sqrt{ }$
11	V- (TP2)	-17 v Supply	$\checkmark$
12	$\mathrm{~V}-$ (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	OV (TP3)		$\sqrt{ }$
24	OV (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

## 5. TEST SET UP



Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

## Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit.
```

$\qquad$

``` T_ACQ_P37
Test Engineer.....Xen.
Date 17/8/10.
```


## 6. Power

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents

$\mathbf{+ 1 6 . 5}$ supply current (mA)	- $\mathbf{1 6 . 5}$ supply current (mA)
500 mA	400 mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	$\sqrt{2}$	$\sqrt{ }$
Rear Panel	$\sqrt{ }$	$\sqrt{ }$

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen..
Date. 17/8/10

## 7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\checkmark$	$\checkmark$	$\checkmark$
Ch2	$\checkmark$	$\checkmark$	$\checkmark$
Ch3	$\checkmark$	$\checkmark$	$\checkmark$
Ch4	$\checkmark$	$\checkmark$	$\checkmark$

TEST RELAYS

Channel	Indicator		OK?
Ch1	ON	OFF	
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

## ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\checkmark$	$\checkmark$	$\checkmark$
Ch2	$\checkmark$	$\checkmark$	$\checkmark$
Ch3	$\checkmark$	$\checkmark$	$\checkmark$
Ch4	$\checkmark$	$\checkmark$	$\checkmark$

Test Engineer.. ..Xen.
Date .17/8/10.

## 8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to 0 v for each channel.

### 8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S   Monitor	Expected value	Pass/Fail:   Equal? (+/- 0.1v)
$\mathbf{1}$	0.33	3	0.33 v	$\sqrt{ }$
$\mathbf{2}$	0.33	6	0.33 v	$\sqrt{ }$
$\mathbf{3}$	0.33	9	0.33 v	$\sqrt{ }$
$\mathbf{4}$	0.33	12	0.33 v	$\sqrt{ }$

Adjust the input voltage until the voltage across the load resistor $=1 \mathrm{v}$ r.m.s. Record the current monitor output values.
8.2 Current Monitors

Ch.	Output	V, I and R.M.S   Monitor	Expected   Value	Pass/Fail:   Equal? ( $+/-\mathbf{0 . 1 v})$
$\mathbf{1}$	1.92	2	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{2}$	1.92	5	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{3}$	1.92	8	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{4}$	1.92	11	$1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}$	$\sqrt{ }$

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S   Monitor	Expected   Value	Pass/Fail:   Equal? (+/-0.1v)
$\mathbf{1}$	1.95	1	1.86 vdc	$\sqrt{ }$
$\mathbf{2}$	1.96	4	1.86 vdc	$\sqrt{ }$
$\mathbf{3}$	1.96	7	1.86 vdc	$\sqrt{ }$
$\mathbf{4}$	1.96	10	1.86 vdc	$\sqrt{ }$

### 8.4 Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu \mathrm{V} V \mathrm{~Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA $\sqrt{ } \mathrm{Hz}$ should give $2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}$ out.

Ch.	Output   $(\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})$	$\div($ Pre-amplifier   gain $)$	Expected   Value	Comparison
$\mathbf{1}$		1.64	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{2}$		1.47	$2.9 \mu \mathrm{~V} \mathrm{~Hz}$	$\sqrt{ }$
$\mathbf{3}$		1.82	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{4}$		1.77	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$

```
Unit
```

$\qquad$

```
 T_ACQ_P37
```

$\qquad$

```
 Serial No
Test Engineer.....Xen..
Date
17/8/10
```


## 9. Distortion

```
Switch the filters out. Increase input voltage to 5 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.
```

	Acquisition Mode:   Distortion Free?	Non-Acquisition Mode:   Distortion Free?
Ch1	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{2}$	$\sqrt{ }$

Unit. T_ACQ_P37. Serial No
Test Engineer.....Xen.
Date. .17/8/10.

## 10 Load tests and Frequency response check

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

### 10.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo   $($ Vo/20 $)$	Specification	Pass/Fail
Ch1	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

10Hz

	Vor.m.s	$\begin{gathered} \text { Peak lo } \\ (\mathrm{Vo} / 20) \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	0.066	4.7 mA	$>2.5 \mathrm{~mA} \mathrm{peak}$	$\checkmark$
Ch2	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch3	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch4	0.066	4.7 mA	>2.5mA peak	$\checkmark$

100 Hz

	Vor.m.s	$\begin{gathered} \text { Peak lo } \\ (\mathrm{Vo} / 20) \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	0.321	22.7 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch2	0.324	22.9 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch3	0.323	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch4	0.321	22.7 mA	>2.5mA peak	1

200Hz

Vo r.m.s	Peak lo   $(\mathbf{V o / 2 0}) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.389	27.5 mA	$\boldsymbol{> 2 . 5 m A}$ peak	$\checkmark$
Ch2	0.390	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch3	0.389	27.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.388	27.4 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$

1 kHz

	Vo r.m.s	Peak lo   $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.414	29.3 mA	$>\mathbf{2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.. .Xen
Date
17/8/10.

### 10.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo   (Vo/20)	Specification	Pass/Fail
Ch1	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch2	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch3	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch4	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	

10 Hz

	Vo peak	Peak lo   $($ Vo/20 $)$	Specification	Pass/Fail
Ch1	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch2	15 mV	750 uA	$>2.5 \mathrm{~mA}$ peak	
Ch3	15 mV	750 uA	$>2.5 \mathrm{~mA}$ peak	
Ch4	16 mV	800 uA	$>2.5 \mathrm{~mA}$ peak	

100 Hz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.129	9.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.132	9.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.129	9.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.126	8.9 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.246	17.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.249	17.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.246	17.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.242	17.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.368	26.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.. Xen.
Date 17/8/10.

### 10.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch3	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch4	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA }}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	2.3	3.3	162.6 mA	>125mA peak	$\checkmark$
Ch2	2.3	3.3	162.6 mA	>125mA peak	$\checkmark$
Ch3	2.2	3.1	155.5 mA	>125mA peak	$\sqrt{ }$
Ch4	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$

5 kHz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x 1 . 4 1 4}$	Specification	Pass/Fail
Ch1	1.67	2.4	118.1 mA	>125mA peak	
Ch2	1.67	2.4	118.1 mA	>125mA peak	
Ch3	1.66	2.3	117.4 mA	>125mA peak	
Ch4	1.67	2.4	118.1 mA	>125mA peak	

Test Engineer.. .Xen
Date 17/8/10.

## 11. Noise Measurements

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.


Measure the noise output at 10 Hz .

	Spec in   $\mathrm{dB} V \sqrt{ } \mathrm{~Hz}$	Measured @   10 Hz	$-60 \mathrm{~dB}=$	Measured in   $\mathrm{nV} \sqrt{ } \mathrm{Hz}$	OK?
Ch1	-143.5	-92.8	-152.8	22.9	$\sqrt{ }$
Ch2	-143.5	-92.4	-152.4	24.0	$\sqrt{ }$
Ch3	-143.5	-92.1	-152.1	24.8	$\sqrt{ }$
Ch4	-143.5	-91.0	-151.0	28.1	$\sqrt{ }$

## Notes:

Specified noise output current at $10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}$ (worst case)
Total resistance at 10 Hz , in Low noise mode $=6.7 \mathrm{k}$
Amplifier noise voltage should therefore be $=67 \mathrm{nV} \sqrt{ } \mathrm{Hz}$
$67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}$

```
Unit.
 TACQ37P
```

$\qquad$
$\qquad$

```
Test Engineer RMC
Date .21/10/10
```


## 12. Final Assembly Tests

1. Remove the lid of the box. $\sqrt{ }$
2. Unplug all external connections. $\sqrt{ }$
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight. $\sqrt{ }$
4. Check that all internal connectors are firmly mated. $V$
5. Tighten the screw-locks holding all the external connectors. $\sqrt{ }$
6. Check that all the LEDs are nicely centred. $\sqrt{ }$
7. Check that all links $W 4$ are in place. $\sqrt{ }$
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TACQ37P
Driver board ID	TACQ37
Driver board Drawing No/Issue No	D0901047_V4
Monitor board ID	MON224
Monitor board Drawing No/Issue No	D070480_5_K

9. Check the security of any modification wires. $\sqrt{ }$
10. Visually inspect. $\sqrt{ }$
11. Put the lid on and fasten all screws, $\sqrt{ }$

Check all external screws for tightness. $\sqrt{ }$

## LIGO Laboratory / LIGO Scientific Collaboration

## Advanced LIGO UK

March 2010

## Triple Acquisition Driver Unit Test Report

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research<br>University of Glasgow<br>Phone +44 (0) 1413305884<br>Fax +44 (0) 1413306833<br>E-mail k.strain@physics.gla.ac.uk<br>Engineering Department<br>CCLRC Rutherford Appleton Laboratory<br>Phone +44 (0) 1235445297<br>Fax +44 (0) 1235445843<br>E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT

```
Unit................T ACQ P38.............................Serial No.
Test Engineer.....Xen.
Date................17/8/10
```

Drive Card ID......T ACQ38
Monitor Card ID...Mon221
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

## 1. Description

## Block diagram



## Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
ACQ_P38
Serial No
Test Engineer.....Xen.
Date
17/8/10
```


## 2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz)
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	



## 3. Inspection

## Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.

## Links:

Check that the links W2 and W4 are present on each channel.

Test Engineer..
Date.
16/8/10..

## 4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\checkmark$
2	PD2P	Photodiode B+	2	$\checkmark$
3	PD3P	Photodiode C+	3	$\checkmark$
4	PD4P	Photodiode D+	4	$\checkmark$
	5	OV	$\checkmark$	
6	PD1N	Photodiode A-	14	$\checkmark$
7	PD2N	Photodiode B-	15	$\checkmark$
8	PD3N	Photodiode C-	16	$\checkmark$
9	PD4N	Photodiode D-	17	$\checkmark$

## LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\checkmark$
2	Imon2P		6	$\checkmark$
3	Imon3P		7	$\checkmark$
4	Imon4P		8	$\checkmark$
	5	OV	$\checkmark$	
6	Imon1N		18	$\checkmark$
7	Imon2N		19	$\checkmark$
8	Imon3N		20	$\checkmark$
9	Imon4N		21	$\checkmark$

## PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
11	V - (TP2)	-17 v Supply	$\sqrt{ }$
12	V - (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	0 V (TP3)		$\sqrt{ }$
24	0 V (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

## 5. TEST SET UP



Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

## Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit.
```

$\qquad$

``` T_ACQ_P38
Test Engineer.....Xen.
Date 16/8/10
```


## 6. Power

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents

$\mathbf{+ 1 6 . 5}$ supply current (mA)	- $\mathbf{1 6 . 5}$ supply current (mA)
500 mA	400 mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	$\sqrt{2}$	$\sqrt{ }$
Rear Panel	$\sqrt{ }$	$\sqrt{ }$

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen..
Date. 16/8/10

## 7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\checkmark$	$\checkmark$	$\checkmark$
Ch2	$\checkmark$	$\checkmark$	$\checkmark$
Ch3	$\checkmark$	$\checkmark$	$\checkmark$
Ch4	$\checkmark$	$\checkmark$	$\checkmark$

TEST RELAYS

Channel	Indicator		OK?
Ch1	ON	OFF	
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

## ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\checkmark$	$\checkmark$	$\checkmark$
Ch2	$\checkmark$	$\checkmark$	$\checkmark$
Ch3	$\checkmark$	$\checkmark$	$\checkmark$
Ch4	$\checkmark$	$\checkmark$	$\checkmark$

```
Unit.
Test Engineer.....Xen.
Date.
16/8/10.
```


## 8. Monitor Outputs

                T_ACQ_P38
                                    Serial No
    Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to 0 v for each channel.

### 8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S   Monitor	Expected value	Pass/Fail:   Equal? (+/- 0.1v)
$\mathbf{1}$	0.33	3	0.33 v	$\sqrt{ }$
$\mathbf{2}$	0.33	6	0.33 v	$\sqrt{ }$
$\mathbf{3}$	0.33	9	0.33 v	$\sqrt{ }$
$\mathbf{4}$	0.33	12	0.33 v	$\sqrt{ }$

Adjust the input voltage until the voltage across the load resistor $=1 \mathrm{v}$ r.m.s. Record the current monitor output values.
8.2 Current Monitors

Ch.	Output	V, I and R.M.S   Monitor	Expected   Value	Pass/Fail:   Equal? ( $+/ \mathbf{0 . 1 v})$
$\mathbf{1}$	1.90	2	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{2}$	1.90	5	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{3}$	1.90	8	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{4}$	1.90	11	1.86 v r.m.s	$\sqrt{ }$

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S   Monitor	Expected   Value	Pass/Fail:   Equal? (+/-0.1v)
$\mathbf{1}$	1.94	1	1.86 vdc	$\sqrt{ }$
$\mathbf{2}$	1.94	4	1.86 vdc	$\sqrt{ }$
$\mathbf{3}$	1.94	7	1.86 vdc	$\sqrt{ }$
$\mathbf{4}$	1.93	10	1.86 vdc	$\sqrt{ }$

### 8.4 Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu \mathrm{V} V \mathrm{~Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA $\sqrt{ } \mathrm{Hz}$ should give $2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}$ out.

Ch.	Output   $(\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})$	$\div($ Pre-amplifier   gain $)$	Expected   Value	Comparison
$\mathbf{1}$		2.02	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{2}$		1.80	$2.9 \mu \mathrm{~V} \mathrm{~Hz}$	$\sqrt{ }$
$\mathbf{3}$		1.52	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{4}$		1.81	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$

```
Unit
```

$\qquad$

``` T_ACQ_P38
``` \(\qquad\)
```

17/8/10

```

\section*{9. Distortion}
```

Switch the filters out. Increase input voltage to 5 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

```
\begin{tabular}{|c|c|c|}
\hline & \begin{tabular}{c} 
Acquisition Mode: \\
Distortion Free?
\end{tabular} & \begin{tabular}{c} 
Non-Acquisition Mode: \\
Distortion Free?
\end{tabular} \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{2}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit. .T_ACQ_P38. Serial No
Test Engineer.....Xen.
Date. .17/8/10.

\section*{10 Load tests and Frequency response check}

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

\subsection*{10.1 Noisy Mode}

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vo peak & Peak lo (Vo/20) & Specification & Pass/Fail \\
\hline Ch1 & 67.5 mV & 3.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch2 & 67.5 mV & 3.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch3 & 67.5 mV & 3.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch4 & 67.5 mV & 3.4 mA & >2.5mA peak & \(\checkmark\) \\
\hline
\end{tabular}

10Hz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c} 
Peak lo \\
\((\) Vo/20 \() \times \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.066 & 4.7 mA & \(>\mathbf{~ 2 . 5 m A ~ p e a k ~}\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.066 & 4.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.066 & 4.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.066 & 4.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vor.m.s & \[
\begin{gathered}
\text { Peak lo } \\
(\mathrm{Vo} / 20) \times 1.414 \\
\hline
\end{gathered}
\] & Specification & Pass/Fail \\
\hline Ch1 & 0.325 & 23.0 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch2 & 0.325 & 23.0 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch3 & 0.323 & 22.8 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch4 & 0.324 & 22.9 mA & >2.5mA peak & \(\checkmark\) \\
\hline
\end{tabular}

200 Hz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c} 
Peak lo \\
\((\) Vo/20 \() \times\) 1.414
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.391 & 27.6 mA & \(\boldsymbol{> 2 . 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.391 & 27.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.390 & 27.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.390 & 27.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo r.m.s & \begin{tabular}{c} 
Peak lo \\
\((\) Vo/20 \() \times \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.415 & 29.3 mA & \(>\mathbf{2 . 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.415 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.415 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.414 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Engineer.. .Xen
Date
17/8/10.

\subsection*{10.2 Low noise Mode}

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo peak & \begin{tabular}{c} 
Peak lo \\
(Vo/20)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch2 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch3 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch4 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo peak & \begin{tabular}{c} 
Peak lo \\
\((\) Vo/20 \()\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 14 mV & 700 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch2 & 14 mV & 700 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch3 & 14 mV & 700 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch4 & 14 mV & 700 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vo r.m.s & \begin{tabular}{c} 
Peak lo \\
(Vo/20) \(\mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.123 & 8.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.120 & 8.5 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.129 & 9.1 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.122 & 8.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

200 Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo r.m.s & \begin{tabular}{c} 
Peak lo \\
(Vo/20) \(\mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.238 & 16.8 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.234 & 16.5 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.246 & 17.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.236 & 16.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo r.m.s & \begin{tabular}{c} 
Peak lo \\
(Vo/20) \(\mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.369 & 26.1 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.368 & 26.0 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.370 & 26.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.368 & 26.0 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Engineer.. Xen.
Date 17/8/10.

\subsection*{10.3 Acquisition Mode}

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100Hz
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c} 
Peak lo (Vo/20) \\
\(\mathbf{x} \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 1.99 & 2.8 & 140.7 mA & >125mA peak & \(\sqrt{ }\) \\
\hline Ch2 & 1.98 & 2.8 & 140.0 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\sqrt{ }\) \\
\hline Ch3 & 1.98 & 2.8 & 140.0 mA & >125mA peak & \(\sqrt{ }\) \\
\hline Ch4 & 1.97 & 2.8 & 139.3 mA & >125mA peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

200 Hz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c} 
Peak lo (Vo/20) \\
\(\mathbf{x} 1.414\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\sqrt{ }\) \\
\hline Ch3 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\sqrt{ }\) \\
\hline Ch4 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA }}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c} 
Peak lo (Vo/20) \\
\(\mathbf{x} \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 2.3 & 3.3 & 162.6 mA & >125mA peak & \(\checkmark\) \\
\hline Ch2 & 2.3 & 3.3 & 162.6 mA & >125mA peak & \(\checkmark\) \\
\hline Ch3 & 2.3 & 3.3 & 162.6 mA & >125mA peak & \(\sqrt{ }\) \\
\hline Ch4 & 2.3 & 3.3 & 162.6 mA & >125mA peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

5 kHz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c} 
Peak lo (Vo/20) \\
\(\mathbf{x 1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 1.68 & 2.4 & 118.8 mA & >125mA peak & \\
\hline Ch2 & 1.67 & 2.4 & 118.1 mA & >125mA peak & \\
\hline Ch3 & 1.67 & 2.4 & 118.1 mA & >125mA peak & \\
\hline Ch4 & 1.67 & 2.4 & 118.1 mA & >125mA peak & \\
\hline
\end{tabular}
```

Unit
Test Engineer.....Xen
Date 16/8/10.

```

\section*{11. Noise Measurements}

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.


Measure the noise output at 10 Hz .
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \begin{tabular}{c} 
Spec in \\
\(\mathrm{dB} V \mathrm{~V} \mathrm{~Hz}\)
\end{tabular} & \begin{tabular}{c} 
Measured @ \\
10 Hz
\end{tabular} & \(-60 \mathrm{~dB}=\) & \begin{tabular}{c} 
Measured in \\
\(\mathrm{nV} \sqrt{ } \mathrm{Hz}\)
\end{tabular} & OK? \\
\hline Ch1 & -143.5 & -93.3 & -153.3 & 21.6 & \(\checkmark\) \\
\hline Ch2 & -143.5 & -91.3 & -151.3 & 27.2 & \(\sqrt{ }\) \\
\hline Ch3 & -143.5 & -92.4 & -152.4 & 24.0 & \(\sqrt{ }\) \\
\hline Ch4 & -143.5 & -92.4 & -152.4 & 24.0 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Notes:}

Specified noise output current at \(10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}\) (worst case)
Total resistance at 10 Hz , in Low noise mode \(=6.7 \mathrm{k}\)
Amplifier noise voltage should therefore be \(=67 \mathrm{nV} \sqrt{\mathrm{Hz}}\)
\(67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}\)
```UnitTACQ38P
```

$\qquad$
$\qquad$
Test Engineer ..... RMC

```Date19/10/10
```


## 12. Final Assembly Tests

1. Remove the lid of the box. $\sqrt{ }$
2. Unplug all external connections. $\sqrt{ }$
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight. $\sqrt{ }$
4. Check that all internal connectors are firmly mated. $V$
5. Tighten the screw-locks holding all the external connectors. $\sqrt{ }$
6. Check that all the LEDs are nicely centred. $\sqrt{ }$
7. Check that all links $W 4$ are in place. $\sqrt{ }$
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TACQ38P
Driver board ID	TACQ38
Driver board Drawing No/Issue No	D0901047_V4
Monitor board ID	MON221__5_K
Monitor board Drawing No/Issue No	D070480_5_K

9. Check the security of any modification wires. None
10. Visually inspect. $\sqrt{ }$
11. Put the lid on and fasten all screws, $\sqrt{ }$

Check all external screws for tightness. $\sqrt{ }$

## LIGO Laboratory / LIGO Scientific Collaboration

## Advanced LIGO UK

March 2010

## Triple Acquisition Driver Unit Test Report

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research<br>University of Glasgow<br>Phone +44 (0) 1413305884<br>Fax +44 (0) 1413306833<br>E-mail k.strain@physics.gla.ac.uk<br>Engineering Department<br>CCLRC Rutherford Appleton Laboratory<br>Phone +44 (0) 1235445297<br>Fax +44 (0) 1235445843<br>E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT

```
Unit................T ACQ P39.............................Serial No.
Test Engineer.....Xen.
Date................8/10/10
```

Drive Card ID.......T ACQ39
Monitor Card ID....Mon175
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

## 1. Description

## Block diagram



## Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
```

$\qquad$

``` T_ACQ_P39
``` \(\qquad\)
``` Serial No
Test Engineer.....Xen.
Date 8/10/10
```


## 2. Test equipment

```
Power supplies (At least \(+/-20 v\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz)
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	



## 3. Inspection

## Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.

## Links

Check that the links W2 and W4 are present on each channel.

Test Engineer.....Xen...
Date.

## 4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{l \mid}$
5	0V	$\sqrt{l}$		
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

## LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
5	0V	$\sqrt{\|c\|}$		
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	$\sqrt{ }$

## PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
11	V - (TP2)	-17 v Supply	$\sqrt{ }$
12	V - (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	0 V (TP3)		$\sqrt{ }$
24	0 V (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

## 5. TEST SET UP



Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

## Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit.
```

$\qquad$

```
 .T_ACQ_P39.
 Serial No.
Test Engineer.....Xen.
Date
8/10/10
```


## 6. Power

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents

$\mathbf{+ 1 6 . 5}$ supply current (mA)	- 16.5 supply current (mA)
500 mA	400 mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	$\sqrt{ }$	$\sqrt{ }$
Rear Panel	$\sqrt{ }$	$\sqrt{ }$

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen.
Date. 8/10/10

## 7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{\|l\|}$	$\sqrt{ }$	$\sqrt{ }$

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

## ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\checkmark$	$\checkmark$	$\checkmark$
Ch2	$\checkmark$	$\checkmark$	$\checkmark$
Ch3	$\checkmark$	$\checkmark$	$\checkmark$
Ch4	$\checkmark$	$\checkmark$	$\checkmark$

```
Unit
 .T_ACQ_P39
Test Engineer.....Xen
```

Date .8/10/10

## 8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

### 8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S   Monitor	Expected value	Pass/Fail:   Equal? (+/-0.1v)
$\mathbf{1}$	0.33	3	0.33 v	$\sqrt{ }$
$\mathbf{2}$	0.33	6	0.33 v	$\sqrt{ }$
$\mathbf{3}$	0.33	9	0.33 v	$\sqrt{ }$
$\mathbf{4}$	0.33	12	0.33 v	$\sqrt{ }$

Adjust the input voltage until the voltage across the load resistor $=1 \mathrm{v}$ r.m.s. Record the current monitor output values.
8.2 Current Monitors

Ch.	Output	V, I and R.M.S   Monitor	Expected   Value	Pass/Fail:   Equal? (+/- 0.1v)
$\mathbf{1}$	1.92	2	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{2}$	1.92	5	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{3}$	1.92	8	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{4}$	1.92	11	1.86 v r.m.s	$\sqrt{ }$

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S   Monitor	Expected   Value	Pass/Fail:   Equal? (+/- 0.1v)
$\mathbf{1}$	1.95	1	1.86 vdc	$\sqrt{ }$
$\mathbf{2}$	1.95	4	1.86 vdc	$\sqrt{ }$
$\mathbf{3}$	1.96	7	1.86 vdc	$\sqrt{ }$
$\mathbf{4}$	1.96	10	1.86 vdc	$\sqrt{ }$

### 8.4 Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu \mathrm{V} \sqrt{\mathrm{Hz}}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA $\sqrt{ } \mathrm{Hz}$ should give $2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}$ out.

Ch.	Output   $(\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})$	$\div($ Pre-amplifier   gain)	Expected   Value	Comparison
$\mathbf{1}$		1.45	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{2}$		1.39	$2.9 \mu \mathrm{~V} \mathrm{~Hz}$	$\sqrt{ }$
$\mathbf{3}$		1.50	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{4}$		1.42	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$

```
Unit
...............T_ACQ_P39
9..
Serial No.
Test Engineer.....Xen.
Date.
8/10/10
9. Distortion
Switch the filters out. Increase input voltage to 5 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.
```

	Acquisition Mode:   Distortion Free?	Non-Acquisition Mode:   Distortion Free?
Ch1	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{2}$	$\sqrt{ }$

Unit.
.T_ACQ_P39.
Test Engineer.....Xen.
Date.
.8/10/10.

## 10 Load tests and Frequency response check

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

### 10.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo   (Vo/20)	Specification	Pass/Fail
Ch1	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

10Hz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.066	4.7 mA	$>\mathbf{~ 2 . 5 m A ~ p e a k ~}$	$\sqrt{ }$
Ch2	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.067	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

100 Hz

	Vor.m.s	$\begin{gathered} \text { Peak lo } \\ (\mathrm{Vo} / 20) \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	0.324	22.9 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch2	0.323	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch3	0.324	22.9 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch4	0.325	23.0 mA	>2.5mA peak	$\checkmark$

200 Hz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times$ 1.414	Specification	Pass/Fail	
Ch1	0.390	27.6 mA	$\boldsymbol{> 2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.390	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.390	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.390	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Unit.
.T_ACQ_P39.
Serial No
Test Engineer.....Xen
Date.
.8/10/10.

### 10.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1 Hz

	Vo peak	Peak lo   (Vo/20)	Specification	Pass/Fail
Ch1	45 mV	2.3 mA	$>\mathbf{2 . 5 m A}$ peak	
Ch2	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch3	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch4	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	

10 Hz

	Vo peak	Peak lo   $($ Vo/20 $)$	Specification	Pass/Fail
Ch1	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch2	15 mV	750 uA	$>2.5 \mathrm{~mA}$ peak	
Ch3	15 mV	750 uA	$>2.5 \mathrm{~mA}$ peak	
Ch4	16 mV	800 uA	$>2.5 \mathrm{~mA}$ peak	

100 Hz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.131	9.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.131	9.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.123	8.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.129	9.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.248	17.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.247	17.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.238	16.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.245	17.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Unit.
.T_ACQ_P39.
Test Engineer.. Xen.
Date
8/10/10.

### 10.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch3	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch4	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

200 Hz

	Vor.m.s	Vo pk.	$\begin{gathered} \hline \text { Peak lo }(\text { Vo/20 }) \\ \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	$>125 \mathrm{~mA}$ peak	$\checkmark$
Ch2	2.2	3.1	155.5 mA	$>125 \mathrm{~mA}$ peak	$\checkmark$
Ch3	2.2	3.1	155.5 mA	$>125 \mathrm{~mA}$ peak	$\checkmark$
Ch4	2.2	3.1	155.5 mA	>125mA peak	$\checkmark$

1 kHz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	2.3	3.3	162.6 mA	>125mA peak	$\checkmark$
Ch2	2.3	3.3	162.6 mA	>125mA peak	$\checkmark$
Ch3	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$
Ch4	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$

5 kHz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x 1 . 4 1 4}$	Specification	Pass/Fail
Ch1	1.67	2.4	118.1 mA	>125mA peak	
Ch2	1.67	2.4	118.1 mA	>125mA peak	
Ch3	1.67	2.4	118.1 mA	>125mA peak	
Ch4	1.67	2.4	118.1 mA	>125mA peak	

Test Engineer.....Xen.
Date .8/10/10

## 11. Noise Measurements

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.


Measure the noise output at 10 Hz .

	Spec in   $\mathrm{dB} V \sqrt{ } \mathrm{~Hz}$	Measured @   10 Hz	$-60 \mathrm{~dB}=$	Measured in   $\mathrm{nV} \sqrt{ } \mathrm{Hz}$	OK?
Ch1	-143.5	-92.3	-152.3	24.3	$\sqrt{ }$
Ch2	-143.5	-89.7	-149.7	32.7	$\sqrt{ }$
Ch3	-143.5	-92.8	-152.8	22.9	$\sqrt{ }$
Ch4	-143.5	-92.4	-152.4	24.0	$\sqrt{ }$

## Notes:

Specified noise output current at $10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}$ (worst case)
Total resistance at 10 Hz , in Low noise mode $=6.7 \mathrm{k}$
Amplifier noise voltage should therefore be $=67 \mathrm{nV} \sqrt{\mathrm{Hz}}$
$67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}$

```UnitTACQ39P
```

$\qquad$
$\qquad$

```Test EngineerRMCDate19/10/10
```


## 12. Final Assembly Tests

1. Remove the lid of the box. $\sqrt{ }$
2. Unplug all external connections. $\sqrt{ }$
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight. $\sqrt{ }$
4. Check that all internal connectors are firmly mated. $V$
5. Tighten the screw-locks holding all the external connectors. $\sqrt{ }$
6. Check that all the LEDs are nicely centred. $\sqrt{ }$
7. Check that all links W4 are in place. $\sqrt[V]{ }$
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TACQ39P
Driver board ID	TACQ39
Driver board Drawing No/Issue No	D0901047_V4
Monitor board ID	MON175
Monitor board Drawing No/Issue No	D070480_5_K

9. Check the security of any modification wires. $\sqrt{ }$
10. Visually inspect. $\sqrt{ }$
11. Put the lid on and fasten all screws, $\sqrt{ }$

Check all external screws for tightness. $\sqrt{ }$

## LIGO Laboratory / LIGO Scientific Collaboration

## Advanced LIGO UK

March 2010

## Triple Acquisition Driver Unit Test Report

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research<br>University of Glasgow<br>Phone +44 (0) 1413305884<br>Fax +44 (0) 1413306833<br>E-mail k.strain@physics.gla.ac.uk<br>Engineering Department<br>CCLRC Rutherford Appleton Laboratory<br>Phone +44 (0) 1235445297<br>Fax +44 (0) 1235445843<br>E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT

```
Unit................T ACQ P40.............................Serial No.
Test Engineer.....Xen...
Date................11/10/10
```

Drive Card ID.......T ACQ40
Monitor Card ID....Mon156
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

## 1. Description

## Block diagram



## Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
__ACQ_P40
```

$\qquad$

```
Serial No
Test Engineer.....Xen.
Date
11/10/10
```


## 2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz)
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	



## 3. Inspection

## Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.

## Links

Check that the links W2 and W4 are present on each channel.

Test Engineer.....Xen...
Date.

## 4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{l \mid}$
5	0V	$\sqrt{l}$		
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

## LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
5	0V	$\sqrt{\|c\|}$		
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	$\sqrt{ }$

## PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
11	V - (TP2)	-17 v Supply	$\sqrt{ }$
12	V - (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	0 V (TP3)		$\sqrt{ }$
24	0 V (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

## 5. TEST SET UP



Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

## Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit.
```

$\qquad$

``` T_ACQ_P40
``` \(\qquad\)
``` Serial No
Test Engineer.....Xen.
Date 8/10/10
```


## 6. Power

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents

$\mathbf{+ 1 6 . 5}$ supply current (mA)	- $\mathbf{1 6 . 5}$ supply current (mA)
500 mA	400 mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	$\sqrt{ }$	$\sqrt{ }$
Rear Panel	$\sqrt{ }$	$\sqrt{ }$

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen.
Date. 8/10/10

## 7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\checkmark$	$\checkmark$	$\checkmark$
Ch2	$\checkmark$	$\checkmark$	$\checkmark$
Ch3	$\checkmark$	$\checkmark$	$\checkmark$
Ch4	$\checkmark$	$\checkmark$	$\checkmark$

TEST RELAYS

Channel	Indicator		OK?
Ch1	ON	OFF	
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\checkmark$	$\sqrt{ }$

## ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{\|l\|}$	$\sqrt{ }$	$\sqrt{ }$

```
Unit
 .T_ACQ_P40
Test Engineer.....Xen
```

Date .8/10/10

## 8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

### 8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S   Monitor	Expected value	Pass/Fail:   Equal? (+/-0.1v)
$\mathbf{1}$	0.33	3	0.33 v	$\sqrt{ }$
$\mathbf{2}$	0.33	6	0.33 v	$\sqrt{ }$
$\mathbf{3}$	0.33	9	0.33 v	$\sqrt{ }$
$\mathbf{4}$	0.33	12	0.33 v	$\sqrt{ }$

Adjust the input voltage until the voltage across the load resistor $=1 \mathrm{v}$ r.m.s. Record the current monitor output values.
8.2 Current Monitors

Ch.	Output	V, I and R.M.S   Monitor	Expected   Value	Pass/Fail:   Equal? (+/- 0.1v)
$\mathbf{1}$	1.93	$\mathbf{2}$	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{2}$	1.93	5	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{3}$	1.93	8	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{4}$	1.93	11	1.86 v r.m.s	$\sqrt{ }$

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S   Monitor	Expected   Value	Pass/Fail:   Equal? (+/- 0.1v)
$\mathbf{1}$	1.96	1	1.86 vdc	$\sqrt{ }$
$\mathbf{2}$	1.96	4	1.86 vdc	$\sqrt{ }$
$\mathbf{3}$	1.96	7	1.86 vdc	$\sqrt{ }$
$\mathbf{4}$	1.95	10	1.86 vdc	$\sqrt{ }$

### 8.4 Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu \mathrm{V} \sqrt{\mathrm{Hz}}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA $\sqrt{ } \mathrm{Hz}$ should give $2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}$ out.

Ch.	Output   $(\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})$	$\div($ Pre-amplifier   gain)	Expected   Value	Comparison
$\mathbf{1}$		1.18	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{2}$		1.43	$2.9 \mu \mathrm{~V} \mathrm{~Hz}$	$\sqrt{ }$
$\mathbf{3}$		1.36	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{4}$		1.55	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$

```
Unit.
..............T_ACQ_P40
```

$\qquad$

```
Serial No
Test Engineer.....Xen.
Date
11/10/10
```


## 9. Distortion

```
Switch the filters out. Increase input voltage to 5 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.
```

	Acquisition Mode:   Distortion Free?	Non-Acquisition Mode:   Distortion Free?
Ch1	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{2}$	$\sqrt{ }$

## Unit.

T_ACQ_P40 Serial No
Test Engineer.....Xen.
Date. 11/10/10.

10 Load tests and Frequency response check
Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

### 10.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo   $($ Vo/20 $)$	Specification	Pass/Fail
Ch1	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

10Hz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.066	4.7 mA	$>\mathbf{~ 2 . 5 m A ~ p e a k ~}$	$\sqrt{ }$
Ch2	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

100 Hz

	Vor.m.s	$\begin{gathered} \text { Peak lo } \\ (\mathrm{Vo} / 20) \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	0.323	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch2	0.324	22.9 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch3	0.322	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch4	0.323	22.8 mA	>2.5mA peak	1

200Hz

	Vor.m.s	$\begin{gathered} \text { Peak lo } \\ (\mathrm{Vo} / 20) \times 1.414 \end{gathered}$	Specification	Pass/Fail
Ch1	0.389	27.5 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch2	0.391	27.6 mA	>2.5mA peak	$\checkmark$
Ch3	0.389	27.5 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch4	0.389	27.5 mA	>2.5mA peak	$\checkmark$

1 kHz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.416	29.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Unit.
T_ACQ_P40 Serial No
Test Engineer.. Xen.
Date
11/10/10.

### 10.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo   (Vo/20)	Specification	Pass/Fail
Ch1	47 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch2	47 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch3	47 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch4	47 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	

10 Hz

	Vo peak	Peak lo   $($ Vo/20 $)$	Specification	Pass/Fail
Ch1	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch2	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch3	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch4	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	

100 Hz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.125	8.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.131	9.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.132	9.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.130	9.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.240	17.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.249	17.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.250	17.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.246	17.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.371	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.. Xen...
Date 11/10/10.

### 10.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch3	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch4	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA }}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	>125mA peak	$\sqrt{ }$
Ch2	2.3	3.3	162.6 mA	>125mA peak	$\checkmark$
Ch3	2.2	3.1	155.5 mA	>125mA peak	$\sqrt{ }$
Ch4	2.2	3.1	155.5 mA	>125mA peak	$\sqrt{ }$

5 kHz

	Vo r.m.s	Vo pk.	Peak Io (Vo/20)   $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	1.66	2.3	117.4 mA	>125mA peak	
Ch2	1.68	2.4	118.8 mA	>125mA peak	
Ch3	1.66	2.3	117.4 mA	$>125 \mathrm{~mA}$ peak	
Ch4	1.66	2.3	117.4 mA	>125mA peak	

Test Engineer.....Xen
Date .8/10/10

## 11. Noise Measurements

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.


Measure the noise output at 10 Hz .

	Spec in   $\mathrm{dB} V \sqrt{ } \mathrm{~Hz}$	Measured @   10 Hz	$-60 \mathrm{~dB}=$	Measured in   $\mathrm{nV} \sqrt{ } \mathrm{Hz}$	OK?
Ch1	-143.5	-92.3	-152.3	24.3	$\sqrt{ }$
Ch2	-143.5	-91.5	-151.5	26.6	$\sqrt{ }$
Ch3	-143.5	-91.6	-151.6	26.3	$\sqrt{ }$
Ch4	-143.5	-91.6	-151.6	26.3	$\sqrt{ }$

## Notes:

Specified noise output current at $10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}$ (worst case)
Total resistance at 10 Hz , in Low noise mode $=6.7 \mathrm{k}$
Amplifier noise voltage should therefore be $=67 \mathrm{nV} \sqrt{ } \mathrm{Hz}$ $67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{\mathrm{~Hz}}$

```
Unit
 TACQ40P
```

$\qquad$
$\qquad$

```
Test EngineerRMC
Date
21/10/10
```


## 12. Final Assembly Tests

1. Remove the lid of the box. $\sqrt{ }$
2. Unplug all external connections. $\sqrt{ }$
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight. $\sqrt{ }$
4. Check that all internal connectors are firmly mated. $V$
5. Tighten the screw-locks holding all the external connectors. $\sqrt{ }$
6. Check that all the LEDs are nicely centred. $\sqrt{ }$
7. Check that all links $W 4$ are in place. $\sqrt{ }$
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TACQ40P
Driver board ID	TACQ40
Driver board Drawing No/Issue No	D0901047_V4
Monitor board ID	MON156__5_K
Monitor board Drawing No/Issue No	D070480_5_K

9. Check the security of any modification wires. $\sqrt{ }$
10. Visually inspect. $\sqrt{ }$
11. Put the lid on and fasten all screws, $\sqrt{ }$

Check all external screws for tightness. $\sqrt{ }$

## LIGO Laboratory / LIGO Scientific Collaboration

## Advanced LIGO UK

March 2010

## Triple Acquisition Driver Unit Test Report

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research<br>University of Glasgow<br>Phone +44 (0) 1413305884<br>Fax +44 (0) 1413306833<br>E-mail k.strain@physics.gla.ac.uk<br>Engineering Department<br>CCLRC Rutherford Appleton Laboratory<br>Phone +44 (0) 1235445297<br>Fax +44 (0) 1235445843<br>E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT

```
Unit................T_ACQ_P41.............................Serial No.
Test Engineer.....Xen.
Date................23/9/10
```

Drive Card ID.......T ACQ41
Monitor Card ID....Mon255
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

## 1. Description

## Block diagram



## Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
```

$\qquad$

```
 T_ACQ_P41
```

$\qquad$

```
 Serial No
Test Engineer.....Xen.
Date...............23/9/10
```


## 2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz)
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	$33250 A$	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	



## 3. Inspection

## Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.

## Links:

Check that the links W2 and W4 are present on each channel.

## 4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{l \mid}$
5	0V	$\sqrt{l}$		
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

## LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
5	0V	$\sqrt{\|c\|}$		
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	$\sqrt{ }$

## PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
11	V - (TP2)	-17 v Supply	$\sqrt{ }$
12	V - (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	0 V (TP3)		$\sqrt{ }$
24	0 V (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

## 5. TEST SET UP



Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

## Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit.
```

$\qquad$

``` T_ACQ_P41
``` \(\qquad\)
``` Serial No
Test Engineer.....Xen.
Date.................22/9/10
```


## 6. Power

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents

$\mathbf{+ 1 6 . 5}$ supply current (mA)	- $\mathbf{1 6 . 5}$ supply current (mA)
500 mA	400 mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	$\sqrt{ }$	$\sqrt{ }$
Rear Panel	$\sqrt{ }$	$\sqrt{ }$

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen.
Date. 22/9/10

## 7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\checkmark$	$\checkmark$	$\checkmark$
Ch2	$\checkmark$	$\checkmark$	$\checkmark$
Ch3	$\checkmark$	$\checkmark$	$\checkmark$
Ch4	$\checkmark$	$\checkmark$	$\checkmark$

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

## ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\checkmark$	$\checkmark$
Ch2	$\sqrt{ }$	$\checkmark$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\checkmark$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\checkmark$	$\sqrt{ }$

```
Unit
 T_ACQ_P41
Test Engineer.....Xen
```

Date 22/9/10

## 8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

### 8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S   Monitor	Expected value	Pass/Fail:   Equal? (+/-0.1v)
$\mathbf{1}$	0.33	3	0.33 v	$\sqrt{ }$
$\mathbf{2}$	0.33	6	0.33 v	$\sqrt{ }$
$\mathbf{3}$	0.33	9	0.33 v	$\sqrt{ }$
$\mathbf{4}$	0.33	12	0.33 v	$\sqrt{ }$

Adjust the input voltage until the voltage across the load resistor $=1 \mathrm{v}$ r.m.s. Record the current monitor output values.
8.2 Current Monitors

Ch.	Output	V, I and R.M.S   Monitor	Expected   Value	Pass/Fail:   Equal? (+/- 0.1v)
$\mathbf{1}$	1.94	2	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{2}$	1.94	5	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{3}$	1.93	8	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{4}$	1.93	11	1.86 v r.m.s	$\sqrt{ }$

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S   Monitor	Expected   Value	Pass/Fail:   Equal? (+/- 0.1v)
$\mathbf{1}$	1.98	1	1.86 vdc	$\sqrt{ }$
$\mathbf{2}$	1.98	4	1.86 vdc	$\sqrt{ }$
$\mathbf{3}$	1.97	7	1.86 vdc	
$\mathbf{4}$	1.97	10	1.86 vdc	

### 8.4 Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu \mathrm{V} \sqrt{\mathrm{Hz}}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA $\sqrt{ } \mathrm{Hz}$ should give $2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}$ out.

Ch.	Output   $(\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})$	$\div($ Pre-amplifier   gain)	Expected   Value	Comparison
$\mathbf{1}$		1.42	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{2}$		1.88	$2.9 \mu \mathrm{~V} \mathrm{~Hz}$	$\sqrt{ }$
$\mathbf{3}$		1.53	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{4}$		1.63	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$

```
Unit
...............T_ACQ_P41
```

$\qquad$

```
Serial No
Test Engineer.....Xen.
Date................23/9/10.
```


## 9. Distortion

```
Switch the filters out. Increase input voltage to 5 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.
```

	Acquisition Mode:   Distortion Free?	Non-Acquisition Mode:   Distortion Free?
Ch1	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{2}$	$\sqrt{ }$

```
Unit
 T_ACQ_P41
Test Engineer.....Xen.
Date .23/9/10
```

10 Load tests and Frequency response check
Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

### 10.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo (Vol20)	Specification	Pass/Fail
Ch1	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch2	67.5 mV	3.4 mA	>2.5mA peak	$\checkmark$
Ch3	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch4	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$

10 Hz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times$ 1.414	Specification	Pass/Fail	
Ch1	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch2	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

100 Hz

	Vo r.m.s	Peak lo   $(\mathrm{Vo/20}) \times$ 1.414	Specification	Pass/Fail
Ch1	0.322	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.322	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.322	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.323	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

	Vor.m.s	$\begin{gathered} \text { Peak lo } \\ (\mathrm{Vo} / 20) \times 1.414 \end{gathered}$	Specification	Pass/Fail
Ch1	0.389	27.5 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch2	0.389	27.5 mA	>2.5mA peak	$\checkmark$
Ch3	0.389	27.5 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch4	0.389	27.5 mA	>2.5mA peak	$\checkmark$

1 kHz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times$ 1.414	Specification	Pass/Fail	
Ch1	0.413	29.2 mA	$\boldsymbol{> 2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.413	29.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Unit.
.T_ACQ_P41 Serial No
Test Engineer.....Xen
Date.
.23/9/10.

### 10.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo   (Vo/20)	Specification	Pass/Fail
Ch1	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch2	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch3	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch4	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	

10 Hz

	Vo peak	Peak lo   $($ Vo/20 $)$	Specification	Pass/Fail
Ch1	13 mV	650 uA	$>2.5 \mathrm{~mA}$ peak	
Ch2	15 mV	750 uA	$>2.5 \mathrm{~mA}$ peak	
Ch3	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch4	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	

100 Hz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.126	8.9 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.131	9.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.131	9.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.132	9.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.242	17.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.248	17.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.248	17.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.249	17.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.368	26.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Unit.
T_ACQ_P41
Test Engineer..
Date.
.23/9/10

### 10.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch3	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch4	1.96	2.8	138.6 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA }}$ peak	$\sqrt{ }$

1 kHz

	Vor.m.s	Vo pk.	$\begin{gathered} \text { Peak lo (Vo/20) } \\ \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	$>125 \mathrm{~mA}$ peak	$\checkmark$
Ch2	2.3	3.3	162.6 mA	$>125 \mathrm{~mA}$ peak	$\checkmark$
Ch3	2.3	3.3	162.6 mA	$>125 \mathrm{~mA}$ peak	$\checkmark$
Ch4	2.2	3.1	155.5 mA	>125mA peak	$\checkmark$

5 kHz

	Vo r.m.s	Vo pk.	Peak Io (Vo/20)   $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	1.66	2.3	117.4 mA	>125mA peak	
Ch2	1.67	2.4	118.1 mA	$>125 \mathrm{~mA}$ peak	
Ch3	1.67	2.4	118.1 mA	$>125 \mathrm{~mA}$ peak	
Ch4	1.66	2.3	117.4 mA	>125mA peak	

## 11. Noise Measurements

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.


Measure the noise output at 10 Hz .

	Spec in   $\mathrm{dB} V \sqrt{ } \mathrm{~Hz}$	Measured @   10 Hz	$-60 \mathrm{~dB}=$	Measured in   $\mathrm{nV} \sqrt{ } \mathrm{Hz}$	OK?
Ch1	-143.5	-92.5	-152.5	23.7	$\sqrt{ }$
Ch2	-143.5	-92.2	-152.2	24.5	$\sqrt{ }$
Ch3	-143.5	-91.8	-151.8	25.7	$\sqrt{ }$
Ch4	-143.5	-92.3	-152.3	24.3	$\sqrt{ }$

## Notes:

Specified noise output current at $10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}$ (worst case)
Total resistance at 10 Hz , in Low noise mode $=6.7 \mathrm{k}$
Amplifier noise voltage should therefore be $=67 \mathrm{nV} \sqrt{\mathrm{Hz}}$
$67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}$

```
Unit.
 TACQ41P
```

$\qquad$

``` Serial No
``` \(\qquad\)
```Test EngineerRMC
```

Date ..... 21/10/10

## 12. Final Assembly Tests

1. Remove the lid of the box. $\sqrt{ }$
2. Unplug all external connections. $\sqrt{ }$
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight. $\sqrt{ }$
4. Check that all internal connectors are firmly mated. $V$
5. Tighten the screw-locks holding all the external connectors. $\sqrt{ }$
6. Check that all the LEDs are nicely centred. $\sqrt{ }$
7. Check that all links W4 are in place. $\sqrt[V]{ }$
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TACQ41P
Driver board ID	TACQ41
Driver board Drawing No/Issue No	D0901047_V4
Monitor board ID	MON255
Monitor board Drawing No/Issue No	D070480_5_K

9. Check the security of any modification wires. $\sqrt{ }$
10. Visually inspect. $\sqrt{ }$
11. Put the lid on and fasten all screws, $\sqrt{ }$

Check all external screws for tightness. $\sqrt{ }$

## LIGO Laboratory / LIGO Scientific Collaboration

## Advanced LIGO UK

March 2010

## Triple Acquisition Driver Unit Test Report

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research<br>University of Glasgow<br>Phone +44 (0) 1413305884<br>Fax +44 (0) 1413306833<br>E-mail k.strain@physics.gla.ac.uk<br>Engineering Department<br>CCLRC Rutherford Appleton Laboratory<br>Phone +44 (0) 1235445297<br>Fax +44 (0) 1235445843<br>E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT

```
Unit................T_ACQ_P42............................Serial No.
Test Engineer.....Xen.
Date................22/9/10
```

Drive Card ID......T ACQ42
Monitor Card ID...Mon256
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

## 1. Description

## Block diagram



## Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
T_ACQ_P42
Serial No
Test Engineer.....Xen.
Date................22/9/10
```


## 2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz)
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	



## 3. Inspection

## Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.

## Links:

Check that the links W2 and W4 are present on each channel.

## 4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{l \mid}$
5	0V	$\sqrt{l}$		
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

## LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
5	0V	$\sqrt{\|c\|}$		
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	$\sqrt{ }$

## PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\checkmark$
10	V+ (TP1)	+17 v Supply	$\sqrt{ }$
11	V- (TP2)	-17 v Supply	$\checkmark$
12	$\mathrm{~V}-$ (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	OV (TP3)		$\sqrt{ }$
24	OV (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

## 5. TEST SET UP



Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

## Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit.
```

$\qquad$

```
 T_ACQ_P42.
```

$\qquad$
Date...............22/9/10

```

\section*{6. Power}

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents
\begin{tabular}{|c|c|}
\hline \(\mathbf{+ 1 6 . 5}\) supply current (mA) & - 16.5 supply current (mA) \\
\hline 500 mA & 400 mA \\
\hline
\end{tabular}

Check that all power LEDs are illuminated.
\begin{tabular}{|c|c|c|}
\hline LEDs & Plus & Minus \\
\hline Front Panel & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Rear Panel & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen..
Date. 22/9/10

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|l|}{Indicator} & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch2 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch3 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch4 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline
\end{tabular}

TEST RELAYS
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline Ch1 & ON & OFF & \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{ACQUISITION RELAYS}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|l|}{Indicator} & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch2 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch3 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch4 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline
\end{tabular}
```

Unit
.T_ACQ_P42.
Serial No
Test Engineer.....Xen

```
Date.
22/9/10

\section*{8. Monitor Outputs}

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

\subsection*{8.1 Voltage Monitors}
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output: & \begin{tabular}{c}
V, I and R.M.S \\
Monitor
\end{tabular} & Expected value & \begin{tabular}{c}
Pass/Fail: \\
Equal? (+/-0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & 0.33 & 3 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 0.33 & 6 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 0.33 & 9 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 0.33 & 12 & 0.33 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

Adjust the input voltage until the voltage across the load resistor \(=1 \mathrm{v}\) r.m.s. Record the current monitor output values.
8.2 Current Monitors
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output & \begin{tabular}{c}
V, I and R.M.S \\
Monitor
\end{tabular} & \begin{tabular}{c}
Expected \\
Value
\end{tabular} & \begin{tabular}{c}
Pass/Fail: \\
Equal? (+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & 1.92 & 2 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 1.92 & 5 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 1.91 & 8 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 1.91 & 11 & \(1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.3 R.M.S Monitors
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output & \begin{tabular}{c}
V, I and R.M.S \\
Monitor
\end{tabular} & \begin{tabular}{c}
Expected \\
Value
\end{tabular} & \begin{tabular}{c}
Pass/Fail: \\
Equal? \(\mathbf{(+ / - 0 . 1 v)}\)
\end{tabular} \\
\hline \(\mathbf{1}\) & 1.95 & 1 & 1.86 vdc & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 1.95 & 4 & 1.86 vdc & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 1.95 & 7 & 1.86 v dc & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 1.95 & 10 & 1.86 vdc & \(\sqrt{ }\) \\
\hline
\end{tabular}

\subsection*{8.4 Noise Monitors}
- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in \(\mu \mathrm{V} \sqrt{\mathrm{Hz}}\) on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \(\sqrt{ } \mathrm{Hz}\) should give \(2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}\) out.
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c}
Output \\
\((\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})\)
\end{tabular} & \begin{tabular}{c}
\(\div(\) Pre-amplifier \\
gain)
\end{tabular} & \begin{tabular}{c}
Expected \\
Value
\end{tabular} & Comparison \\
\hline \(\mathbf{1}\) & & 1.72 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & & 2.04 & \(2.9 \mu \mathrm{~V} \mathrm{~Hz}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & & 1.29 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & & 1.33 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit

```
\(\qquad\)
```

                T_ACQ_P42
                42..
                Serial No
    Test Engineer.....Xen.
Date................22/9/10

```

\section*{9. Distortion}
```

Switch the filters out. Increase input voltage to 5 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

```
\begin{tabular}{|c|c|c|}
\hline & \begin{tabular}{c}
Acquisition Mode: \\
Distortion Free?
\end{tabular} & \begin{tabular}{c}
Non-Acquisition Mode: \\
Distortion Free?
\end{tabular} \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{2}\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit

```
\(\qquad\)
```

                            T_ACQ_P42
    Test Engineer.....Xen.
Date
22/9/10

```
\(\qquad\)

10 Load tests and Frequency response check
Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

\subsection*{10.1 Noisy Mode}

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vo peak & Peak lo (Vol20) & Specification & Pass/Fail \\
\hline Ch1 & 67.5 mV & 3.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch2 & 67.5 mV & 3.4 mA & >2.5mA peak & \(\checkmark\) \\
\hline Ch3 & 67.5 mV & 3.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch4 & 67.5 mV & 3.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c}
Peak lo \\
\((\) Vo/20 \() \times \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.066 & 4.7 mA & \(>\mathbf{2 . 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.066 & 4.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.066 & 4.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.066 & 4.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c}
Peak lo \\
\((\mathrm{Vo/20}) \times \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.322 & 22.8 mA & \(>\mathbf{2 . 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.323 & 22.8 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.323 & 22.8 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.321 & 22.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

200 Hz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c}
Peak lo \\
\((\) Vo/20 \() \times \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.389 & 27.5 mA & \(\boldsymbol{> 2 . 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.390 & 27.6 mA & \(>\mathbf{2 . 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.390 & 27.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.389 & 27.5 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|l|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c}
Peak lo \\
\((\mathbf{V o / 2 0}) \times \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.414 & 29.3 mA & \(\boldsymbol{> 2 . 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.415 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.415 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.414 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit.
.T_ACQ_P42. Serial No
Test Engineer.....Xen
Date.
.22/9/10.

\subsection*{10.2 Low noise Mode}

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo peak & \begin{tabular}{c}
Peak lo \\
(Vo/20)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch2 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch3 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch4 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo peak & \begin{tabular}{c}
Peak lo \\
\((\) Vo/20 \()\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 14 mV & 700 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch2 & 14 mV & 700 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch3 & 12 mV & 600 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch4 & 12 mV & 600 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vo r.m.s & \begin{tabular}{c}
Peak lo \\
\((\) Vo/20 \() \times\) 1.414
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.128 & 9.0 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.128 & 9.0 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.126 & 8.9 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.126 & 8.9 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

200 Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo r.m.s & \begin{tabular}{c}
Peak lo \\
(Vo/20) \(\mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.244 & 17.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.244 & 17.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.242 & 17.1 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.242 & 17.1 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo r.m.s & \begin{tabular}{c}
Peak lo \\
(Vo/20) \(\mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.369 & 26.1 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.370 & 26.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.369 & 26.1 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.369 & 26.1 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

\subsection*{10.3 Acquisition Mode}

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100 Hz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c}
Peak lo (Vo/20) \\
\(\mathbf{x} \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 1.98 & 2.8 & 140.0 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 1.98 & 2.8 & 140.0 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 1.98 & 2.8 & 140.0 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 1.98 & 2.8 & 140.0 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

200 Hz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c}
Peak lo (Vo/20) \\
\(\mathbf{x} 1.414\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\sqrt{ }\) \\
\hline Ch3 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\sqrt{ }\) \\
\hline Ch4 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA }}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c}
Peak lo (Vo/20) \\
\(\mathbf{x} \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 2.3 & 3.3 & 162.6 mA & >125mA peak & \(\checkmark\) \\
\hline Ch2 & 2.3 & 3.3 & 162.6 mA & >125mA peak & \(\checkmark\) \\
\hline Ch3 & 2.3 & 3.3 & 162.6 mA & >125mA peak & \(\sqrt{ }\) \\
\hline Ch4 & 2.3 & 3.3 & 162.6 mA & >125mA peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

5 kHz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c}
Peak lo (Vo/20) \\
\(\mathbf{x 1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 1.67 & 2.4 & 118.1 mA & >125mA peak & \\
\hline Ch2 & 1.68 & 2.4 & 118.8 mA & >125mA peak & \\
\hline Ch3 & 1.67 & 2.4 & 118.1 mA & >125mA peak & \\
\hline Ch4 & 1.67 & 2.4 & 118.1 mA & >125mA peak & \\
\hline
\end{tabular}

\section*{11. Noise Measurements}

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

Measure the noise output at 10 Hz .
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \begin{tabular}{c}
Spec in \\
\(\mathrm{dB} V \sqrt{ } \mathrm{~Hz}\)
\end{tabular} & \begin{tabular}{c}
Measured @ \\
10 Hz
\end{tabular} & \(-60 \mathrm{~dB}=\) & \begin{tabular}{c}
Measured in \\
\(\mathrm{nV} \sqrt{ } \mathrm{Hz}\)
\end{tabular} & OK? \\
\hline Ch1 & -143.5 & -92.5 & -152.5 & 23.7 & \(\sqrt{ }\) \\
\hline Ch2 & -143.5 & -91.5 & -151.5 & 26.6 & \(\sqrt{ }\) \\
\hline Ch3 & -143.5 & -92.3 & -152.3 & 24.3 & \(\sqrt{ }\) \\
\hline Ch4 & -143.5 & -90.7 & -150.7 & 29.2 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Notes:}

Specified noise output current at \(10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}\) (worst case)
Total resistance at 10 Hz , in Low noise mode \(=6.7 \mathrm{k}\)
Amplifier noise voltage should therefore be \(=67 \mathrm{nV} \sqrt{\mathrm{Hz}}\)
\(67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}\)
```

Unit.
TACQ42P
Serial No

```
\(\qquad\)
```

Test Engineer .........RMC
Date
.21/10/10

```

\section*{12. Final Assembly Tests}
1. Remove the lid of the box. \(\sqrt{ }\)
2. Unplug all external connections. \(\sqrt{ }\)
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight. \(\sqrt{ }\)
4. Check that all internal connectors are firmly mated. \(V\)
5. Tighten the screw-locks holding all the external connectors. \(\sqrt{ }\)
6. Check that all the LEDs are nicely centred. \(\sqrt{ }\)
7. Check that all links W4 are in place. \(\sqrt[V]{ }\)
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:
\begin{tabular}{|l|l|}
\hline UoB box ID & TACQ42P \\
\hline Driver board ID & TACQ42 \\
\hline Driver board Drawing No/Issue No & D0901047_V4 \\
\hline Monitor board ID & MON257 \\
\hline Monitor board Drawing No/Issue No & D070480_5_K \\
\hline
\end{tabular}
9. Check the security of any modification wires. \(\sqrt{ }\)
10. Visually inspect. \(\sqrt{ }\)
11. Put the lid on and fasten all screws, \(\sqrt{ }\)

Check all external screws for tightness. \(\sqrt{ }\)

\section*{LIGO Laboratory / LIGO Scientific Collaboration}

\section*{Advanced LIGO UK}

March 2010

\section*{Triple Acquisition Driver Unit Test Report}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

\author{
Institute for Gravitational Research \\ University of Glasgow \\ Phone +44 (0) 1413305884 \\ Fax +44 (0) 1413306833 \\ E-mail k.strain@physics.gla.ac.uk \\ Engineering Department \\ CCLRC Rutherford Appleton Laboratory \\ Phone +44 (0) 1235445297 \\ Fax +44 (0) 1235445843 \\ E-mail J.Greenhalgh@rl.ac.uk
}

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT}
```

Unit................T_ACQ_P43.............................Serial No.
Test Engineer.....Xen.
Date................21/9/10

```

Drive Card ID.......T ACQ43
Monitor Card ID....Mon252.
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

\section*{1. Description}

\section*{Block diagram}

\section*{Description}

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.
```

Unit

```
\(\qquad\)
```

                            T_ACQ_P43
    ```
\(\qquad\)
Test Engineer.. Xen.
Date 21/9/10

\section*{2. Test equipment}
```

Power supplies (At least $+/-20 \mathrm{v}$ variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz )
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & ISO-TECH & ISR622 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77III & \\
\hline Signal analyzer & Agilent & 35670A & \\
\hline Pre-amplifier & Stanford Systems & SR560 & \\
\hline
\end{tabular}

\section*{3. Inspection}

\section*{Workmanship}

Inspect the general workmanship standard and comment: \(\sqrt{ }\)
Capacitors C35 and C27 have been changed to 1 nF on all channels.

\section*{Links}

Check that the links W2 and W4 are present on each channel.

Test Engineer.....Xen..
Date. 21/9/10.

\section*{4. Continuity Checks}

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\sqrt{ }\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\sqrt{ }\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\sqrt{ }\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\sqrt{l \mid}\) \\
\hline 5 & 0V & \(\sqrt{l}\) \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\sqrt{ }\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\sqrt{ }\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\sqrt{ }\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{LED Mon}
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\sqrt{ }\) \\
\hline 2 & Imon2P & & 6 & \(\sqrt{ }\) \\
\hline 3 & Imon3P & & 7 & \(\sqrt{ }\) \\
\hline 4 & Imon4P & & 8 & \(\sqrt{ }\) \\
\hline 5 & 0V & \(\sqrt{|c|}\) \\
\hline 6 & Imon1N & & 18 & \(\sqrt{ }\) \\
\hline 7 & Imon2N & & 19 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 20 & \(\sqrt{ }\) \\
\hline 9 & Imon4N & & 21 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{PD from Sat}
\begin{tabular}{|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & \(\mathrm{~V}+\) (TP1) & +17 v Supply & \(\checkmark\) \\
\hline 10 & V+ (TP1) & +17 v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17 v Supply & \(\checkmark\) \\
\hline 12 & \(\mathrm{~V}-\) (TP2) & -17 v Supply & \(\sqrt{ }\) \\
\hline 13 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 22 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, \(4=\) positive input
Drive Input J3 pins 6, 7, 8, \(9=\) negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, \(10=+16.5 \mathrm{v}\)
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, \(25=0 v\)
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin \(1 \quad\) Ch1 \(-=\mathrm{J} 4\) pin 9
Ch2 \(+=\mathrm{J} 4\) pin \(3 \quad\) Ch2- \(=\mathrm{J} 4\) pin 11
Ch3 \(+=\mathrm{J} 4\) pin \(5 \quad\) Ch3- \(=\mathrm{J} 4\) pin 13
Ch4+ = J4 pin \(7 \quad\) Ch4- \(=\mathrm{J} 4\) pin 15
```

Unit.

```
\(\qquad\)
```

                            T_ACQ_P43
    ```
\(\qquad\)
\(\qquad\)

\section*{6. Power}

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents
\begin{tabular}{|c|c|}
\hline \(\mathbf{+ 1 6 . 5}\) supply current (mA) & - \(\mathbf{1 6 . 5}\) supply current (mA) \\
\hline 500 mA & 400 mA \\
\hline
\end{tabular}

Check that all power LEDs are illuminated.
\begin{tabular}{|c|c|c|}
\hline LEDs & Plus & Minus \\
\hline Front Panel & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Rear Panel & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen.
Date. 21/9/10

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|l|}{Indicator} & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch2 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch3 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch4 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline
\end{tabular}

TEST RELAYS
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline Ch1 & ON & OFF & \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{ACQUISITION RELAYS}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\checkmark\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\checkmark\) & \(\checkmark\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\checkmark\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit
.T_ACQ_P43
Serial No
Test Engineer.....Xen.

```
Date.
.21/9/10

\section*{8. Monitor Outputs}

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

\subsection*{8.1 Voltage Monitors}
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output: & \begin{tabular}{c}
V, I and R.M.S \\
Monitor
\end{tabular} & Expected value & \begin{tabular}{c}
Pass/Fail: \\
Equal? (+/-0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & 0.33 & 3 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 0.33 & 6 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 0.33 & 9 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 0.33 & 12 & 0.33 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

Adjust the input voltage until the voltage across the load resistor \(=1 \mathrm{v}\) r.m.s. Record the current monitor output values.
8.2 Current Monitors
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output & \begin{tabular}{c}
V, I and R.M.S \\
Monitor
\end{tabular} & \begin{tabular}{c}
Expected \\
Value
\end{tabular} & \begin{tabular}{c}
Pass/Fail: \\
Equal? (+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & 1.91 & 2 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 1.91 & 5 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 1.91 & 8 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 1.91 & 11 & \(1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.3 R.M.S Monitors
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output & \begin{tabular}{c}
V, I and R.M.S \\
Monitor
\end{tabular} & \begin{tabular}{c}
Expected \\
Value
\end{tabular} & \begin{tabular}{c}
Pass/Fail: \\
Equal? \((+/-\mathbf{0 . 1 v})\)
\end{tabular} \\
\hline \(\mathbf{1}\) & 1.94 & 1 & 1.86 vdc & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 1.95 & 4 & 1.86 vdc & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 1.94 & 7 & 1.86 v dc & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 1.94 & 10 & 1.86 vdc & \(\sqrt{ }\) \\
\hline
\end{tabular}

\subsection*{8.4 Noise Monitors}
- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in \(\mu \mathrm{V} \sqrt{\mathrm{Hz}}\) on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \(\sqrt{\mathrm{Hz}}\) should give \(2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}\) out.
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c}
Output \\
\((\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})\)
\end{tabular} & \begin{tabular}{c}
\(\div(\) Pre-amplifier \\
gain \()\)
\end{tabular} & \begin{tabular}{c}
Expected \\
Value
\end{tabular} & Comparison \\
\hline \(\mathbf{1}\) & & 1.65 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & & 1.35 & \(2.9 \mu \mathrm{~V} \mathrm{~Hz}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & & 1.71 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & & 1.56 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit.
...............T_ACQ_P43
3..
Serial No
Test Engineer.....Xen.
Date................21/9/10.

```

\section*{9. Distortion}
```

Switch the filters out. Increase input voltage to 5 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

```
\begin{tabular}{|c|c|c|}
\hline & \begin{tabular}{c}
Acquisition Mode: \\
Distortion Free?
\end{tabular} & \begin{tabular}{c}
Non-Acquisition Mode: \\
Distortion Free?
\end{tabular} \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{2}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit.
ACQ_P43
Test Engineer.....Xen.
Date
21/9/10

```

10 Load tests and Frequency response check
Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

\subsection*{10.1 Noisy Mode}

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vo peak & Peak lo (Vol20) & Specification & Pass/Fail \\
\hline Ch1 & 67.5 mV & 3.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch2 & 67.5 mV & 3.4 mA & >2.5mA peak & \(\checkmark\) \\
\hline Ch3 & 67.5 mV & 3.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch4 & 67.5 mV & 3.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c}
Peak lo \\
\((\) Vo/20 \() \times\) 1.414
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.066 & 4.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.066 & 4.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.066 & 4.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.066 & 4.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vo r.m.s & \begin{tabular}{c}
Peak lo \\
\((\mathrm{Vo/20}) \times\) 1.414
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.323 & 22.8 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.323 & 22.8 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.323 & 22.8 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.321 & 22.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

200Hz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c}
Peak lo \\
\((\) Vo/20 \() \times \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.390 & 27.6 mA & \(\boldsymbol{> 2 . 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.390 & 27.6 mA & \(>\mathbf{2 . 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.390 & 27.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.389 & 27.5 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|l|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c}
Peak lo \\
\((\) Vo/20 \() \times\) 1.414
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.415 & 29.3 mA & \(\boldsymbol{> 2 . 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.415 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.415 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.414 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit.
T_ACQ_P43
Serial No
Test Engineer.. .Xen.
Date .21/9/10.

\subsection*{10.2 Low noise Mode}

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo peak & \begin{tabular}{c}
Peak lo \\
(Vo/20)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch2 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch3 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch4 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo peak & \begin{tabular}{c}
Peak lo \\
\((\) Vo/20)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 16 mV & 800 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch2 & 14 mV & 700 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch3 & 15 mV & 750 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch4 & 15 mV & 750 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vo r.m.s & \begin{tabular}{c}
Peak lo \\
(Vo/20) \(\mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.131 & 9.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.132 & 9.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.130 & 9.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.128 & 9.0 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

200 Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo r.m.s & \begin{tabular}{c}
Peak lo \\
(Vo/20) \(\mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.249 & 17.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.249 & 17.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.247 & 17.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.244 & 17.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c}
Peak lo \\
(Vo/20) \(\mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.370 & 26.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.371 & 26.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.370 & 26.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.369 & 26.1 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit.
T_ACQ_P43
Serial No
Test Engineer. Xen.
Date. 21/9/10.

\subsection*{10.3 Acquisition Mode}

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100 Hz
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c}
Peak lo (Vo/20) \\
\(\mathbf{x} 1.414\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 1.98 & 2.8 & 140.0 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 1.98 & 2.8 & 140.0 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\sqrt{ }\) \\
\hline Ch3 & 1.98 & 2.8 & 140.0 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\sqrt{ }\) \\
\hline Ch4 & 1.98 & 2.8 & 140.0 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

200 Hz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c}
Peak lo (Vo/20) \\
\(\mathbf{x} 1.414\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\sqrt{ }\) \\
\hline Ch3 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\sqrt{ }\) \\
\hline Ch4 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA }}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c}
Peak lo (Vo/20) \\
\(\mathbf{x} \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 2.3 & 3.3 & 162.6 mA & >125mA peak & \(\checkmark\) \\
\hline Ch2 & 2.3 & 3.3 & 162.6 mA & >125mA peak & \(\checkmark\) \\
\hline Ch3 & 2.3 & 3.3 & 162.6 mA & >125mA peak & \(\sqrt{ }\) \\
\hline Ch4 & 2.3 & 3.3 & 162.6 mA & >125mA peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

5 kHz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c}
Peak Io (Vo/20) \\
\(\mathbf{x} 1.414\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 1.67 & 2.4 & 118.1 mA & \(>125 \mathrm{~mA}\) peak & \\
\hline Ch2 & 1.68 & 2.4 & 118.8 mA & \(>125 \mathrm{~mA}\) peak & \\
\hline Ch3 & 1.68 & 2.4 & 118.8 mA & \(>125 \mathrm{~mA}\) peak & \\
\hline Ch4 & 1.67 & 2.4 & 118.1 mA & \(>125 \mathrm{~mA}\) peak & \\
\hline
\end{tabular}
```

Unit
T_ACQ_P43

## 11. Noise Measurements

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.


Measure the noise output at 10 Hz .

	Spec in   $\mathrm{dB} V \sqrt{ } \mathrm{~Hz}$	Measured @   10 Hz	$-60 \mathrm{~dB}=$	Measured in   $\mathrm{nV} \sqrt{ } \mathrm{Hz}$	OK?
Ch1	-143.5	-91.6	-151.6	26.3	$\sqrt{ }$
Ch2	-143.5	-92.1	-152.1	24.8	$\sqrt{ }$
Ch3	-143.5	-90.7	-150.7	29.2	$\sqrt{ }$
Ch4	-143.5	-93.7	-153.7	20.7	$\sqrt{ }$

## Notes:

Specified noise output current at $10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}$ (worst case)
Total resistance at 10 Hz , in Low noise mode $=6.7 \mathrm{k}$
Amplifier noise voltage should therefore be $=67 \mathrm{nV} \sqrt{\mathrm{Hz}}$
$67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{\mathrm{~Hz}}$

```
Unit.
 TACQ43P
```

$\qquad$
$\qquad$

```Test EngineerRMCDate21/10/10
```


## 12. Final Assembly Tests

1. Remove the lid of the box. $\sqrt{ }$
2. Unplug all external connections. $\sqrt{ }$
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight. $\sqrt{ }$
4. Check that all internal connectors are firmly mated. $V$
5. Tighten the screw-locks holding all the external connectors. $\sqrt{ }$
6. Check that all the LEDs are nicely centred. $\sqrt{ }$
7. Check that all links W4 are in place. $\sqrt[V]{ }$
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TACQ43P
Driver board ID	TACQ43P
Driver board Drawing No/Issue No	D0901047_V4
Monitor board ID	MON252
Monitor board Drawing No/Issue No	D070480_5_K

9. Check the security of any modification wires. $\sqrt{ }$
10. Visually inspect. $\sqrt{ }$
11. Put the lid on and fasten all screws, $\sqrt{ }$

Check all external screws for tightness. $\sqrt{ }$

## LIGO Laboratory / LIGO Scientific Collaboration

## Advanced LIGO UK

March 2010

## Triple Acquisition Driver Unit Test Report

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research<br>University of Glasgow<br>Phone +44 (0) 1413305884<br>Fax +44 (0) 1413306833<br>E-mail k.strain@physics.gla.ac.uk<br>Engineering Department<br>CCLRC Rutherford Appleton Laboratory<br>Phone +44 (0) 1235445297<br>Fax +44 (0) 1235445843<br>E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT

```
Unit................T_ACQ_P44............................Serial No.
Test Engineer.....Xen.
Date................22/9/10
```

Drive Card ID.......T ACQ44
Monitor Card ID....Mon251
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

## 1. Description

## Block diagram



## Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
T_ACQ_P44
```

$\qquad$

```
Serial No
Test Engineer.....Xen.
Date
22/9/10
```


## 2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz)
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	



## 3. Inspection

## Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.

## Links

Check that the links W2 and W4 are present on each channel.

## 4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\checkmark$
2	PD2P	Photodiode B+	2	$\checkmark$
3	PD3P	Photodiode C+	3	$\checkmark$
4	PD4P	Photodiode D+	4	$\checkmark$
5	OV	$\checkmark$		
6	PD1N	Photodiode A-	14	$\checkmark$
7	PD2N	Photodiode B-	15	$\checkmark$
8	PD3N	Photodiode C-	16	$\checkmark$
9	PD4N	Photodiode D-	17	$\checkmark$

## LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
5	0V	$\sqrt{\|c\|}$		
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	$\sqrt{ }$

## PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
11	V - (TP2)	-17 v Supply	$\sqrt{ }$
12	V - (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	0 V (TP3)		$\sqrt{ }$
24	0 V (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

## 5. TEST SET UP



Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

## Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit.
```

$\qquad$

```
 T_ACQ_P44
```

$\qquad$
Date...............21/9/10

```

\section*{6. Power}

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents
\begin{tabular}{|c|c|}
\hline \(\mathbf{+ 1 6 . 5}\) supply current (mA) & - 16.5 supply current (mA) \\
\hline 500 mA & 400 mA \\
\hline
\end{tabular}

Check that all power LEDs are illuminated.
\begin{tabular}{|c|c|c|}
\hline LEDs & Plus & Minus \\
\hline Front Panel & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Rear Panel & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen.
Date. 21/9/10

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|l|}{Indicator} & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch2 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch3 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch4 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline
\end{tabular}

TEST RELAYS
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline Ch1 & ON & OFF & \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{ACQUISITION RELAYS}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\checkmark\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\checkmark\) & \(\checkmark\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\checkmark\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit. T_ACQ_P44 Serial No
Test Engineer.....Xen.

```

Date. .21/9/10

\section*{8. Monitor Outputs}

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

\subsection*{8.1 Voltage Monitors}
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output: & \begin{tabular}{c}
V, I and R.M.S \\
Monitor
\end{tabular} & Expected value & \begin{tabular}{c}
Pass/Fail: \\
Equal? (+/-0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & 0.33 & 3 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 0.33 & 6 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 0.33 & 9 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 0.33 & 12 & 0.33 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

Adjust the input voltage until the voltage across the load resistor \(=1 \mathrm{v}\) r.m.s. Record the current monitor output values.
8.2 Current Monitors
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output & \begin{tabular}{c}
V, I and R.M.S \\
Monitor
\end{tabular} & \begin{tabular}{c}
Expected \\
Value
\end{tabular} & \begin{tabular}{c}
Pass/Fail: \\
Equal? (+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & 1.91 & 2 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 1.91 & 5 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 1.91 & 8 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 1.91 & 11 & \(1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.3 R.M.S Monitors
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output & \begin{tabular}{c}
V, I and R.M.S \\
Monitor
\end{tabular} & \begin{tabular}{c}
Expected \\
Value
\end{tabular} & \begin{tabular}{c}
Pass/Fail: \\
Equal? (+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & 1.95 & 1 & 1.86 vdc & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 1.94 & 4 & 1.86 vdc & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 1.95 & 7 & 1.86 vdc & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 1.94 & 10 & 1.86 vdc & \(\sqrt{ }\) \\
\hline
\end{tabular}

\subsection*{8.4 Noise Monitors}
- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in \(\mu \mathrm{V} \sqrt{\mathrm{Hz}}\) on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \(\sqrt{\mathrm{Hz}}\) should give \(2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}\) out.
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c}
Output \\
\((\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})\)
\end{tabular} & \begin{tabular}{c}
\(\div(\) Pre-amplifier \\
gain \()\)
\end{tabular} & \begin{tabular}{c}
Expected \\
Value
\end{tabular} & Comparison \\
\hline \(\mathbf{1}\) & & 1.48 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & & 1.44 & \(2.9 \mu \mathrm{~V} \mathrm{~Hz}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & & 1.49 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & & 1.66 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit
...............T_ACQ_P44

```
\(\qquad\)
```

Serial No
Test Engineer.....Xen.
Date...............22/9/10

```

\section*{9. Distortion}
```

Switch the filters out. Increase input voltage to 5 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

```
\begin{tabular}{|c|c|c|}
\hline & \begin{tabular}{c}
Acquisition Mode: \\
Distortion Free?
\end{tabular} & \begin{tabular}{c}
Non-Acquisition Mode: \\
Distortion Free?
\end{tabular} \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{2}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit.
.T_ACQ_P44.
Test Engineer.....Xen
Date. .22/9/10.

\section*{10 Load tests and Frequency response check}

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

\subsection*{10.1 Noisy Mode}

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vo peak & \begin{tabular}{c}
Peak lo \\
\((\) Vo/20 \()\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 67.5 mV & 3.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 67.5 mV & 3.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 67.5 mV & 3.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 67.5 mV & 3.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

10Hz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c}
Peak lo \\
\((\) Vo/20 \() \times \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.066 & 4.7 mA & \(>\mathbf{~ 2 . 5 m A ~ p e a k ~}\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.067 & 4.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.066 & 4.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.066 & 4.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vor.m.s & \[
\begin{gathered}
\text { Peak lo } \\
(\mathrm{Vo} / 20) \times 1.414 \\
\hline
\end{gathered}
\] & Specification & Pass/Fail \\
\hline Ch1 & 0.322 & 22.8 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch2 & 0.327 & 23.1 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch3 & 0.322 & 22.8 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch4 & 0.324 & 22.9 mA & >2.5mA peak & \(\checkmark\) \\
\hline
\end{tabular}

200 Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vor.m.s & \[
\begin{gathered}
\text { Peak lo } \\
(\mathrm{Vo} / 20) \times 1.414
\end{gathered}
\] & Specification & Pass/Fail \\
\hline Ch1 & 0.389 & 27.5 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch2 & 0.392 & 27.7 mA & >2.5mA peak & \(\checkmark\) \\
\hline Ch3 & 0.389 & 27.5 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch4 & 0.390 & 27.6 mA & >2.5mA peak & \(\checkmark\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c}
Peak lo \\
\((\) Vo/20 \() \times \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.415 & 29.3 mA & \(>\mathbf{2 . 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.415 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.414 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.414 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit.
.T_ACQ_P44. Serial No
Test Engineer.....Xen
Date.
.22/9/10.

\subsection*{10.2 Low noise Mode}

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo peak & \begin{tabular}{c}
Peak lo \\
(Vo/20)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch2 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch3 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch4 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo peak & \begin{tabular}{c}
Peak lo \\
\((\) Vo/20 \()\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 14 mV & 700 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch2 & 13 mV & 650 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch3 & 14 mV & 700 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch4 & 14 mV & 700 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vo r.m.s & \begin{tabular}{c}
Peak lo \\
(Vo/20) \(\mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.130 & 9.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.133 & 9.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.129 & 9.1 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.132 & 9.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

200 Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo r.m.s & \begin{tabular}{c}
Peak lo \\
(Vo/20) \(\mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.247 & 17.5 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.250 & 17.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.245 & 17.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.249 & 17.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo r.m.s & \begin{tabular}{c}
Peak lo \\
(Vo/20) \(\mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.370 & 26.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.370 & 26.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.369 & 26.1 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.370 & 26.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

\subsection*{10.3 Acquisition Mode}

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100 Hz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c}
Peak lo (Vo/20) \\
\(\mathbf{x} 1.414\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 1.98 & 2.8 & 140.0 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 1.98 & 2.8 & 140.0 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\sqrt{ }\) \\
\hline Ch3 & 1.97 & 2.8 & 139.3 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\sqrt{ }\) \\
\hline Ch4 & 1.98 & 2.8 & 140.0 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

200 Hz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c}
Peak lo (Vo/20) \\
\(\mathbf{x} 1.414\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\sqrt{ }\) \\
\hline Ch3 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\sqrt{ }\) \\
\hline Ch4 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA }}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c}
Peak lo (Vo/20) \\
\(\mathbf{x} \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 2.3 & 3.3 & 162.6 mA & >125mA peak & \(\checkmark\) \\
\hline Ch2 & 2.3 & 3.3 & 162.6 mA & >125mA peak & \(\checkmark\) \\
\hline Ch3 & 2.2 & 3.1 & 155.5 mA & >125mA peak & \(\sqrt{ }\) \\
\hline Ch4 & 2.3 & 3.3 & 162.6 mA & >125mA peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

5 kHz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c}
Peak Io (Vo/20) \\
\(\mathbf{x} 1.414\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 1.68 & 2.4 & 118.8 mA & \(>125 \mathrm{~mA}\) peak & \\
\hline Ch2 & 1.67 & 2.4 & 118.1 mA & \(>125 \mathrm{~mA}\) peak & \\
\hline Ch3 & 1.66 & 2.3 & 117.4 mA & \(>125 \mathrm{~mA}\) peak & \\
\hline Ch4 & 1.67 & 2.4 & 118.1 mA & \(>125 \mathrm{~mA}\) peak & \\
\hline
\end{tabular}
```

Unit
T_ACQ_P44

## 11. Noise Measurements

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.


Measure the noise output at 10 Hz .

	Spec in   $\mathrm{dB} V \sqrt{ } \mathrm{~Hz}$	Measured @   10 Hz	$-60 \mathrm{~dB}=$	Measured in   $\mathrm{nV} \sqrt{ } \mathrm{Hz}$	OK?
Ch1	-143.5	-92.6	-152.6	23.4	$\sqrt{ }$
Ch2	-143.5	-91.6	-151.6	26.3	$\sqrt{ }$
Ch3	-143.5	-93.3	-153.3	21.6	$\sqrt{ }$
Ch4	-143.5	-93.6	-153.6	20.9	$\sqrt{ }$

## Notes:

Specified noise output current at $10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}$ (worst case)
Total resistance at 10 Hz , in Low noise mode $=6.7 \mathrm{k}$
Amplifier noise voltage should therefore be $=67 \mathrm{nV} \sqrt{\mathrm{Hz}}$
$67 \mathrm{nV} \sqrt{\mathrm{Hz}}=-143.5 \mathrm{~dB} \sqrt{\mathrm{~Hz}}$

```
Unit.
 TACQ44P
```

$\qquad$
$\qquad$

```Test EngineerRMCDate21/10/10
```


## 12. Final Assembly Tests

1. Remove the lid of the box. $\sqrt{ }$
2. Unplug all external connections. $\sqrt{ }$
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight. $\sqrt{ }$
4. Check that all internal connectors are firmly mated. $V$
5. Tighten the screw-locks holding all the external connectors. $\sqrt{ }$
6. Check that all the LEDs are nicely centred.
7. Check that all links W4 are in place. $\sqrt[V]{ }$
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TACQ44P
Driver board ID	TACQ44P
Driver board Drawing No/Issue No	D090047_V4
Monitor board ID	MON251
Monitor board Drawing No/Issue No	D070480_5_K

9. Check the security of any modification wires. $\sqrt{ }$
10. Visually inspect. $\sqrt{ }$
11. Put the lid on and fasten all screws, $\sqrt{ }$

Check all external screws for tightness. $\sqrt{ }$

## LIGO Laboratory / LIGO Scientific Collaboration

## Advanced LIGO UK

March 2010

## Triple Acquisition Driver Unit Test Report

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research<br>University of Glasgow<br>Phone +44 (0) 1413305884<br>Fax +44 (0) 1413306833<br>E-mail k.strain@physics.gla.ac.uk<br>Engineering Department<br>CCLRC Rutherford Appleton Laboratory<br>Phone +44 (0) 1235445297<br>Fax +44 (0) 1235445843<br>E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT

```
Unit...............T_ACQ_P45.............................Serial No.
Test Engineer.....Xen.
Date................21/9/10
```

Drive Card ID.......T ACQ45
Monitor Card ID....Mon254.
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

## 1. Description

## Block diagram



## Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
```

$\qquad$

```
 T_ACQ_P45
```

$\qquad$

```
Date 21/9/10
```


## 2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz)
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	



## 3. Inspection

## Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.

## Links:

Check that the links W2 and W4 are present on each channel.

Test Engineer.....Xen..
Date.

## 4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{l \mid}$
5	0V	$\sqrt{l}$		
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

## LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
5	0V	$\sqrt{\|c\|}$		
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	$\sqrt{ }$

## PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
11	V - (TP2)	-17 v Supply	$\sqrt{ }$
12	V - (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	0 V (TP3)		$\sqrt{ }$
24	0 V (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

## 5. TEST SET UP



Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

## Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit.
```

$\qquad$

```
 T_ACQ_P45
 5.
 Serial No
Test Engineer.....Xen.
Date...............20/9/10
```


## 6. Power

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents

$\mathbf{+ 1 6 . 5}$ supply current (mA)	- 16.5 supply current (mA)
500 mA	400 mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	$\sqrt{ }$	$\sqrt{ }$
Rear Panel	$\sqrt{ }$	$\sqrt{ }$

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen..
Date. 20/9/10

## 7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\checkmark$	$\checkmark$	$\checkmark$
Ch2	$\checkmark$	$\checkmark$	$\checkmark$
Ch3	$\checkmark$	$\checkmark$	$\checkmark$
Ch4	$\checkmark$	$\checkmark$	$\checkmark$

TEST RELAYS

Channel	Indicator		OK?
Ch1	ON	OFF	
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\checkmark$	$\sqrt{ }$

## ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{\|l\|}$	$\sqrt{ }$	$\sqrt{ }$

```
Unit
 .T_ACQ_P45
 Serial No
Test Engineer.....Xen.
```

Date.
.21/9/10

## 8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

### 8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S   Monitor	Expected value	Pass/Fail:   Equal? (+/-0.1v)
$\mathbf{1}$	0.33	3	0.33 v	$\sqrt{ }$
$\mathbf{2}$	0.33	6	0.33 v	$\sqrt{ }$
$\mathbf{3}$	0.33	9	0.33 v	$\sqrt{ }$
$\mathbf{4}$	0.33	12	0.33 v	$\sqrt{ }$

Adjust the input voltage until the voltage across the load resistor $=1 \mathrm{v}$ r.m.s. Record the current monitor output values.
8.2 Current Monitors

Ch.	Output	V, I and R.M.S   Monitor	Expected   Value	Pass/Fail:   Equal? (+/- 0.1v)
$\mathbf{1}$	1.91	2	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{2}$	1.91	5	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{3}$	1.92	8	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{4}$	1.91	11	$1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}$	$\sqrt{ }$

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S   Monitor	Expected   Value	Pass/Fail:   Equal? (+/- 0.1v)
$\mathbf{1}$	1.95	1	1.86 vdc	$\sqrt{ }$
$\mathbf{2}$	1.95	4	1.86 vdc	$\sqrt{ }$
$\mathbf{3}$	1.95	7	1.86 vdc	$\sqrt{ }$
$\mathbf{4}$	1.95	10	1.86 vdc	$\sqrt{ }$

### 8.4 Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu \mathrm{V} \sqrt{ } \mathrm{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA $\sqrt{\mathrm{Hz}}$ should give $2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}$ out.

Ch.	Output   $(\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})$	$\div($ Pre-amplifier   gain $)$	Expected   Value	Comparison
$\mathbf{1}$		1.97	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{2}$		1.82	$2.9 \mu \mathrm{~V} \mathrm{~Hz}$	$\sqrt{ }$
$\mathbf{3}$		1.65	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{4}$		1.84	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$

```
Unit.
..............T_ACQ_P45
```

$\qquad$

```
Serial No
Test Engineer.....Xen.
Date................21/9/10
```


## 9. Distortion

```
Switch the filters out. Increase input voltage to 5 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.
```

	Acquisition Mode:   Distortion Free?	Non-Acquisition Mode:   Distortion Free?
Ch1	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{2}$	$\sqrt{ }$

```
Unit
 T_ACQ_P45
Test Engineer.....Xen.
Date
21/9/10
```

10 Load tests and Frequency response check
Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

### 10.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo (Vol20)	Specification	Pass/Fail
Ch1	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch2	67.5 mV	3.4 mA	>2.5mA peak	$\checkmark$
Ch3	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch4	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$

10 Hz

Vo r.m.s	Peak lo   $(\mathrm{Vo/20}) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.066	4.7 mA	$>\mathbf{~ 2 . 5 m A ~ p e a k ~}$	$\sqrt{ }$
Ch2	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

100 Hz

	Vo r.m.s	Peak lo   $(\mathrm{Vo/20}) \times$ 1.414	Specification	Pass/Fail
Ch1	0.323	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.323	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.323	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.324	22.9 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

Vo r.m.s	Peak lo   $(\mathrm{Vo/20}) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.390	27.6 mA	$\boldsymbol{> 2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.391	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.390	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.390	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.415	29.3 mA	$>\mathbf{2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.416	29.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Unit.
T_ACQ_P45
Test Engineer.. .Xen.
Date .21/9/10.

### 10.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo   (Vo/20)	Specification	Pass/Fail
Ch1	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch2	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch3	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch4	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	

10 Hz

	Vo peak	Peak lo   $($ Vo/20 $)$	Specification	Pass/Fail
Ch1	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch2	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch3	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch4	13 mV	650 uA	$>2.5 \mathrm{~mA}$ peak	

100 Hz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.120	8.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.126	8.9 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.120	8.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.123	8.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.234	16.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.242	17.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.234	16.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.237	16.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.368	26.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.368	26.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.368	26.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.. Xen.
Date. .21/9/10.

### 10.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA }}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	2.3	3.1	162.6 mA	>125mA peak	$\checkmark$
Ch2	2.3	3.1	162.6 mA	>125mA peak	$\checkmark$
Ch3	2.3	3.1	162.6 mA	>125mA peak	$\sqrt{ }$
Ch4	2.3	3.1	162.6 mA	>125mA peak	$\sqrt{ }$

5 kHz

	Vo r.m.s	Vo pk.	Peak Io (Vo/20)   $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	1.67	2.4	118.1 mA	>125mA peak	
Ch2	1.67	2.4	118.1 mA	$>125 \mathrm{~mA}$ peak	
Ch3	1.67	2.4	118.1 mA	$>125 \mathrm{~mA}$ peak	
Ch4	1.67	2.4	118.1 mA	>125mA peak	

Test Engineer.....Xen
Date .21/9/10

## 11. Noise Measurements

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.


Measure the noise output at 10 Hz .

	Spec in   $\mathrm{dB} V \sqrt{ } \mathrm{~Hz}$	Measured @   10 Hz	$-60 \mathrm{~dB}=$	Measured in   $\mathrm{nV} \sqrt{ } \mathrm{Hz}$	OK?
Ch1	-143.5	-92.8	-152.8	22.9	$\sqrt{ }$
Ch2	-143.5	-93.3	-153.3	21.6	$\sqrt{ }$
Ch3	-143.5	-92.7	-152.7	23.2	$\sqrt{ }$
Ch4	-143.5	-91.3	-151.3	27.2	$\sqrt{ }$

## Notes:

Specified noise output current at $10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}$ (worst case)
Total resistance at 10 Hz , in Low noise mode $=6.7 \mathrm{k}$
Amplifier noise voltage should therefore be $=67 \mathrm{nV} \sqrt{\mathrm{Hz}}$
$67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}$

```
Unit.
 TACQ45P
 Serial No
```

$\qquad$

```
Test Engineer
 RMC
Date
21/10/10
```


## 12. Final Assembly Tests

1. Remove the lid of the box. $\sqrt{ }$
2. Unplug all external connections. $\sqrt{ }$
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight. $\sqrt{ }$
4. Check that all internal connectors are firmly mated. $V$
5. Tighten the screw-locks holding all the external connectors. $\sqrt{ }$
6. Check that all the LEDs are nicely centred. $\sqrt{ }$
7. Check that all links $W 4$ are in place. $\sqrt{ }$
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TACQ45P
Driver board ID	TACQ45P
Driver board Drawing No/Issue No	D0902047_V4
Monitor board ID	MON254
Monitor board Drawing No/Issue No	D070480_5_K

9. Check the security of any modification wires. $\sqrt{ }$
10. Visually inspect. $\sqrt{ }$
11. Put the lid on and fasten all screws, $\sqrt{ }$

Check all external screws for tightness. $\sqrt{ }$

## LIGO Laboratory / LIGO Scientific Collaboration

## Advanced LIGO UK

March 2010

## Triple Acquisition Driver Unit Test Report

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research<br>University of Glasgow<br>Phone +44 (0) 1413305884<br>Fax +44 (0) 1413306833<br>E-mail k.strain@physics.gla.ac.uk<br>Engineering Department<br>CCLRC Rutherford Appleton Laboratory<br>Phone +44 (0) 1235445297<br>Fax +44 (0) 1235445843<br>E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT

```
Unit...............T_ACQ_P46.............................Serial No.
Test Engineer.....Xen.
Date................29/9/10
```

Drive Card ID......T ACQ46
Monitor Card ID...Mon184
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

## 1. Description

## Block diagram



## Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
```

$\qquad$

```
 T_ACQ_P46
```

$\qquad$

```
 Serial No
Test Engineer.....Xen.
Date
29/9/10
```


## 2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz)
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	



## 3. Inspection

## Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.

## Links

Check that the links W2 and W4 are present on each channel.

Test Engineer.....Xen..
Date.

## 4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\checkmark$
2	PD2P	Photodiode B+	2	$\checkmark$
3	PD3P	Photodiode C+	3	$\checkmark$
4	PD4P	Photodiode D+	4	$\checkmark$
	5	OV	$\checkmark$	
6	PD1N	Photodiode A-	14	$\checkmark$
7	PD2N	Photodiode B-	15	$\checkmark$
8	PD3N	Photodiode C-	16	$\checkmark$
9	PD4N	Photodiode D-	17	$\checkmark$

## LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\checkmark$
2	Imon2P		6	$\checkmark$
3	Imon3P		7	$\checkmark$
4	Imon4P		8	$\checkmark$
	5	OV	$\checkmark$	
6	Imon1N		18	$\checkmark$
7	Imon2N		19	$\checkmark$
8	Imon3N		20	$\checkmark$
9	Imon4N		21	$\checkmark$

PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
11	V - (TP2)	-17 v Supply	$\sqrt{ }$
12	V - (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	0 V (TP3)		$\sqrt{ }$
24	0 V (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

## 5. TEST SET UP



Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

## Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit.
```

$\qquad$

```
 .T_ACQ_P46
```

$\qquad$
Date
28/9/10

```

\section*{6. Power}

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents
\begin{tabular}{|c|c|}
\hline \(\mathbf{+ 1 6 . 5}\) supply current (mA) & - \(\mathbf{1 6 . 5}\) supply current (mA) \\
\hline 500 mA & 400 mA \\
\hline
\end{tabular}

Check that all power LEDs are illuminated.
\begin{tabular}{|c|c|c|}
\hline LEDs & Plus & Minus \\
\hline Front Panel & \(\sqrt{2}\) & \(\sqrt{ }\) \\
\hline Rear Panel & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen..
Date. 28/9/10

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{|c|}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

TEST RELAYS
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline Ch1 & ON & OFF & \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\checkmark\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{ACQUISITION RELAYS}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{|l|}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit. T_ACQ_P46 Serial No
Test Engineer.....Xen

```

Date. .28/9/10

\section*{8. Monitor Outputs}

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

\subsection*{8.1 Voltage Monitors}
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output: & \begin{tabular}{c}
V, I and R.M.S \\
Monitor
\end{tabular} & Expected value & \begin{tabular}{c}
Pass/Fail: \\
Equal? (+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & 0.33 & 3 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 0.33 & 6 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 0.33 & 9 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 0.33 & 12 & 0.33 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

Adjust the input voltage until the voltage across the load resistor \(=1 \mathrm{v}\) r.m.s. Record the current monitor output values.
8.2 Current Monitors
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output & \begin{tabular}{c}
V, I and R.M.S \\
Monitor
\end{tabular} & \begin{tabular}{c}
Expected \\
Value
\end{tabular} & \begin{tabular}{c}
Pass/Fail: \\
Equal? (+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & 1.91 & 2 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 1.91 & 5 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 1.91 & 8 & \(1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 1.91 & 11 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.3 R.M.S Monitors
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output & \begin{tabular}{c}
V, I and R.M.S \\
Monitor
\end{tabular} & \begin{tabular}{c}
Expected \\
Value
\end{tabular} & \begin{tabular}{c}
Pass/Fail: \\
Equal? \(\mathbf{(+ / - 0 . 1 v)}\)
\end{tabular} \\
\hline \(\mathbf{1}\) & 1.95 & 1 & 1.86 vdc & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 1.95 & 4 & 1.86 vdc & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 1.95 & 7 & 1.86 v dc & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 1.95 & 10 & 1.86 vdc & \(\sqrt{ }\) \\
\hline
\end{tabular}

\subsection*{8.4 Noise Monitors}
- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in \(\mu \mathrm{V} \sqrt{\mathrm{Hz}}\) on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \(\sqrt{ } \mathrm{Hz}\) should give \(2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}\) out.
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c}
Output \\
\((\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})\)
\end{tabular} & \begin{tabular}{c}
\(\div(\) Pre-amplifier \\
gain)
\end{tabular} & \begin{tabular}{c}
Expected \\
Value
\end{tabular} & Comparison \\
\hline \(\mathbf{1}\) & & 1.59 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & & 1.49 & \(2.9 \mu \mathrm{~V} \mathrm{~Hz}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & & 1.73 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & & 1.29 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit.

```
\(\qquad\)
```

                T_ACQ_P46
    ```
\(\qquad\)
```

                                    Serial No
    Test Engineer.....Xen.
Date
29/9/10

```

\section*{9. Distortion}
```

Switch the filters out. Increase input voltage to 5 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

```
\begin{tabular}{|c|c|c|}
\hline & \begin{tabular}{c}
Acquisition Mode: \\
Distortion Free?
\end{tabular} & \begin{tabular}{c}
Non-Acquisition Mode: \\
Distortion Free?
\end{tabular} \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{2}\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit.
T_ACQ_P46
Test Engineer.....Xen.
Date 29/9/10

``` \(\qquad\)

10 Load tests and Frequency response check
Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

\subsection*{10.1 Noisy Mode}

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vo peak & Peak lo (Vol20) & Specification & Pass/Fail \\
\hline Ch1 & 67.5 mV & 3.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch2 & 67.5 mV & 3.4 mA & >2.5mA peak & \(\checkmark\) \\
\hline Ch3 & 67.5 mV & 3.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch4 & 67.5 mV & 3.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c}
Peak lo \\
\((\) Vo/20 \() \times \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.066 & 4.7 mA & \(>\mathbf{~ 2 . 5 m A ~ p e a k ~}\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.067 & 4.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.066 & 4.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.067 & 4.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vo r.m.s & \begin{tabular}{c}
Peak lo \\
\((\) Vo/20 \() \times\) 1.414
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.323 & 22.8 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.327 & 23.1 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.323 & 22.8 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.326 & 23.0 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

200 Hz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c}
Peak lo \\
\((\) Vo/20 \() \times\) 1.414
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.390 & 27.6 mA & \(\boldsymbol{> 2 . 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.392 & 27.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.390 & 27.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.391 & 27.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|l|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c}
Peak lo \\
\((\) Vo/20 \() \times\) 1.414
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.415 & 29.3 mA & \(\boldsymbol{> 2 . 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.416 & 29.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.415 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.415 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit.
.T_ACQ_P46.
Serial No
Test Engineer.....Xen
Date. .29/9/10.

\subsection*{10.2 Low noise Mode}

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1 Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo peak & \begin{tabular}{c}
Peak lo \\
(Vo/20)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 45 mV & 2.3 mA & \(>\mathbf{2 . 5 m A}\) peak & \\
\hline Ch2 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch3 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch4 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo peak & \begin{tabular}{c}
Peak lo \\
\((\) Vo/20 \()\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 14 mV & 700 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch2 & 16 mV & 800 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch3 & 14 mV & 700 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch4 & 14 mV & 700 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo r.m.s & \begin{tabular}{c}
Peak lo \\
(Vo/20) \(\mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.132 & 9.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.133 & 9.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.128 & 9.0 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.129 & 9.1 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

200 Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo r.m.s & \begin{tabular}{c}
Peak lo \\
(Vo/20) \(\mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.249 & 17.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.250 & 17.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.244 & 17.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.245 & 17.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c}
Peak lo \\
(Vo/20) \(\mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.370 & 26.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.371 & 26.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.370 & 26.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.370 & 26.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Engineer.. .Xen.
Date 29/9/10.

\subsection*{10.3 Acquisition Mode}

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100Hz
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c}
Peak lo (Vo/20) \\
\(\mathbf{x} 1.414\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 1.98 & 2.4 & 140.0 mA & >125mA peak & \(\sqrt{ }\) \\
\hline Ch2 & 1.98 & 2.4 & 140.0 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\sqrt{ }\) \\
\hline Ch3 & 1.97 & 2.4 & 139.3 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\sqrt{ }\) \\
\hline Ch4 & 1.98 & 2.4 & 140.0 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

200 Hz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c}
Peak lo (Vo/20) \\
\(\mathbf{x} 1.414\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\sqrt{ }\) \\
\hline Ch3 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\sqrt{ }\) \\
\hline Ch4 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA }}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c}
Peak lo (Vo/20) \\
\(\mathbf{x} \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 2.3 & 3.3 & 162.6 mA & >125mA peak & \(\checkmark\) \\
\hline Ch2 & 2.3 & 3.3 & 162.6 mA & >125mA peak & \(\checkmark\) \\
\hline Ch3 & 2.3 & 3.3 & 162.6 mA & >125mA peak & \(\sqrt{ }\) \\
\hline Ch4 & 2.3 & 3.3 & 162.6 mA & >125mA peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

5 kHz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c}
Peak Io (Vo/20) \\
\(\mathbf{x} 1.414\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 1.67 & 2.4 & 118.1 mA & >125mA peak & \\
\hline Ch2 & 1.68 & 2.4 & 118.8 mA & \(>125 \mathrm{~mA}\) peak & \\
\hline Ch3 & 1.67 & 2.4 & 118.1 mA & \(>125 \mathrm{~mA}\) peak & \\
\hline Ch4 & 1.68 & 2.4 & 118.8 mA & >125mA peak & \\
\hline
\end{tabular}
```

Unit
T_ACQ_P46
Test Engineer.....Xen
Date 28/9/10

```

\section*{11. Noise Measurements}

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

Measure the noise output at 10 Hz .
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \begin{tabular}{c}
Spec in \\
\(\mathrm{dB} V \sqrt{ } \mathrm{~Hz}\)
\end{tabular} & \begin{tabular}{c}
Measured @ \\
10 Hz
\end{tabular} & \(-60 \mathrm{~dB}=\) & \begin{tabular}{c}
Measured in \\
\(\mathrm{nV} \sqrt{ } \mathrm{Hz}\)
\end{tabular} & OK? \\
\hline Ch1 & -143.5 & -92.1 & -152.1 & 24.8 & \(\checkmark\) \\
\hline Ch2 & -143.5 & -92.4 & -152.4 & 24.0 & \(\sqrt{ }\) \\
\hline Ch3 & -143.5 & -93.1 & -153.1 & 22.1 & \(\sqrt{ }\) \\
\hline Ch4 & -143.5 & -93.7 & -153.7 & 20.7 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Notes:}

Specified noise output current at \(10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}\) (worst case)
Total resistance at 10 Hz , in Low noise mode \(=6.7 \mathrm{k}\)
Amplifier noise voltage should therefore be \(=67 \mathrm{nV} \sqrt{\mathrm{Hz}}\)
\(67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}\)
```

Unit.
TACQ46P
Serial No

```
\(\qquad\)
```

Test Engineer
RMC
Date
21/10/10

```

\section*{12. Final Assembly Tests}
1. Remove the lid of the box. \(\sqrt{ }\)
2. Unplug all external connections. \(\sqrt{ }\)
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight. \(\sqrt{ }\)
4. Check that all internal connectors are firmly mated. \(V\)
5. Tighten the screw-locks holding all the external connectors. \(\sqrt{ }\)
6. Check that all the LEDs are nicely centred. \(\sqrt{ }\)
7. Check that all links \(W 4\) are in place. \(\sqrt{ }\)
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:
\begin{tabular}{|l|l|}
\hline UoB box ID & TACQ46P \\
\hline Driver board ID & TACQ46P \\
\hline Driver board Drawing No/Issue No & D0901047_V4 \\
\hline Monitor board ID & MON184 \\
\hline Monitor board Drawing No/Issue No & D070480_5_K \\
\hline
\end{tabular}
9. Check the security of any modification wires. None
10. Visually inspect. \(\sqrt{ }\)
11. Put the lid on and fasten all screws, \(\sqrt{ }\)

Check all external screws for tightness. \(\sqrt{ }\)

\section*{LIGO Laboratory / LIGO Scientific Collaboration}

\section*{Advanced LIGO UK}

March 2010

\section*{Triple Acquisition Driver Unit Test Report}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

\author{
Institute for Gravitational Research \\ University of Glasgow \\ Phone +44 (0) 1413305884 \\ Fax +44 (0) 1413306833 \\ E-mail k.strain@physics.gla.ac.uk \\ Engineering Department \\ CCLRC Rutherford Appleton Laboratory \\ Phone +44 (0) 1235445297 \\ Fax +44 (0) 1235445843 \\ E-mail J.Greenhalgh@rl.ac.uk
}

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT}
```

Unit...............T ACQ P47.............................Serial No.
Test Engineer.....Xen.
Date................27/9/10

```

Drive Card ID.......T ACQ47
Monitor Card ID....Mon262.
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

\section*{1. Description}

\section*{Block diagram}

\section*{Description}

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.
```

Unit
ACQ_P47

```
\(\qquad\)
``` Serial No
Test Engineer.....Xen..
Date 27/9/10
```


2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz )
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.

Links:

Check that the links W2 and W4 are present on each channel.

4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{l \mid}$
5	0V	\sqrt{l}		
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
5	0V	$\sqrt{\|c\|}$		
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	$\sqrt{ }$

PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
11	V - (TP2)	-17 v Supply	$\sqrt{ }$
12	V - (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	0 V (TP3)		$\sqrt{ }$
24	0 V (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

5. TEST SET UP

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit.
```

\qquad

``` T_ACQ_P47
``` \(\qquad\)
``` Serial No
Test Engineer.....Xen.
Date..................27/9/10
```


6. Power

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents

$\mathbf{+ 1 6 . 5}$ supply current (mA)	- $\mathbf{1 6 . 5}$ supply current (mA)
500 mA	400 mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	$\sqrt{ }$	$\sqrt{ }$
Rear Panel	$\sqrt{ }$	$\sqrt{ }$

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen.
Date. 27/9/10

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
Ch1	ON	OFF	
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

```
Unit
                            .T_ACQ_P47.
                                    Serial No
Test Engineer.....Xen
```

Date
27/9/10

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S Monitor	Expected value	Pass/Fail: Equal? (+/-0.1v)
$\mathbf{1}$	0.33	3	0.33 v	$\sqrt{ }$
$\mathbf{2}$	0.33	6	0.33 v	$\sqrt{ }$
$\mathbf{3}$	0.33	9	0.33 v	$\sqrt{ }$
$\mathbf{4}$	0.33	12	0.33 v	$\sqrt{ }$

Adjust the input voltage until the voltage across the load resistor $=1 \mathrm{v}$ r.m.s. Record the current monitor output values.
8.2 Current Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	1.91	2	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{2}$	1.92	5	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{3}$	1.91	8	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{4}$	1.91	11	$1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}$	$\sqrt{ }$

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	1.95	1	1.86 vdc	$\sqrt{ }$
$\mathbf{2}$	1.95	4	1.86 vdc	$\sqrt{ }$
$\mathbf{3}$	1.95	7	1.86 vdc	$\sqrt{ }$
$\mathbf{4}$	1.95	10	1.86 vdc	$\sqrt{ }$

8.4 Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu \mathrm{V} \sqrt{ } \mathrm{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA $\sqrt{\mathrm{Hz}}$ should give $2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}$ out.

Ch.	Output $(\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})$	$\div($ Pre-amplifier gain)	Expected Value	Comparison
$\mathbf{1}$		1.71	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{2}$		1.86	$2.9 \mu \mathrm{~V} \mathrm{~Hz}$	$\sqrt{ }$
$\mathbf{3}$		1.73	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{4}$		1.53	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$

```
Unit.
...............T_ACQ_P47
```

\qquad

```
Serial No
Test Engineer.....Xen.
Date...............27/9/10
```


9. Distortion

```
Switch the filters out. Increase input voltage to 5 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.
```

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{2}$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$

Unit.
.T_ACQ_P47.
Test Engineer.....Xen
Date .27/9/10.

10 Load tests and Frequency response check

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

10.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo (Vo/20)	Specification	Pass/Fail
Ch1	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch2	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch3	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch4	67.5 mV	3.4 mA	>2.5mA peak	\checkmark

10Hz

Vo r.m.s	Peak lo $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.066	4.7 mA	$>\mathbf{~ 2 . 5 m A ~ p e a k ~}$	$\sqrt{ }$
Ch2	0.067	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.067	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

100 Hz

	Vor.m.s	$\begin{gathered} \text { Peak lo } \\ (\mathrm{Vo} / 20) \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	0.325	23.0 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch2	0.327	23.1 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch3	0.323	22.8 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch4	0.326	23.0 mA	>2.5mA peak	\checkmark

200 Hz

Vo r.m.s	Peak lo $($ Vo/20 $) \times$ 1.414	Specification	Pass/Fail	
Ch1	0.391	27.6 mA	>2.5mA peak	$\sqrt{ }$
Ch2	0.392	27.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.390	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.391	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Peak lo $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.415	29.3 mA	$>\mathbf{2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Unit.
.T_ACQ_P47.
Test Engineer.....Xen
Date.
.27/9/10.

10.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo (Vo/20)	Specification	Pass/Fail
Ch1	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch2	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch3	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch4	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	

10 Hz

	Vo peak	Peak lo $($ Vo/20 $)$	Specification	Pass/Fail
Ch1	15 mV	750 uA	$>2.5 \mathrm{~mA}$ peak	
Ch2	15 mV	750 uA	$>2.5 \mathrm{~mA}$ peak	
Ch3	16 mV	800 uA	$>2.5 \mathrm{~mA}$ peak	
Ch4	16 mV	800 uA	$>2.5 \mathrm{~mA}$ peak	

100 Hz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.131	9.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.132	9.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.127	9.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.132	9.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.248	17.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.249	17.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.243	17.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.249	17.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.371	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.....Xen
Date. 27/9/10.

10.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	1.99	2.8	140.7 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA }}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	2.3	3.3	162.6 mA	>125mA peak	\checkmark
Ch2	2.3	3.3	162.6 mA	>125mA peak	\checkmark
Ch3	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$
Ch4	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$

5 kHz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x 1 . 4 1 4}$	Specification	Pass/Fail
Ch1	1.67	2.4	118.1 mA	>125mA peak	
Ch2	1.67	2.4	118.1 mA	>125mA peak	
Ch3	1.68	2.4	118.8 mA	>125mA peak	
Ch4	1.67	2.4	118.1 mA	>125mA peak	

11. Noise Measurements

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

Measure the noise output at 10 Hz .

	Spec in $\mathrm{dB} V \sqrt{ } \mathrm{~Hz}$	Measured @ 10 Hz	$-60 \mathrm{~dB}=$	Measured in $\mathrm{nV} \sqrt{ } \mathrm{Hz}$	OK?
Ch1	-143.5	-92.5	-152.5	23.7	$\sqrt{ }$
Ch2	-143.5	-92.9	-152.9	22.6	$\sqrt{ }$
Ch3	-143.5	-93.2	-153.2	21.9	$\sqrt{ }$
Ch4	-143.5	-92.2	-152.2	24.5	$\sqrt{ }$

Notes:

Specified noise output current at $10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}$ (worst case)
Total resistance at 10 Hz , in Low noise mode $=6.7 \mathrm{k}$
Amplifier noise voltage should therefore be $=67 \mathrm{nV} \sqrt{\mathrm{Hz}}$
$67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}$

```
Unit.
                TACQ47P
```

\qquad
\qquad

```Test EngineerRMCDate21/10/10
```


12. Final Assembly Tests

1. Remove the lid of the box. $\sqrt{ }$
2. Unplug all external connections. $\sqrt{ }$
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight $\sqrt{ }$.
4. Check that all internal connectors are firmly mated. V
5. Tighten the screw-locks holding all the external connectors.
6. Check that all the LEDs are nicely centred. $\sqrt{ }$
7. Check that all links W4 are in place. $\sqrt[V]{ }$
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TACQ47P
Driver board ID	TACQ47P
Driver board Drawing No/Issue No	D0901047_V4
Monitor board ID	MON262
Monitor board Drawing No/Issue No	D070480_5_K

9. Check the security of any modification wires. None
10. Visually inspect. $\sqrt{ }$
11. Put the lid on and fasten all screws, $\sqrt{ }$

Check all external screws for tightness. $\sqrt{ }$

LIGO Laboratory / LIGO Scientific Collaboration

Advanced LIGO UK

March 2010

Triple Acquisition Driver Unit Test Report

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT

```
Unit...............T_ACQ_P48.............................Serial No.
Test Engineer.....Xen.
Date................27/9/10
```

Drive Card ID.......T ACQ48
Monitor Card ID....Mon261
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

1. Description

Block diagram

Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
```

\qquad

```
                            T_ACQ_P48
                        48..
                                    Serial No
Test Engineer.....Xen.
Date
27/9/10
```


2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz )
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.

Links

Check that the links W2 and W4 are present on each channel.

Test Engineer.....Xen..
Date.

4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	OV	\checkmark	
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	\checkmark
2	Imon2P		6	\checkmark
3	Imon3P		7	\checkmark
4	Imon4P		8	\checkmark
	5	OV	\checkmark	
6	Imon1N		18	\checkmark
7	Imon2N		19	\checkmark
8	Imon3N		20	\checkmark
9	Imon4N		21	\checkmark

PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
11	V - (TP2)	-17 v Supply	$\sqrt{ }$
12	V - (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	0 V (TP3)		$\sqrt{ }$
24	0 V (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

5. TEST SET UP

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit.
```

\qquad

``` T_ACQ_P48
``` \(\qquad\)
``` Serial No
Test Engineer.....Xen.
Date.................24/9/10
``` \(\qquad\)

\section*{6. Power}

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents
\begin{tabular}{|c|c|}
\hline \(\mathbf{+ 1 6 . 5}\) supply current (mA) & - \(\mathbf{1 6 . 5}\) supply current (mA) \\
\hline 500 mA & 400 mA \\
\hline
\end{tabular}

Check that all power LEDs are illuminated.
\begin{tabular}{|c|c|c|}
\hline LEDs & Plus & Minus \\
\hline Front Panel & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Rear Panel & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen.
Date. 24/9/10

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|l|}{Indicator} & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch2 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch3 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch4 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline
\end{tabular}

TEST RELAYS
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline Ch1 & ON & OFF & \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\checkmark\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{ACQUISITION RELAYS}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{|l|}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit. T_ACQ_P48. Serial No
Test Engineer.....Xen.

```

Date 24/9/10

\section*{8. Monitor Outputs}

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

\subsection*{8.1 Voltage Monitors}
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output: & \begin{tabular}{c}
V, I and R.M.S \\
Monitor
\end{tabular} & Expected value & \begin{tabular}{c}
Pass/Fail: \\
Equal? (+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & 0.33 & 3 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 0.33 & 6 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 0.33 & 9 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 0.33 & 12 & 0.33 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

Adjust the input voltage until the voltage across the load resistor \(=1 \mathrm{v}\) r.m.s. Record the current monitor output values.
8.2 Current Monitors
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output & \begin{tabular}{c}
V, I and R.M.S \\
Monitor
\end{tabular} & \begin{tabular}{c}
Expected \\
Value
\end{tabular} & \begin{tabular}{c}
Pass/Fail: \\
Equal? (\(+/-\mathbf{0 . 1 v})\)
\end{tabular} \\
\hline \(\mathbf{1}\) & 1.92 & 2 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 1.91 & 5 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 1.91 & 8 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 1.91 & 11 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.3 R.M.S Monitors
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output & \begin{tabular}{c}
V, I and R.M.S \\
Monitor
\end{tabular} & \begin{tabular}{c}
Expected \\
Value
\end{tabular} & \begin{tabular}{c}
Pass/Fail: \\
Equal? \(\mathbf{(+ / - 0 . 1 v)}\)
\end{tabular} \\
\hline \(\mathbf{1}\) & 1.95 & 1 & 1.86 vdc & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 1.95 & 4 & 1.86 vdc & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 1.95 & 7 & 1.86 v dc & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 1.95 & 10 & 1.86 vdc & \(\sqrt{ }\) \\
\hline
\end{tabular}

\subsection*{8.4 Noise Monitors}
- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in \(\mu \mathrm{V} \sqrt{\mathrm{Hz}}\) on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \(\sqrt{ } \mathrm{Hz}\) should give \(2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}\) out.
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c}
Output \\
\((\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})\)
\end{tabular} & \begin{tabular}{c}
\(\div(\) Pre-amplifier \\
gain)
\end{tabular} & \begin{tabular}{c}
Expected \\
Value
\end{tabular} & Comparison \\
\hline \(\mathbf{1}\) & & 1.61 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & & 1.55 & \(2.9 \mu \mathrm{~V} \mathrm{~Hz}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & & 1.66 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & & 1.54 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit.
..............T_ACQ_P48

```
\(\qquad\)
```

Serial No
Test Engineer.....Xen.
Date...............27/9/10

```

\section*{9. Distortion}
```

Switch the filters out. Increase input voltage to 5 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

```
\begin{tabular}{|c|c|c|}
\hline & \begin{tabular}{c}
Acquisition Mode: \\
Distortion Free?
\end{tabular} & \begin{tabular}{c}
Non-Acquisition Mode: \\
Distortion Free?
\end{tabular} \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{2}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Unit.}

T_ACQ_P48
Test Engineer.....Xen
Date .27/9/10.

\section*{10 Load tests and Frequency response check}

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

\subsection*{10.1 Noisy Mode}

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vo peak & Peak lo (Vo/20) & Specification & Pass/Fail \\
\hline Ch1 & 67.5 mV & 3.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch2 & 67.5 mV & 3.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch3 & 67.5 mV & 3.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch4 & 67.5 mV & 3.4 mA & >2.5mA peak & \(\checkmark\) \\
\hline
\end{tabular}

10Hz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c}
Peak lo \\
\((\) Vo/20 \() \times \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.066 & 4.7 mA & \(>\mathbf{~ 2 . 5 m A ~ p e a k ~}\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.066 & 4.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.066 & 4.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.066 & 4.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vor.m.s & \[
\begin{gathered}
\text { Peak lo } \\
(\mathrm{Vo} / 20) \times 1.414 \\
\hline
\end{gathered}
\] & Specification & Pass/Fail \\
\hline Ch1 & 0.324 & 22.9 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch2 & 0.324 & 22.9 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch3 & 0.323 & 22.8 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch4 & 0.325 & 23.0 mA & >2.5mA peak & \(\checkmark\) \\
\hline
\end{tabular}

200 Hz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c}
Peak lo \\
\((\) Vo/20 \() \times\) 1.414
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.390 & 27.6 mA & \(\boldsymbol{> 2 . 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.391 & 27.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.390 & 27.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.391 & 27.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c}
Peak lo \\
\((\) Vo/20 \() \times \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.415 & 29.3 mA & \(>\mathbf{2 . 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.417 & 29.5 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.416 & 29.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.415 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit.
.T_ACQ_P48. Serial No
Test Engineer.....Xen
Date.
.27/9/10.

\subsection*{10.2 Low noise Mode}

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo peak & \begin{tabular}{c}
Peak lo \\
(Vo/20)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch2 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch3 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch4 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo peak & \begin{tabular}{c}
Peak lo \\
\((\) Vo/20)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 16 mV & 800 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch2 & 16 mV & 800 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch3 & 13 mV & 650 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch4 & 16 mV & 800 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vo r.m.s & \begin{tabular}{c}
Peak lo \\
(Vo/20) \(\mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.131 & 9.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.131 & 9.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.128 & 9.0 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.127 & 9.0 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

200 Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo r.m.s & \begin{tabular}{c}
Peak lo \\
(Vo/20) \(\mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.248 & 17.5 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.249 & 17.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.244 & 17.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.242 & 17.1 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo r.m.s & \begin{tabular}{c}
Peak lo \\
(Vo/20) \(\mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.370 & 26.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.372 & 26.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.370 & 26.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.369 & 26.1 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Engineer.....Xen
Date. 27/9/10.

\subsection*{10.3 Acquisition Mode}

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100 Hz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c}
Peak lo (Vo/20) \\
\(\mathbf{x} \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 1.98 & 2.8 & 140.0 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 2.00 & 2.8 & 141.4 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 1.98 & 2.8 & 140.0 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 1.98 & 2.8 & 140.0 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

200 Hz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c}
Peak lo (Vo/20) \\
\(\mathbf{x} 1.414\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\sqrt{ }\) \\
\hline Ch3 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\sqrt{ }\) \\
\hline Ch4 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA }}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c}
Peak lo (Vo/20) \\
\(\mathbf{x} \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 2.3 & 3.1 & 162.6 mA & >125mA peak & \(\checkmark\) \\
\hline Ch2 & 2.3 & 3.1 & 162.6 mA & >125mA peak & \(\checkmark\) \\
\hline Ch3 & 2.3 & 3.1 & 162.6 mA & >125mA peak & \(\sqrt{ }\) \\
\hline Ch4 & 2.3 & 3.1 & 162.6 mA & >125mA peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

5 kHz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c}
Peak Io (Vo/20) \\
\(\mathbf{x} 1.414\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 1.67 & 2.4 & 118.1 mA & >125mA peak & \\
\hline Ch2 & 1.69 & 2.4 & 119.5 mA & \(>125 \mathrm{~mA}\) peak & \\
\hline Ch3 & 1.68 & 2.4 & 118.8 mA & \(>125 \mathrm{~mA}\) peak & \\
\hline Ch4 & 1.68 & 2.4 & 118.8 mA & >125mA peak & \\
\hline
\end{tabular}

Test Engineer.....Xen.
Date 24/9/10.

\section*{11. Noise Measurements}

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

Measure the noise output at 10 Hz .
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \begin{tabular}{c}
Spec in \\
\(\mathrm{dB} V \sqrt{ } \mathrm{~Hz}\)
\end{tabular} & \begin{tabular}{c}
Measured @ \\
10 Hz
\end{tabular} & \(-60 \mathrm{~dB}=\) & \begin{tabular}{c}
Measured in \\
\(\mathrm{nV} \sqrt{ } \mathrm{Hz}\)
\end{tabular} & OK? \\
\hline Ch1 & -143.5 & -92.1 & -152.1 & 24.8 & \(\sqrt{ }\) \\
\hline Ch2 & -143.5 & -93.7 & -153.7 & 20.7 & \(\sqrt{ }\) \\
\hline Ch3 & -143.5 & -93.6 & -153.6 & 20.9 & \(\sqrt{ }\) \\
\hline Ch4 & -143.5 & -92.5 & -152.5 & 23.7 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Notes:}

Specified noise output current at \(10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}\) (worst case)
Total resistance at 10 Hz , in Low noise mode \(=6.7 \mathrm{k}\)
Amplifier noise voltage should therefore be \(=67 \mathrm{nV} \sqrt{ } \mathrm{Hz}\)
\(67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{\mathrm{~Hz}}\)
Unit.....................TACQ48P............Serial No
Test EngineerRMC
Date \(\ldots \ldots \ldots \ldots \ldots \ldots . .1 / 11 / 10\)

\section*{12. Final Assembly Tests}
1. Remove the lid of the box. \(\sqrt{ }\)
2. Unplug all external connections. \(\sqrt{ }\)
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight. \(\sqrt{ }\)
4. Check that all internal connectors are firmly mated. \(\sqrt{ }\)
5. Tighten the screw-locks holding all the external connectors. \(\sqrt{ }\)
6. Check that all the LEDs are nicely centred. \(V\)
7. Check that all links W4 are in place. \(\sqrt{ }\)
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:
\begin{tabular}{|l|l|}
\hline UoB box ID & TACQ48P \\
\hline Driver board ID & TACQ48P \\
\hline Driver board Drawing No/Issue No & D0901048_V4 \\
\hline Monitor board ID & MON261__5_K \\
\hline Monitor board Drawing No/Issue No & D070480_5_K \\
\hline
\end{tabular}
9. Check the security of any modification wires. None
10. Visually inspect. \(\sqrt{ }\)
11. Put the lid on and fasten all screws, \(\sqrt{ }\)

Check all external screws for tightness. \(\sqrt{ }\)

\section*{LIGO Laboratory / LIGO Scientific Collaboration}

\section*{Advanced LIGO UK}

March 2010

\section*{Triple Acquisition Driver Unit Test Report}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

\author{
Institute for Gravitational Research \\ University of Glasgow \\ Phone +44 (0) 1413305884 \\ Fax +44 (0) 1413306833 \\ E-mail k.strain@physics.gla.ac.uk \\ Engineering Department \\ CCLRC Rutherford Appleton Laboratory \\ Phone +44 (0) 1235445297 \\ Fax +44 (0) 1235445843 \\ E-mail J.Greenhalgh@rl.ac.uk
}

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT}
```

Unit...............T ACQ P49............................Serial No.
Test Engineer.....Xen.
Date................13/9/10

```

Drive Card ID.......T ACQ49
Monitor Card ID....Mon243.
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

\section*{1. Description}

\section*{Block diagram}

\section*{Description}

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.
```

Unit
ACQ_P49

```
\(\qquad\)
```

Test Engineer.....Xen.

```
Test Engineer.....Xen.
Date
13/9/10
```


## 2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz)
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	



## 3. Inspection

## Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.

## Links

Check that the links W2 and W4 are present on each channel.

Test Engineer..
Date .10/9/10.

## 4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{l \mid}$
5	0V	$\sqrt{l}$		
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

## LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
5	0V	$\sqrt{\|c\|}$		
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	$\sqrt{ }$

## PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\checkmark$
10	V+ (TP1)	+17 v Supply	$\sqrt{ }$
11	V- (TP2)	-17 v Supply	$\checkmark$
12	$\mathrm{~V}-$ (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	OV (TP3)		$\sqrt{ }$
24	OV (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

## 5. TEST SET UP



Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

## Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit.
```

$\qquad$

``` T_ACQ_P49
``` \(\qquad\)
``` Serial No
Test Engineer.....Xen.
Date 10/9/10
```


## 6. Power

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents

$\mathbf{+ 1 6 . 5}$ supply current (mA)	- $\mathbf{1 6 . 5}$ supply current (mA)
500 mA	400 mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	$\sqrt{2}$	$\sqrt{ }$
Rear Panel	$\sqrt{ }$	$\sqrt{ }$

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen..
Date. 10/9/10

## 7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\checkmark$	$\checkmark$	$\checkmark$
Ch2	$\checkmark$	$\checkmark$	$\checkmark$
Ch3	$\checkmark$	$\checkmark$	$\checkmark$
Ch4	$\checkmark$	$\checkmark$	$\checkmark$

TEST RELAYS

Channel	Indicator		OK?
Ch1	ON	OFF	
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

## ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\checkmark$	$\checkmark$	$\checkmark$
Ch2	$\checkmark$	$\checkmark$	$\checkmark$
Ch3	$\checkmark$	$\checkmark$	$\checkmark$
Ch4	$\checkmark$	$\checkmark$	$\checkmark$

```
Unit.
 .T_ACQ_P49
Test Engineer.....Xen.
```

Date .10/9/10

## 8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

### 8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S   Monitor	Expected value	Pass/Fail:   Equal? (+/-0.1v)
$\mathbf{1}$	0.33	3	0.33 v	$\sqrt{ }$
$\mathbf{2}$	0.33	6	0.33 v	$\sqrt{ }$
$\mathbf{3}$	0.33	9	0.33 v	$\sqrt{ }$
$\mathbf{4}$	0.33	12	0.33 v	$\sqrt{ }$

Adjust the input voltage until the voltage across the load resistor $=1 \mathrm{v}$ r.m.s. Record the current monitor output values.
8.2 Current Monitors

Ch.	Output	V, I and R.M.S   Monitor	Expected   Value	Pass/Fail:   Equal? (+/- 0.1v)
$\mathbf{1}$	1.92	2	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{2}$	1.92	5	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{3}$	1.92	8	$1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}$	$\sqrt{ }$
$\mathbf{4}$	1.92	11	1.86 v r.m.s	$\sqrt{ }$

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S   Monitor	Expected   Value	Pass/Fail:   Equal? (+/-0.1v)
$\mathbf{1}$	1.95	1	1.86 vdc	$\sqrt{ }$
$\mathbf{2}$	1.96	4	1.86 vdc	$\sqrt{ }$
$\mathbf{3}$	1.96	7	1.86 v dc	$\sqrt{ }$
$\mathbf{4}$	1.96	10	1.86 vdc	$\sqrt{ }$

### 8.4 Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu \mathrm{V} \sqrt{ } \mathrm{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA $\sqrt{\mathrm{Hz}}$ should give $2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}$ out.

Ch.	Output   $(\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})$	$\div($ Pre-amplifier   gain $)$	Expected   Value	Comparison
$\mathbf{1}$		1.63	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{2}$		1.87	$2.9 \mu \mathrm{~V} \mathrm{~Hz}$	$\sqrt{ }$
$\mathbf{3}$		1.98	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{4}$		1.93	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$

```
Unit.
```

$\qquad$

```
 T_ACQ_P49
```

$\qquad$

```
 Serial No
Test Engineer.....Xen.
Date
10/9/10
```


## 9. Distortion

```
Switch the filters out. Increase input voltage to 5 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.
```

	Acquisition Mode:   Distortion Free?	Non-Acquisition Mode:   Distortion Free?
Ch1	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{2}$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$

Unit.
T_ACQ_P49
Test Engineer.....Xen.
Date .10/9/10.

## 10 Load tests and Frequency response check

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

### 10.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo   $($ Vo/20 $)$	Specification	Pass/Fail
Ch1	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

10Hz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.066	4.7 mA	$>\mathbf{~ 2 . 5 m A ~ p e a k ~}$	$\sqrt{ }$
Ch2	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

100 Hz

	Vor.m.s	$\begin{gathered} \text { Peak lo } \\ (\mathrm{Vo} / 20) \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	0.323	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch2	0.325	23.0 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch3	0.324	22.9 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch4	0.323	22.8 mA	>2.5mA peak	$\checkmark$

200 Hz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times$ 1.414	Specification	Pass/Fail	
Ch1	0.390	27.6 mA	$\boldsymbol{> 2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.391	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.390	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.389	27.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.414	29.3 mA	$>\mathbf{2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Unit. T_ACQ_P49 Serial No
Test Engineer.....Xen.
Date.
.13/9/10.

### 10.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo   (Vo/20)	Specification	Pass/Fail
Ch1	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch2	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch3	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch4	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	

10 Hz

	Vo peak	Peak lo   $($ Vo/20)	Specification	Pass/Fail
Ch1	16 mV	800 uA	$>2.5 \mathrm{~mA}$ peak	
Ch2	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch3	15 mV	750 uA	$>2.5 \mathrm{~mA}$ peak	
Ch4	15 mV	750 uA	$>2.5 \mathrm{~mA}$ peak	

100 Hz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.129	9.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.127	9.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.130	9.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.132	9.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.245	17.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.242	17.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.247	17.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.249	17.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.. Xen.
Date. 13/9/10.

### 10.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	1.99	2.8	140.7 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	1.99	2.8	140.7 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA }}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	2.3	3.3	162.6 mA	>125mA peak	$\checkmark$
Ch2	2.3	3.3	162.6 mA	>125mA peak	$\checkmark$
Ch3	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$
Ch4	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$

5 kHz

	Vo r.m.s	Vo pk.	Peak Io (Vo/20)   $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	1.67	2.4	118.1 mA	>125mA peak	
Ch2	1.68	2.4	118.8 mA	$>125 \mathrm{~mA}$ peak	
Ch3	1.68	2.4	118.8 mA	$>125 \mathrm{~mA}$ peak	
Ch4	1.68	2.4	118.8 mA	>125mA peak	

Test Engineer.....Xen
Date .10/9/10

## 11. Noise Measurements

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.


Measure the noise output at 10 Hz .

	Spec in   $\mathrm{dB} V \sqrt{ } \mathrm{~Hz}$	Measured @   10 Hz	$-60 \mathrm{~dB}=$	Measured in   $\mathrm{nV} \sqrt{ } \mathrm{Hz}$	OK?
Ch1	-143.5	-91.5	-151.5	26.6	$\sqrt{ }$
Ch2	-143.5	-91.7	-151.7	26.0	$\sqrt{ }$
Ch3	-143.5	-92.1	-152.1	24.8	$\sqrt{ }$
Ch4	-143.5	-91.0	-151.0	28.2	$\sqrt{ }$

## Notes:

Specified noise output current at $10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}$ (worst case)
Total resistance at 10 Hz , in Low noise mode $=6.7 \mathrm{k}$
Amplifier noise voltage should therefore be $=67 \mathrm{nV} \sqrt{\mathrm{Hz}}$ $67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}$

```
Unit
 TACQ49P
```

$\qquad$
$\qquad$

```Test EngineerRMCDate1/11/10
```


## 12. Final Assembly Tests

1. Remove the lid of the box. $\sqrt{ }$
2. Unplug all external connections. $\sqrt{ }$
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight. $\sqrt{ }$
4. Check that all internal connectors are firmly mated. $V$
5. Tighten the screw-locks holding all the external connectors. $\sqrt{ }$
6. Check that all the LEDs are nicely centred. $\sqrt{ }$
7. Check that all links $W 4$ are in place. $\sqrt{ }$
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TACQ49P
Driver board ID	TACQ49
Driver board Drawing No/Issue No	DO901047_V4
Monitor board ID	MON243__
Monitor board Drawing No/Issue No	D070480_5_K

9. Check the security of any modification wires. None
10. Visually inspect. $\sqrt{ }$
11. Put the lid on and fasten all screws, $\sqrt{ }$

Check all external screws for tightness. $\sqrt{ }$

## LIGO Laboratory / LIGO Scientific Collaboration

## Advanced LIGO UK

March 2010

## Triple Acquisition Driver Unit Test Report

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research<br>University of Glasgow<br>Phone +44 (0) 1413305884<br>Fax +44 (0) 1413306833<br>E-mail k.strain@physics.gla.ac.uk<br>Engineering Department<br>CCLRC Rutherford Appleton Laboratory<br>Phone +44 (0) 1235445297<br>Fax +44 (0) 1235445843<br>E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT

```
Unit...............T ACQ P50...........................S..Serial No.
Test Engineer.....Xen.
Date...............9/9/10
```

Drive Card ID.......T ACQ50
Monitor Card ID....Mon242.
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

## 1. Description

## Block diagram



## Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
```

$\qquad$

```
 T_ACQ_P50
```

$\qquad$

``` Serial No
Test Engineer.....Xen.
Date 9/9/10
```


## 2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz)
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	



## 3. Inspection

## Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.

## Links

Check that the links W2 and W4 are present on each channel.

Test Engineer..
Date

## 4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{l \mid}$
5	0V	$\sqrt{l}$		
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

## LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
5	0V	$\sqrt{\|c\|}$		
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	$\sqrt{ }$

## PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
11	V - (TP2)	-17 v Supply	$\sqrt{ }$
12	V - (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	0 V (TP3)		$\sqrt{ }$
24	0 V (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

## 5. TEST SET UP



Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

## Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit
```

$\qquad$

```
 T_ACQ_P50.
 Serial No
Test Engineer.....Xen.
Date
9/9/10
```


## 6. Power

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents

$\mathbf{+ 1 6 . 5}$ supply current (mA)	- 16.5 supply current (mA)
500 mA	400 mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	$\sqrt{ }$	$\sqrt{ }$
Rear Panel	$\sqrt{ }$	$\sqrt{ }$

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen.
Date. 9/9/10

## 7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\checkmark$	$\checkmark$	$\checkmark$
Ch2	$\checkmark$	$\checkmark$	$\checkmark$
Ch3	$\checkmark$	$\checkmark$	$\checkmark$
Ch4	$\checkmark$	$\checkmark$	$\checkmark$

TEST RELAYS

Channel	Indicator		OK?
Ch1	ON	OFF	
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

## ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\checkmark$	$\checkmark$	$\checkmark$
Ch2	$\checkmark$	$\checkmark$	$\checkmark$
Ch3	$\checkmark$	$\checkmark$	$\checkmark$
Ch4	$\checkmark$	$\checkmark$	$\checkmark$

```
Unit.
 T_ACQ_P50
 Serial No
Test Engineer.....Xen.
Date
.9/9/10
```


## 8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

### 8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S   Monitor	Expected value	Pass/Fail:   Equal? (+/-0.1v)
$\mathbf{1}$	0.33	3	0.33 v	$\sqrt{ }$
$\mathbf{2}$	0.33	6	0.33 v	$\sqrt{ }$
$\mathbf{3}$	0.33	9	0.33 v	$\sqrt{ }$
$\mathbf{4}$	0.33	12	0.33 v	$\sqrt{ }$

Adjust the input voltage until the voltage across the load resistor $=1 \mathrm{v}$ r.m.s. Record the current monitor output values.
8.2 Current Monitors

Ch.	Output	V, I and R.M.S   Monitor	Expected   Value	Pass/Fail:   Equal? (+/- 0.1v)
$\mathbf{1}$	1.92	2	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{2}$	1.92	5	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{3}$	1.92	8	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{4}$	1.92	11	$1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}$	$\sqrt{ }$

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S   Monitor	Expected   Value	Pass/Fail:   Equal? (+/- 0.1v)
$\mathbf{1}$	1.96	1	1.86 vdc	$\sqrt{ }$
$\mathbf{2}$	1.95	4	1.86 vdc	$\sqrt{ }$
$\mathbf{3}$	1.95	7	1.86 vdc	$\sqrt{ }$
$\mathbf{4}$	1.95	10	1.86 vdc	$\sqrt{ }$

### 8.4 Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu \mathrm{V} \sqrt{\mathrm{Hz}}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA $\sqrt{ } \mathrm{Hz}$ should give $2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}$ out.

Ch.	Output   $(\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})$	$\div($ Pre-amplifier   gain)	Expected   Value	Comparison
$\mathbf{1}$		1.71	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{2}$		1.69	$2.9 \mu \mathrm{~V} \mathrm{~Hz}$	$\sqrt{ }$
$\mathbf{3}$		1.63	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{4}$		1.70	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$

```
Unit
..............T_ACQ_P50
0..
Serial No
Test Engineer.....Xen.
Date
9/9/10
```


## 9. Distortion

```
Switch the filters out. Increase input voltage to 5 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.
```

	Acquisition Mode:   Distortion Free?	Non-Acquisition Mode:   Distortion Free?
Ch1	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{2}$	$\sqrt{ }$

Unit.
.T_ACQ_P50.
Test Engineer.....Xen.
Date.
.9/9/10

## 10 Load tests and Frequency response check

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

### 10.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo   $($ Vo/20 $)$	Specification	Pass/Fail
Ch1	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

10Hz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.066	4.7 mA	$>\mathbf{~ 2 . 5 m A ~ p e a k ~}$	$\sqrt{ }$
Ch2	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

100 Hz

	Vor.m.s	$\begin{gathered} \text { Peak lo } \\ (\mathrm{Vo} / 20) \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	0.321	22.7 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch2	0.322	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch3	0.323	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch4	0.322	22.8 mA	>2.5mA peak	1

200 Hz

	Vor.m.s	$\begin{gathered} \text { Peak lo } \\ (\mathrm{Vo} / 20) \times 1.414 \end{gathered}$	Specification	Pass/Fail
Ch1	0.389	27.5 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch2	0.389	27.5 mA	>2.5mA peak	$\checkmark$
Ch3	0.389	27.5 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch4	0.388	27.4 mA	>2.5mA peak	$\checkmark$

1 kHz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.413	29.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Unit.
.T_ACQ_P50. Serial No
Test Engineer..
.Xen.
Date.
.9/9/10

### 10.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo   (Vo/20)	Specification	Pass/Fail
Ch1	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch2	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch3	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch4	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	

10 Hz

	Vo peak	Peak lo   $($ Vo/20)	Specification	Pass/Fail
Ch1	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch2	16 mV	800 uA	$>2.5 \mathrm{~mA}$ peak	
Ch3	12 mV	600 uA	$>2.5 \mathrm{~mA}$ peak	
Ch4	15 mV	750 uA	$>2.5 \mathrm{~mA}$ peak	

100 Hz

	Vo r.m.s	Peak lo   $($ Vo/20 $) \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.129	9.1 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch2	0.128	9.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.126	8.9 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.129	9.1 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$

200 Hz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.245	17.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.245	17.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.242	17.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.245	17.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch2	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.. Xen.
Date 9/9/10

### 10.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	1.99	2.8	140.7 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch3	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch4	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA }}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	2.3	3.3	162.6 mA	>125mA peak	$\checkmark$
Ch2	2.3	3.3	162.6 mA	>125mA peak	$\checkmark$
Ch3	2.2	3.1	155.5 mA	>125mA peak	$\sqrt{ }$
Ch4	2.2	3.1	155.5 mA	>125mA peak	$\sqrt{ }$

5 kHz

	Vo r.m.s	Vo pk.	Peak Io (Vo/20)   $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	1.67	2.4	118.1 mA	>125mA peak	
Ch2	1.67	2.4	118.1 mA	$>125 \mathrm{~mA}$ peak	
Ch3	1.66	2.3	117.4 mA	$>125 \mathrm{~mA}$ peak	
Ch4	1.66	2.3	117.4 mA	>125mA peak	

## 11. Noise Measurements

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.


Measure the noise output at 10 Hz .

	Spec in   $\mathrm{dB} V \sqrt{ } \mathrm{~Hz}$	Measured @   10 Hz	$-60 \mathrm{~dB}=$	Measured in   $\mathrm{nV} \sqrt{ } \mathrm{Hz}$	OK?
Ch1	-143.5	-93.0	-153.0	22.4	$\sqrt{ }$
Ch2	-143.5	-91.4	-151.4	26.9	$\sqrt{ }$
Ch3	-143.5	-92.2	-152.2	24.5	$\sqrt{ }$
Ch4	-143.5	-94.6	-154.6	18.6	$\sqrt{ }$

## Notes:

Specified noise output current at $10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}$ (worst case)
Total resistance at 10 Hz , in Low noise mode $=6.7 \mathrm{k}$
Amplifier noise voltage should therefore be $=67 \mathrm{nV} \sqrt{\mathrm{Hz}}$
$67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}$

```
Unit
TACQ50P
Serial No
```

$\qquad$

```
Test Engineer
 RMC
Date
2/11/10
```


## 12. Final Assembly Tests

1. Remove the lid of the box. $\sqrt{ }$
2. Unplug all external connections. $\sqrt{ }$
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight.
4. Check that all internal connectors are firmly mated. $\sqrt{ }$
5. Tighten the screw-locks holding all the external connectors. $\sqrt{ }$
6. Check that all the LEDs are nicely centred.
7. Check that all links W4 are in place. $\sqrt{ }$
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TACQ50P
Driver board ID	TACQ50
Driver board Drawing No/Issue No	D0901047_5_K
Monitor board ID	MON242
Monitor board Drawing No/Issue No	D070480_5_K

9. Check the security of any modification wires. None
10. Visually inspect.
11. Put the lid on and fasten all screws, $\sqrt{ }$

Check all external screws for tightness. $\sqrt{ }$

## LIGO Laboratory / LIGO Scientific Collaboration

## Advanced LIGO UK

March 2010

## Triple Acquisition Driver Unit Test Report

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research<br>University of Glasgow<br>Phone +44 (0) 1413305884<br>Fax +44 (0) 1413306833<br>E-mail k.strain@physics.gla.ac.uk<br>Engineering Department<br>CCLRC Rutherford Appleton Laboratory<br>Phone +44 (0) 1235445297<br>Fax +44 (0) 1235445843<br>E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT

```
Unit...............T ACQ P51...........................S..Serial No.
Test Engineer.....Xen.
Date................1/10/10
```

Drive Card ID......T ACQ51
Monitor Card ID...Mon152.
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

## 1. Description

## Block diagram



## Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
__ACQ_P51
```

$\qquad$

```
Serial No
Test Engineer.....Xen.
Date
1/10/10
```


## 2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz)
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	



## 3. Inspection

## Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.

## Links:

Check that the links W2 and W4 are present on each channel.

Test Engineer.....Xen..
Date. 30/9/10.

## 4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{l \mid}$
5	0V	$\sqrt{l}$		
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

## LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
5	0V	$\sqrt{\|c\|}$		
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	$\sqrt{ }$

## PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\checkmark$
10	V+ (TP1)	+17 v Supply	$\sqrt{ }$
11	V- (TP2)	-17 v Supply	$\checkmark$
12	$\mathrm{~V}-$ (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	OV (TP3)		$\sqrt{ }$
24	OV (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

## 5. TEST SET UP



Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

## Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit.
```

$\qquad$

``` T_ACQ_P51
``` \(\qquad\)
``` Serial No
Test Engineer.....Xen.
Date..................30/9/10.
```


## 6. Power

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents

$\mathbf{+ 1 6 . 5}$ supply current (mA)	- $\mathbf{1 6 . 5}$ supply current (mA)
500 mA	400 mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	$\sqrt{2}$	$\sqrt{ }$
Rear Panel	$\sqrt{ }$	$\sqrt{ }$

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen..
Date. 30/9/10

## 7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\checkmark$	$\checkmark$	$\checkmark$
Ch2	$\sqrt{ }$	$\checkmark$	$\checkmark$
Ch3	$\checkmark$	$\checkmark$	$\checkmark$
Ch4	$\sqrt{ }$	$\checkmark$	$\checkmark$

TEST RELAYS

Channel	Indicator		OK?
Ch1	ON	OFF	
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

## ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\checkmark$	$\checkmark$	$\checkmark$
Ch2	$\checkmark$	$\checkmark$	$\checkmark$
Ch3	$\checkmark$	$\checkmark$	$\checkmark$
Ch4	$\checkmark$	$\checkmark$	$\checkmark$

```
Unit
T_ACQ_P51
Serial No
Test Engineer.....Xen.
Date
.30/9/10
```


## 8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

### 8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S   Monitor	Expected value	Pass/Fail:   Equal? (+/-0.1v)
$\mathbf{1}$	0.33	3	0.33 v	$\sqrt{ }$
$\mathbf{2}$	0.33	6	0.33 v	$\sqrt{ }$
$\mathbf{3}$	0.33	9	0.33 v	$\sqrt{ }$
$\mathbf{4}$	0.33	12	0.33 v	$\sqrt{ }$

Adjust the input voltage until the voltage across the load resistor $=1 \mathrm{v}$ r.m.s. Record the current monitor output values.
8.2 Current Monitors

Ch.	Output	V, I and R.M.S   Monitor	Expected   Value	Pass/Fail:   Equal? (+/- 0.1v)
$\mathbf{1}$	1.92	2	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{2}$	1.92	5	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{3}$	1.92	8	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{4}$	1.92	11	$1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}$	$\sqrt{ }$

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S   Monitor	Expected   Value	Pass/Fail:   Equal? ( $+/ \mathbf{0 . 1 v})$
$\mathbf{1}$	1.96	1	1.86 v dc	$\sqrt{ }$
$\mathbf{2}$	1.96	4	1.86 vdc	$\sqrt{ }$
$\mathbf{3}$	1.95	7	1.86 v dc	$\sqrt{ }$
$\mathbf{4}$	1.96	10	1.86 vdc	$\sqrt{ }$

### 8.4 Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu \mathrm{V} \sqrt{ } \mathrm{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA $\sqrt{ } \mathrm{Hz}$ should give $2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}$ out.

Ch.	Output   $(\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})$	$\div($ Pre-amplifier   gain)	Expected   Value	Comparison
$\mathbf{1}$		1.36	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{2}$		1.69	$2.9 \mu \mathrm{~V} \mathrm{~Hz}$	$\sqrt{ }$
$\mathbf{3}$		1.53	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{4}$		1.67	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$

```
Unit.
...............T_ACQ_P51
1.
Serial No.
Test Engineer.....Xen.
Date.
1/10/10
```


## 9. Distortion

```
Switch the filters out. Increase input voltage to 5 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.
```

	Acquisition Mode:   Distortion Free?	Non-Acquisition Mode:   Distortion Free?
Ch1	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{2}$	$\sqrt{ }$

## Unit.

T_ACQ_P51
Test Engineer.....Xen.
Date.
1/10/10.

## 10 Load tests and Frequency response check

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

### 10.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo (Vo/20)	Specification	Pass/Fail
Ch1	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch2	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch3	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch4	67.5 mV	3.4 mA	>2.5mA peak	$\checkmark$

10Hz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.066	4.7 mA	$>\mathbf{~ 2 . 5 m A ~ p e a k ~}$	$\sqrt{ }$
Ch2	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

100 Hz

	Vor.m.s	$\begin{gathered} \text { Peak lo } \\ (\mathrm{Vo} / 20) \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	0.322	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch2	0.324	22.9 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch3	0.323	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch4	0.323	22.8 mA	>2.5mA peak	1

200 Hz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times$ 1.414	Specification	Pass/Fail	
Ch1	0.389	27.5 mA	$\boldsymbol{> 2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.391	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.390	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.390	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.414	29.3 mA	$>\mathbf{2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.....Xen.
Date.
1/10/10.

### 10.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo   (Vo/20)	Specification	Pass/Fail
Ch1	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch2	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch3	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch4	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	

10 Hz

	Vo peak	Peak lo   $($ Vo/20 $)$	Specification	Pass/Fail
Ch1	15 mV	750 uA	$>2.5 \mathrm{~mA}$ peak	
Ch2	15 mV	750 uA	$>2.5 \mathrm{~mA}$ peak	
Ch3	15 mV	750 uA	$>2.5 \mathrm{~mA}$ peak	
Ch4	16 mV	800 uA	$>2.5 \mathrm{~mA}$ peak	

100 Hz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.132	9.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.129	9.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.132	9.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.127	9.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Peak lo   $($ Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.249	17.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.246	17.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.249	17.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.243	17.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.....Xen
Date. 1/10/10.

### 10.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA }}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	2.3	3.3	162.6 mA	>125mA peak	$\checkmark$
Ch2	2.3	3.3	162.6 mA	>125mA peak	$\checkmark$
Ch3	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$
Ch4	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$

5 kHz

	Vo r.m.s	Vo pk.	Peak Io (Vo/20)   $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	1.67	2.4	118.1 mA	>125mA peak	
Ch2	1.67	2.4	118.1 mA	$>125 \mathrm{~mA}$ peak	
Ch3	1.67	2.4	118.1 mA	$>125 \mathrm{~mA}$ peak	
Ch4	1.67	2.4	118.1 mA	>125mA peak	

Test Engineer.....Xen
Date .30/9/10

## 11. Noise Measurements

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.


Measure the noise output at 10 Hz .

	Spec in   $\mathrm{dB} V \mathrm{~V} \mathrm{~Hz}$	Measured @   10 Hz	$-60 \mathrm{~dB}=$	Measured in   $\mathrm{nV} \sqrt{ } \mathrm{Hz}$	OK?
Ch1	-143.5	-91.2	-151.2	27.5	$\checkmark$
Ch2	-143.5	-93.6	-153.6	20.9	$\sqrt{ }$
Ch3	-143.5	-92.0	-152.0	25.1	$\sqrt{ }$
Ch4	-143.5	-92.7	-152.7	23.2	$\sqrt{ }$

## Notes:

Specified noise output current at $10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}$ (worst case)
Total resistance at 10 Hz , in Low noise mode $=6.7 \mathrm{k}$
Amplifier noise voltage should therefore be $=67 \mathrm{nV} \sqrt{\mathrm{Hz}}$
$67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}$

```
Unit.
TACQ51P
```

$\qquad$

```
 Serial No
```

$\qquad$

```
Test EngineerRMC
Date
2/11/10
```


## 12. Final Assembly Tests

1. Remove the lid of the box. $\sqrt{ }$
2. Unplug all external connections. $\sqrt{ }$
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight.
4. Check that all internal connectors are firmly mated. $\sqrt{ }$
5. Tighten the screw-locks holding all the external connectors. $\sqrt{ }$
6. Check that all the LEDs are nicely centred.
7. Check that all links W4 are in place. $\sqrt{ }$
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TACQ51P
Driver board ID	TACQ51
Driver board Drawing No/Issue No	D0901047_V4
Monitor board ID	MON152
Monitor board Drawing No/Issue No	D070480_5_K

9. Check the security of any modification wires. None
10. Visually inspect. $\downarrow$
11. Put the lid on and fasten all screws, $\sqrt{ }$

Check all external screws for tightness. $\sqrt{ }$

## LIGO Laboratory / LIGO Scientific Collaboration

## Advanced LIGO UK

March 2010

## Triple Acquisition Driver Unit Test Report

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research<br>University of Glasgow<br>Phone +44 (0) 1413305884<br>Fax +44 (0) 1413306833<br>E-mail k.strain@physics.gla.ac.uk<br>Engineering Department<br>CCLRC Rutherford Appleton Laboratory<br>Phone +44 (0) 1235445297<br>Fax +44 (0) 1235445843<br>E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT

```
Unit...............T_ACQ_P52.............................Serial No.
Test Engineer.....Xen
Date
```

$\qquad$

Drive Card ID......T ACQ52
Monitor Card ID...Mon192
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

## 1. Description

## Block diagram



## Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
ACQ_P52
```

$\qquad$

```
Serial No
Test Engineer.....Xen.
Date................30/9/10
```


## 2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz)
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	$33250 A$	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	



## 3. Inspection

## Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.

## Links:

Check that the links W2 and W4 are present on each channel.

Test Engineer.....Xen..
Date. 30/9/10.

## 4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{l \mid}$
5	0V	$\sqrt{l}$		
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

## LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
5	0V	$\sqrt{\|c\|}$		
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	$\sqrt{ }$

## PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\checkmark$
10	V+ (TP1)	+17 v Supply	$\sqrt{ }$
11	V- (TP2)	-17 v Supply	$\checkmark$
12	$\mathrm{~V}-$ (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	OV (TP3)		$\sqrt{ }$
24	OV (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

## 5. TEST SET UP



Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

## Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit.
```

$\qquad$

``` T_ACQ_P52
``` \(\qquad\)
Test Engineer.....Xen.
Date..................30/9/10.
```


6. Power

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents

$\mathbf{+ 1 6 . 5}$ supply current (mA)	- $\mathbf{1 6 . 5}$ supply current (mA)
500 mA	400 mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	$\sqrt{2}$	$\sqrt{ }$
Rear Panel	$\sqrt{ }$	$\sqrt{ }$

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen..
Date. 30/9/10

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
Ch1	ON	OFF	
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

```
Unit
                .T_ACQ_P52.
                                    Serial No
Test Engineer.....Xen.
```

Date
.30/9/10

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S Monitor	Expected value	Pass/Fail: Equal? (+/-0.1v)
$\mathbf{1}$	0.33	3	0.33 v	$\sqrt{ }$
$\mathbf{2}$	0.33	6	0.33 v	$\sqrt{ }$
$\mathbf{3}$	0.33	9	0.33 v	$\sqrt{ }$
$\mathbf{4}$	0.33	12	0.33 v	$\sqrt{ }$

Adjust the input voltage until the voltage across the load resistor $=1 \mathrm{v}$ r.m.s. Record the current monitor output values.
8.2 Current Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	1.91	2	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{2}$	1.91	5	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{3}$	1.91	8	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{4}$	1.91	11	$1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}$	$\sqrt{ }$

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	1.95	1	1.86 vdc	$\sqrt{ }$
$\mathbf{2}$	1.95	4	1.86 vdc	$\sqrt{ }$
$\mathbf{3}$	1.94	7	1.86 vdc	$\sqrt{ }$
$\mathbf{4}$	1.94	10	1.86 vdc	$\sqrt{ }$

8.4 Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu \mathrm{V} \sqrt{ } \mathrm{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA $\sqrt{\mathrm{Hz}}$ should give $2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}$ out.

Ch.	Output $(\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})$	$\div($ Pre-amplifier gain $)$	Expected Value	Comparison
$\mathbf{1}$		1.63	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{2}$		1.53	$2.9 \mu \mathrm{~V} \mathrm{~Hz}$	$\sqrt{ }$
$\mathbf{3}$		1.65	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{4}$		1.30	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$

```
Unit.
...............T_ACQ_P52
2..
Serial No
Test Engineer.....Xen.
Date................30/9/10.
```


9. Distortion

```
Switch the filters out. Increase input voltage to 5 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.
```

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{2}$	$\sqrt{ }$

Test Engineer.....Xen.
Date. .30/9/10.

10 Load tests and Frequency response check

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

10.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo $($ Vo/20 $)$	Specification	Pass/Fail
Ch1	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

10Hz

Vo r.m.s	Peak lo $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.066	4.7 mA	$>\mathbf{~ 2 . 5 m A ~ p e a k ~}$	$\sqrt{ }$
Ch2	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

100 Hz

	Vor.m.s	$\begin{gathered} \text { Peak lo } \\ (\mathrm{Vo} / 20) \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	0.322	22.8 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch2	0.324	22.9 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch3	0.324	22.9 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch4	0.323	22.8 mA	>2.5mA peak	1

200 Hz

Vo r.m.s	Peak lo $($ Vo/20 $) \times$ 1.414	Specification	Pass/Fail	
Ch1	0.389	27.5 mA	$\boldsymbol{> 2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.391	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.390	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.389	27.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

Vo r.m.s	Peak lo $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.415	29.3 mA	$>\mathbf{2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Unit.
T_ACQ_P52.
Serial No
Test Engineer.....Xen.
Date. .30/9/10.

10.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1 Hz

	Vo peak	Peak lo (Vo/20)	Specification	Pass/Fail
Ch1	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch2	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch3	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch4	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	

10 Hz

	Vo peak	Peak lo $($ Vo/20 $)$	Specification	Pass/Fail
Ch1	15 mV	750 uA	$>2.5 \mathrm{~mA}$ peak	
Ch2	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch3	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch4	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	

100 Hz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.131	9.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.132	9.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.130	9.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.128	9.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.248	17.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.249	17.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.246	17.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.244	17.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.371	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Unit. T_ACQ_P52.
Test Engineer.. Xen.
Date. 30/9/10.

10.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch3	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch4	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA }}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	2.3	3.3	162.6 mA	>125mA peak	\checkmark
Ch2	2.3	3.3	162.6 mA	>125mA peak	\checkmark
Ch3	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$
Ch4	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$

5 kHz

	Vo r.m.s	Vo pk.	Peak Io (Vo/20) $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	1.67	2.4	118.1 mA	$>125 \mathrm{~mA}$ peak	
Ch2	1.68	2.4	118.8 mA	$>125 \mathrm{~mA}$ peak	
Ch3	1.67	2.4	118.1 mA	$>125 \mathrm{~mA}$ peak	
Ch4	1.67	2.4	118.1 mA	$>125 \mathrm{~mA}$ peak	

Test Engineer.....Xen
Date .30/9/10

11. Noise Measurements

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

Measure the noise output at 10 Hz .

	Spec in $\mathrm{dB} V \sqrt{ } \mathrm{~Hz}$	Measured @ 10 Hz	$-60 \mathrm{~dB}=$	Measured in $\mathrm{nV} \sqrt{ } \mathrm{Hz}$	OK?
Ch1	-143.5	-92.3	-152.3	24.3	$\sqrt{ }$
Ch2	-143.5	-92.5	-152.5	23.7	$\sqrt{ }$
Ch3	-143.5	-91.3	-151.3	27.2	$\sqrt{ }$
Ch4	-143.5	-92.6	-152.6	23.4	$\sqrt{ }$

Notes:

Specified noise output current at $10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}$ (worst case)
Total resistance at 10 Hz , in Low noise mode $=6.7 \mathrm{k}$
Amplifier noise voltage should therefore be $=67 \mathrm{nV} \sqrt{\mathrm{Hz}}$
$67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}$

```
Unit.
TACQ52P
Serial No
```

\qquad

```
Test Engineer
    RMC
Date
.2/11/10
```


12. Final Assembly Tests

1. Remove the lid of the box. $\sqrt{ }$
2. Unplug all external connections. $\sqrt{ }$
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight.
4. Check that all internal connectors are firmly mated. $\sqrt{ }$
5. Tighten the screw-locks holding all the external connectors. $\sqrt{ }$
6. Check that all the LEDs are nicely centred.
7. Check that all links $W 4$ are in place. $\sqrt{ }$
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TACQ52P
Driver board ID	TACQ52
Driver board Drawing No/Issue No	D0901047_V4
Monitor board ID	MON192
Monitor board Drawing No/Issue No	D070480_5_K

9. Check the security of any modification wires. None
10. Visually inspect. $\sqrt{ }$
11. Put the lid on and fasten all screws, \downarrow

Check all external screws for tightness. $\sqrt{ }$

LIGO Laboratory / LIGO Scientific Collaboration

Advanced LIGO UK

March 2010

Triple Acquisition Driver Unit Test Report

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT

```
Unit................T ACQ P53............................Serial No.
Test Engineer.....Xen.
Date................16/8/10
```

Drive Card ID......T ACQ53
Monitor Card ID...Mon228
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

1. Description

Block diagram

Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
                _ACQ_P53
```

\qquad

```
                                    Serial No
Test Engineer.....Xen.
Date
16/8/10
```


2. Test equipment

```
Power supplies (At least \(+/-20 v\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz )
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.

Links:

Check that the links W2 and W4 are present on each channel.

4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{l \mid}$
5	0V	\sqrt{l}		
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
5	0V	$\sqrt{\|c\|}$		
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	$\sqrt{ }$

PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	\checkmark
10	V+ (TP1)	+17 v Supply	$\sqrt{ }$
11	V- (TP2)	-17 v Supply	\checkmark
12	$\mathrm{~V}-$ (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	OV (TP3)		$\sqrt{ }$
24	OV (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

5. TEST SET UP

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit.
```

\qquad

``` T_ACQ_P53
``` \(\qquad\)
Test Engineer.....Xen.
Date 16/8/10.
```


## 6. Power

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents

$\mathbf{+ 1 6 . 5}$ supply current (mA)	- $\mathbf{1 6 . 5}$ supply current (mA)
500 mA	400 mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	$\sqrt{2}$	$\sqrt{ }$
Rear Panel	$\sqrt{ }$	$\sqrt{ }$

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen..
Date. 16/8/10

## 7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{n}$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{2}$	$\sqrt{ }$

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{ }$	$\sqrt{2}$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

## ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\checkmark$	$\checkmark$	$\checkmark$
Ch2	$\checkmark$	$\checkmark$	$\checkmark$
Ch3	$\checkmark$	$\checkmark$	$\checkmark$
Ch4	$\checkmark$	$\checkmark$	$\checkmark$

```
Unit.
 T_ACQ_P53
Test Engineer.....Xen.
```

Date 16/8/10

## 8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

### 8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S   Monitor	Expected value	Pass/Fail:   Equal? (+/-0.1v)
$\mathbf{1}$	0.33	3	0.33 v	$\sqrt{ }$
$\mathbf{2}$	0.33	6	0.33 v	$\sqrt{ }$
$\mathbf{3}$	0.33	9	0.33 v	$\sqrt{ }$
$\mathbf{4}$	0.33	12	0.33 v	$\sqrt{ }$

Adjust the input voltage until the voltage across the load resistor $=1 \mathrm{v}$ r.m.s. Record the current monitor output values.
8.2 Current Monitors

Ch.	Output	V, I and R.M.S   Monitor	Expected   Value	Pass/Fail:   Equal? (+/- 0.1v)
$\mathbf{1}$	1.92	2	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{2}$	1.92	5	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{3}$	1.92	8	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{4}$	1.92	11	$1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}$	$\sqrt{ }$

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S   Monitor	Expected   Value	Pass/Fail:   Equal? (+/-0.1v)
$\mathbf{1}$	1.95	1	1.86 vdc	$\sqrt{ }$
$\mathbf{2}$	1.95	4	1.86 vdc	$\sqrt{ }$
$\mathbf{3}$	1.95	7	1.86 v dc	$\sqrt{ }$
$\mathbf{4}$	1.96	10	1.86 vdc	$\sqrt{ }$

### 8.4 Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu \mathrm{V} \sqrt{ } \mathrm{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA $\sqrt{\mathrm{Hz}}$ should give $2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}$ out.

Ch.	Output   $(\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})$	$\div($ Pre-amplifier   gain $)$	Expected   Value	Comparison
$\mathbf{1}$		1.96	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{2}$		1.83	$2.9 \mu \mathrm{~V} \mathrm{~Hz}$	$\sqrt{ }$
$\mathbf{3}$		1.97	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{4}$		1.85	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$

```
Unit.
```

$\qquad$

```
 T_ACQ_P53
```

$\qquad$

```
 Serial No
Test Engineer.....Xen.
Date
 16/8/10
```


## 9. Distortion

```
Switch the filters out. Increase input voltage to 5 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.
```

	Acquisition Mode:   Distortion Free?	Non-Acquisition Mode:   Distortion Free?
Ch1	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{2}$	$\sqrt{ }$

## Unit.

.T_ACQ_P53.
Test Engineer.....Xen.
Date
16/8/10.

## 10 Load tests and Frequency response check

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

### 10.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo (Vo/20)	Specification	Pass/Fail
Ch1	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch2	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch3	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch4	67.5 mV	3.4 mA	>2.5mA peak	$\checkmark$

10Hz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.065	4.6 mA	$>\mathbf{~ 2 . 5 m A ~ p e a k ~}$	$\sqrt{ }$
Ch2	0.065	4.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

100 Hz

	Vor.m.s	$\begin{gathered} \text { Peak lo } \\ (\mathrm{Vo} / 20) \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	0.321	22.7 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch2	0.321	22.7 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch3	0.322	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch4	0.322	22.8 mA	>2.5mA peak	1

200 Hz

	Vor.m.s	$\begin{gathered} \text { Peak lo } \\ (\mathrm{Vo} / 20) \times 1.414 \end{gathered}$	Specification	Pass/Fail
Ch1	0.388	27.4 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch2	0.389	27.5 mA	>2.5mA peak	$\checkmark$
Ch3	0.389	27.5 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch4	0.389	27.5 mA	>2.5mA peak	$\checkmark$

1 kHz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.413	29.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.....Xen.
Date.
16/8/10.

### 10.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo   (Vo/20)	Specification	Pass/Fail
Ch1	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch2	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch3	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch4	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	

10 Hz

	Vo peak	Peak Io   (Vo/20)	Specification	Pass/Fail
Ch1	15 mV	750 uA	$>2.5 \mathrm{~mA}$ peak	
Ch2	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch3	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch4	16 mV	800 uA	$>2.5 \mathrm{~mA}$ peak	

100 Hz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.123	8.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.132	9.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.129	9.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.126	8.9 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.239	16.9 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.249	17.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.245	17.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.241	17.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.368	26.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.368	26.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.. Xen.
Date 16/8/10.

### 10.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch3	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch4	1.96	2.8	138.6 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA }}$ peak	$\sqrt{ }$

1 kHz

	Vor.m.s	Vo pk.	$\begin{gathered} \hline \text { Peak lo }(\text { Vo/20 }) \\ \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	2.3	3.3	162.6 mA	$>125 \mathrm{~mA}$ peak	$\checkmark$
Ch2	2.3	3.3	162.6 mA	$>125 \mathrm{~mA}$ peak	$\checkmark$
Ch3	2.3	3.3	162.6 mA	$>125 \mathrm{~mA}$ peak	$\checkmark$
Ch4	2.2	3.1	155.5 mA	>125mA peak	$\checkmark$

5 kHz

	Vo r.m.s	Vo pk.	Peak Io (Vo/20)   $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	1.67	2.4	118.1 mA	>125mA peak	$\checkmark$
Ch2	1.66	2.3	117.4 mA	>125mA peak	$\checkmark$
Ch3	1.66	2.3	117.4 mA	>125mA peak	$\sqrt{ }$
Ch4	1.66	2.3	117.4 mA	>125mA peak	$\sqrt{ }$

```
Unit
Test Engineer.....Xen
Date 16/8/10.
```


## 11. Noise Measurements

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.


Measure the noise output at 10 Hz .

	Spec in   $\mathrm{dB} V \mathrm{~V} \mathrm{~Hz}$	Measured @   10 Hz	$-60 \mathrm{~dB}=$	Measured in   $\mathrm{nV} \sqrt{ } \mathrm{Hz}$	OK?
Ch1	-143.5	-91.4	-151.4	26.9	$\checkmark$
Ch2	-143.5	-92.7	-152.7	23.2	$\sqrt{ }$
Ch3	-143.5	-92.0	-152.0	25.1	$\sqrt{ }$
Ch4	-143.5	-92.5	-152.5	23.7	$\sqrt{ }$

## Notes:

Specified noise output current at $10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}$ (worst case)
Total resistance at 10 Hz , in Low noise mode $=6.7 \mathrm{k}$
Amplifier noise voltage should therefore be $=67 \mathrm{nV} \sqrt{\mathrm{Hz}}$
$67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}$

```
Unit.
 TACQ53P
 Serial No
```

$\qquad$

```Test EngineerRMCDate2/11/10
```


## 12. Final Assembly Tests

1. Remove the lid of the box. $\sqrt{ }$
2. Unplug all external connections. $\sqrt{ }$
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight.
4. Check that all internal connectors are firmly mated. $\sqrt{ }$
5. Tighten the screw-locks holding all the external connectors. $\sqrt{ }$
6. Check that all the LEDs are nicely centred.
7. Check that all links W4 are in place. $\sqrt{ }$
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TACQ53P
Driver board ID	TACQ53
Driver board Drawing No/Issue No	D0901047_V4
Monitor board ID	MON226__
Monitor board Drawing No/Issue No	D070480_5_K

9. Check the security of any modification wires. None
10. Visually inspect. $\sqrt{ }$
11. Put the lid on and fasten all screws, $\downarrow$

Check all external screws for tightness. $\sqrt{ }$

## LIGO Laboratory / LIGO Scientific Collaboration

## Advanced LIGO UK

March 2010

## Triple Acquisition Driver Unit Test Report

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research<br>University of Glasgow<br>Phone +44 (0) 1413305884<br>Fax +44 (0) 1413306833<br>E-mail k.strain@physics.gla.ac.uk<br>Engineering Department<br>CCLRC Rutherford Appleton Laboratory<br>Phone +44 (0) 1235445297<br>Fax +44 (0) 1235445843<br>E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT

```
Unit................T ACQ P54............................Serial No.
Test Engineer.....Xen.
Date................16/8/10
```

Drive Card ID.......T ACQ54
Monitor Card ID....Mon222.
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

## 1. Description

## Block diagram



## Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
 _ACQ_P54
```

$\qquad$

```
 Serial No
Test Engineer.....Xen.
Date
16/8/10
```


## 2. Test equipment

```
Power supplies (At least \(+/-20 v\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz)
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	



## 3. Inspection

## Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.

## Links:

Check that the links W2 and W4 are present on each channel.

Test Engineer..
Date.
16/8/10.

## 4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{l \mid}$
5	0V	$\sqrt{l}$		
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

## LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
5	0V	$\sqrt{\|c\|}$		
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	$\sqrt{ }$

## PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17v Supply	$\sqrt{ }$
11	$\mathrm{~V}-$ (TP2)	-17v Supply	$\sqrt{ }$
12	$\mathrm{~V}-$ (TP2)	-17v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	0 V (TP3)		$\sqrt{ }$
24	0 V (TP3)		$\sqrt{ }$
25	0 V (TP3)		$\sqrt{ }$

## 5. TEST SET UP



Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

## Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit
```

$\qquad$

``` T_ACQ_P54
``` \(\qquad\)
Test Engineer.....Xen.
Date 16/8/10
```


6. Power

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents

$\mathbf{+ 1 6 . 5}$ supply current (mA)	- $\mathbf{1 6 . 5}$ supply current (mA)
500 mA	400 mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	$\sqrt{ }$	$\sqrt{ }$
Rear Panel	$\sqrt{ }$	$\sqrt{ }$

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen..
Date. 16/8/10

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
Ch1	ON	OFF	
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

```
Unit
                .T_ACQ_P54
Test Engineer.....Xen
```

Date
16/8/10

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S Monitor	Expected value	Pass/Fail: Equal? (+/-0.1v)
$\mathbf{1}$	0.33	3	0.33 v	$\sqrt{ }$
$\mathbf{2}$	0.33	6	0.33 v	$\sqrt{ }$
$\mathbf{3}$	0.33	9	0.33 v	$\sqrt{ }$
$\mathbf{4}$	0.33	12	0.33 v	$\sqrt{ }$

Adjust the input voltage until the voltage across the load resistor $=1 \mathrm{v}$ r.m.s. Record the current monitor output values.
8.2 Current Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	1.90	2	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{2}$	1.91	5	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{3}$	1.91	8	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{4}$	1.90	11	1.86 v r.m.s	$\sqrt{ }$

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	1.94	1	1.86 vdc	$\sqrt{ }$
$\mathbf{2}$	1.94	4	1.86 vdc	$\sqrt{ }$
$\mathbf{3}$	1.94	7	1.86 vdc	$\sqrt{ }$
$\mathbf{4}$	1.94	10	1.86 vdc	$\sqrt{ }$

8.4 Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu \mathrm{V} \sqrt{\mathrm{Hz}}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA $\sqrt{ } \mathrm{Hz}$ should give $2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}$ out.

Ch.	Output $(\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})$	$\div($ Pre-amplifier gain)	Expected Value	Comparison
$\mathbf{1}$		1.74	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{2}$		1.66	$2.9 \mu \mathrm{~V} \mathrm{~Hz}$	$\sqrt{ }$
$\mathbf{3}$		1.66	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{4}$		1.68	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$

```
Unit.
```

\qquad

```
                T_ACQ_P54
```

\qquad

```
                                    Serial No
Test Engineer.....Xen.
Date
                16/8/10
```


9. Distortion

```
Switch the filters out. Increase input voltage to 5 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.
```

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{2}$	$\sqrt{ }$

Unit.
T_ACQ_P54
Test Engineer.....Xen.
Date
16/8/10.

10 Load tests and Frequency response check

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

10.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo (Vo/20)	Specification	Pass/Fail
Ch1	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch2	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch3	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch4	67.5 mV	3.4 mA	>2.5mA peak	\checkmark

10Hz

Vo r.m.s	Peak lo $($ Vo/20 $) \times$ 1.414	Specification	Pass/Fail	
Ch1	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.067	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

100 Hz

	Vor.m.s	$\begin{gathered} \text { Peak lo } \\ (\mathrm{Vo} / 20) \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	0.323	22.8 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch2	0.326	23.0 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch3	0.324	22.9 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch4	0.321	22.7 mA	>2.5mA peak	\checkmark

200 Hz

Vo r.m.s	Peak lo $($ Vo/20 $) \times$ 1.414	Specification	Pass/Fail	
Ch1	0.390	27.6 mA	$\boldsymbol{> 2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.391	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.390	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.388	27.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

Vo r.m.s	Peak lo $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.415	29.3 mA	$>\mathbf{2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.....Xen.
Date.
16/8/10.

10.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo (Vo/20)	Specification	Pass/Fail
Ch1	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch2	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch3	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch4	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	

10 Hz

	Vo peak	Peak lo $($ Vo/20 $)$	Specification	Pass/Fail
Ch1	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch2	15 mV	750 uA	$>2.5 \mathrm{~mA}$ peak	
Ch3	16 mV	800 uA	$>2.5 \mathrm{~mA}$ peak	
Ch4	16 mV	800 uA	$>2.5 \mathrm{~mA}$ peak	

100 Hz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.131	9.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.134	9.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.124	8.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.124	8.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.248	17.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.251	17.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.239	16.9 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.239	16.9 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.371	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.368	26.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.. Xen.
Date 16/8/10.

10.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x 1 . 4 1 4}$	Specification	Pass/Fail
Ch1	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch3	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch4	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA }}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	2.3	3.3	162.6 mA	>125mA peak	\checkmark
Ch2	2.3	3.3	162.6 mA	>125mA peak	\checkmark
Ch3	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$
Ch4	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$

5 kHz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x 1 . 4 1 4}$	Specification	Pass/Fail
Ch1	1.68	2.4	118.8 mA	>125mA peak	
Ch2	1.67	2.4	118.1 mA	>125mA peak	
Ch3	1.67	2.4	118.1 mA	>125mA peak	
Ch4	1.67	2.4	118.1 mA	>125mA peak	

```
Unit
Test Engineer.....Xen
Date 16/8/10.
```


11. Noise Measurements

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

Measure the noise output at 10 Hz .

	Spec in $\mathrm{dB} V \mathrm{~V} \mathrm{~Hz}$	Measured @ 10 Hz	$-60 \mathrm{~dB}=$	Measured in $\mathrm{nV} \sqrt{ } \mathrm{Hz}$	OK?
Ch1	-143.5	-92.4	-152.4	24.0	\checkmark
Ch2	-143.5	-93.5	-153.5	21.1	$\sqrt{ }$
Ch3	-143.5	-93.4	-153.4	21.4	$\sqrt{ }$
Ch4	-143.5	-94.2	-154.2	19.5	$\sqrt{ }$

Notes:

Specified noise output current at $10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}$ (worst case)
Total resistance at 10 Hz , in Low noise mode $=6.7 \mathrm{k}$
Amplifier noise voltage should therefore be $=67 \mathrm{nV} \sqrt{ } \mathrm{Hz}$
$67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}$

```
Unit.
TACQ54P
Serial No
```

\qquad

```
Test Engineer
    RMC
Date
2/11/10
```


12. Final Assembly Tests

1. Remove the lid of the box. $\sqrt{ }$
2. Unplug all external connections. $\sqrt{ }$
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight.
4. Check that all internal connectors are firmly mated. $\sqrt{ }$
5. Tighten the screw-locks holding all the external connectors. $\sqrt{ }$
6. Check that all the LEDs are nicely centred.
7. Check that all links W 4 are in place. $\sqrt{ }$
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TACQ54P
Driver board ID	TACQ54P
Driver board Drawing No/Issue No	D0901047_V4
Monitor board ID	MON222
Monitor board Drawing No/Issue No	D070480_5_K

9. Check the security of any modification wires. None
10. Visually inspect. \downarrow
11. Put the lid on and fasten all screws, $\sqrt{ }$

Check all external screws for tightness. $\sqrt{ }$

LIGO Laboratory / LIGO Scientific Collaboration

Advanced LIGO UK

March 2010

Triple Acquisition Driver Unit Test Report

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT

Drive Card ID.......T ACQ55
Monitor Card ID....Mon181

Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

1. Description

Block diagram

Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
```

\qquad

```
                            T_ACQ_P55
```

\qquad
Test Engineer.. Xen

```Date24/8/10
```


2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz )
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.

Links:

Check that the links W2 and W4 are present on each channel.

Test Engineer.....Xen..
Date.

4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{l \mid}$
5	0V	\sqrt{l}		
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
5	0V	$\sqrt{\|c\|}$		
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	$\sqrt{ }$

PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17v Supply	$\sqrt{ }$
11	$\mathrm{~V}-$ (TP2)	-17v Supply	$\sqrt{ }$
12	$\mathrm{~V}-$ (TP2)	-17v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	0 V (TP3)		$\sqrt{ }$
24	0 V (TP3)		$\sqrt{ }$
25	0 V (TP3)		$\sqrt{ }$

5. TEST SET UP

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit.
```

\qquad

```
                            T_ACQ_P55
                        5..
                                    Serial No.
Test Engineer.....Xen.
Date...............24/8/10
```


6. Power

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents

$\mathbf{+ 1 6 . 5}$ supply current (mA)	- 16.5 supply current (mA)
500 mA	400 mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	$\sqrt{ }$	$\sqrt{ }$
Rear Panel	$\sqrt{ }$	$\sqrt{ }$

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen.
Date. 24/8/10

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
Ch1	ON	OFF	
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	\checkmark	$\sqrt{ }$

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

```
Unit
                            .T_ACQ_P55
Test Engineer.....Xen.
```

Date 24/8/10

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S Monitor	Expected value	Pass/Fail: Equal? (+/-0.1v)
$\mathbf{1}$	0.33	3	0.33 v	$\sqrt{ }$
$\mathbf{2}$	0.33	6	0.33 v	$\sqrt{ }$
$\mathbf{3}$	0.33	9	0.33 v	$\sqrt{ }$
$\mathbf{4}$	0.33	12	0.33 v	$\sqrt{ }$

Adjust the input voltage until the voltage across the load resistor $=1 \mathrm{v}$ r.m.s. Record the current monitor output values.
8.2 Current Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	1.92	2	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{2}$	1.92	5	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{3}$	1.92	8	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{4}$	1.92	11	$1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}$	$\sqrt{ }$

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	Pass/Fail: Equal? (+/-0.1v)
$\mathbf{1}$	1.96	1	1.86 vdc	$\sqrt{ }$
$\mathbf{2}$	1.95	4	1.86 vdc	$\sqrt{ }$
$\mathbf{3}$	1.96	7	1.86 vdc	$\sqrt{ }$
$\mathbf{4}$	1.95	10	1.86 vdc	$\sqrt{ }$

8.4 Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu \mathrm{V} \sqrt{ } \mathrm{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA $\sqrt{\mathrm{Hz}}$ should give $2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}$ out.

Ch.	Output $(\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})$	$\div($ Pre-amplifier gain $)$	Expected Value	Comparison
$\mathbf{1}$		0.94	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{2}$		1.34	$2.9 \mu \mathrm{~V} \mathrm{~Hz}$	$\sqrt{ }$
$\mathbf{3}$		1.39	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{4}$		1.19	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$

```
Unit
..............T_ACQ_P55
5.
Serial No
Test Engineer.....Xen.
Date................24/8/10.
```


9. Distortion

```
Switch the filters out. Increase input voltage to 5 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.
```

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{2}$	$\sqrt{ }$

```
Unit.
                            T_ACQ_P55
Test Engineer.....Xen.
Date 24/8/10
```

10 Load tests and Frequency response check
Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

10.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo (Vol20)	Specification	Pass/Fail
Ch1	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch2	67.5 mV	3.4 mA	>2.5mA peak	\checkmark
Ch3	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch4	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark

10 Hz

Vo r.m.s	Peak lo $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.065	4.6 mA	$>\mathbf{~ 2 . 5 m A ~ p e a k ~}$	$\sqrt{ }$
Ch2	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

100 Hz

	Vo r.m.s	Peak lo $(\mathrm{Vo/20}) \times$ 1.414	Specification	Pass/Fail
Ch1	0.321	22.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.324	22.9 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.321	22.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.321	22.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

Vo r.m.s	Peak lo $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.388	27.4 mA	$\boldsymbol{> 2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.391	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.389	27.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.388	27.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

Vo r.m.s	Peak lo $($ Vo/20 $) \times$ 1.414	Specification	Pass/Fail	
Ch1	0.414	29.3 mA	$\boldsymbol{> 2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.413	29.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Unit.
.T_ACQ_P55.
Test Engineer.....Xen
Date. .24/8/10

10.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo (Vo/20)	Specification	Pass/Fail
Ch1	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch2	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch3	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch4	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	

10 Hz

	Vo peak	Peak lo $($ Vo/20 $)$	Specification	Pass/Fail
Ch1	15 mV	750 uA	$>2.5 \mathrm{~mA}$ peak	
Ch2	15 mV	750 uA	$>2.5 \mathrm{~mA}$ peak	
Ch3	15 mV	750 uA	$>2.5 \mathrm{~mA}$ peak	
Ch4	15 mV	750 uA	$>2.5 \mathrm{~mA}$ peak	

100 Hz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.130	9.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.126	8.9 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.131	9.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.120	8.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.247	17.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.242	17.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.248	17.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.233	16.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.367	25.9 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.. Xen.
Date 24/8/10.

10.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	1.96	2.8	138.6 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch3	1.95	2.8	137.9 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch4	1.95	2.8	137.9 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA }}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	>125mA peak	$\sqrt{ }$
Ch2	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$
Ch3	2.2	3.1	155.5 mA	>125mA peak	$\sqrt{ }$
Ch4	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

5 kHz

	Vo r.m.s	Vo pk.	Peak Io (Vo/20) $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	1.66	2.3	117.4 mA	>125mA peak	
Ch2	1.68	2.4	118.8 mA	>125mA peak	
Ch3	1.66	2.3	117.4 mA	$>125 \mathrm{~mA}$ peak	
Ch4	1.65	2.3	116.7 mA	>125mA peak	

```
Unit
                T_ACQ_P55
Test Engineer.....Xen
Date 24/8/10
```


11. Noise Measurements

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

Measure the noise output at 10 Hz .

	Spec in $\mathrm{dB} V \sqrt{ } \mathrm{~Hz}$	Measured @ 10 Hz	$-60 \mathrm{~dB}=$	Measured in $\mathrm{nV} \sqrt{ } \mathrm{Hz}$	OK?
Ch1	-143.5	-93.8	-153.8	20.4	\checkmark
Ch2	-143.5	-92.4	-152.4	24.0	$\sqrt{ }$
Ch3	-143.5	-92.4	-152.4	24.0	$\sqrt{ }$
Ch4	-143.5	-91.5	-151.5	26.6	$\sqrt{ }$

Notes:

Specified noise output current at $10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}$ (worst case)
Total resistance at 10 Hz , in Low noise mode $=6.7 \mathrm{k}$
Amplifier noise voltage should therefore be $=67 \mathrm{nV} \sqrt{\mathrm{Hz}}$
$67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}$

```
Unit
TACQ55P
Serial No
```

\qquad

```
Test Engineer
RMC
Date
2/11/10
```


12. Final Assembly Tests

1. Remove the lid of the box. $\sqrt{ }$
2. Unplug all external connections. $\sqrt{ }$
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight.
4. Check that all internal connectors are firmly mated. $\sqrt{ }$
5. Tighten the screw-locks holding all the external connectors.
6. Check that all the LEDs are nicely centred.
7. Check that all links W4 are in place. $\sqrt{ }$
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TACQ55P
Driver board ID	TACQ55
Driver board Drawing No/Issue No	D0901047_V4
Monitor board ID	MON181__
Monitor board Drawing No/Issue No	D0700480_5_K

9. Check the security of any modification wires. None
10. Visually inspect. $\sqrt{ }$
11. Put the lid on and fasten all screws, $\sqrt{ }$

Check all external screws for tightness. $\sqrt{ }$

LIGO Laboratory / LIGO Scientific Collaboration

Advanced LIGO UK

March 2010

Triple Acquisition Driver Unit Test Report

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT

Drive Card ID......T ACQ56
Monitor Card ID...Mon191

Contents

1 Description

2 Test Equipment

3 Inspection

4 Continuity Checks
$5 \quad$ Test Set Up

6 Power

7 Relay operation

8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

1. Description

Block diagram

Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
```

\qquad

```
                            T_ACQ_P56
                        6..
                                    Serial No
Test Engineer.....Xen.
Date................24/8/10
```


2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz )
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.

Links:

Check that the links W2 and W4 are present on each channel.

Test Engineer.....Xen..
Date.

4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{l \mid}$
5	0V	\sqrt{l}		
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
5	0V	$\sqrt{\|c\|}$		
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	$\sqrt{ }$

PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17v Supply	$\sqrt{ }$
11	$\mathrm{~V}-$ (TP2)	-17v Supply	$\sqrt{ }$
12	$\mathrm{~V}-$ (TP2)	-17v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	0 V (TP3)		$\sqrt{ }$
24	0 V (TP3)		$\sqrt{ }$
25	0 V (TP3)		$\sqrt{ }$

5. TEST SET UP

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit.
```

\qquad

```
                            T_ACQ_P56
                            6.
                                    Serial No.
Test Engineer.....Xen.
Date...............24/8/10
```


6. Power

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents

$\mathbf{+ 1 6 . 5}$ supply current (mA)	- 16.5 supply current (mA)
500 mA	400 mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	$\sqrt{ }$	$\sqrt{ }$
Rear Panel	$\sqrt{ }$	$\sqrt{ }$

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen..
Date. 24/8/10

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
Ch1	ON	OFF	
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	\checkmark	$\sqrt{ }$

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	\checkmark	\checkmark
Ch2	$\sqrt{ }$	\checkmark	$\sqrt{ }$
Ch3	$\sqrt{ }$	\checkmark	$\sqrt{ }$
Ch4	$\sqrt{ }$	\checkmark	$\sqrt{ }$

```
Unit
                            T_ACQ_P56
Test Engineer.....Xen.
```

Date 24/8/10

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S Monitor	Expected value	Pass/Fail: Equal? (+/-0.1v)
$\mathbf{1}$	0.33	3	0.33 v	$\sqrt{ }$
$\mathbf{2}$	0.33	6	0.33 v	$\sqrt{ }$
$\mathbf{3}$	0.33	9	0.33 v	$\sqrt{ }$
$\mathbf{4}$	0.33	12	0.33 v	$\sqrt{ }$

Adjust the input voltage until the voltage across the load resistor $=1 \mathrm{v}$ r.m.s. Record the current monitor output values.
8.2 Current Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	1.92	2	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{2}$	1.92	5	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{3}$	1.92	8	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{4}$	1.92	11	1.86 v r.m.s	$\sqrt{ }$

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	1.96	1	1.86 vdc	$\sqrt{ }$
$\mathbf{2}$	1.95	4	1.86 vdc	$\sqrt{ }$
$\mathbf{3}$	1.96	7	1.86 vdc	$\sqrt{ }$
$\mathbf{4}$	1.97	10	1.86 vdc	

8.4 Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu \mathrm{V} \sqrt{ } \mathrm{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA $\sqrt{ } \mathrm{Hz}$ should give $2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}$ out.

Ch.	Output $(\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z})}$	\div (Pre-amplifier gain)	Expected Value	Comparison
$\mathbf{1}$		1.11	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{2}$		0.83	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{3}$		1.05	$2.9 \mu \mathrm{~V} \mathrm{~Hz}$	$\sqrt{ }$
$\mathbf{4}$		1.51	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$

```
Unit
..............T_ACQ_P56
```

\qquad

```
Serial No
Test Engineer.....Xen.
Date................24/8/10
```


9. Distortion

```
Switch the filters out. Increase input voltage to 5 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.
```

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{2}$	$\sqrt{ }$

```
Unit.
                            T_ACQ_P56
Test Engineer.....Xen.
Date 24/8/10
```


10 Load tests and Frequency response check

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

10.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo (Vol20)	Specification	Pass/Fail
Ch1	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch2	67.5 mV	3.4 mA	>2.5mA peak	\checkmark
Ch3	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch4	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark

10 Hz

Vo r.m.s	Peak lo $(\mathbf{V o / 2 0}) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.067	4.7 mA	$>\mathbf{2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

100 Hz

Vo r.m.s	Peak lo $(V o / 20) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.326	23.0 mA	$>\mathbf{2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.323	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.325	23.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.322	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200Hz

Vo r.m.s	Peak lo $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.391	27.6 mA	$\boldsymbol{> 2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.390	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.390	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.389	27.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

Vo r.m.s	Peak lo $(\mathbf{V o / 2 0}) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.414	29.3 mA	$\boldsymbol{> 2 . 5 m A}$ peak	\checkmark
Ch2	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Unit.
.T_ACQ_P56.
Serial No
Test Engineer.....Xen.
Date. .24/8/10

10.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1 Hz

	Vo peak	Peak lo (Vo/20)	Specification	Pass/Fail
Ch1	45 mV	2.3 mA	$>\mathbf{2 . 5 m A}$ peak	
Ch2	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch3	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch4	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	

10 Hz

	Vo peak	Peak lo $($ Vo/20)	Specification	Pass/Fail
Ch1	16 mV	800 uA	$>2.5 \mathrm{~mA}$ peak	
Ch2	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch3	16 mV	800 uA	$>2.5 \mathrm{~mA}$ peak	
Ch4	16 mV	800 uA	$>2.5 \mathrm{~mA}$ peak	

100 Hz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.131	9.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.121	8.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.125	8.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.126	8.9 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.247	17.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.235	16.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.240	17.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.241	17.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.368	26.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.. Xen.
Date .24/8/10.

10.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch3	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch4	1.96	2.8	138.6 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA }}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	2.3	3.3	162.6 mA	>125mA peak	\checkmark
Ch2	2.3	3.3	162.6 mA	>125mA peak	\checkmark
Ch3	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$
Ch4	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$

5 kHz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x 1 . 4 1 4}$	Specification	Pass/Fail
Ch1	1.67	2.4	118.1 mA	>125mA peak	
Ch2	1.67	2.4	118.1 mA	>125mA peak	
Ch3	1.67	2.4	118.1 mA	>125mA peak	
Ch4	1.67	2.4	118.1 mA	>125mA peak	

```
Unit
                T_ACQ_P56
Test Engineer.....Xen
Date 24/8/10
```


11. Noise Measurements

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

Measure the noise output at 10 Hz .

	Spec in $\mathrm{dB} V \sqrt{ } \mathrm{~Hz}$	Measured @ 10 Hz	$-60 \mathrm{~dB}=$	Measured in $\mathrm{nV} \sqrt{ } \mathrm{Hz}$	OK?
Ch1	-143.5	-92.4	-152.4	24.0	\checkmark
Ch2	-143.5	-92.2	-152.2	24.5	$\sqrt{ }$
Ch3	-143.5	-93.1	-153.1	22.1	$\sqrt{ }$
Ch4	-143.5	-91.6	-151.6	26.3	$\sqrt{ }$

Notes:

Specified noise output current at $10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}$ (worst case)
Total resistance at 10 Hz , in Low noise mode $=6.7 \mathrm{k}$
Amplifier noise voltage should therefore be $=67 \mathrm{nV} \sqrt{\mathrm{Hz}}$
$67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}$

```
Unit.
                TACQ56P
```

\qquad

``` Serial No
``` \(\qquad\)
```Test EngineerRMCDate2/11/10
```


12. Final Assembly Tests

1. Remove the lid of the box. $\sqrt{ }$
2. Unplug all external connections. $\sqrt{ }$
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight.
4. Check that all internal connectors are firmly mated. $\sqrt{ }$
5. Tighten the screw-locks holding all the external connectors. $\sqrt{ }$
6. Check that all the LEDs are nicely centred.
7. Check that all links W4 are in place. $\sqrt{ }$
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TACQ56P
Driver board ID	TACQ56
Driver board Drawing No/Issue No	D0901047_V4
Monitor board ID	MON191__5_K
Monitor board Drawing No/Issue No	D070480_5_K

9. Check the security of any modification wires. No
10. Visually inspect. $\sqrt{ }$
11. Put the lid on and fasten all screws, \downarrow

Check all external screws for tightness. $\sqrt{ }$

LIGO Laboratory / LIGO Scientific Collaboration

Advanced LIGO UK

March 2010

Triple Acquisition Driver Unit Test Report

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT

```
Unit................T ACQ P57.............................Serial No.
Test Engineer.....Xen.
```

Date..................11/10/10

Drive Card ID.......T ACQ57
Monitor Card ID....Mon140
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

1. Description

Block diagram

Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
T_ACQ_P57
```

\qquad

```
Serial No
Test Engineer.....Xen.
Date
11/10/10
```


2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz )
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.

Links:

Check that the links W2 and W4 are present on each channel.

4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{l \mid}$
5	0V	\sqrt{l}		
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
5	0V	$\sqrt{\|c\|}$		
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	$\sqrt{ }$

PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
11	V - (TP2)	-17 v Supply	$\sqrt{ }$
12	V - (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	0 V (TP3)		$\sqrt{ }$
24	0 V (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

5. TEST SET UP

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit.
                .T_ACQ_P57
```

\qquad
Date
11/10/10

```

\section*{6. Power}

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents
\begin{tabular}{|c|c|}
\hline \(\mathbf{+ 1 6 . 5}\) supply current (mA) & - \(\mathbf{1 6 . 5}\) supply current (mA) \\
\hline 500 mA & 400 mA \\
\hline
\end{tabular}

Check that all power LEDs are illuminated.
\begin{tabular}{|c|c|c|}
\hline LEDs & Plus & Minus \\
\hline Front Panel & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Rear Panel & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen.
Date. 11/10/10.

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch3 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\checkmark\) & \(\checkmark\) \\
\hline
\end{tabular}

TEST RELAYS
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline Ch1 & ON & OFF & \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{ACQUISITION RELAYS}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|l|}{Indicator} & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch2 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch3 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch4 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline
\end{tabular}
```

Unit
.T_ACQ_P57.
Serial No
Test Engineer.....Xen

```
Date
11/10/10

\section*{8. Monitor Outputs}

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

\subsection*{8.1 Voltage Monitors}
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output: & \begin{tabular}{c} 
V, I and R.M.S \\
Monitor
\end{tabular} & Expected value & \begin{tabular}{c} 
Pass/Fail: \\
Equal? (+/-0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & 0.33 & 3 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 0.33 & 6 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 0.33 & 9 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 0.33 & 12 & 0.33 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

Adjust the input voltage until the voltage across the load resistor \(=1 \mathrm{v}\) r.m.s. Record the current monitor output values.
8.2 Current Monitors
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output & \begin{tabular}{c} 
V, I and R.M.S \\
Monitor
\end{tabular} & \begin{tabular}{c} 
Expected \\
Value
\end{tabular} & \begin{tabular}{c} 
Pass/Fail: \\
Equal? (+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & 1.92 & 2 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 1.92 & 5 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 1.92 & 8 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 1.92 & 11 & \(1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.3 R.M.S Monitors
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output & \begin{tabular}{c} 
V, I and R.M.S \\
Monitor
\end{tabular} & \begin{tabular}{c} 
Expected \\
Value
\end{tabular} & \begin{tabular}{c} 
Pass/Fail: \\
Equal? (+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & 1.96 & 1 & 1.86 vdc & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 1.95 & 4 & 1.86 vdc & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 1.96 & 7 & 1.86 vdc & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 1.96 & 10 & 1.86 vdc & \(\sqrt{ }\) \\
\hline
\end{tabular}

\subsection*{8.4 Noise Monitors}
- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in \(\mu \mathrm{V} \sqrt{ } \mathrm{Hz}\) on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \(\sqrt{ } \mathrm{Hz}\) should give \(2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}\) out.
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c} 
Output \\
\((\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})\)
\end{tabular} & \begin{tabular}{c}
\(\div(\) Pre-amplifier \\
gain \()\)
\end{tabular} & \begin{tabular}{c} 
Expected \\
Value
\end{tabular} & Comparison \\
\hline \(\mathbf{1}\) & & 1.56 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & & 1.41 & \(2.9 \mu \mathrm{~V} \mathrm{~Hz}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & & 1.48 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & & 1.56 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit.
T_ACQ_P57

```
\(\qquad\)
```

 Serial No
 Test Engineer.....Xen.
Date
11/10/10

```

\section*{9. Distortion}
```

Switch the filters out. Increase input voltage to 5 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

```
\begin{tabular}{|c|c|c|}
\hline & \begin{tabular}{c} 
Acquisition Mode: \\
Distortion Free?
\end{tabular} & \begin{tabular}{c} 
Non-Acquisition Mode: \\
Distortion Free?
\end{tabular} \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{2}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit.
.T_ACQ_P57. Serial No
Test Engineer.....Xen.
Date 11/10/10.

10 Load tests and Frequency response check
Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

\subsection*{10.1 Noisy Mode}

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vo peak & \begin{tabular}{c} 
Peak lo \\
\((\) Vo/20 \()\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 67.5 mV & 3.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 67.5 mV & 3.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 67.5 mV & 3.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 67.5 mV & 3.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

10Hz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c} 
Peak lo \\
\((\) Vo/20 \() \times \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.066 & 4.7 mA & \(>\mathbf{~ 2 . 5 m A ~ p e a k ~}\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.066 & 4.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.066 & 4.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.066 & 4.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vor.m.s & \[
\begin{gathered}
\text { Peak lo } \\
(\mathrm{Vo} / 20) \times 1.414 \\
\hline
\end{gathered}
\] & Specification & Pass/Fail \\
\hline Ch1 & 0.323 & 22.8 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch2 & 0.324 & 22.9 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch3 & 0.324 & 22.9 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch4 & 0.323 & 22.8 mA & >2.5mA peak & \(\checkmark\) \\
\hline
\end{tabular}

200 Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vor.m.s & \[
\begin{gathered}
\text { Peak lo } \\
(\mathrm{Vo} / 20) \times 1.414
\end{gathered}
\] & Specification & Pass/Fail \\
\hline Ch1 & 0.389 & 27.5 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch2 & 0.391 & 27.6 mA & >2.5mA peak & \(\checkmark\) \\
\hline Ch3 & 0.389 & 27.5 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch4 & 0.390 & 27.6 mA & >2.5mA peak & \(\checkmark\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c} 
Peak lo \\
\((\) Vo/20 \() \times \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.414 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.416 & 29.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.415 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.414 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Engineer..
Xen.
Date
11/10/10

\subsection*{10.2 Low noise Mode}

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo peak & \begin{tabular}{c} 
Peak lo \\
(Vo/20)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch2 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch3 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch4 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo peak & \begin{tabular}{c} 
Peak lo \\
\((\) Vo/20 \()\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 14 mV & 700 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch2 & 15 mV & 750 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch3 & 16 mV & 800 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch4 & 14 mV & 700 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vo r.m.s & \begin{tabular}{c} 
Peak lo \\
(Vo/20) \(\mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.133 & 9.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.131 & 9.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.134 & 9.5 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.122 & 8.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

200 Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo r.m.s & \begin{tabular}{c} 
Peak lo \\
\((\) Vo/20) \(\mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.250 & 17.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.249 & 17.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.251 & 17.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.236 & 16.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo r.m.s & \begin{tabular}{c} 
Peak lo \\
(Vo/20) \(\mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.370 & 26.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.371 & 26.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.371 & 26.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.368 & 26.0 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Engineer.. Xen.
Date 11/10/10.

\subsection*{10.3 Acquisition Mode}

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100Hz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c} 
Peak lo (Vo/20) \\
\(\mathbf{x} 1.414\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 1.97 & 2.8 & 139.3 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 1.98 & 2.8 & 140.0 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\sqrt{ }\) \\
\hline Ch3 & 1.98 & 2.8 & 140.0 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\sqrt{ }\) \\
\hline Ch4 & 1.98 & 2.8 & 140.0 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

200 Hz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c} 
Peak lo (Vo/20) \\
\(\mathbf{x} 1.414\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\sqrt{ }\) \\
\hline Ch3 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\sqrt{ }\) \\
\hline Ch4 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA }}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c} 
Peak lo (Vo/20) \\
\(\mathbf{x} \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 2.3 & 3.3 & 162.6 mA & >125mA peak & \(\checkmark\) \\
\hline Ch2 & 2.3 & 3.3 & 162.6 mA & >125mA peak & \(\checkmark\) \\
\hline Ch3 & 2.3 & 3.3 & 162.6 mA & >125mA peak & \(\sqrt{ }\) \\
\hline Ch4 & 2.3 & 3.3 & 162.6 mA & >125mA peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

5 kHz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c} 
Peak Io (Vo/20) \\
\(\mathbf{x} 1.414\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 1.67 & 2.4 & 118.1 mA & >125mA peak & \\
\hline Ch2 & 1.68 & 2.4 & 118.8 mA & \(>125 \mathrm{~mA}\) peak & \\
\hline Ch3 & 1.67 & 2.4 & 118.1 mA & \(>125 \mathrm{~mA}\) peak & \\
\hline Ch4 & 1.68 & 2.4 & 118.8 mA & >125mA peak & \\
\hline
\end{tabular}

Test Engineer.....Xen
Date .11/10/10.

\section*{11. Noise Measurements}

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.


Measure the noise output at 10 Hz .
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \begin{tabular}{c} 
Spec in \\
\(\mathrm{dB} V \mathrm{~V} \mathrm{~Hz}\)
\end{tabular} & \begin{tabular}{c} 
Measured @ \\
10 Hz
\end{tabular} & \(-60 \mathrm{~dB}=\) & \begin{tabular}{c} 
Measured in \\
\(\mathrm{nV} \sqrt{ } \mathrm{Hz}\)
\end{tabular} & OK? \\
\hline Ch1 & -143.5 & -92.2 & -152.2 & 24.5 & \(\checkmark\) \\
\hline Ch2 & -143.5 & -92.8 & -152.8 & 22.9 & \(\sqrt{ }\) \\
\hline Ch3 & -143.5 & -92.2 & -152.2 & 24.5 & \(\sqrt{ }\) \\
\hline Ch4 & -143.5 & -90.9 & -150.9 & 28.5 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Notes:}

Specified noise output current at \(10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}\) (worst case)
Total resistance at 10 Hz , in Low noise mode \(=6.7 \mathrm{k}\)
Amplifier noise voltage should therefore be \(=67 \mathrm{nV} \sqrt{\mathrm{Hz}}\)
\(67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}\)
```

Unit.
TACQ57P
Serial No

```
\(\qquad\)
```

Test Engineer
RMC
Date
2/11/10

```

\section*{12. Final Assembly Tests}
1. Remove the lid of the box. \(\sqrt{ }\)
2. Unplug all external connections. \(\sqrt{ }\)
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight.
4. Check that all internal connectors are firmly mated. \(\sqrt{ }\)
5. Tighten the screw-locks holding all the external connectors.
6. Check that all the LEDs are nicely centred.
7. Check that all links W4 are in place. \(\sqrt{ }\)
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:
\begin{tabular}{|l|l|}
\hline UoB box ID & TACQ57P \\
\hline Driver board ID & TACQ57P \\
\hline Driver board Drawing No/Issue No & D0901047_V4 \\
\hline Monitor board ID & MON140 \\
\hline Monitor board Drawing No/Issue No & D070480_5_K \\
\hline
\end{tabular}
9. Check the security of any modification wires. None
10. Visually inspect. \(\downarrow\)
11. Put the lid on and fasten all screws, \(\sqrt{ }\)

Check all external screws for tightness. \(\sqrt{ }\)

\section*{LIGO Laboratory / LIGO Scientific Collaboration}

\section*{Advanced LIGO UK}

March 2010

\section*{Triple Acquisition Driver Unit Test Report}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

\author{
Institute for Gravitational Research \\ University of Glasgow \\ Phone +44 (0) 1413305884 \\ Fax +44 (0) 1413306833 \\ E-mail k.strain@physics.gla.ac.uk \\ Engineering Department \\ CCLRC Rutherford Appleton Laboratory \\ Phone +44 (0) 1235445297 \\ Fax +44 (0) 1235445843 \\ E-mail J.Greenhalgh@rl.ac.uk
}

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT}
```

Unit...............T_ACQ_P58.............................Serial No.
Test Engineer.....Xen.
Date................23/9/10

```

Drive Card ID.......T ACQ58
Monitor Card ID....Mon257
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

\section*{1. Description}

\section*{Block diagram}


\section*{Description}

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.
```

Unit

```
\(\qquad\)
```

 T_ACQ_P58
    ```
\(\qquad\)
```

Date..................23/9/10

```

\section*{2. Test equipment}
```

Power supplies (At least $+/-20 \mathrm{v}$ variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz)
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline Signal Generator & Agilent & \(33250 A\) & \\
\hline Oscilloscope & ISO-TECH & ISR622 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77III & \\
\hline Signal analyzer & Agilent & 35670A & \\
\hline Pre-amplifier & Stanford Systems & SR560 & \\
\hline
\end{tabular}


\section*{3. Inspection}

\section*{Workmanship}

Inspect the general workmanship standard and comment: \(\sqrt{ }\)
Capacitors C35 and C27 have been changed to 1 nF on all channels.

\section*{Links}

Check that the links W2 and W4 are present on each channel.

Test Engineer.....Xen.
Date. .23/9/10

\section*{4. Continuity Checks}

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\sqrt{ }\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\sqrt{ }\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\sqrt{ }\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\sqrt{l \mid}\) \\
\hline 5 & 0V & \(\sqrt{l}\) \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\sqrt{ }\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\sqrt{ }\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\sqrt{ }\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{LED Mon}
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\sqrt{ }\) \\
\hline 2 & Imon2P & & 6 & \(\sqrt{ }\) \\
\hline 3 & Imon3P & & 7 & \(\sqrt{ }\) \\
\hline 4 & Imon4P & & 8 & \(\sqrt{ }\) \\
\hline 5 & 0V & \(\sqrt{|c|}\) \\
\hline 6 & Imon1N & & 18 & \(\sqrt{ }\) \\
\hline 7 & Imon2N & & 19 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 20 & \(\sqrt{ }\) \\
\hline 9 & Imon4N & & 21 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{PD from Sat}
\begin{tabular}{|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & \(\mathrm{~V}+\) (TP1) & +17 v Supply & \(\checkmark\) \\
\hline 10 & V+ (TP1) & +17 v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17 v Supply & \(\checkmark\) \\
\hline 12 & \(\mathrm{~V}-\) (TP2) & -17 v Supply & \(\sqrt{ }\) \\
\hline 13 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 22 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}


Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, \(4=\) positive input
Drive Input J3 pins 6, 7, 8, \(9=\) negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, \(10=+16.5 \mathrm{v}\)
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, \(25=0 v\)
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin \(1 \quad\) Ch1 \(-=\mathrm{J} 4\) pin 9
Ch2 \(+=\mathrm{J} 4\) pin \(3 \quad\) Ch2- \(=\mathrm{J} 4\) pin 11
Ch3 \(+=\mathrm{J} 4\) pin \(5 \quad\) Ch3- \(=\mathrm{J} 4\) pin 13
Ch4+ = J4 pin \(7 \quad\) Ch4- \(=\mathrm{J} 4\) pin 15
```

Unit.

```
\(\qquad\)
```

 T_ACQ_P58
 8..
 Serial No.
 Test Engineer.....Xen.
Date...............23/9/10

```

\section*{6. Power}

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents
\begin{tabular}{|c|c|}
\hline \(\mathbf{+ 1 6 . 5}\) supply current (mA) & - 16.5 supply current (mA) \\
\hline 500 mA & 400 mA \\
\hline
\end{tabular}

Check that all power LEDs are illuminated.
\begin{tabular}{|c|c|c|}
\hline LEDs & Plus & Minus \\
\hline Front Panel & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Rear Panel & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen.
Date. 23/9/10

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|l|}{Indicator} & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch2 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch3 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch4 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline
\end{tabular}

TEST RELAYS
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline Ch1 & ON & OFF & \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\checkmark\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{ACQUISITION RELAYS}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|l|}{Indicator} & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch2 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch3 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch4 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline
\end{tabular}
```

Unit
.T_ACQ_P58
Test Engineer.....Xen.

```

Date .23/9/10

\section*{8. Monitor Outputs}

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

\subsection*{8.1 Voltage Monitors}
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output: & \begin{tabular}{c} 
V, I and R.M.S \\
Monitor
\end{tabular} & Expected value & \begin{tabular}{c} 
Pass/Fail: \\
Equal? (+/-0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & 0.33 & 3 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 0.33 & 6 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 0.33 & 9 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 0.33 & 12 & 0.33 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

Adjust the input voltage until the voltage across the load resistor \(=1 \mathrm{v}\) r.m.s. Record the current monitor output values.
8.2 Current Monitors
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output & \begin{tabular}{c} 
V, I and R.M.S \\
Monitor
\end{tabular} & \begin{tabular}{c} 
Expected \\
Value
\end{tabular} & \begin{tabular}{c} 
Pass/Fail: \\
Equal? (+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & 1.92 & 2 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 1.92 & 5 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 1.92 & 8 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 1.92 & 11 & \(1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.3 R.M.S Monitors
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output & \begin{tabular}{c} 
V, I and R.M.S \\
Monitor
\end{tabular} & \begin{tabular}{c} 
Expected \\
Value
\end{tabular} & \begin{tabular}{c} 
Pass/Fail: \\
Equal? (+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & 1.95 & 1 & 1.86 vdc & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 1.95 & 4 & 1.86 vdc & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 1.95 & 7 & 1.86 vdc & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 1.95 & 10 & 1.86 vdc & \(\sqrt{ }\) \\
\hline
\end{tabular}

\subsection*{8.4 Noise Monitors}
- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in \(\mu \mathrm{V} \sqrt{ } \mathrm{Hz}\) on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \(\sqrt{\mathrm{Hz}}\) should give \(2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}\) out.
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c} 
Output \\
\((\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})\)
\end{tabular} & \begin{tabular}{c}
\(\div(\) Pre-amplifier \\
gain \()\)
\end{tabular} & \begin{tabular}{c} 
Expected \\
Value
\end{tabular} & Comparison \\
\hline \(\mathbf{1}\) & & 1.46 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & & 1.38 & \(2.9 \mu \mathrm{~V} \mathrm{~Hz}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & & 1.75 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & & 1.50 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit
..............T_ACQ_P58

```
\(\qquad\)
```

Serial No
Test Engineer.....Xen.
Date................23/9/10

```

\section*{9. Distortion}
```

Switch the filters out. Increase input voltage to 5 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

```
\begin{tabular}{|c|c|c|}
\hline & \begin{tabular}{c} 
Acquisition Mode: \\
Distortion Free?
\end{tabular} & \begin{tabular}{c} 
Non-Acquisition Mode: \\
Distortion Free?
\end{tabular} \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{2}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit
T_ACQ_P58
Test Engineer.....Xen.
Date .23/9/10

```

\section*{10 Load tests and Frequency response check}

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

\subsection*{10.1 Noisy Mode}

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vo peak & Peak lo (Vol20) & Specification & Pass/Fail \\
\hline Ch1 & 67.5 mV & 3.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch2 & 67.5 mV & 3.4 mA & >2.5mA peak & \(\checkmark\) \\
\hline Ch3 & 67.5 mV & 3.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch4 & 67.5 mV & 3.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c} 
Peak lo \\
\((\) Vo/20 \() \times \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.066 & 4.7 mA & \(>\mathbf{2 . 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.066 & 4.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.066 & 4.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.066 & 4.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vo r.m.s & \begin{tabular}{c} 
Peak lo \\
\((\mathrm{Vo/20}) \times\) 1.414
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.324 & 22.9 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.324 & 22.9 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.324 & 22.9 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.325 & 23.0 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

200Hz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c} 
Peak lo \\
\((\) Vo/20 \() \times \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.390 & 27.6 mA & \(\boldsymbol{> 2 . 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.390 & 27.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.390 & 27.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.390 & 27.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|l|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c} 
Peak lo \\
\((\mathbf{V o / 2 0}) \times \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.414 & 29.3 mA & \(\boldsymbol{> 2 . 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.415 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.415 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.414 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit.
.T_ACQ_P58.
Test Engineer.....Xen
Date.
.23/9/10.

\subsection*{10.2 Low noise Mode}

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo peak & \begin{tabular}{c} 
Peak lo \\
(Vo/20)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch2 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch3 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch4 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo peak & \begin{tabular}{c} 
Peak lo \\
\((\) Vo/20 \()\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 14 mV & 700 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch2 & 14 mV & 700 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch3 & 14 mV & 700 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch4 & 15 mV & 750 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vo r.m.s & \begin{tabular}{c} 
Peak lo \\
(Vo/20) \(\mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.132 & 9.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.133 & 9.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.131 & 9.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.132 & 9.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

200 Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo r.m.s & \begin{tabular}{c} 
Peak lo \\
(Vo/20) \(\mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.249 & 17.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.250 & 17.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.249 & 17.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.249 & 17.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo r.m.s & \begin{tabular}{c} 
Peak lo \\
(Vo/20) \(\mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.370 & 26.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.371 & 26.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.370 & 26.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.369 & 26.1 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Engineer.....Xen.
Date. .23/9/10

\subsection*{10.3 Acquisition Mode}

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100Hz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c} 
Peak lo (Vo/20) \\
\(\mathbf{x} 1.414\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 1.97 & 2.8 & 139.3 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 1.98 & 2.8 & 140.0 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\sqrt{ }\) \\
\hline Ch3 & 1.98 & 2.8 & 140.0 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\sqrt{ }\) \\
\hline Ch4 & 1.98 & 2.8 & 140.0 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

200 Hz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c} 
Peak lo (Vo/20) \\
\(\mathbf{x} 1.414\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\sqrt{ }\) \\
\hline Ch3 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\sqrt{ }\) \\
\hline Ch4 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA }}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c} 
Peak lo (Vo/20) \\
\(\mathbf{x} \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 2.3 & 3.3 & 162.6 mA & >125mA peak & \(\checkmark\) \\
\hline Ch2 & 2.3 & 3.3 & 162.6 mA & >125mA peak & \(\checkmark\) \\
\hline Ch3 & 2.3 & 3.3 & 162.6 mA & >125mA peak & \(\sqrt{ }\) \\
\hline Ch4 & 2.3 & 3.3 & 162.6 mA & >125mA peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

5 kHz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c} 
Peak Io (Vo/20) \\
\(\mathbf{x} 1.414\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 1.67 & 2.4 & 118.1 mA & >125mA peak & \\
\hline Ch2 & 1.67 & 2.4 & 118.1 mA & \(>125 \mathrm{~mA}\) peak & \\
\hline Ch3 & 1.68 & 2.4 & 118.8 mA & \(>125 \mathrm{~mA}\) peak & \\
\hline Ch4 & 1.67 & 2.4 & 118.1 mA & >125mA peak & \\
\hline
\end{tabular}
```

Unit
T_ACQ_P58

11. Noise Measurements

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

Measure the noise output at 10 Hz .

| | Spec in
 $\mathrm{dB} V \mathrm{~V} \mathrm{~Hz}$ | Measured @
 10 Hz | $-60 \mathrm{~dB}=$ | Measured in
 $\mathrm{nV} \sqrt{ } \mathrm{Hz}$ | OK? |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Ch1 | -143.5 | -91.6 | -151.6 | 26.3 | \checkmark |
| Ch2 | -143.5 | -93.2 | -153.2 | 21.9 | $\sqrt{ }$ |
| Ch3 | -143.5 | -90.4 | -150.4 | 30.2 | $\sqrt{ }$ |
| Ch4 | -143.5 | -92.9 | -152.9 | 22.6 | $\sqrt{ }$ |

Notes:

Specified noise output current at $10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}$ (worst case)
Total resistance at 10 Hz , in Low noise mode $=6.7 \mathrm{k}$
Amplifier noise voltage should therefore be $=67 \mathrm{nV} \sqrt{\mathrm{Hz}}$
$67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{\mathrm{~Hz}}$

```
Unit.
TACQ58P
Serial No
```

\qquad

```
Test Engineer .........RMC
Date ..................3/11/10V
```


12. Final Assembly Tests

1. Remove the lid of the box. $\sqrt{ }$
2. Unplug all external connections. $\sqrt{ }$
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight.
4. Check that all internal connectors are firmly mated. $\sqrt{ }$
5. Tighten the screw-locks holding all the external connectors. $\sqrt{ }$
6. Check that all the LEDs are nicely centred.
7. Check that all links W4 are in place. $\sqrt{ }$
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

| UoB box ID | TACQ58P | |
| :--- | :--- | :---: |
| Driver board ID | TACQ58P | |
| Driver board Drawing No/Issue No | D0901047_v4 | |
| Monitor board ID | MON257 | |
| Monitor board Drawing No/Issue No | D070480_5_K | |

9. Check the security of any modification wires. None
10. Visually inspect. \downarrow
11. Put the lid on and fasten all screws, \downarrow

Check all external screws for tightness. $\sqrt{ }$

LIGO Laboratory / LIGO Scientific Collaboration

Advanced LIGO UK

March 2010

Triple Acquisition Driver Unit Test Report

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT

Drive Card ID......T ACQ59
Monitor Card ID...Mon258

Contents

1 Description

2 Test Equipment

3 Inspection

4 Continuity Checks
$5 \quad$ Test Set Up

6 Power

7 Relay operation

8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

1. Description

Block diagram

Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
```

\qquad

``` T_ACQ_P59
``` \(\qquad\)
``` Serial No
Test Engineer.....Xen.
Date 24/9/10
```


2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz )
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.

Links

Check that the links W2 and W4 are present on each channel.

Test Engineer.....Xen.
Date. .23/9/10

4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{l \mid}$
5	0V	\sqrt{l}		
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
5	0V	$\sqrt{\|c\|}$		
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	$\sqrt{ }$

PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	\checkmark
10	V+ (TP1)	+17 v Supply	$\sqrt{ }$
11	V- (TP2)	-17 v Supply	\checkmark
12	$\mathrm{~V}-$ (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	OV (TP3)		$\sqrt{ }$
24	OV (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

5. TEST SET UP

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit.
```

\qquad

```
                            T_ACQ_P59.
                                    Serial No
Test Engineer.....Xen.
Date................23/9/10.
```


6. Power

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents

$\mathbf{+ 1 6 . 5}$ supply current (mA)	- 16.5 supply current (mA)
500 mA	400 mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	$\sqrt{2}$	$\sqrt{ }$
Rear Panel	$\sqrt{ }$	$\sqrt{ }$

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen..
Date. 23/9/10

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
Ch1	ON	OFF	
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	\checkmark	\checkmark
Ch2	$\sqrt{ }$	\checkmark	$\sqrt{ }$
Ch3	\checkmark	\checkmark	$\sqrt{ }$
Ch4	$\sqrt{ }$	\checkmark	$\sqrt{ }$

```
Unit
                            .T_ACQ_P59
Test Engineer.....Xen.
```

Date 23/9/10

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S Monitor	Expected value	Pass/Fail: Equal? (+/-0.1v)
$\mathbf{1}$	0.33	3	0.33 v	$\sqrt{ }$
$\mathbf{2}$	0.33	6	0.33 v	$\sqrt{ }$
$\mathbf{3}$	0.33	9	0.33 v	$\sqrt{ }$
$\mathbf{4}$	0.33	12	0.33 v	$\sqrt{ }$

Adjust the input voltage until the voltage across the load resistor $=1 \mathrm{v}$ r.m.s. Record the current monitor output values.
8.2 Current Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	1.93	2	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{2}$	1.93	5	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{3}$	1.93	8	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{4}$	1.93	11	$1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}$	$\sqrt{ }$

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	1.97	1	1.86 vdc	
$\mathbf{2}$	1.97	4	1.86 vdc	
$\mathbf{3}$	1.97	7	1.86 vdc	
$\mathbf{4}$	1.96	10	1.86 vdc	$\sqrt{ }$

8.4 Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu \mathrm{V} \sqrt{ } \mathrm{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA $\sqrt{ } \mathrm{Hz}$ should give $2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}$ out.

Ch.	Output $(\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})$	$\div($ Pre-amplifier gain $)$	Expected Value	Comparison
$\mathbf{1}$		1.31	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{2}$		1.71	$2.9 \mu \mathrm{~V} \mathrm{~Hz}$	$\sqrt{ }$
$\mathbf{3}$		1.60	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{4}$		1.68	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$

```
Unit
..............T_ACQ_P59
9..
Serial No
Test Engineer.....Xen.
Date................23/9/10.
```


9. Distortion

```
Switch the filters out. Increase input voltage to 5 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.
```

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{2}$	$\sqrt{ }$

```
Unit.
                            T_ACQ_P59
Test Engineer.....Xen.
Date 24/9/10
```

10 Load tests and Frequency response check
Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

10.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo (Vol20)	Specification	Pass/Fail
Ch1	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch2	67.5 mV	3.4 mA	>2.5mA peak	\checkmark
Ch3	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch4	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark

10 Hz

Vo r.m.s	Peak lo $($ Vo/20 $) \times$ 1.414	Specification	Pass/Fail	
Ch1	0.067	4.7 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch2	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

100 Hz

	Vo r.m.s	Peak lo $($ Vo/20 $) \times$ 1.414	Specification	Pass/Fail
Ch1	0.326	23.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.322	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.324	22.9 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.324	22.9 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

Vo r.m.s	Peak lo $($ Vo/20 $) \times$ 1.414	Specification	Pass/Fail	
Ch1	0.391	27.6 mA	$\boldsymbol{> 2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.390	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.391	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.390	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

Vo r.m.s	Peak lo $($ Vo/20 $) \times$ 1.414	Specification	Pass/Fail	
Ch1	0.415	29.3 mA	$\boldsymbol{> 2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.416	29.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Unit.
.T_ACQ_P59.
Test Engineer.....Xen
Date. .24/9/10

10.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo (Vo/20)	Specification	Pass/Fail
Ch1	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch2	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch3	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch4	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	

10 Hz

	Vo peak	Peak lo $($ Vo/20 $)$	Specification	Pass/Fail
Ch1	16 mV	800 uA	$>2.5 \mathrm{~mA}$ peak	
Ch2	16 mV	800 uA	$>2.5 \mathrm{~mA}$ peak	
Ch3	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch4	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	

100 Hz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.133	9.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.128	9.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.131	9.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.134	9.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Peak lo $($ Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.250	17.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.244	17.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.248	17.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.251	17.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.371	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.. Xen.
Date .24/9/10.

10.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	1.99	2.8	140.7 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	1.99	2.8	140.7 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA }}$ peak	$\sqrt{ }$

1 kHz

	Vor.m.s	Vo pk.	$\begin{gathered} \hline \text { Peak lo (Vo/20) } \\ \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	>125mA peak	\checkmark
Ch2	2.3	3.3	162.6 mA	>125mA peak	\checkmark
Ch3	2.3	3.3	162.6 mA	$>125 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	2.3	3.3	162.6 mA	>125mA peak	\checkmark

5 kHz

	Vo r.m.s	Vo pk.	Peak Io (Vo/20) $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	1.66	2.3	117.4 mA	>125mA peak	
Ch2	1.68	2.4	118.8 mA	$>125 \mathrm{~mA}$ peak	
Ch3	1.67	2.4	118.1 mA	$>125 \mathrm{~mA}$ peak	
Ch4	1.68	2.4	118.8 mA	>125mA peak	

```
Unit
                .T_ACQ_P59
Test Engineer.....Xen
Date 23/9/10
```


11. Noise Measurements

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

Measure the noise output at 10 Hz .

	Spec in $\mathrm{dB} V \mathrm{~V} \mathrm{~Hz}$	Measured @ 10 Hz	$-60 \mathrm{~dB}=$	Measured in $\mathrm{nV} \sqrt{ } \mathrm{Hz}$	OK?
Ch1	-143.5	-92.2	-152.2	24.5	\checkmark
Ch2	-143.5	-91.9	-151.9	25.4	$\sqrt{ }$
Ch3	-143.5	-92.2	-152.2	24.5	$\sqrt{ }$
Ch4	-143.5	-93.8	-153.8	20.4	$\sqrt{ }$

Notes:

Specified noise output current at $10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}$ (worst case)
Total resistance at 10 Hz , in Low noise mode $=6.7 \mathrm{k}$
Amplifier noise voltage should therefore be $=67 \mathrm{nV} \sqrt{\mathrm{Hz}}$
$67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}$

```
Unit
ACQ59
Serial No
```

\qquad

```
Test Engineer .........RMC
Date
3/11/10
```


12. Final Assembly Tests

1. Remove the lid of the box. $\sqrt{ }$
2. Unplug all external connections. $\sqrt{ }$
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight.
4. Check that all internal connectors are firmly mated. $\sqrt{ }$
5. Tighten the screw-locks holding all the external connectors.
6. Check that all the LEDs are nicely centred.
7. Check that all links W4 are in place. $\sqrt{ }$
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TACQ59P
Driver board ID	TACQ59P
Driver board Drawing No/Issue No	D0901047_V4
Monitor board ID	MON258
Monitor board Drawing No/Issue No	D070480_5_K

9. Check the security of any modification wires. None
10. Visually inspect. \downarrow
11. Put the lid on and fasten all screws, $\sqrt{ }$

Check all external screws for tightness. $\sqrt{ }$

LIGO Laboratory / LIGO Scientific Collaboration

Advanced LIGO UK

March 2010

Triple Acquisition Driver Unit Test Report

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT

```
Unit...............T ACQ P60...........................S..Serial No.
Test Engineer.....Xen.
Date................1/10/10
```

Drive Card ID.......T ACQ60
Monitor Card ID....Mon158
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

1. Description

Block diagram

Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
ACQ_P60
```

\qquad

```
Serial No
Test Engineer.....Xen.
Date
1/10/10
```


2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz )
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	$33250 A$	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.

Links:

Check that the links W2 and W4 are present on each channel.

Test Engineer.....Xen..
Date.

4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{l \mid}$
5	0V	\sqrt{l}		
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
5	0V	$\sqrt{\|c\|}$		
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	$\sqrt{ }$

PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
11	V - (TP2)	-17 v Supply	$\sqrt{ }$
12	V - (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	0 V (TP3)		$\sqrt{ }$
24	0 V (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

5. TEST SET UP

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit.
```

\qquad

``` T_ACQ_P60
``` \(\qquad\)
Test Engineer.....Xen.
Date 1/10/10.
```


## 6. Power

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents

$\mathbf{+ 1 6 . 5}$ supply current (mA)	- $\mathbf{1 6 . 5}$ supply current (mA)
500 mA	400 mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	$\sqrt{ }$	$\sqrt{ }$
Rear Panel	$\sqrt{ }$	$\sqrt{ }$

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen.
Date. 1/10/10

## 7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\checkmark$	$\checkmark$	$\checkmark$
Ch2	$\checkmark$	$\checkmark$	$\checkmark$
Ch3	$\checkmark$	$\checkmark$	$\checkmark$
Ch4	$\checkmark$	$\checkmark$	$\checkmark$

TEST RELAYS

Channel	Indicator		OK?
Ch1	ON	OFF	
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

## ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\checkmark$	$\checkmark$
Ch2	$\sqrt{ }$	$\checkmark$	$\sqrt{ }$
Ch3	$\checkmark$	$\checkmark$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\checkmark$	$\sqrt{ }$

```
Unit
 .T_ACQ_P60
 Serial No
Test Engineer.....Xen.
```

Date.
1/10/10

## 8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

### 8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S   Monitor	Expected value	Pass/Fail:   Equal? (+/-0.1v)
$\mathbf{1}$	0.33	3	0.33 v	$\sqrt{ }$
$\mathbf{2}$	0.33	6	0.33 v	$\sqrt{ }$
$\mathbf{3}$	0.33	9	0.33 v	$\sqrt{ }$
$\mathbf{4}$	0.33	12	0.33 v	$\sqrt{ }$

Adjust the input voltage until the voltage across the load resistor $=1 \mathrm{v}$ r.m.s. Record the current monitor output values.
8.2 Current Monitors

Ch.	Output	V, I and R.M.S   Monitor	Expected   Value	Pass/Fail:   Equal? (+/- 0.1v)
$\mathbf{1}$	1.92	2	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{2}$	1.92	5	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{3}$	1.91	8	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{4}$	1.92	11	$1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}$	$\sqrt{ }$

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S   Monitor	Expected   Value	Pass/Fail:   Equal? (+/- 0.1v)
$\mathbf{1}$	1.96	1	1.86 vdc	$\sqrt{ }$
$\mathbf{2}$	1.95	4	1.86 vdc	$\sqrt{ }$
$\mathbf{3}$	1.95	7	1.86 vdc	$\sqrt{ }$
$\mathbf{4}$	1.95	10	1.86 vdc	$\sqrt{ }$

### 8.4 Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu \mathrm{V} \sqrt{\mathrm{Hz}}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA $\sqrt{ } \mathrm{Hz}$ should give $2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}$ out.

Ch.	Output   $(\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})$	$\div($ Pre-amplifier   gain)	Expected   Value	Comparison
$\mathbf{1}$		1.35	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{2}$		1.65	$2.9 \mu \mathrm{~V} \mathrm{~Hz}$	$\sqrt{ }$
$\mathbf{3}$		1.51	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{4}$		1.53	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$

```
Unit.
..............T_ACQ_P60
```

$\qquad$

```
Serial No
Test Engineer.....Xen.
Date
1/10/10
```


## 9. Distortion

```
Switch the filters out. Increase input voltage to 5 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.
```

	Acquisition Mode:   Distortion Free?	Non-Acquisition Mode:   Distortion Free?
Ch1	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{2}$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$

## Unit.

.T_ACQ_P60
Test Engineer.....Xen.
Date. .1/10/10.

## 10 Load tests and Frequency response check

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

### 10.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo (Vo/20)	Specification	Pass/Fail
Ch1	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch2	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch3	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch4	67.5 mV	3.4 mA	>2.5mA peak	$\checkmark$

10Hz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.066	4.7 mA	$>\mathbf{~ 2 . 5 m A ~ p e a k ~}$	$\sqrt{ }$
Ch2	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

100 Hz

	Vo r.m.s	Peak lo   $(\mathbf{V o / 2 0}) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.325	23.0 mA	$\boldsymbol{> 2 . 5 m A}$ peak	$\checkmark$
Ch2	0.324	22.9 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch3	0.322	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch4	0.323	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$

200 Hz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times$ 1.414	Specification	Pass/Fail	
Ch1	0.390	27.6 mA	$\boldsymbol{> 2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.390	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.389	27.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.389	27.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.414	29.3 mA	$>\mathbf{2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.413	29.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Unit.
.T_ACQ_P60 Serial No
Test Engineer.....Xen.
Date.
1/10/10.

### 10.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo   (Vo/20)	Specification	Pass/Fail
Ch1	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch2	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch3	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch4	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	

10 Hz

	Vo peak	Peak lo   $($ Vo/20 $)$	Specification	Pass/Fail
Ch1	15 mV	750 uA	$>2.5 \mathrm{~mA}$ peak	
Ch2	16 mV	800 uA	$>2.5 \mathrm{~mA}$ peak	
Ch3	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch4	13 mV	650 uA	$>2.5 \mathrm{~mA}$ peak	

100 Hz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.132	9.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.129	9.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.130	9.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.127	9.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.249	17.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.245	17.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.247	17.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.242	17.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.368	26.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.. Xen.
Date 1/10/10.

### 10.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch3	1.99	2.8	140.7 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch4	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA }}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	2.3	3.3	162.6 mA	>125mA peak	$\checkmark$
Ch2	2.3	3.3	162.6 mA	>125mA peak	$\checkmark$
Ch3	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$
Ch4	2.2	3.1	155.5 mA	>125mA peak	$\sqrt{ }$

5 kHz

	Vo r.m.s	Vo pk.	Peak Io (Vo/20)   $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	1.67	2.4	118.1 mA	>125mA peak	
Ch2	1.67	2.4	118.1 mA	$>125 \mathrm{~mA}$ peak	
Ch3	1.68	2.4	118.8 mA	$>125 \mathrm{~mA}$ peak	
Ch4	1.66	2.3	117.4 mA	>125mA peak	

Test Engineer.....Xen
Date 1/10/10.

## 11. Noise Measurements

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.


Measure the noise output at 10 Hz .

	Spec in   $\mathrm{dB} V \sqrt{ } \mathrm{~Hz}$	Measured @   10 Hz	$-60 \mathrm{~dB}=$	Measured in   $\mathrm{nV} \sqrt{ } \mathrm{Hz}$	OK?
Ch1	-143.5	-92.2	-152.2	24.5	$\sqrt{ }$
Ch2	-143.5	-91.7	-151.7	26.0	$\sqrt{ }$
Ch3	-143.5	-91.8	-151.8	25.7	$\sqrt{ }$
Ch4	-143.5	-91.6	-151.6	26.3	$\sqrt{ }$

## Notes:

Specified noise output current at $10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}$ (worst case)
Total resistance at 10 Hz , in Low noise mode $=6.7 \mathrm{k}$
Amplifier noise voltage should therefore be $=67 \mathrm{nV} \sqrt{\mathrm{Hz}}$
$67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}$
Unit....................TACQ60P[..................Serial No
Test Engineer ........RMC
Date $\ldots \ldots \ldots \ldots \ldots \ldots .3 / 11 / 10$

## 12. Final Assembly Tests

1. Remove the lid of the box. $\sqrt{ }$
2. Unplug all external connections. $\sqrt{ }$
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight.
4. Check that all internal connectors are firmly mated. $\sqrt{ }$
5. Tighten the screw-locks holding all the external connectors. $\sqrt{ }$
6. Check that all the LEDs are nicely centred.
7. Check that all links W4 are in place. $\sqrt{ }$
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TACQ60P
Driver board ID	TACQ60
Driver board Drawing No/Issue No	D0901047_V4
Monitor board ID	MON158
Monitor board Drawing No/Issue No	D070480_5_K

9. Check the security of any modification wires. None
10. Visually inspect. $\sqrt{ }$
11. Put the lid on and fasten all screws, $\downarrow$

Check all external screws for tightness. $\sqrt{ }$

## LIGO Laboratory / LIGO Scientific Collaboration

## Advanced LIGO UK

March 2010

## Triple Acquisition Driver Unit Test Report

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research<br>University of Glasgow<br>Phone +44 (0) 1413305884<br>Fax +44 (0) 1413306833<br>E-mail k.strain@physics.gla.ac.uk<br>Engineering Department<br>CCLRC Rutherford Appleton Laboratory<br>Phone +44 (0) 1235445297<br>Fax +44 (0) 1235445843<br>E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT

```
Unit...............T ACQ P61...........................S..Serial No.
Test Engineer.....Xen.
Date................23/6/10
```

Drive Card ID......T ACQ61P
Monitor Card ID...Mon207
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

## 1. Description

## Block diagram



## Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
```

$\qquad$

```
 T_ACQ_P61
```

$\qquad$

``` Serial No
Test Engineer.....Xen.
Date 23/6/10
```


## 2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz)
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	



## 3. Inspection

## Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$

## Links

Check that the links W2 and W4 are present on each channel.

Test Engineer.....Xen.
Date. .23/6/10.

## 4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{l \mid}$
5	0V	$\sqrt{l}$		
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

## LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
5	0V	$\sqrt{\|c\|}$		
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	$\sqrt{ }$

## PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
11	V - (TP2)	-17 v Supply	$\sqrt{ }$
12	V - (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	0 V (TP3)		$\sqrt{ }$
24	0 V (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

## 5. TEST SET UP



Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

## Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit.
```

$\qquad$

``` .T_ACQ_P61
``` \(\qquad\)
Test Engineer.....Xen.
Date.................23/6/10
``` \(\qquad\)

\section*{6. Power}

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents
\begin{tabular}{|c|c|}
\hline + 16.5 supply current (mA) & - 16.5 supply current (mA) \\
\hline 500 mA & 400 mA \\
\hline
\end{tabular}

Check that all power LEDs are illuminated.
\begin{tabular}{|c|c|c|}
\hline LEDs & Plus & Minus \\
\hline Front Panel & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Rear Panel & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen.
Date. 23/6/10

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|l|}{Indicator} & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch2 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch3 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch4 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline
\end{tabular}

TEST RELAYS
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline Ch1 & ON & OFF & \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\checkmark\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{ACQUISITION RELAYS}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{|l|}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit
T_ACQ_P61
Serial No
Test Engineer.....Xen
Date
23/6/10

```

\section*{8. Monitor Outputs}

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

\subsection*{8.1 Voltage Monitors}
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output: & \begin{tabular}{c}
V, I and R.M.S \\
Monitor
\end{tabular} & Expected value & \begin{tabular}{c}
Pass/Fail: \\
Equal? (+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & 0.33 & 3 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 0.33 & 6 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 0.33 & 9 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 0.33 & 12 & 0.33 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

Adjust the input voltage until the voltage across the load resistor \(=1 \mathrm{v}\) r.m.s. Record the current monitor output values.
8.2 Current Monitors
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output & \begin{tabular}{c}
V, I and R.M.S \\
Monitor
\end{tabular} & \begin{tabular}{c}
Expected \\
Value
\end{tabular} & \begin{tabular}{c}
Pass/Fail: \\
Equal? (+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & 1.92 & 2 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 1.92 & 5 & \(1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 1.92 & 8 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 1.92 & 11 & \(1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.3 R.M.S Monitors
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output & \begin{tabular}{c}
V, I and R.M.S \\
Monitor
\end{tabular} & \begin{tabular}{c}
Expected \\
Value
\end{tabular} & \begin{tabular}{c}
Pass/Fail: \\
Equal? (+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & 1.96 & 1 & 1.86 vdc & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 1.95 & 4 & 1.86 vdc & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 1.95 & 7 & 1.86 vdc & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 1.96 & 10 & 1.86 vdc & \(\sqrt{ }\) \\
\hline
\end{tabular}

\subsection*{8.4 Noise Monitors}
- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in \(\mu \mathrm{V} \sqrt{ } \mathrm{Hz}\) on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \(\sqrt{ } \mathrm{Hz}\) should give \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{H} z}\) out.
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c}
Output \\
\((\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z})}\)
\end{tabular} & \begin{tabular}{c}
\(\div\) (Pre-amplifier \\
gain)
\end{tabular} & \begin{tabular}{c}
Expected \\
Value
\end{tabular} & Comparison \\
\hline \(\mathbf{1}\) & & 1.25 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & & 1.29 & \(2.9 \mu \mathrm{~V} \mathrm{~Hz}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & & 0.82 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & & 1.11 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit
...............T_ACQ_P61

```
\(\qquad\)
```

Serial No
Test Engineer.....Xen.
Date................23/6/10.

```

\section*{9. Distortion}
```

Switch the filters out. Increase input voltage to 5 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

```
\begin{tabular}{|c|c|c|}
\hline & \begin{tabular}{c}
Acquisition Mode: \\
Distortion Free?
\end{tabular} & \begin{tabular}{c}
Non-Acquisition Mode: \\
Distortion Free?
\end{tabular} \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{2}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit

```
\(\qquad\)
```

                            T_ACQ_P61
    ```
Test Engineer.....Xen
```

Test Engineer.....Xen
Date
.23/6/10

```

10 Load tests and Frequency response check
Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

\subsection*{10.1 Noisy Mode}

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vo peak & Peak lo (Vol20) & Specification & Pass/Fail \\
\hline Ch1 & 65 mV & 3.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch2 & 65 mV & 3.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch3 & 65 mV & 3.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 65 mV & 3.3 mA & >2.5mA peak & \(\checkmark\) \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c}
Peak lo \\
\((\) Vo/20 \() \times \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.064 & 4.5 mA & \(>\mathbf{2 . 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.065 & 4.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.065 & 4.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.064 & 4.5 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c}
Peak lo \\
\((\mathrm{Vo/20}) \times \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.322 & 22.8 mA & \(>\mathbf{2 . 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.324 & 22.9 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.325 & 23.0 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.321 & 22.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

200Hz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c}
Peak lo \\
\((\) Vo/20 \() \times \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.389 & 27.5 mA & \(\boldsymbol{> 2 . 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.391 & 27.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.390 & 27.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.388 & 27.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|l|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c}
Peak lo \\
\((\mathbf{V o / 2 0}) \times \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.414 & 29.3 mA & \(\boldsymbol{> 2 . 5 m A}\) peak & \(\checkmark\) \\
\hline Ch2 & 0.415 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.414 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.414 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Engineer.....Xen
Date. .23/6/10.

\subsection*{10.2 Low noise Mode}

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo peak & \begin{tabular}{c}
Peak lo \\
(Vo/20)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch2 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch3 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch4 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vo peak & \begin{tabular}{c}
Peak Io \\
(Vo/20)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 14 mV & 700 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch2 & 16 mV & 800 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch3 & 15 mV & 750 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch4 & 14 mV & 700 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo r.m.s & \begin{tabular}{c}
Peak lo \\
\((\) Vo/20 \() \times\) 1.414
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.131 & 9.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.134 & 9.5 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.132 & 9.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.132 & 9.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

200 Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo r.m.s & \begin{tabular}{c}
Peak lo \\
(Vo/20) \(\mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.249 & 17.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.252 & 17.8 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.249 & 17.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.249 & 17.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c}
Peak lo \\
(Vo/20) \(\mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.370 & 26.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch2 & 0.371 & 26.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.370 & 26.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.369 & 26.1 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Engineer.. Xen.
Date. 23/6/10.

\subsection*{10.3 Acquisition Mode}

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100 Hz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c}
Peak lo (Vo/20) \\
\(\mathbf{x} 1.414\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 1.97 & 2.8 & 139.3 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 1.99 & 2.8 & 140.7 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\sqrt{ }\) \\
\hline Ch3 & 1.97 & 2.8 & 139.3 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\sqrt{ }\) \\
\hline Ch4 & 1.98 & 2.8 & 140.0 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

200 Hz
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Vor.m.s & Vo pk. & \[
\begin{gathered}
\hline \text { Peak lo }(\text { Vo/20 }) \\
\times 1.414 \\
\hline
\end{gathered}
\] & Specification & Pass/Fail \\
\hline Ch1 & 2.2 & 3.1 & 155.5 mA & \(>125 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch2 & 2.2 & 3.1 & 155.5 mA & \(>125 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch3 & 2.2 & 3.1 & 155.5 mA & \(>125 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch4 & 2.2 & 3.1 & 155.5 mA & >125mA peak & \(\checkmark\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Vor.m.s & Vo pk. & \[
\begin{gathered}
\hline \text { Peak lo (Vo/20) } \\
\times 1.414 \\
\hline
\end{gathered}
\] & Specification & Pass/Fail \\
\hline Ch1 & 2.2 & 3.1 & 155.5 mA & >125mA peak & \(\checkmark\) \\
\hline Ch2 & 2.3 & 3.3 & 162.6 mA & >125mA peak & \(\checkmark\) \\
\hline Ch3 & 2.2 & 3.1 & 155.5 mA & \(>125 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch4 & 2.3 & 3.3 & 162.6 mA & >125mA peak & \(\checkmark\) \\
\hline
\end{tabular}

5 kHz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c}
Peak Io (Vo/20) \\
\(\mathbf{x} 1.414\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 1.7 & 2.4 & 120.2 mA & >125mA peak & \\
\hline Ch2 & 1.7 & 2.4 & 120.2 mA & \(>125 \mathrm{~mA}\) peak & \\
\hline Ch3 & 1.7 & 2.4 & 120.2 mA & \(>125 \mathrm{~mA}\) peak & \\
\hline Ch4 & 1.7 & 2.4 & 120.2 mA & >125mA peak & \\
\hline
\end{tabular}

Test Engineer.....Xen
Date 23/6/10

\section*{11. Noise Measurements}

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

Measure the noise output at 10 Hz .
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \begin{tabular}{c}
Spec in \\
\(\mathrm{dB} V \sqrt{ } \mathrm{~Hz}\)
\end{tabular} & \begin{tabular}{c}
Measured @ \\
10 Hz
\end{tabular} & \(-60 \mathrm{~dB}=\) & \begin{tabular}{c}
Measured in \\
\(\mathrm{nV} \sqrt{ } \mathrm{Hz}\)
\end{tabular} & OK? \\
\hline Ch1 & -143.5 & -92.2 & -152.2 & 24.5 & \(\sqrt{ }\) \\
\hline Ch2 & -143.5 & -93.0 & -153.0 & 22.4 & \(\sqrt{ }\) \\
\hline Ch3 & -143.5 & -92.5 & -152.5 & 23.7 & \(\sqrt{ }\) \\
\hline Ch4 & -143.5 & -92.2 & -152.2 & 24.5 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Notes:}

Specified noise output current at \(10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}\) (worst case)
Total resistance at 10 Hz , in Low noise mode \(=6.7 \mathrm{k}\)
Amplifier noise voltage should therefore be \(=67 \mathrm{nV} \sqrt{\mathrm{Hz}}\)
\(67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}\)
```

Unit.
TACQ61P
Serial No

```
\(\qquad\)
```

Test Engineer
RMC
Date
3/11/10

```

\section*{12. Final Assembly Tests}
1. Remove the lid of the box. \(\sqrt{ }\)
2. Unplug all external connections. \(\sqrt{ }\)
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight.
4. Check that all internal connectors are firmly mated. \(\sqrt{ }\)
5. Tighten the screw-locks holding all the external connectors. \(\sqrt{ }\)
6. Check that all the LEDs are nicely centred.
7. Check that all links W4 are in place. \(\sqrt{ }\)
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:
\begin{tabular}{|l|l|}
\hline UoB box ID & TACQ61P \\
\hline Driver board ID & TACQ61P \\
\hline Driver board Drawing No/Issue No & D0901047 \\
\hline Monitor board ID & MON207 \\
\hline Monitor board Drawing No/Issue No & D070480_4_K \\
\hline
\end{tabular}
9. Check the security of any modification wires. None
10. Visually inspect. \(\sqrt{ }\)
11. Put the lid on and fasten all screws, \(\sqrt{ }\)

Check all external screws for tightness. \(\sqrt{ }\)

\section*{LIGO Laboratory / LIGO Scientific Collaboration}

\section*{Advanced LIGO UK}

March 2010

\section*{Triple Acquisition Driver Unit Test Report}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

\author{
Institute for Gravitational Research \\ University of Glasgow \\ Phone +44 (0) 1413305884 \\ Fax +44 (0) 1413306833 \\ E-mail k.strain@physics.gla.ac.uk \\ Engineering Department \\ CCLRC Rutherford Appleton Laboratory \\ Phone +44 (0) 1235445297 \\ Fax +44 (0) 1235445843 \\ E-mail J.Greenhalgh@rl.ac.uk
}

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT}
```

Unit...............T_ACQ_P62.............................Serial No.
Test Engineer.....Xen.
Date................16/8/10.

```

Drive Card ID.......T ACQ62
Monitor Card ID....Mon163.
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

\section*{1. Description}

\section*{Block diagram}

\section*{Description}

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.
```

Unit
ACQ_P62

```
\(\qquad\)
```

Serial No
Test Engineer.....Xen.
Date
16/8/10

```

\section*{2. Test equipment}
```

Power supplies (At least $+/-20 \mathrm{v}$ variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz )
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & ISO-TECH & ISR622 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77III & \\
\hline Signal analyzer & Agilent & 35670A & \\
\hline Pre-amplifier & Stanford Systems & SR560 & \\
\hline
\end{tabular}

\section*{3. Inspection}

\section*{Workmanship}

Inspect the general workmanship standard and comment: \(\sqrt{ }\)
Capacitors C35 and C27 have been changed to 1 nF on all channels.

\section*{Links:}

Check that the links W2 and W4 are present on each channel.

Test Engineer.. Xen.
Date 13/8/10.

\section*{4. Continuity Checks}

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\sqrt{ }\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\sqrt{ }\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\sqrt{ }\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\sqrt{l \mid}\) \\
\hline 5 & 0V & \(\sqrt{l}\) \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\sqrt{ }\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\sqrt{ }\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\sqrt{ }\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{LED Mon}
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\sqrt{ }\) \\
\hline 2 & Imon2P & & 6 & \(\sqrt{ }\) \\
\hline 3 & Imon3P & & 7 & \(\sqrt{ }\) \\
\hline 4 & Imon4P & & 8 & \(\sqrt{ }\) \\
\hline 5 & 0V & \(\sqrt{|c|}\) \\
\hline 6 & Imon1N & & 18 & \(\sqrt{ }\) \\
\hline 7 & Imon2N & & 19 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 20 & \(\sqrt{ }\) \\
\hline 9 & Imon4N & & 21 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{PD from Sat}
\begin{tabular}{|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & \(\mathrm{~V}+\) (TP1) & +17 v Supply & \(\sqrt{ }\) \\
\hline 10 & \(\mathrm{~V}+\) (TP1) & +17 v Supply & \(\sqrt{ }\) \\
\hline 11 & V - (TP2) & -17 v Supply & \(\sqrt{ }\) \\
\hline 12 & V - (TP2) & -17 v Supply & \(\sqrt{ }\) \\
\hline 13 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 22 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 23 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 24 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, \(4=\) positive input
Drive Input J3 pins 6, 7, 8, \(9=\) negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, \(10=+16.5 \mathrm{v}\)
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, \(25=0 v\)
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin \(1 \quad\) Ch1 \(-=\mathrm{J} 4\) pin 9
Ch2 \(+=\mathrm{J} 4\) pin \(3 \quad\) Ch2- \(=\mathrm{J} 4\) pin 11
Ch3 \(+=\mathrm{J} 4\) pin \(5 \quad\) Ch3- \(=\mathrm{J} 4\) pin 13
Ch4+ = J4 pin \(7 \quad\) Ch4- \(=\mathrm{J} 4\) pin 15
```

Unit.

```
\(\qquad\)
``` T_ACQ_P62
``` \(\qquad\)
Test Engineer.....Xen.
Date..................13/8/10.
```


## 6. Power

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents

$\mathbf{+ 1 6 . 5}$ supply current (mA)	- $\mathbf{1 6 . 5}$ supply current (mA)
500 mA	400 mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	$\sqrt{2}$	$\sqrt{ }$
Rear Panel	$\sqrt{ }$	$\sqrt{ }$

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen..
Date. 13/8/10

## 7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\checkmark$	$\checkmark$	$\checkmark$
Ch2	$\checkmark$	$\checkmark$	$\checkmark$
Ch3	$\checkmark$	$\checkmark$	$\checkmark$
Ch4	$\checkmark$	$\checkmark$	$\checkmark$

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

## ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\checkmark$	$\checkmark$	$\checkmark$
Ch2	$\checkmark$	$\checkmark$	$\checkmark$
Ch3	$\checkmark$	$\checkmark$	$\checkmark$
Ch4	$\checkmark$	$\checkmark$	$\checkmark$

```
Unit
 .T_ACQ_P62.
Test Engineer.....Xen.
```

Date
.13/8/10

## 8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

### 8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S   Monitor	Expected value	Pass/Fail:   Equal? (+/-0.1v)
$\mathbf{1}$	0.33	3	0.33 v	$\sqrt{ }$
$\mathbf{2}$	0.33	6	0.33 v	$\sqrt{ }$
$\mathbf{3}$	0.33	9	0.33 v	$\sqrt{ }$
$\mathbf{4}$	0.33	12	0.33 v	$\sqrt{ }$

Adjust the input voltage until the voltage across the load resistor $=1 \mathrm{v}$ r.m.s. Record the current monitor output values.
8.2 Current Monitors

Ch.	Output	V, I and R.M.S   Monitor	Expected   Value	Pass/Fail:   Equal? (+/- 0.1v)
$\mathbf{1}$	1.91	2	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{2}$	1.91	5	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{3}$	1.91	8	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{4}$	1.91	11	$1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}$	$\sqrt{ }$

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S   Monitor	Expected   Value	Pass/Fail:   Equal? (+/- 0.1v)
$\mathbf{1}$	1.94	1	1.86 vdc	$\sqrt{ }$
$\mathbf{2}$	1.95	4	1.86 vdc	$\sqrt{ }$
$\mathbf{3}$	1.95	7	1.86 vdc	$\sqrt{ }$
$\mathbf{4}$	1.94	10	1.86 vdc	$\sqrt{ }$

### 8.4 Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu \mathrm{V} \sqrt{ } \mathrm{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA $\sqrt{\mathrm{Hz}}$ should give $2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}$ out.

Ch.	Output   $(\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})$	$\div($ Pre-amplifier   gain)	Expected   Value	Comparison
$\mathbf{1}$		1.35	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{2}$		0.90	$2.9 \mu \mathrm{~V} \mathrm{~Hz}$	$\sqrt{ }$
$\mathbf{3}$		1.21	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{4}$		1.14	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$

```
Unit.
```

$\qquad$

```
 T_ACQ_P62
```

$\qquad$

```
 Serial No
Test Engineer.....Xen.
Date
 16/8/10
```


## 9. Distortion

```
Switch the filters out. Increase input voltage to 5 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.
```

	Acquisition Mode:   Distortion Free?	Non-Acquisition Mode:   Distortion Free?
Ch1	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{2}$	$\sqrt{ }$

## Unit.

T_ACQ_P62.
Test Engineer.....Xen.
Date
16/8/10.

## 10 Load tests and Frequency response check

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

### 10.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo (Vo/20)	Specification	Pass/Fail
Ch1	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch2	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch3	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch4	67.5 mV	3.4 mA	>2.5mA peak	$\checkmark$

10Hz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.066	4.7 mA	$>\mathbf{~ 2 . 5 m A ~ p e a k ~}$	$\sqrt{ }$
Ch2	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

100 Hz

	Vor.m.s	$\begin{gathered} \text { Peak lo } \\ (\mathrm{Vo} / 20) \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	0.323	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch2	0.324	22.9 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch3	0.324	22.9 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch4	0.324	22.9 mA	>2.5mA peak	$\checkmark$

200 Hz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times$ 1.414	Specification	Pass/Fail	
Ch1	0.390	27.6 mA	$\boldsymbol{> 2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.391	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.390	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.390	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.415	29.3 mA	$>\mathbf{2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.416	29.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.....Xen.
Date.
16/8/10.

### 10.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo   (Vo/20)	Specification	Pass/Fail
Ch1	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch2	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch3	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch4	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	

10 Hz

	Vo peak	Peak lo   (Vo/20)	Specification	Pass/Fail
Ch1	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch2	16 mV	800 uA	$>2.5 \mathrm{~mA}$ peak	
Ch3	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch4	16 mV	800 uA	$>2.5 \mathrm{~mA}$ peak	

100 Hz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.125	8.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.130	9.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.124	8.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.125	8.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.241	17.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.247	17.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.239	16.9 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.240	17.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.371	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Unit. T_ACQ_P62.
Test Engineer.. Xen.
Date. 16/8/10.

### 10.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch3	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch4	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA }}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	2.3	3.3	162.6 mA	>125mA peak	$\checkmark$
Ch2	2.3	3.3	162.6 mA	>125mA peak	$\checkmark$
Ch3	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$
Ch4	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$

5 kHz

	Vo r.m.s	Vo pk.	Peak Io (Vo/20)   $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	1.68	2.4	118.8 mA	>125mA peak	
Ch2	1.68	2.4	118.8 mA	$>125 \mathrm{~mA}$ peak	
Ch3	1.67	2.4	118.1 mA	$>125 \mathrm{~mA}$ peak	
Ch4	1.67	2.4	118.1 mA	>125mA peak	

```
Unit.
Test Engineer.....Xen
Date 16/8/10
```


## 11. Noise Measurements

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.


Measure the noise output at 10 Hz .

	Spec in   $\mathrm{dB} V \mathrm{~V} \mathrm{~Hz}$	Measured @   10 Hz	$-60 \mathrm{~dB}=$	Measured in   $\mathrm{nV} \sqrt{ } \mathrm{Hz}$	OK?
Ch1	-143.5	-93.1	-153.1	22.1	$\checkmark$
Ch2	-143.5	-93.1	-153.3	21.6	$\sqrt{ }$
Ch3	-143.5	-91.4	-151.4	26.9	$\sqrt{ }$
Ch4	-143.5	-93.4	-153.4	21.4	$\sqrt{ }$

## Notes:

Specified noise output current at $10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}$ (worst case)
Total resistance at 10 Hz , in Low noise mode $=6.7 \mathrm{k}$
Amplifier noise voltage should therefore be $=67 \mathrm{nV} \sqrt{\mathrm{Hz}}$
$67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}$

```
Unit.
 TACQ62P\sqrt{}{}.
```

$\qquad$

``` Serial No
``` \(\qquad\)
```Test EngineerRMC
```

Date ..... 3/11/10

## 12. Final Assembly Tests

1. Remove the lid of the box. $\sqrt{ }$
2. Unplug all external connections. $\sqrt{ }$
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight.
4. Check that all internal connectors are firmly mated. $\sqrt{ }$
5. Tighten the screw-locks holding all the external connectors. $\sqrt{ }$
6. Check that all the LEDs are nicely centred.
7. Check that all links W 4 are in place. $\sqrt{ }$
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TACQ62P
Driver board ID	TACQ62
Driver board Drawing No/Issue No	DD0901047_V4
Monitor board ID	MON163
Monitor board Drawing No/Issue No	D070480_4_K

9. Check the security of any modification wires. None
10. Visually inspect. $\sqrt{ }$
11. Put the lid on and fasten all screws, $\sqrt{ }$

Check all external screws for tightness. $\sqrt{ }$

## LIGO Laboratory / LIGO Scientific Collaboration

## Advanced LIGO UK

March 2010

## Triple Acquisition Driver Unit Test Report

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research<br>University of Glasgow<br>Phone +44 (0) 1413305884<br>Fax +44 (0) 1413306833<br>E-mail k.strain@physics.gla.ac.uk<br>Engineering Department<br>CCLRC Rutherford Appleton Laboratory<br>Phone +44 (0) 1235445297<br>Fax +44 (0) 1235445843<br>E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT

```
Unit................T ACQ P63............................Serial No.
Test Engineer.....Xen
Date................13/8/10
```

Drive Card ID.......T ACQ63
Monitor Card ID....Mon161
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

## 1. Description

## Block diagram



## Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
ACQ_P63
```

$\qquad$

```
Serial No
Test Engineer.....Xen.
Date
13/8/10
```


## 2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz)
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	



## 3. Inspection

## Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.

## Links:

Check that the links W2 and W4 are present on each channel.

Test Engineer.. Xen.
Date 13/8/10.

## 4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{l \mid}$
5	0V	$\sqrt{l}$		
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

## LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
5	0V	$\sqrt{\|c\|}$		
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	$\sqrt{ }$

## PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
11	V - (TP2)	-17 v Supply	$\sqrt{ }$
12	V - (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	0 V (TP3)		$\sqrt{ }$
24	0 V (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

## 5. TEST SET UP



Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

## Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit.
```

$\qquad$

``` T_ACQ_P63
``` \(\qquad\)
Test Engineer.....Xen.
Date..................13/8/10.
```


6. Power

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents

$\mathbf{+ 1 6 . 5}$ supply current (mA)	- $\mathbf{1 6 . 5}$ supply current (mA)
500 mA	400 mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	$\sqrt{2}$	$\sqrt{ }$
Rear Panel	$\sqrt{ }$	$\sqrt{ }$

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen..
Date. 13/8/10

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{\|l\|}$	$\sqrt{ }$	$\sqrt{ }$

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

```
Unit
                .T_ACQ_P63.
Test Engineer.....Xen.
```

Date
.13/8/10

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S Monitor	Expected value	Pass/Fail: Equal? (+/-0.1v)
$\mathbf{1}$	0.33	3	0.33 v	$\sqrt{ }$
$\mathbf{2}$	0.33	6	0.33 v	$\sqrt{ }$
$\mathbf{3}$	0.33	9	0.33 v	$\sqrt{ }$
$\mathbf{4}$	0.33	12	0.33 v	$\sqrt{ }$

Adjust the input voltage until the voltage across the load resistor $=1 \mathrm{v}$ r.m.s. Record the current monitor output values.
8.2 Current Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	1.92	2	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{2}$	1.92	5	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{3}$	1.92	8	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{4}$	1.92	11	$1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}$	$\sqrt{ }$

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	Pass/Fail: Equal? (+/-0.1v)
$\mathbf{1}$	1.95	1	1.86 vdc	$\sqrt{ }$
$\mathbf{2}$	1.95	4	1.86 vdc	$\sqrt{ }$
$\mathbf{3}$	1.96	7	1.86 vdc	$\sqrt{ }$
$\mathbf{4}$	1.96	10	1.86 vdc	$\sqrt{ }$

8.4 Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu \mathrm{V} \sqrt{ } \mathrm{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA $\sqrt{ } \mathrm{Hz}$ should give $2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}$ out.

Ch.	Output $(\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})$	$\div($ Pre-amplifier gain)	Expected Value	Comparison
$\mathbf{1}$		0.99	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{2}$		0.76	$2.9 \mu \mathrm{~V} \mathrm{~Hz}$	$\sqrt{ }$
$\mathbf{3}$		0.95	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{4}$		1.18	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$

```
Unit.
```

\qquad

```
                            T_ACQ_P63
```

\qquad

```
                                    Serial No
Test Engineer.....Xen.
Date
13/8/10
```


9. Distortion

```
Switch the filters out. Increase input voltage to 5 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.
```

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{2}$	$\sqrt{ }$

Unit.

.T_ACQ_P63.
Test Engineer.....Xen.
Date
.13/8/10.

10 Load tests and Frequency response check

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

10.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo (Vol20)	Specification	Pass/Fail
Ch1	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch2	67.5 mV	3.4 mA	>2.5mA peak	\checkmark
Ch3	67.5 mV	3.4 mA	>2.5mA peak	\checkmark
Ch4	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark

10Hz

	Vor.m.s	$\begin{gathered} \text { Peak lo } \\ (\mathrm{Vo} / 20) \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	0.066	4.7 mA	$>2.5 \mathrm{~mA} \mathrm{peak}$	\checkmark
Ch2	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch3	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch4	0.066	4.7 mA	>2.5mA peak	\checkmark

100 Hz

	Vor.m.s	$\begin{gathered} \text { Peak lo } \\ (\mathrm{Vo} / 20) \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	0.322	22.8 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch2	0.324	22.9 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch3	0.321	22.7 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch4	0.323	22.8 mA	>2.5mA peak	1

200Hz

	Vor.m.s	$\begin{gathered} \text { Peak lo } \\ (\mathrm{Vo} / 20) \times 1.414 \end{gathered}$	Specification	Pass/Fail
Ch1	0.389	27.5 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch2	0.390	27.6 mA	>2.5mA peak	\checkmark
Ch3	0.389	27.5 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch4	0.389	27.5 mA	>2.5mA peak	\checkmark

1 kHz

	Vo r.m.s	Peak lo $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.414	29.3 mA	$>\mathbf{2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.. Xen.
Date
13/8/10.

10.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo (Vo/20)	Specification	Pass/Fail
Ch1	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch2	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch3	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch4	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	

10 Hz

	Vo peak	Peak Io (Vo/20)	Specification	Pass/Fail
Ch1	16 mV	800 uA	$>2.5 \mathrm{~mA}$ peak	
Ch2	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch3	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch4	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	

100 Hz

	Vo r.m.s	Peak lo $($ Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.128	9.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.132	9.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.130	9.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.120	8.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.245	17.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.249	17.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.247	17.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.233	16.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch2	0.371	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.368	26.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.. Xen.
Date. 13/8/10.

10.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch3	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch4	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA }}$ peak	$\sqrt{ }$

1 kHz

	Vor.m.s	Vo pk.	$\begin{gathered} \text { Peak lo (Vo/20) } \\ \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	2.3	3.3	162.6 mA	$>125 \mathrm{~mA}$ peak	\checkmark
Ch2	2.3	3.3	162.6 mA	$>125 \mathrm{~mA}$ peak	\checkmark
Ch3	2.2	3.1	155.5 mA	$>125 \mathrm{~mA}$ peak	\checkmark
Ch4	2.3	3.3	162.6 mA	>125mA peak	\checkmark

5 kHz

	Vo r.m.s	Vo pk.	Peak Io (Vo/20) $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	1.67	2.4	118.1 mA	$>125 \mathrm{~mA}$ peak	
Ch2	1.68	2.4	118.8 mA	$>125 \mathrm{~mA}$ peak	
Ch3	1.66	2.3	117.4 mA	$>125 \mathrm{~mA}$ peak	
Ch4	1.68	2.4	118.8 mA	$>125 \mathrm{~mA}$ peak	

Test Engineer.....Xen
Date
13/8/10.

11. Noise Measurements

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

Measure the noise output at 10 Hz .

	Spec in $\mathrm{dB} V \mathrm{~V} \mathrm{~Hz}$	Measured @ 10 Hz	$-60 \mathrm{~dB}=$	Measured in $\mathrm{nV} \sqrt{ } \mathrm{Hz}$	OK?
Ch1	-143.5	-92.4	-152.4	24.0	\checkmark
Ch2	-143.5	-92.0	-152.0	25.1	$\sqrt{ }$
Ch3	-143.5	-92.3	-152.3	24.3	$\sqrt{ }$
Ch4	-143.5	-92.4	-152.4	24.0	$\sqrt{ }$

Notes:

Specified noise output current at $10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}$ (worst case)
Total resistance at 10 Hz , in Low noise mode $=6.7 \mathrm{k}$
Amplifier noise voltage should therefore be $=67 \mathrm{nV} \sqrt{\mathrm{Hz}}$
$67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}$

```
Unit.
TACQ63P
Serial No
```

\qquad

```
Test Engineer RMC
Date .3/11/10
```


12. Final Assembly Tests

1. Remove the lid of the box. $\sqrt{ }$
2. Unplug all external connections. $\sqrt{ }$
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight.
4. Check that all internal connectors are firmly mated. $\sqrt{ }$
5. Tighten the screw-locks holding all the external connectors. $\sqrt{ }$
6. Check that all the LEDs are nicely centred.
7. Check that all links $W 4$ are in place. $\sqrt{ }$
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TACQ63P
Driver board ID	TACQ63
Driver board Drawing No/Issue No	D0901047_V4
Monitor board ID	MON161
Monitor board Drawing No/Issue No	D070480_4_K

9. Check the security of any modification wires. None
10. Visually inspect.
11. Put the lid on and fasten all screws, $\sqrt{ }$

Check all external screws for tightness. $\sqrt{ }$

LIGO Laboratory / LIGO Scientific Collaboration

Advanced LIGO UK

March 2010

Triple Acquisition Driver Unit Test Report

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT

```
Unit................T ACQ P64............................Serial No.
Test Engineer.....Xen
Date................30/9/10
```

Drive Card ID......T ACQ64
Monitor Card ID...Mon219.
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

1. Description

Block diagram

Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
ACQ_P64
```

\qquad

```
Serial No
Test Engineer.....Xen.
Date................30/9/10
```


2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz )
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	$33250 A$	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.

Links

Check that the links W2 and W4 are present on each channel.

4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{l \mid}$
5	0V	\sqrt{l}		
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
5	0V	$\sqrt{\|c\|}$		
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	$\sqrt{ }$

PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
11	V - (TP2)	-17 v Supply	$\sqrt{ }$
12	V - (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	0 V (TP3)		$\sqrt{ }$
24	0 V (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

5. TEST SET UP

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit.
..............T_ACQ_P6
```

\qquad
Test Engineer.....Xen.
Date.................29/9/10.

```

\section*{6. Power}

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents
\begin{tabular}{|c|c|}
\hline \(\mathbf{+ 1 6 . 5}\) supply current (mA) & - \(\mathbf{1 6 . 5}\) supply current (mA) \\
\hline 500 mA & 400 mA \\
\hline
\end{tabular}

Check that all power LEDs are illuminated.
\begin{tabular}{|c|c|c|}
\hline LEDs & Plus & Minus \\
\hline Front Panel & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Rear Panel & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen..
Date. 29/9/10

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|l|}{Indicator} & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch2 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch3 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch4 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline
\end{tabular}

TEST RELAYS
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline Ch1 & ON & OFF & \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{ACQUISITION RELAYS}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\checkmark\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\checkmark\) & \(\checkmark\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\checkmark\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit
.T_ACQ_P64
Test Engineer.....Xen

```

Date 29/9/10

\section*{8. Monitor Outputs}

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

\subsection*{8.1 Voltage Monitors}
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output: & \begin{tabular}{c} 
V, I and R.M.S \\
Monitor
\end{tabular} & Expected value & \begin{tabular}{c} 
Pass/Fail: \\
Equal? (+/-0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & 0.33 & 3 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 0.33 & 6 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 0.33 & 9 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 0.33 & 12 & 0.33 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

Adjust the input voltage until the voltage across the load resistor \(=1 \mathrm{v}\) r.m.s. Record the current monitor output values.
8.2 Current Monitors
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output & \begin{tabular}{c} 
V, I and R.M.S \\
Monitor
\end{tabular} & \begin{tabular}{c} 
Expected \\
Value
\end{tabular} & \begin{tabular}{c} 
Pass/Fail: \\
Equal? (+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & 1.92 & 2 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 1.92 & 5 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 1.92 & 8 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 1.92 & 11 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.3 R.M.S Monitors
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output & \begin{tabular}{c} 
V, I and R.M.S \\
Monitor
\end{tabular} & \begin{tabular}{c} 
Expected \\
Value
\end{tabular} & \begin{tabular}{c} 
Pass/Fail: \\
Equal? (+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & 1.96 & 1 & 1.86 vdc & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 1.96 & 4 & 1.86 vdc & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 1.96 & 7 & 1.86 vdc & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 1.96 & 10 & 1.86 vdc & \(\sqrt{ }\) \\
\hline
\end{tabular}

\subsection*{8.4 Noise Monitors}
- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in \(\mu \mathrm{V} \sqrt{\mathrm{Hz}}\) on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \(\sqrt{ } \mathrm{Hz}\) should give \(2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}\) out.
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c} 
Output \\
\((\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z})}\)
\end{tabular} & \begin{tabular}{c}
\(\div\) (Pre-amplifier \\
gain)
\end{tabular} & \begin{tabular}{c} 
Expected \\
Value
\end{tabular} & Comparison \\
\hline \(\mathbf{1}\) & & 1.47 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & & 1.43 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & & 1.32 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & & 1.14 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit.
T_ACQ_P64

```
\(\qquad\)
```

 Serial No
 Test Engineer.....Xen.
Date
29/9/10

```

\section*{9. Distortion}
```

Switch the filters out. Increase input voltage to 5 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

```
\begin{tabular}{|c|c|c|}
\hline & \begin{tabular}{c} 
Acquisition Mode: \\
Distortion Free?
\end{tabular} & \begin{tabular}{c} 
Non-Acquisition Mode: \\
Distortion Free?
\end{tabular} \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{2}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit.

``` \(\qquad\)
``` T_ACQ_P64.
Test Engineer.....Xen.
Date .30/9/10.
```


## 10 Load tests and Frequency response check

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

### 10.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo   (Vo/20)	Specification	Pass/Fail
Ch1	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

10Hz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.066	4.7 mA	$>\mathbf{2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

100 Hz

	Vor.m.s	$\begin{gathered} \text { Peak lo } \\ (\mathrm{Vo} / 20) \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	0.324	22.9 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch2	0.325	23.0 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch3	0.325	23.0 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch4	0.323	22.8 mA	>2.5mA peak	$\checkmark$

200Hz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.390	27.6 mA	$\boldsymbol{> 2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.391	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.391	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.390	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times$ 1.414	Specification	Pass/Fail	
Ch1	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.416	29.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.416	29.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Unit.
.T_ACQ_P64. Serial No
Test Engineer.....Xen
Date. .30/9/10.

### 10.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo   (Vo/20)	Specification	Pass/Fail
Ch1	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch2	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch3	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch4	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	

10 Hz

	Vo peak	Peak lo   $($ Vo/20 $)$	Specification	Pass/Fail
Ch1	15 mV	750 uA	$>2.5 \mathrm{~mA}$ peak	
Ch2	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch3	15 mV	750 uA	$>2.5 \mathrm{~mA}$ peak	
Ch4	15 mV	750 uA	$>2.5 \mathrm{~mA}$ peak	

100 Hz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.131	9.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.131	9.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.128	9.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.131	9.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Peak lo   $($ Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.249	17.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.249	17.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.245	17.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.248	17.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.371	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.. Xen.
Date. 30/9/10.

### 10.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	1.99	2.8	140.7 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch3	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch4	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA }}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	2.3	3.3	162.6 mA	>125mA peak	$\checkmark$
Ch2	2.3	3.3	162.6 mA	>125mA peak	$\checkmark$
Ch3	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$
Ch4	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$

5 kHz

	Vo r.m.s	Vo pk.	Peak Io (Vo/20)   $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	1.67	2.4	118.1 mA	>125mA peak	
Ch2	1.68	2.4	118.8 mA	$>125 \mathrm{~mA}$ peak	
Ch3	1.68	2.4	118.8 mA	$>125 \mathrm{~mA}$ peak	
Ch4	1.68	2.4	118.8 mA	>125mA peak	

```
Unit
 T_ACQ_P64
Test Engineer.....Xen
Date .29/9/10
```


## 11. Noise Measurements

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.


Measure the noise output at 10 Hz .

	Spec in   $\mathrm{dB} V \mathrm{~V} \mathrm{~Hz}$	Measured @   10 Hz	$-60 \mathrm{~dB}=$	Measured in   $\mathrm{nV} \sqrt{ } \mathrm{Hz}$	OK?
Ch1	-143.5	-93.8	-153.8	20.4	$\checkmark$
Ch2	-143.5	-91.9	-151.9	25.4	$\sqrt{ }$
Ch3	-143.5	-92.3	-152.3	24.3	$\sqrt{ }$
Ch4	-143.5	-91.7	-151.7	26.0	$\sqrt{ }$

## Notes:

Specified noise output current at $10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}$ (worst case)
Total resistance at 10 Hz , in Low noise mode $=6.7 \mathrm{k}$
Amplifier noise voltage should therefore be $=67 \mathrm{nV} \sqrt{ } \mathrm{Hz}$
$67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}$

```
Unit.
TACQ64P
Serial No
```

$\qquad$

```
Test Engineer
 RMC
Date
.3/11.10
```


## 12. Final Assembly Tests

1. Remove the lid of the box. $\sqrt{ }$
2. Unplug all external connections. $\sqrt{ }$
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight. $\sqrt{ }$
4. Check that all internal connectors are firmly mated. $V$
5. Tighten the screw-locks holding all the external connectors. $\sqrt{ }$
6. Check that all the LEDs are nicely centred.
7. Check that all links $W 4$ are in place. $\sqrt{ }$
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TACQ64P
Driver board ID	TACQ64P
Driver board Drawing No/Issue No	D0901047_V4
Monitor board ID	MON219
Monitor board Drawing No/Issue No	D070480_5_K

9. Check the security of any modification wires. None
10. Visually inspect. $\sqrt{ }$
11. Put the lid on and fasten all screws, $\sqrt{ }$

Check all external screws for tightness. $\sqrt{ }$

## LIGO Laboratory / LIGO Scientific Collaboration

## Advanced LIGO UK

March 2010

## Triple Acquisition Driver Unit Test Report

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research<br>University of Glasgow<br>Phone +44 (0) 1413305884<br>Fax +44 (0) 1413306833<br>E-mail k.strain@physics.gla.ac.uk<br>Engineering Department<br>CCLRC Rutherford Appleton Laboratory<br>Phone +44 (0) 1235445297<br>Fax +44 (0) 1235445843<br>E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT

```
Unit................T ACQ P65............................Serial No.
Test Engineer.....Xen
Date................30/9/10
```

Drive Card ID.......T ACQ65
Monitor Card ID....Mon179
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

## 1. Description

## Block diagram



## Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
ACQ_P65
```

$\qquad$
Test Engineer.....Xen.
Date................30/9/10

```

\section*{2. Test equipment}
```

Power supplies (At least $+/-20 \mathrm{v}$ variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz )
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline Signal Generator & Agilent & \(33250 A\) & \\
\hline Oscilloscope & ISO-TECH & ISR622 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77III & \\
\hline Signal analyzer & Agilent & 35670A & \\
\hline Pre-amplifier & Stanford Systems & SR560 & \\
\hline
\end{tabular}

\section*{3. Inspection}

\section*{Workmanship}

Inspect the general workmanship standard and comment: \(\sqrt{ }\)
Capacitors C35 and C27 have been changed to 1 nF on all channels.

\section*{Links:}

Check that the links W2 and W4 are present on each channel.

Test Engineer.....Xen..
Date.

\section*{4. Continuity Checks}

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\sqrt{ }\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\sqrt{ }\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\sqrt{ }\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\sqrt{l \mid}\) \\
\hline 5 & 0V & \(\sqrt{l}\) \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\sqrt{ }\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\sqrt{ }\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\sqrt{ }\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{LED Mon}
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\sqrt{ }\) \\
\hline 2 & Imon2P & & 6 & \(\sqrt{ }\) \\
\hline 3 & Imon3P & & 7 & \(\sqrt{ }\) \\
\hline 4 & Imon4P & & 8 & \(\sqrt{ }\) \\
\hline 5 & 0V & \(\sqrt{|c|}\) \\
\hline 6 & Imon1N & & 18 & \(\sqrt{ }\) \\
\hline 7 & Imon2N & & 19 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 20 & \(\sqrt{ }\) \\
\hline 9 & Imon4N & & 21 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{PD from Sat}
\begin{tabular}{|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & \(\mathrm{~V}+\) (TP1) & +17 v Supply & \(\checkmark\) \\
\hline 10 & V+ (TP1) & +17 v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17 v Supply & \(\checkmark\) \\
\hline 12 & \(\mathrm{~V}-\) (TP2) & -17 v Supply & \(\sqrt{ }\) \\
\hline 13 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 22 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, \(4=\) positive input
Drive Input J3 pins 6, 7, 8, \(9=\) negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, \(10=+16.5 \mathrm{v}\)
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, \(25=0 v\)
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin \(1 \quad\) Ch1 \(-=\mathrm{J} 4\) pin 9
Ch2 \(+=\mathrm{J} 4\) pin \(3 \quad\) Ch2- \(=\mathrm{J} 4\) pin 11
Ch3 \(+=\mathrm{J} 4\) pin \(5 \quad\) Ch3- \(=\mathrm{J} 4\) pin 13
Ch4+ = J4 pin \(7 \quad\) Ch4- \(=\mathrm{J} 4\) pin 15
```

Unit.

```
\(\qquad\)
``` T_ACQ_P65
``` \(\qquad\)
Test Engineer.....Xen.
Date..................30/9/10.
```


## 6. Power

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents

$\mathbf{+ 1 6 . 5}$ supply current (mA)	- $\mathbf{1 6 . 5}$ supply current (mA)
500 mA	400 mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	$\sqrt{2}$	$\sqrt{ }$
Rear Panel	$\sqrt{ }$	$\sqrt{ }$

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen..
Date. 30/9/10

## 7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\checkmark$	$\checkmark$	$\checkmark$
Ch2	$\checkmark$	$\checkmark$	$\checkmark$
Ch3	$\checkmark$	$\checkmark$	$\checkmark$
Ch4	$\checkmark$	$\checkmark$	$\checkmark$

TEST RELAYS

Channel	Indicator		OK?
Ch1	ON	OFF	
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\checkmark$	$\sqrt{ }$

## ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\checkmark$	$\checkmark$	$\checkmark$
Ch2	$\checkmark$	$\checkmark$	$\checkmark$
Ch3	$\checkmark$	$\checkmark$	$\checkmark$
Ch4	$\checkmark$	$\checkmark$	$\checkmark$

```
Unit
 .T_ACQ_P65
Test Engineer.....Xen.
```

Date .30/9/10

## 8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

### 8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S   Monitor	Expected value	Pass/Fail:   Equal? (+/-0.1v)
$\mathbf{1}$	0.33	3	0.33 v	$\sqrt{ }$
$\mathbf{2}$	0.33	6	0.33 v	$\sqrt{ }$
$\mathbf{3}$	0.33	9	0.33 v	$\sqrt{ }$
$\mathbf{4}$	0.33	12	0.33 v	$\sqrt{ }$

Adjust the input voltage until the voltage across the load resistor $=1 \mathrm{v}$ r.m.s. Record the current monitor output values.
8.2 Current Monitors

Ch.	Output	V, I and R.M.S   Monitor	Expected   Value	Pass/Fail:   Equal? (+/- 0.1v)
$\mathbf{1}$	1.92	2	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{2}$	1.92	5	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{3}$	1.92	8	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{4}$	1.92	11	$1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}$	$\sqrt{ }$

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S   Monitor	Expected   Value	Pass/Fail:   Equal? (+/-0.1v)
$\mathbf{1}$	1.96	1	1.86 vdc	$\sqrt{ }$
$\mathbf{2}$	1.96	4	1.86 vdc	$\sqrt{ }$
$\mathbf{3}$	1.95	7	1.86 v dc	$\sqrt{ }$
$\mathbf{4}$	1.96	10	1.86 vdc	$\sqrt{ }$

### 8.4 Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu \mathrm{V} \sqrt{ } \mathrm{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA $\sqrt{\mathrm{Hz}}$ should give $2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}$ out.

Ch.	Output   $(\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})$	$\div($ Pre-amplifier   gain $)$	Expected   Value	Comparison
$\mathbf{1}$		1.44	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{2}$		1.32	$2.9 \mu \mathrm{~V} \mathrm{~Hz}$	$\sqrt{ }$
$\mathbf{3}$		1.27	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{4}$		1.71	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$

```
Unit.
..............T_ACQ_P65
```

$\qquad$

```
Serial No
Test Engineer.....Xen.
Date
30/9/10
```


## 9. Distortion

```
Switch the filters out. Increase input voltage to 5 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.
```

	Acquisition Mode:   Distortion Free?	Non-Acquisition Mode:   Distortion Free?
Ch1	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{2}$	$\sqrt{ }$

Test Engineer.....Xen.
Date. .30/9/10.

## 10 Load tests and Frequency response check

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

### 10.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo   $($ Vo/20 $)$	Specification	Pass/Fail
Ch1	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

10Hz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.066	4.7 mA	$>\mathbf{~ 2 . 5 m A ~ p e a k ~}$	$\sqrt{ }$
Ch2	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

100 Hz

	Vor.m.s	$\begin{gathered} \text { Peak lo } \\ (\mathrm{Vo} / 20) \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	0.324	22.9 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch2	0.324	22.9 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch3	0.321	22.7 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch4	0.321	22.7 mA	>2.5mA peak	1

200 Hz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times$ 1.414	Specification	Pass/Fail	
Ch1	0.390	27.6 mA	$\boldsymbol{> 2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.390	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.389	27.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.388	27.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Unit.
.T_ACQ_P65
Test Engineer.....Xen
Date. .30/9/10.

### 10.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo   (Vo/20)	Specification	Pass/Fail
Ch1	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch2	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch3	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch4	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	

10 Hz

	Vo peak	Peak lo   $($ Vo/20 $)$	Specification	Pass/Fail
Ch1	16 mV	800 uA	$>2.5 \mathrm{~mA}$ peak	
Ch2	16 mV	800 uA	$>2.5 \mathrm{~mA}$ peak	
Ch3	15 mV	750 uA	$>2.5 \mathrm{~mA}$ peak	
Ch4	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	

100 Hz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.126	8.9 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.131	9.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.129	9.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.128	9.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.241	17.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.248	17.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.245	17.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.245	17.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.. Xen.
Date. 30/9/10.

### 10.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch3	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch4	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA }}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$
Ch2	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$
Ch3	2.2	3.1	155.5 mA	>125mA peak	$\sqrt{ }$
Ch4	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

5 kHz

	Vo r.m.s	Vo pk.	Peak Io (Vo/20)   $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	1.67	2.4	118.1 mA	>125mA peak	
Ch2	1.68	2.4	118.8 mA	$>125 \mathrm{~mA}$ peak	
Ch3	1.66	2.3	117.4 mA	$>125 \mathrm{~mA}$ peak	
Ch4	1.66	2.3	117.4 mA	>125mA peak	

Test Engineer.....Xen
Date .30/9/10.

## 11. Noise Measurements

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.


Measure the noise output at 10 Hz .

	Spec in   $\mathrm{dB} V \mathrm{~V} \mathrm{~Hz}$	Measured @   10 Hz	$-60 \mathrm{~dB}=$	Measured in   $\mathrm{nV} \sqrt{ } \mathrm{Hz}$	OK?
Ch1	-143.5	-92.0	-152.0	25.1	$\checkmark$
Ch2	-143.5	-92.7	-152.7	23.2	$\sqrt{ }$
Ch3	-143.5	-92.9	-152.9	22.6	$\sqrt{ }$
Ch4	-143.5	-91.7	-151.7	26.0	$\sqrt{ }$

## Notes:

Specified noise output current at $10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}$ (worst case)
Total resistance at 10 Hz , in Low noise mode $=6.7 \mathrm{k}$
Amplifier noise voltage should therefore be $=67 \mathrm{nV} \sqrt{\mathrm{Hz}}$
$67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}$

```
Unit.
TACQ65P
Serial No
```

$\qquad$

```Test EngineerRMC
```

Date ..... 3/11/10

## 12. Final Assembly Tests

1. Remove the lid of the box. $\sqrt{ }$
2. Unplug all external connections. $\sqrt{ }$
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight. $\sqrt{ }$
4. Check that all internal connectors are firmly mated. $V$
5. Tighten the screw-locks holding all the external connectors. $\sqrt{ }$
6. Check that all the LEDs are nicely centred.
7. Check that all links $W 4$ are in place. $\sqrt{ }$
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TACQ65P
Driver board ID	TACQ65P
Driver board Drawing No/Issue No	D0901047_V4
Monitor board ID	MON179
Monitor board Drawing No/Issue No	D070480_5_K

9. Check the security of any modification wires. None
10. Visually inspect. $\sqrt{ }$
11. Put the lid on and fasten all screws, $\sqrt{ }$

Check all external screws for tightness. $\sqrt{ }$

## LIGO Laboratory / LIGO Scientific Collaboration

## Advanced LIGO UK

March 2010

## Triple Acquisition Driver Unit Test Report

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research<br>University of Glasgow<br>Phone +44 (0) 1413305884<br>Fax +44 (0) 1413306833<br>E-mail k.strain@physics.gla.ac.uk<br>Engineering Department<br>CCLRC Rutherford Appleton Laboratory<br>Phone +44 (0) 1235445297<br>Fax +44 (0) 1235445843<br>E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT

```
Unit...............T ACQ P66...........................S..Serial No.
Test Engineer.....Xen.
Date...............4/10/10
```

Drive Card ID......T ACQ66
Monitor Card ID...Mon240
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

## 1. Description

## Block diagram



## Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
ACQ_P66
6.
Serial No.
Test Engineer.....Xen.
Date
4/10/10
```


## 2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz)
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	



## 3. Inspection

## Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.

## Links:

Check that the links W2 and W4 are present on each channel.

Test Engineer.....Xen..
Date. $.4 / 10 / 10$.

## 4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{l \mid}$
5	0V	$\sqrt{l}$		
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

## LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
5	0V	$\sqrt{\|c\|}$		
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	$\sqrt{ }$

## PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
11	V - (TP2)	-17 v Supply	$\sqrt{ }$
12	V - (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	0 V (TP3)		$\sqrt{ }$
24	0 V (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

## 5. TEST SET UP



Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

## Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit.
```

$\qquad$

```
 T_ACQ_P66
```

$\qquad$
Test Engineer.....Xen.
Date $.4 / 10 / 10$

```

\section*{6. Power}

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents
\begin{tabular}{|c|c|}
\hline \(\mathbf{+ 1 6 . 5}\) supply current (mA) & - \(\mathbf{1 6 . 5}\) supply current (mA) \\
\hline 500 mA & 400 mA \\
\hline
\end{tabular}

Check that all power LEDs are illuminated.
\begin{tabular}{|c|c|c|}
\hline LEDs & Plus & Minus \\
\hline Front Panel & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Rear Panel & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen.
Date. .4/10/10

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|l|}{Indicator} & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch2 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch3 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch4 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline
\end{tabular}

TEST RELAYS
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{ACQUISITION RELAYS}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|l|}{Indicator} & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch2 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch3 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch4 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline
\end{tabular}
```

Unit
.T_ACQ_P66
Test Engineer.....Xen

```

Date .4/10/10

\section*{8. Monitor Outputs}

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

\subsection*{8.1 Voltage Monitors}
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output: & \begin{tabular}{c}
V, I and R.M.S \\
Monitor
\end{tabular} & Expected value & \begin{tabular}{c}
Pass/Fail: \\
Equal? (+/-0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & 0.33 & 3 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 0.33 & 6 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 0.33 & 9 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 0.33 & 12 & 0.33 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

Adjust the input voltage until the voltage across the load resistor \(=1 \mathrm{v}\) r.m.s. Record the current monitor output values.
8.2 Current Monitors
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output & \begin{tabular}{c}
V, I and R.M.S \\
Monitor
\end{tabular} & \begin{tabular}{c}
Expected \\
Value
\end{tabular} & \begin{tabular}{c}
Pass/Fail: \\
Equal? (+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & 1.92 & 2 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 1.92 & 5 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 1.92 & 8 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 1.92 & 11 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.3 R.M.S Monitors
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output & \begin{tabular}{c}
V, I and R.M.S \\
Monitor
\end{tabular} & \begin{tabular}{c}
Expected \\
Value
\end{tabular} & \begin{tabular}{c}
Pass/Fail: \\
Equal? (+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & 1.96 & 1 & 1.86 vdc & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 1.96 & 4 & 1.86 vdc & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 1.96 & 7 & 1.86 vdc & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 1.95 & 10 & 1.86 vdc & \(\sqrt{ }\) \\
\hline
\end{tabular}

\subsection*{8.4 Noise Monitors}
- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in \(\mu \mathrm{V} \sqrt{\mathrm{Hz}}\) on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \(\sqrt{ } \mathrm{Hz}\) should give \(2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}\) out.
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c}
Output \\
\((\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})\)
\end{tabular} & \begin{tabular}{c}
\(\div(\) Pre-amplifier \\
gain)
\end{tabular} & \begin{tabular}{c}
Expected \\
Value
\end{tabular} & Comparison \\
\hline \(\mathbf{1}\) & & 1.76 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & & 1.74 & \(2.9 \mu \mathrm{~V} \mathrm{~Hz}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & & 1.76 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & & 1.96 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit
...............T_ACQ_P66
6.
Serial No.
Test Engineer.....Xen.
Date.
.4/10/10

```

\section*{9. Distortion}
```

Switch the filters out. Increase input voltage to 5 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

```
\begin{tabular}{|c|c|c|}
\hline & \begin{tabular}{c}
Acquisition Mode: \\
Distortion Free?
\end{tabular} & \begin{tabular}{c}
Non-Acquisition Mode: \\
Distortion Free?
\end{tabular} \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{2}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Engineer.....Xen.
Date
.4/10/10.

\section*{10 Load tests and Frequency response check}

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

\subsection*{10.1 Noisy Mode}

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vo peak & \begin{tabular}{c}
Peak lo \\
\((\) Vo/20 \()\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 67.5 mV & 3.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 67.5 mV & 3.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 67.5 mV & 3.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 67.5 mV & 3.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

10Hz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c}
Peak lo \\
\((\) Vo/20 \() \times \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.066 & 4.7 mA & \(>\mathbf{~ 2 . 5 m A ~ p e a k ~}\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.066 & 4.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.066 & 4.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.066 & 4.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vor.m.s & \[
\begin{gathered}
\text { Peak lo } \\
(\mathrm{Vo} / 20) \times 1.414 \\
\hline
\end{gathered}
\] & Specification & Pass/Fail \\
\hline Ch1 & 0.325 & 23.0 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch2 & 0.323 & 22.8 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch3 & 0.323 & 22.8 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch4 & 0.324 & 22.9 mA & >2.5mA peak & \(\checkmark\) \\
\hline
\end{tabular}

200 Hz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c}
Peak lo \\
\((\) Vo/20 \() \times\) 1.414
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.390 & 27.6 mA & \(\boldsymbol{> 2 . 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.390 & 27.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.390 & 27.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.390 & 27.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c}
Peak lo \\
\((\) Vo/20 \() \times \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.414 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.416 & 29.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.415 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.414 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit.
.T_ACQ_P66.
Serial No
Test Engineer.....Xen
Date.
4/10/10.

\subsection*{10.2 Low noise Mode}

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1 Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo peak & \begin{tabular}{c}
Peak lo \\
(Vo/20)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 45 mV & 2.3 mA & \(>\mathbf{2 . 5 m A}\) peak & \\
\hline Ch2 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch3 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch4 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo peak & \begin{tabular}{c}
Peak lo \\
\((\) Vo/20 \()\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 14 mV & 700 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch2 & 14 mV & 700 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch3 & 16 mV & 800 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch4 & 13 mV & 650 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo r.m.s & \begin{tabular}{c}
Peak lo \\
(Vo/20) \(\mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.127 & 9.0 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.121 & 8.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.130 & 9.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.126 & 8.9 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

200 Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo r.m.s & \begin{tabular}{c}
Peak lo \\
(Vo/20) \(\mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.242 & 17.1 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.235 & 16.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.247 & 17.5 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.241 & 17.0 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|l|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c}
Peak lo \\
(Vo/20) \(\mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.369 & 26.1 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.369 & 26.1 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.370 & 26.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.369 & 26.1 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Engineer.. Xen.
Date \(.4 / 10 / 10\).

\subsection*{10.3 Acquisition Mode}

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100 Hz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c}
Peak lo (Vo/20) \\
\(\mathbf{x} \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 1.97 & 2.8 & 139.3 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 1.98 & 2.8 & 140.0 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 1.98 & 2.8 & 140.0 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 1.97 & 2.8 & 139.3 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

200 Hz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c}
Peak lo (Vo/20) \\
\(\mathbf{x} 1.414\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\sqrt{ }\) \\
\hline Ch3 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\sqrt{ }\) \\
\hline Ch4 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA }}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c}
Peak lo (Vo/20) \\
\(\mathbf{x} \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 2.3 & 3.3 & 162.6 mA & >125mA peak & \(\checkmark\) \\
\hline Ch2 & 2.3 & 3.3 & 162.6 mA & >125mA peak & \(\checkmark\) \\
\hline Ch3 & 2.3 & 3.3 & 162.6 mA & >125mA peak & \(\sqrt{ }\) \\
\hline Ch4 & 2.3 & 3.3 & 162.6 mA & >125mA peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

5 kHz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c}
Peak lo (Vo/20) \\
\(\mathbf{x 1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 1.67 & 2.4 & 118.1 mA & >125mA peak & \\
\hline Ch2 & 1.68 & 2.4 & 118.8 mA & >125mA peak & \\
\hline Ch3 & 1.68 & 2.4 & 118.8 mA & >125mA peak & \\
\hline Ch4 & 1.67 & 2.4 & 118.1 mA & >125mA peak & \\
\hline
\end{tabular}

Test Engineer.....Xen
Date \(.4 / 10 / 10\).

\section*{11. Noise Measurements}

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

Measure the noise output at 10 Hz .
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \begin{tabular}{c}
Spec in \\
\(\mathrm{dB} V \sqrt{ } \mathrm{~Hz}\)
\end{tabular} & \begin{tabular}{c}
Measured @ \\
10 Hz
\end{tabular} & \(-60 \mathrm{~dB}=\) & \begin{tabular}{c}
Measured in \\
\(\mathrm{nV} \sqrt{ } \mathrm{Hz}\)
\end{tabular} & OK? \\
\hline Ch1 & -143.5 & -91.5 & -151.5 & 26.6 & \(\sqrt{ }\) \\
\hline Ch2 & -143.5 & -91.7 & -151.7 & 26.0 & \(\sqrt{ }\) \\
\hline Ch3 & -143.5 & -92.2 & -152.2 & 24.5 & \(\sqrt{ }\) \\
\hline Ch4 & -143.5 & -92.4 & -152.4 & 24.0 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Notes:}

Specified noise output current at \(10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}\) (worst case)
Total resistance at 10 Hz , in Low noise mode \(=6.7 \mathrm{k}\)
Amplifier noise voltage should therefore be \(=67 \mathrm{nV} \sqrt{\mathrm{Hz}}\)
\(67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}\)
```

Unit
TACQ66P
Serial No

```
\(\qquad\)
```

Test Engineer .........RMC
Date
.4/11/10

```

\section*{12. Final Assembly Tests}
1. Remove the lid of the box. \(\sqrt{ }\)
2. Unplug all external connections. \(\sqrt{ }\)
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight.
4. Check that all internal connectors are firmly mated. \(\sqrt{ }\)
5. Tighten the screw-locks holding all the external connectors. \(\sqrt{ }\)
6. Check that all the LEDs are nicely centred.
7. Check that all links W4 are in place. \(\sqrt{ }\)
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:
\begin{tabular}{|l|l|}
\hline UoB box ID & TACQ66P \\
\hline Driver board ID & TACQ66P \\
\hline Driver board Drawing No/Issue No & D0901047_V4 \\
\hline Monitor board ID & MON240_ \\
\hline Monitor board Drawing No/Issue No & D070480_5_K \\
\hline
\end{tabular}
9. Check the security of any modification wires. None
10. Visually inspect. \(\sqrt{ }\)
11. Put the lid on and fasten all screws, \(\sqrt{ }\)

Check all external screws for tightness. \(\sqrt{ }\)

\section*{LIGO Laboratory / LIGO Scientific Collaboration}

\section*{Advanced LIGO UK}

March 2010

\section*{Triple Acquisition Driver Unit Test Report}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

\author{
Institute for Gravitational Research \\ University of Glasgow \\ Phone +44 (0) 1413305884 \\ Fax +44 (0) 1413306833 \\ E-mail k.strain@physics.gla.ac.uk \\ Engineering Department \\ CCLRC Rutherford Appleton Laboratory \\ Phone +44 (0) 1235445297 \\ Fax +44 (0) 1235445843 \\ E-mail J.Greenhalgh@rl.ac.uk
}

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT}
```

Unit................T ACQ P67.............................Serial No..
Test Engineer.....Xen
Date...............4/10/10

```

Drive Card ID......T ACQ67
Monitor Card ID...Mon239.
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

\section*{1. Description}

\section*{Block diagram}

\section*{Description}

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.
```

Unit

```
\(\qquad\)
``` T_ACQ_P67
``` \(\qquad\)
``` Serial No
Test Engineer.....Xen.
Date \(.4 / 10 / 10\)
```


2. Test equipment

```
Power supplies (At least \(+/-20 v\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz )
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.

Links:

Check that the links W2 and W4 are present on each channel.

4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	OV	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
5	0V	$\sqrt{\|c\|}$		
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	$\sqrt{ }$

PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
11	V - (TP2)	-17 v Supply	$\sqrt{ }$
12	V - (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	0 V (TP3)		$\sqrt{ }$
24	0 V (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

5. TEST SET UP

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit.
```

\qquad

```
                            T_ACQ_P67.
                                    Serial No
Test Engineer.....Xen.
Date................4/10/10.
```


6. Power

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents

$\mathbf{+ 1 6 . 5}$ supply current (mA)	- 16.5 supply current (mA)
500 mA	400 mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	$\sqrt{ }$	$\sqrt{ }$
Rear Panel	$\sqrt{ }$	$\sqrt{ }$

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen.
Date. $.4 / 10 / 10$

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
Ch1	ON	OFF	
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

```
Unit
                            .T_ACQ_P67.
Test Engineer.....Xen
```

Date $.4 / 10 / 10$

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S Monitor	Expected value	Pass/Fail: Equal? (+/-0.1v)
$\mathbf{1}$	0.33	3	0.33 v	$\sqrt{ }$
$\mathbf{2}$	0.33	6	0.33 v	$\sqrt{ }$
$\mathbf{3}$	0.33	9	0.33 v	$\sqrt{ }$
$\mathbf{4}$	0.33	12	0.33 v	$\sqrt{ }$

Adjust the input voltage until the voltage across the load resistor $=1 \mathrm{v}$ r.m.s. Record the current monitor output values.
8.2 Current Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	1.91	2	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{2}$	1.91	5	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{3}$	1.91	8	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{4}$	1.90	11	1.86 v r.m.s	$\sqrt{ }$

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	1.94	1	1.86 vdc	$\sqrt{ }$
$\mathbf{2}$	1.94	4	1.86 vdc	$\sqrt{ }$
$\mathbf{3}$	1.95	7	1.86 vdc	$\sqrt{ }$
$\mathbf{4}$	1.94	10	1.86 vdc	$\sqrt{ }$

8.4 Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu \mathrm{V} \sqrt{\mathrm{Hz}}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA $\sqrt{ } \mathrm{Hz}$ should give $2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}$ out.

Ch.	Output $(\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})$	$\div($ Pre-amplifier gain)	Expected Value	Comparison
$\mathbf{1}$		1.62	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{2}$		1.54	$2.9 \mu \mathrm{~V} \mathrm{~Hz}$	$\sqrt{ }$
$\mathbf{3}$		1.68	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{4}$		1.87	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$

```
Unit.
................T_ACQ_P67
```

\qquad

```
Serial No
Test Engineer.....Xen.
Date
.4/10/10
```


9. Distortion

```
Switch the filters out. Increase input voltage to 5 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.
```

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{2}$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$

Unit.

.T_ACQ_P67.
Test Engineer.....Xen.
Date.
$.4 / 10 / 10$.

10 Load tests and Frequency response check

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

10.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo (Vo/20)	Specification	Pass/Fail
Ch1	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch2	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch3	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch4	67.5 mV	3.4 mA	>2.5mA peak	\checkmark

10Hz

Vo r.m.s	Peak lo $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.066	4.7 mA	$>\mathbf{~ 2 . 5 m A ~ p e a k ~}$	$\sqrt{ }$
Ch2	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

100 Hz

	Vor.m.s	$\begin{gathered} \text { Peak lo } \\ (\mathrm{Vo} / 20) \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	0.323	22.8 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch2	0.323	22.8 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch3	0.324	22.9 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch4	0.323	22.8 mA	>2.5mA peak	\checkmark

200 Hz

Vo r.m.s	Peak lo $($ Vo/20 $) \times$ 1.414	Specification	Pass/Fail	
Ch1	0.389	27.5 mA	$\boldsymbol{> 2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.390	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.390	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.389	27.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

Vo r.m.s	Peak lo $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.416	29.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Unit.
.T_ACQ_P67.
Test Engineer.....Xen
Date.
4/10/10

10.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo (Vo/20)	Specification	Pass/Fail
Ch1	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch2	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch3	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch4	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	

10 Hz

	Vo peak	Peak lo $($ Vo/20)	Specification	Pass/Fail
Ch1	16 mV	800 uA	$>2.5 \mathrm{~mA}$ peak	
Ch2	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch3	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch4	16 mV	800 uA	$>2.5 \mathrm{~mA}$ peak	

100 Hz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.127	9.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.123	8.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.129	9.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.130	9.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.244	17.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.238	16.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.245	17.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.247	17.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.. Xen.
Date $.4 / 10 / 10$.

10.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	1.99	2.8	140.7 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA }}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	2.3	3.3	162.6 mA	>125mA peak	\checkmark
Ch2	2.3	3.3	162.6 mA	>125mA peak	\checkmark
Ch3	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$
Ch4	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$

5 kHz

	Vo r.m.s	Vo pk.	Peak Io (Vo/20) $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	1.67	2.4	118.1 mA	>125mA peak	
Ch2	1.68	2.4	118.8 mA	$>125 \mathrm{~mA}$ peak	
Ch3	1.67	2.4	118.1 mA	$>125 \mathrm{~mA}$ peak	
Ch4	1.68	2.4	118.8 mA	>125mA peak	

Test Engineer.....Xen.
Date
4/10/10

11. Noise Measurements

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

Measure the noise output at 10 Hz .

	Spec in $\mathrm{dB} V \mathrm{~V} \mathrm{~Hz}$	Measured @ 10 Hz	$-60 \mathrm{~dB}=$	Measured in $\mathrm{nV} \sqrt{ } \mathrm{Hz}$	OK?
Ch1	-143.5	-92.7	-152.7	23.2	\checkmark
Ch2	-143.5	-91.2	-152.2	24.5	$\sqrt{ }$
Ch3	-143.5	-92.7	-152.7	23.2	$\sqrt{ }$
Ch4	-143.5	-93.2	-153.2	21.9	$\sqrt{ }$

Notes:

Specified noise output current at $10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}$ (worst case)
Total resistance at 10 Hz , in Low noise mode $=6.7 \mathrm{k}$
Amplifier noise voltage should therefore be $=67 \mathrm{nV} \sqrt{\mathrm{Hz}}$
$67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}$

```
Unit.
TACQ67P
Serial No
```

\qquad

```
Test Engineer
RMC
Date
.4/11/10
```


12. Final Assembly Tests

1. Remove the lid of the box. $\sqrt{ }$
2. Unplug all external connections. $\sqrt{ }$
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight. $\sqrt{ }$
4. Check that all internal connectors are firmly mated. V
5. Tighten the screw-locks holding all the external connectors. $\sqrt{ }$
6. Check that all the LEDs are nicely centred. $\sqrt{ }$
7. Check that all links W4 are in place. $\sqrt[V]{ }$
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TACQ67P
Driver board ID	TACQ67P
Driver board Drawing No/Issue No	D0901047_V4
Monitor board ID	MON239__
Monitor board Drawing No/Issue No	D070480_5_K

9. Check the security of any modification wires. None
10. Visually inspect. $\sqrt{ }$
11. Put the lid on and fasten all screws, $\sqrt{ }$

Check all external screws for tightness. $\sqrt{ }$

LIGO Laboratory / LIGO Scientific Collaboration

Advanced LIGO UK

March 2010

Triple Acquisition Driver Unit Test Report

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT

```
Unit...............T ACQ P68...........................S..Serial No.
Test Engineer.....Xen.
Date................11/10/10
```

Drive Card ID.......T ACQ68
Monitor Card ID....Mon205
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

1. Description

Block diagram

Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
T_ACQ_P68
8..
Serial No
Test Engineer.....Xen.
Date
11/10/10
```


2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz )
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	

Unit..................T_ACQ_P68.Test Engineer....Xen..............				

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.

Links

Check that the links W2 and W4 are present on each channel.

Test Engineer..
Date 11/10/10.

4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{l \mid}$
5	0V	\sqrt{l}		
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
5	0V	$\sqrt{\|c\|}$		
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	$\sqrt{ }$

PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	\checkmark
10	V+ (TP1)	+17 v Supply	$\sqrt{ }$
11	V- (TP2)	-17 v Supply	\checkmark
12	$\mathrm{~V}-$ (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	OV (TP3)		$\sqrt{ }$
24	OV (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

5. TEST SET UP

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit.
                .T_ACQ_P68
```

\qquad
Date
11/10/10

```

\section*{6. Power}

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents
\begin{tabular}{|c|c|}
\hline \(\mathbf{+ 1 6 . 5}\) supply current (mA) & - \(\mathbf{1 6 . 5}\) supply current (mA) \\
\hline 500 mA & 400 mA \\
\hline
\end{tabular}

Check that all power LEDs are illuminated.
\begin{tabular}{|c|c|c|}
\hline LEDs & Plus & Minus \\
\hline Front Panel & \(\sqrt{2}\) & \(\sqrt{ }\) \\
\hline Rear Panel & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen.
Date. 11/10/10.

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|l|}{Indicator} & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch2 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch3 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch4 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline
\end{tabular}

TEST RELAYS
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{ACQUISITION RELAYS}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|l|}{Indicator} & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch2 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch3 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch4 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline
\end{tabular}
```

Unit.
.T_ACQ_P68.
Serial No
Test Engineer.....Xen.

```
Date
11/10/10.

\section*{8. Monitor Outputs}

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

\subsection*{8.1 Voltage Monitors}
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output: & \begin{tabular}{c} 
V, I and R.M.S \\
Monitor
\end{tabular} & Expected value & \begin{tabular}{c} 
Pass/Fail: \\
Equal? (+/-0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & 0.33 & 3 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 0.33 & 6 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 0.33 & 9 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 0.33 & 12 & 0.33 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

Adjust the input voltage until the voltage across the load resistor \(=1 \mathrm{v}\) r.m.s. Record the current monitor output values.
8.2 Current Monitors
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output & \begin{tabular}{c} 
V, I and R.M.S \\
Monitor
\end{tabular} & \begin{tabular}{c} 
Expected \\
Value
\end{tabular} & \begin{tabular}{c} 
Pass/Fail: \\
Equal? (+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & 1.91 & 2 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 1.91 & 5 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 1.91 & 8 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 1.91 & 11 & \(1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.3 R.M.S Monitors
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output & \begin{tabular}{c} 
V, I and R.M.S \\
Monitor
\end{tabular} & \begin{tabular}{c} 
Expected \\
Value
\end{tabular} & \begin{tabular}{c} 
Pass/Fail: \\
Equal? (+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & 1.95 & 1 & 1.86 vdc & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 1.95 & 4 & 1.86 vdc & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 1.95 & 7 & 1.86 vdc & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 1.93 & 10 & 1.86 vdc & \(\sqrt{ }\) \\
\hline
\end{tabular}

\subsection*{8.4 Noise Monitors}
- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in \(\mu \mathrm{V} \sqrt{ } \mathrm{Hz}\) on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \(\sqrt{\mathrm{Hz}}\) should give \(2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}\) out.
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c} 
Output \\
\((\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})\)
\end{tabular} & \begin{tabular}{c}
\(\div(\) Pre-amplifier \\
gain \()\)
\end{tabular} & \begin{tabular}{c} 
Expected \\
Value
\end{tabular} & Comparison \\
\hline \(\mathbf{1}\) & & 1.09 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & & 1.56 & \(2.9 \mu \mathrm{~V} \mathrm{~Hz}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & & 1.17 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & & 0.95 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit.
T_ACQ_P68

```
\(\qquad\)
```

 Serial No
 Test Engineer.....Xen.
Date
11/10/10

```

\section*{9. Distortion}
```

Switch the filters out. Increase input voltage to 5 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

```
\begin{tabular}{|c|c|c|}
\hline & \begin{tabular}{c} 
Acquisition Mode: \\
Distortion Free?
\end{tabular} & \begin{tabular}{c} 
Non-Acquisition Mode: \\
Distortion Free?
\end{tabular} \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{2}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit.
T_ACQ_P68 Serial No
Test Engineer.....Xen.
Date 11/10/10

10 Load tests and Frequency response check
Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

\subsection*{10.1 Noisy Mode}

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vo peak & Peak lo (Vo/20) & Specification & Pass/Fail \\
\hline Ch1 & 67.5 mV & 3.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch2 & 67.5 mV & 3.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch3 & 67.5 mV & 3.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch4 & 67.5 mV & 3.4 mA & >2.5mA peak & \(\checkmark\) \\
\hline
\end{tabular}

10Hz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c} 
Peak lo \\
\((\) Vo/20 \() \times \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.066 & 4.7 mA & \(>\mathbf{~ 2 . 5 m A ~ p e a k ~}\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.066 & 4.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.066 & 4.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.066 & 4.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vor.m.s & \[
\begin{gathered}
\text { Peak lo } \\
(\mathrm{Vo} / 20) \times 1.414 \\
\hline
\end{gathered}
\] & Specification & Pass/Fail \\
\hline Ch1 & 0.323 & 22.8 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch2 & 0.325 & 23.0 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch3 & 0.324 & 22.9 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch4 & 0.323 & 22.8 mA & >2.5mA peak & \(\checkmark\) \\
\hline
\end{tabular}

200 Hz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c} 
Peak lo \\
\((\) Vo/20 \() \times\) 1.414
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.390 & 27.6 mA & \(\boldsymbol{> 2 . 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.391 & 27.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.390 & 27.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.389 & 27.5 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c} 
Peak lo \\
\((\) Vo/20 \() \times \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.415 & 29.3 mA & \(>\mathbf{2 . 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.415 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.415 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.414 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Engineer.. Xen.
Date 11/10/10.

\subsection*{10.2 Low noise Mode}

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1 Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo peak & \begin{tabular}{c} 
Peak lo \\
(Vo/20)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 45 mV & 2.3 mA & \(>\mathbf{2 . 5 m A}\) peak & \\
\hline Ch2 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch3 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch4 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo peak & \begin{tabular}{c} 
Peak lo \\
\((\) Vo/20 \()\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 14 mV & 700 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch2 & 14 mV & 700 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch3 & 14 mV & 700 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch4 & 14 mV & 700 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo r.m.s & \begin{tabular}{c} 
Peak lo \\
(Vo/20) \(\mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.118 & 8.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.123 & 8.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.131 & 9.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.128 & 9.0 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

200 Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo r.m.s & \begin{tabular}{c} 
Peak lo \\
(Vo/20) \(\mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.231 & 16.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.238 & 16.8 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.248 & 17.5 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.244 & 17.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c} 
Peak lo \\
(Vo/20) \(\mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.368 & 26.0 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.369 & 26.1 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.370 & 26.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.369 & 26.1 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Engineer.. Xen.
Date 11/10/10.

\subsection*{10.3 Acquisition Mode}

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100 Hz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c} 
Peak lo (Vo/20) \\
\(\mathbf{x} 1.414\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 1.98 & 2.8 & 140.0 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 1.99 & 2.8 & 140.7 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\sqrt{ }\) \\
\hline Ch3 & 1.99 & 2.8 & 140.7 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\sqrt{ }\) \\
\hline Ch4 & 1.98 & 2.8 & 140.0 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

200 Hz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c} 
Peak lo (Vo/20) \\
\(\mathbf{x} 1.414\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\sqrt{ }\) \\
\hline Ch3 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\sqrt{ }\) \\
\hline Ch4 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA }}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Vor.m.s & Vo pk. & \[
\begin{gathered}
\text { Peak lo (Vo/20) } \\
\times 1.414 \\
\hline
\end{gathered}
\] & Specification & Pass/Fail \\
\hline Ch1 & 2.3 & 3.3 & 162.6 mA & \(>125 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch2 & 2.3 & 3.3 & 162.6 mA & \(>125 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch3 & 2.3 & 3.3 & 162.6 mA & \(>125 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch4 & 2.3 & 3.3 & 162.6 mA & >125mA peak & \(\checkmark\) \\
\hline
\end{tabular}

5 kHz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c} 
Peak Io (Vo/20) \\
\(\mathbf{x} 1.414\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 1.67 & 2.4 & 118.1 mA & >125mA peak & \\
\hline Ch2 & 1.67 & 2.4 & 118.1 mA & \(>125 \mathrm{~mA}\) peak & \\
\hline Ch3 & 1.68 & 2.4 & 118.8 mA & \(>125 \mathrm{~mA}\) peak & \\
\hline Ch4 & 1.67 & 2.4 & 118.1 mA & >125mA peak & \\
\hline
\end{tabular}

Test Engineer.....Xen.
Date 11/10/10.

\section*{11. Noise Measurements}

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.


Measure the noise output at 10 Hz .
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \begin{tabular}{c} 
Spec in \\
\(\mathrm{dB} V \mathrm{~V} \mathrm{~Hz}\)
\end{tabular} & \begin{tabular}{c} 
Measured @ \\
10 Hz
\end{tabular} & \(-60 \mathrm{~dB}=\) & \begin{tabular}{c} 
Measured in \\
\(\mathrm{nV} \sqrt{ } \mathrm{Hz}\)
\end{tabular} & OK? \\
\hline Ch1 & -143.5 & -92.2 & -152.2 & 24.5 & \(\checkmark\) \\
\hline Ch2 & -143.5 & -92.5 & -152.5 & 23.7 & \(\sqrt{ }\) \\
\hline Ch3 & -143.5 & -92.8 & -152.8 & 22.9 & \(\sqrt{ }\) \\
\hline Ch4 & -143.5 & -93.3 & -153.3 & 21.6 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Notes:}

Specified noise output current at \(10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}\) (worst case)
Total resistance at 10 Hz , in Low noise mode \(=6.7 \mathrm{k}\)
Amplifier noise voltage should therefore be \(=67 \mathrm{nV} \sqrt{\mathrm{Hz}}\)
\(67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}\)
```

Unit
TACQ68P
Serial No

```
\(\qquad\)
```

Test EngineerRMC
Date
.4/11/10

```

\section*{12. Final Assembly Tests}
1. Remove the lid of the box. \(\sqrt{ }\)
2. Unplug all external connections. \(\sqrt{ }\)
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight. \(\sqrt{ }\)
4. Check that all internal connectors are firmly mated. \(\sqrt{ }\)
5. Tighten the screw-locks holding all the external connectors. \(\sqrt{ }\)
6. Check that all the LEDs are nicely centred. \(V\)
7. Check that all links W4 are in place. \(\sqrt[V]{ }\)
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:
\begin{tabular}{|l|l|}
\hline UoB box ID & TACQ68P \\
\hline Driver board ID & TACQ68P \\
\hline Driver board Drawing No/Issue No & D0901047_V4 \\
\hline Monitor board ID & MON205 \\
\hline Monitor board Drawing No/Issue No & D070480_4_K \\
\hline
\end{tabular}
9. Check the security of any modification wires. None
10. Visually inspect. \(\sqrt{ }\)
11. Put the lid on and fasten all screws, \(\sqrt{ }\)

Check all external screws for tightness. \(\sqrt{ }\)

\section*{LIGO Laboratory / LIGO Scientific Collaboration}

\section*{Advanced LIGO UK}

March 2010

\section*{Triple Acquisition Driver Unit Test Report}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

\author{
Institute for Gravitational Research \\ University of Glasgow \\ Phone +44 (0) 1413305884 \\ Fax +44 (0) 1413306833 \\ E-mail k.strain@physics.gla.ac.uk \\ Engineering Department \\ CCLRC Rutherford Appleton Laboratory \\ Phone +44 (0) 1235445297 \\ Fax +44 (0) 1235445843 \\ E-mail J.Greenhalgh@rl.ac.uk
}

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT}
```

Unit................T ACQ P69............................Serial No.
Test Engineer.....Xen.
Date................29/9/10

```

Drive Card ID.......T ACQ69
Monitor Card ID....Mon177
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

\section*{1. Description}

\section*{Block diagram}


\section*{Description}

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.
```

Unit
T_ACQ_P69

```
\(\qquad\)
```

Serial No
Test Engineer.....Xen.
Date
29/9/10

```

\section*{2. Test equipment}
```

Power supplies (At least $+/-20 \mathrm{v}$ variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz)
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & ISO-TECH & ISR622 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77III & \\
\hline Signal analyzer & Agilent & 35670A & \\
\hline Pre-amplifier & Stanford Systems & SR560 & \\
\hline
\end{tabular}


\section*{3. Inspection}

\section*{Workmanship}

Inspect the general workmanship standard and comment: \(\sqrt{ }\)
Capacitors C35 and C27 have been changed to 1 nF on all channels.

\section*{Links}

Check that the links W2 and W4 are present on each channel.

Test Engineer.....Xen.
Date. .29/9/10

\section*{4. Continuity Checks}

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\sqrt{ }\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\sqrt{ }\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\sqrt{ }\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\sqrt{l \mid}\) \\
\hline 5 & 0V & \(\sqrt{l}\) \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\sqrt{ }\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\sqrt{ }\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\sqrt{ }\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{LED Mon}
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\sqrt{ }\) \\
\hline 2 & Imon2P & & 6 & \(\sqrt{ }\) \\
\hline 3 & Imon3P & & 7 & \(\sqrt{ }\) \\
\hline 4 & Imon4P & & 8 & \(\sqrt{ }\) \\
\hline 5 & 0V & \(\sqrt{|c|}\) \\
\hline 6 & Imon1N & & 18 & \(\sqrt{ }\) \\
\hline 7 & Imon2N & & 19 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 20 & \(\sqrt{ }\) \\
\hline 9 & Imon4N & & 21 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{PD from Sat}
\begin{tabular}{|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & \(\mathrm{~V}+\) (TP1) & +17 v Supply & \(\sqrt{ }\) \\
\hline 10 & \(\mathrm{~V}+\) (TP1) & +17 v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17 v Supply & \(\sqrt{ }\) \\
\hline 12 & \(\mathrm{~V}-\) (TP2) & -17 v Supply & \(\sqrt{ }\) \\
\hline 13 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 22 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}


Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, \(4=\) positive input
Drive Input J3 pins 6, 7, 8, \(9=\) negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, \(10=+16.5 \mathrm{v}\)
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, \(25=0 v\)
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin \(1 \quad\) Ch1 \(-=\mathrm{J} 4\) pin 9
Ch2 \(+=\mathrm{J} 4\) pin \(3 \quad\) Ch2- \(=\mathrm{J} 4\) pin 11
Ch3 \(+=\mathrm{J} 4\) pin \(5 \quad\) Ch3- \(=\mathrm{J} 4\) pin 13
Ch4+ = J4 pin \(7 \quad\) Ch4- \(=\mathrm{J} 4\) pin 15
```

Unit.

```
\(\qquad\)
```

 T_ACQ_P69.
 Serial No
 Test Engineer.....Xen.
Date...............29/9/10

```

\section*{6. Power}

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents
\begin{tabular}{|c|c|}
\hline + 16.5 supply current (mA) & - 16.5 supply current (mA) \\
\hline 500 mA & 400 mA \\
\hline
\end{tabular}

Check that all power LEDs are illuminated.
\begin{tabular}{|c|c|c|}
\hline LEDs & Plus & Minus \\
\hline Front Panel & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Rear Panel & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen..
Date. 29/9/10

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{|l|}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

TEST RELAYS
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\checkmark\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\checkmark\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\checkmark\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{ACQUISITION RELAYS}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|l|}{Indicator} & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch2 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch3 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch4 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline
\end{tabular}
```

Unit
.T_ACQ_P69
Serial No
Test Engineer.....Xen.

```
Date
29/9/10

\section*{8. Monitor Outputs}

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

\subsection*{8.1 Voltage Monitors}
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output: & \begin{tabular}{c} 
V, I and R.M.S \\
Monitor
\end{tabular} & Expected value & \begin{tabular}{c} 
Pass/Fail: \\
Equal? (+/-0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & 0.33 & 3 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 0.33 & 6 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 0.33 & 9 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 0.33 & 12 & 0.33 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

Adjust the input voltage until the voltage across the load resistor \(=1 \mathrm{v}\) r.m.s. Record the current monitor output values.
8.2 Current Monitors
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output & \begin{tabular}{c} 
V, I and R.M.S \\
Monitor
\end{tabular} & \begin{tabular}{c} 
Expected \\
Value
\end{tabular} & \begin{tabular}{c} 
Pass/Fail: \\
Equal? (+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & 1.90 & 2 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 1.90 & 5 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 1.90 & 8 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 1.90 & 11 & \(1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.3 R.M.S Monitors
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output & \begin{tabular}{c} 
V, I and R.M.S \\
Monitor
\end{tabular} & \begin{tabular}{c} 
Expected \\
Value
\end{tabular} & \begin{tabular}{c} 
Pass/Fail: \\
Equal? (+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & 1.94 & 1 & 1.86 vdc & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 1.94 & 4 & 1.86 vdc & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 1.93 & 7 & 1.86 vdc & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 1.94 & 10 & 1.86 vdc & \(\sqrt{ }\) \\
\hline
\end{tabular}

\subsection*{8.4 Noise Monitors}
- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in \(\mu \mathrm{V} \sqrt{\mathrm{Hz}}\) on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \(\sqrt{ } \mathrm{Hz}\) should give \(2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}\) out.
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c} 
Output \\
\((\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})\)
\end{tabular} & \begin{tabular}{c}
\(\div(\) Pre-amplifier \\
gain)
\end{tabular} & \begin{tabular}{c} 
Expected \\
Value
\end{tabular} & Comparison \\
\hline \(\mathbf{1}\) & & 1.33 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & & 1.41 & \(2.9 \mu \mathrm{~V} \mathrm{~Hz}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & & 1.45 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & & 1.61 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit.
..............T_ACQ_P69
9.
Serial No.
Test Engineer.....Xen.
Date
.29/9/10

```

\section*{9. Distortion}
```

Switch the filters out. Increase input voltage to 5 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

```
\begin{tabular}{|c|c|c|}
\hline & \begin{tabular}{c} 
Acquisition Mode: \\
Distortion Free?
\end{tabular} & \begin{tabular}{c} 
Non-Acquisition Mode: \\
Distortion Free?
\end{tabular} \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{2}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit.
T_ACQ_P69
Test Engineer.....Xen.
Date .29/9/10

```

\section*{10 Load tests and Frequency response check}

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

\subsection*{10.1 Noisy Mode}

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vo peak & Peak lo (Vol20) & Specification & Pass/Fail \\
\hline Ch1 & 67.5 mV & 3.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch2 & 67.5 mV & 3.4 mA & >2.5mA peak & \(\checkmark\) \\
\hline Ch3 & 67.5 mV & 3.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch4 & 67.5 mV & 3.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c} 
Peak lo \\
\((\) Vo/20 \() \times\) 1.414
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.066 & 4.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch2 & 0.066 & 4.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.066 & 4.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.066 & 4.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vo r.m.s & \begin{tabular}{c} 
Peak lo \\
\((\mathrm{Vo/20}) \times\) 1.414
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.322 & 22.8 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.323 & 22.8 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.326 & 23.0 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.323 & 22.8 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

200 Hz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c} 
Peak lo \\
\((\) Vo/20 \() \times \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.390 & 27.6 mA & \(\boldsymbol{> 2 . 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.390 & 27.6 mA & \(>\mathbf{2 . 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.391 & 27.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.389 & 27.5 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|l|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c} 
Peak lo \\
\((\) Vo/20 \() \times\) 1.414
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.415 & 29.3 mA & \(\boldsymbol{> 2 . 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.415 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.415 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.414 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit.
.T_ACQ_P69.
Test Engineer.....Xen
Date. .29/9/10.

\subsection*{10.2 Low noise Mode}

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo peak & \begin{tabular}{c} 
Peak lo \\
(Vo/20)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch2 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch3 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch4 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo peak & \begin{tabular}{c} 
Peak lo \\
\((\) Vo/20)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 16 mV & 800 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch2 & 14 mV & 700 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch3 & 16 mV & 800 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch4 & 16 mV & 800 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo r.m.s & \begin{tabular}{c} 
Peak lo \\
(Vo/20) \(\mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.126 & 8.9 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.129 & 9.1 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.126 & 8.9 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.129 & 9.1 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

200 Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo r.m.s & \begin{tabular}{c} 
Peak lo \\
(Vo/20) \(\mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.242 & 17.1 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.245 & 17.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.241 & 17.0 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.245 & 17.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo r.m.s & \begin{tabular}{c} 
Peak lo \\
(Vo/20) \(\mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.370 & 26.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.370 & 26.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.369 & 26.1 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.369 & 26.1 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Engineer.. Xen.
Date 29/9/10.

\subsection*{10.3 Acquisition Mode}

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100Hz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c} 
Peak lo (Vo/20) \\
\(\mathbf{x} \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 1.99 & 2.8 & 140.7 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 1.98 & 2.8 & 140.0 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 1.97 & 2.8 & 139.3 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 1.97 & 2.8 & 139.3 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

200 Hz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c} 
Peak lo (Vo/20) \\
\(\mathbf{x} 1.414\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\sqrt{ }\) \\
\hline Ch3 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\sqrt{ }\) \\
\hline Ch4 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA }}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Vor.m.s & Vo pk. & \[
\begin{gathered}
\hline \text { Peak lo }(\text { Vo/20 }) \\
\times 1.414 \\
\hline
\end{gathered}
\] & Specification & Pass/Fail \\
\hline Ch1 & 2.3 & 3.3 & 162.6 mA & \(>125 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch2 & 2.3 & 3.3 & 162.6 mA & \(>125 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch3 & 2.3 & 3.3 & 162.6 mA & \(>125 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch4 & 2.2 & 3.1 & 155.5 mA & >125mA peak & \(\checkmark\) \\
\hline
\end{tabular}

5 kHz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c} 
Peak Io (Vo/20) \\
\(\mathbf{x} 1.414\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 1.68 & 2.4 & 118.8 mA & >125mA peak & \\
\hline Ch2 & 1.67 & 2.4 & 118.1 mA & \(>125 \mathrm{~mA}\) peak & \\
\hline Ch3 & 1.68 & 2.4 & 118.8 mA & \(>125 \mathrm{~mA}\) peak & \\
\hline Ch4 & 1.66 & 2.3 & 117.4 mA & >125mA peak & \\
\hline
\end{tabular}

Test Engineer.....Xen
Date 29/9/10

\section*{11. Noise Measurements}

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.


Measure the noise output at 10 Hz .
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \begin{tabular}{c} 
Spec in \\
\(\mathrm{dB} V \sqrt{ } \mathrm{~Hz}\)
\end{tabular} & \begin{tabular}{c} 
Measured @ \\
10 Hz
\end{tabular} & \(-60 \mathrm{~dB}=\) & \begin{tabular}{c} 
Measured in \\
\(\mathrm{nV} \sqrt{ } \mathrm{Hz}\)
\end{tabular} & OK? \\
\hline Ch1 & -143.5 & -91.3 & -151.3 & 27.2 & \(\sqrt{ }\) \\
\hline Ch2 & -143.5 & -92.2 & -152.2 & 24.5 & \(\sqrt{ }\) \\
\hline Ch3 & -143.5 & -92.0 & -152.0 & 25.1 & \(\sqrt{ }\) \\
\hline Ch4 & -143.5 & -94.5 & -154.5 & 18.8 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Notes:}

Specified noise output current at \(10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}\) (worst case)
Total resistance at 10 Hz , in Low noise mode \(=6.7 \mathrm{k}\)
Amplifier noise voltage should therefore be \(=67 \mathrm{nV} \sqrt{\mathrm{Hz}}\)
\(67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}\)
```

Unit
TACQ69P
Serial No

```
\(\qquad\)
```

Test EngineerRMC
Date
.4/11/10

```

\section*{12. Final Assembly Tests}
1. Remove the lid of the box. \(\sqrt{ }\)
2. Unplug all external connections. \(\sqrt{ }\)
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight. \(\sqrt{ }\)
4. Check that all internal connectors are firmly mated. \(\sqrt{ }\)
5. Tighten the screw-locks holding all the external connectors. \(\sqrt{ }\)
6. Check that all the LEDs are nicely centred. \(V\)
7. Check that all links W4 are in place. \(\sqrt[V]{ }\)
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:
\begin{tabular}{|l|l|}
\hline UoB box ID & TACQ69P \\
\hline Driver board ID & TACQ69P \\
\hline Driver board Drawing No/Issue No & D0901047_V4 \\
\hline Monitor board ID & MON177 \\
\hline Monitor board Drawing No/Issue No & D070480_5_K \\
\hline
\end{tabular}
9. Check the security of any modification wires. None
10. Visually inspect. \(\sqrt{ }\)
11. Put the lid on and fasten all screws, \(\sqrt{ }\)

Check all external screws for tightness. \(\sqrt{ }\)

\section*{LIGO Laboratory / LIGO Scientific Collaboration}

\section*{Advanced LIGO UK}

March 2010

\section*{Triple Acquisition Driver Unit Test Report}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

\author{
Institute for Gravitational Research \\ University of Glasgow \\ Phone +44 (0) 1413305884 \\ Fax +44 (0) 1413306833 \\ E-mail k.strain@physics.gla.ac.uk \\ Engineering Department \\ CCLRC Rutherford Appleton Laboratory \\ Phone +44 (0) 1235445297 \\ Fax +44 (0) 1235445843 \\ E-mail J.Greenhalgh@rl.ac.uk
}

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT}
```

Unit................T ACQ P70.............................Serial No.
Test Engineer.....Xen.
Date................1/10/10

```

Drive Card ID.......T ACQ70
Monitor Card ID....Mon197
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

\section*{1. Description}

\section*{Block diagram}


\section*{Description}

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.
```

Unit
_ACQ_P70..
Serial No
Test Engineer.....Xen.
Date
1/10/10

```

\section*{2. Test equipment}
```

Power supplies (At least $+/-20 \mathrm{v}$ variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz)
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & ISO-TECH & ISR622 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77III & \\
\hline Signal analyzer & Agilent & 35670A & \\
\hline Pre-amplifier & Stanford Systems & SR560 & \\
\hline
\end{tabular}


\section*{3. Inspection}

\section*{Workmanship}

Inspect the general workmanship standard and comment: \(\sqrt{ }\)
Capacitors C35 and C27 have been changed to 1 nF on all channels.

\section*{Links:}

Check that the links W2 and W4 are present on each channel.

\section*{4. Continuity Checks}

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\sqrt{ }\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\sqrt{ }\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\sqrt{ }\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\sqrt{l \mid}\) \\
\hline 5 & 0V & \(\sqrt{l}\) \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\sqrt{ }\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\sqrt{ }\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\sqrt{ }\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{LED Mon}
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\sqrt{ }\) \\
\hline 2 & Imon2P & & 6 & \(\sqrt{ }\) \\
\hline 3 & Imon3P & & 7 & \(\sqrt{ }\) \\
\hline 4 & Imon4P & & 8 & \(\sqrt{ }\) \\
\hline 5 & 0V & \(\sqrt{|c|}\) \\
\hline 6 & Imon1N & & 18 & \(\sqrt{ }\) \\
\hline 7 & Imon2N & & 19 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 20 & \(\sqrt{ }\) \\
\hline 9 & Imon4N & & 21 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{PD from Sat}
\begin{tabular}{|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & \(\mathrm{~V}+\) (TP1) & +17 v Supply & \(\sqrt{ }\) \\
\hline 10 & \(\mathrm{~V}+\) (TP1) & +17 v Supply & \(\sqrt{ }\) \\
\hline 11 & V - (TP2) & -17 v Supply & \(\sqrt{ }\) \\
\hline 12 & V - (TP2) & -17 v Supply & \(\sqrt{ }\) \\
\hline 13 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 22 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 23 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 24 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}


Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, \(4=\) positive input
Drive Input J3 pins 6, 7, 8, \(9=\) negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, \(10=+16.5 \mathrm{v}\)
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, \(25=0 v\)
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin \(1 \quad\) Ch1 \(-=\mathrm{J} 4\) pin 9
Ch2 \(+=\mathrm{J} 4\) pin \(3 \quad\) Ch2- \(=\mathrm{J} 4\) pin 11
Ch3 \(+=\mathrm{J} 4\) pin \(5 \quad\) Ch3- \(=\mathrm{J} 4\) pin 13
Ch4+ = J4 pin \(7 \quad\) Ch4- \(=\mathrm{J} 4\) pin 15
```

Unit.

```
\(\qquad\)
``` T_ACQ_P70
```

$\qquad$
Test Engineer.....Xen.
Date 1/10/10.

```

\section*{6. Power}

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents
\begin{tabular}{|c|c|}
\hline \(\mathbf{+ 1 6 . 5}\) supply current (mA) & - \(\mathbf{1 6 . 5}\) supply current (mA) \\
\hline 500 mA & 400 mA \\
\hline
\end{tabular}

Check that all power LEDs are illuminated.
\begin{tabular}{|c|c|c|}
\hline LEDs & Plus & Minus \\
\hline Front Panel & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Rear Panel & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen.
Date. 1/10/10

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|l|}{Indicator} & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch2 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch3 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch4 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline
\end{tabular}

TEST RELAYS
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline Ch1 & ON & OFF & \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\checkmark\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{ACQUISITION RELAYS}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|l|}{Indicator} & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch2 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch3 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch4 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline
\end{tabular}
```

Unit
.T_ACQ_P70
Serial No
Test Engineer.....Xen

```
Date
1/10/10

\section*{8. Monitor Outputs}

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

\subsection*{8.1 Voltage Monitors}
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output: & \begin{tabular}{c}
V, I and R.M.S \\
Monitor
\end{tabular} & Expected value & \begin{tabular}{c}
Pass/Fail: \\
Equal? (+/-0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & 0.33 & 3 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 0.33 & 6 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 0.33 & 9 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 0.33 & 12 & 0.33 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

Adjust the input voltage until the voltage across the load resistor \(=1 \mathrm{v}\) r.m.s. Record the current monitor output values.
8.2 Current Monitors
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output & \begin{tabular}{c}
V, I and R.M.S \\
Monitor
\end{tabular} & \begin{tabular}{c}
Expected \\
Value
\end{tabular} & \begin{tabular}{c}
Pass/Fail: \\
Equal? (+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & 1.93 & 2 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 1.93 & 5 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 1.92 & 8 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 1.92 & 11 & \(1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.3 R.M.S Monitors
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output & \begin{tabular}{c}
V, I and R.M.S \\
Monitor
\end{tabular} & \begin{tabular}{c}
Expected \\
Value
\end{tabular} & \begin{tabular}{c}
Pass/Fail: \\
Equal? (+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & 1.96 & 1 & 1.86 vdc & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 1.97 & 4 & 1.86 vdc & \\
\hline \(\mathbf{3}\) & 1.95 & 7 & 1.86 vdc & \(\sqrt{1.86 \mathrm{vdc}}\) \\
\hline \(\mathbf{4}\) & 1.97 & 10 & 1 \\
\hline
\end{tabular}

\subsection*{8.4 Noise Monitors}
- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in \(\mu \mathrm{V} \sqrt{ } \mathrm{Hz}\) on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \(\sqrt{\mathrm{Hz}}\) should give \(2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}\) out.
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c}
Output \\
\((\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})\)
\end{tabular} & \begin{tabular}{c}
\(\div(\) Pre-amplifier \\
gain \()\)
\end{tabular} & \begin{tabular}{c}
Expected \\
Value
\end{tabular} & Comparison \\
\hline \(\mathbf{1}\) & & 1.44 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & & 1.30 & \(2.9 \mu \mathrm{~V} \mathrm{~Hz}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & & 1.27 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & & 1.18 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit.
...............T_ACQ_P70
0..
Serial No
Test Engineer.....Xen.
Date.
1/10/10

```

\section*{9. Distortion}
```

Switch the filters out. Increase input voltage to 5 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

```
\begin{tabular}{|c|c|c|}
\hline & \begin{tabular}{c}
Acquisition Mode: \\
Distortion Free?
\end{tabular} & \begin{tabular}{c}
Non-Acquisition Mode: \\
Distortion Free?
\end{tabular} \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{2}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Unit.}
.T_ACQ_P70.
Test Engineer.....Xen
Date. .1/10/10.

\section*{10 Load tests and Frequency response check}

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

\subsection*{10.1 Noisy Mode}

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vo peak & Peak lo (Vo/20) & Specification & Pass/Fail \\
\hline Ch1 & 67.5 mV & 3.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch2 & 67.5 mV & 3.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch3 & 67.5 mV & 3.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch4 & 67.5 mV & 3.4 mA & >2.5mA peak & \(\checkmark\) \\
\hline
\end{tabular}

10Hz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c}
Peak lo \\
\((\) Vo/20 \() \times \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.065 & 4.6 mA & \(>\mathbf{~ 2 . 5 m A ~ p e a k ~}\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.066 & 4.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.067 & 4.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.066 & 4.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vor.m.s & \[
\begin{gathered}
\text { Peak lo } \\
(\mathrm{Vo} / 20) \times 1.414 \\
\hline
\end{gathered}
\] & Specification & Pass/Fail \\
\hline Ch1 & 0.320 & 22.6 mA & >2.5mA peak & \(\checkmark\) \\
\hline Ch2 & 0.323 & 22.8 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch3 & 0.326 & 23.0 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch4 & 0.322 & 22.8 mA & >2.5mA peak & \(\checkmark\) \\
\hline
\end{tabular}

200 Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vor.m.s & \[
\begin{gathered}
\text { Peak lo } \\
(\mathrm{Vol} 20) \times 1.414
\end{gathered}
\] & Specification & Pass/Fail \\
\hline Ch1 & 0.388 & 27.4 mA & >2.5mA peak & \(\checkmark\) \\
\hline Ch2 & 0.390 & 27.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch3 & 0.391 & 27.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.389 & 27.5 mA & >2.5mA peak & \(\checkmark\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c}
Peak lo \\
\((\) Vo/20 \() \times \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.414 & 29.3 mA & \(>\mathbf{2 . 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.415 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.415 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.414 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit.
Test Engineer.....Xen
Date.
1/10/10.

\subsection*{10.2 Low noise Mode}

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo peak & \begin{tabular}{c}
Peak lo \\
(Vo/20)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch2 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch3 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch4 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo peak & \begin{tabular}{c}
Peak lo \\
\((\) Vo/20 \()\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 14 mV & 700 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch2 & 15 mV & 750 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch3 & 16 mV & 800 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch4 & 12 mV & 600 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vo r.m.s & \begin{tabular}{c}
Peak lo \\
(Vo/20) \(\mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.120 & 8.5 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.120 & 8.5 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.129 & 9.1 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.124 & 8.8 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

200 Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo r.m.s & \begin{tabular}{c}
Peak lo \\
(Vo/20) \(\mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.234 & 16.5 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.234 & 16.5 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.244 & 17.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.239 & 16.9 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo r.m.s & \begin{tabular}{c}
Peak lo \\
(Vo/20) \(\mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.368 & 26.0 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.368 & 26.0 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.370 & 26.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.368 & 26.0 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Engineer.....Xen
Date. 1/10/10.

\subsection*{10.3 Acquisition Mode}

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100Hz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c}
Peak lo (Vo/20) \\
\(\mathbf{x} \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 1.97 & 2.8 & 139.3 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 1.97 & 2.8 & 139.3 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 1.99 & 2.8 & 140.7 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 1.96 & 2.8 & 138.6 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

200 Hz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c}
Peak lo (Vo/20) \\
\(\mathbf{x} 1.414\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\sqrt{ }\) \\
\hline Ch3 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\sqrt{ }\) \\
\hline Ch4 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA }}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Vor.m.s & Vo pk. & \[
\begin{gathered}
\hline \text { Peak lo (Vo/20) } \\
\times 1.414 \\
\hline
\end{gathered}
\] & Specification & Pass/Fail \\
\hline Ch1 & 2.2 & 3.1 & 155.5 mA & >125mA peak & \(\checkmark\) \\
\hline Ch2 & 2.3 & 3.3 & 162.6 mA & >125mA peak & \(\checkmark\) \\
\hline Ch3 & 2.3 & 3.3 & 162.6 mA & \(>125 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 2.3 & 3.3 & 162.6 mA & >125mA peak & \(\checkmark\) \\
\hline
\end{tabular}

5 kHz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c}
Peak Io (Vo/20) \\
\(\mathbf{x} 1.414\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 1.66 & 2.3 & 117.4 mA & >125mA peak & \\
\hline Ch2 & 1.67 & 2.4 & 118.1 mA & \(>125 \mathrm{~mA}\) peak & \\
\hline Ch3 & 1.68 & 2.4 & 118.8 mA & \(>125 \mathrm{~mA}\) peak & \\
\hline Ch4 & 1.67 & 2.4 & 118.1 mA & >125mA peak & \\
\hline
\end{tabular}

Test Engineer.....Xen
Date .1/10/10

\section*{11. Noise Measurements}

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

Measure the noise output at 10 Hz .
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \begin{tabular}{c}
Spec in \\
\(\mathrm{dB} V \sqrt{ } \mathrm{~Hz}\)
\end{tabular} & \begin{tabular}{c}
Measured @ \\
10 Hz
\end{tabular} & \(-60 \mathrm{~dB}=\) & \begin{tabular}{c}
Measured in \\
\(\mathrm{nV} \sqrt{ } \mathrm{Hz}\)
\end{tabular} & OK? \\
\hline Ch1 & -143.5 & -92.8 & -152.8 & 22.9 & \(\checkmark\) \\
\hline Ch2 & -143.5 & -93.3 & -153.3 & 21.6 & \(\sqrt{ }\) \\
\hline Ch3 & -143.5 & -93.6 & -153.6 & 20.9 & \(\sqrt{ }\) \\
\hline Ch4 & -143.5 & -93.1 & -153.1 & 22.1 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Notes:}

Specified noise output current at \(10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}\) (worst case)
Total resistance at 10 Hz , in Low noise mode \(=6.7 \mathrm{k}\)
Amplifier noise voltage should therefore be \(=67 \mathrm{nV} \sqrt{\mathrm{Hz}}\)
\(67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}\)
```

Unit.
TACQ70P

```
\(\qquad\)
``` Serial No
``` \(\qquad\)
```Test EngineerRMC
Date 8/11/10
```


12. Final Assembly Tests

1. Remove the lid of the box. $\sqrt{ }$
2. Unplug all external connections. $\sqrt{ }$
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight. $\sqrt{ }$
4. Check that all internal connectors are firmly mated. V
5. Tighten the screw-locks holding all the external connectors.
6. Check that all the LEDs are nicely centred. $\sqrt{ }$
7. Check that all links W4 are in place. $\sqrt[V]{ }$
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TACQ70P
Driver board ID	TACQ70P
Driver board Drawing No/Issue No	D0901047_V4
Monitor board ID	MON197
Monitor board Drawing No/Issue No	D070480_5_K

9. Check the security of any modification wires. None
10. Visually inspect. $\sqrt{ }$
11. Put the lid on and fasten all screws, $\sqrt{ }$

Check all external screws for tightness. $\sqrt{ }$

LIGO Laboratory / LIGO Scientific Collaboration

Advanced LIGO UK

March 2010

Triple Acquisition Driver Unit Test Report

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT

```
Unit...............T ACQ P71............................Serial No.
Test Engineer.....Xen.
Date................1/10/10
```

Drive Card ID......T ACQ71
Monitor Card ID...Mon253
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

1. Description

Block diagram

Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
                _ACQ_P71
```

\qquad

```
Serial No
Test Engineer.....Xen.
Date
1/10/10
```


2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz )
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.
IC2 and IC4 (AD8671) have been replaced on CH 1 due to being too noisy.

Links:

Check that the links W2 and W4 are present on each channel.

4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{l \mid}$
5	0V	\sqrt{l}		
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
5	0V	$\sqrt{\|c\|}$		
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	$\sqrt{ }$

PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
11	V - (TP2)	-17 v Supply	$\sqrt{ }$
12	V - (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	0 V (TP3)		$\sqrt{ }$
24	0 V (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

5. TEST SET UP

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit.
```

\qquad

``` T_ACQ_P71
``` \(\qquad\)
``` Serial No
Test Engineer.....Xen.
Date 1/10/10.
```


6. Power

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents

$\mathbf{+ 1 6 . 5}$ supply current (mA)	- $\mathbf{1 6 . 5}$ supply current (mA)
500 mA	400 mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	$\sqrt{ }$	$\sqrt{ }$
Rear Panel	$\sqrt{ }$	$\sqrt{ }$

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen.
Date. 1/10/10

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
Ch1	ON	OFF	
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

```
Unit
                .T_ACQ_P71
                                    Serial No
Test Engineer.....Xen
```

Date.
1/10/10

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S Monitor	Expected value	Pass/Fail: Equal? (+/-0.1v)
$\mathbf{1}$	0.33	3	0.33 v	$\sqrt{ }$
$\mathbf{2}$	0.33	6	0.33 v	$\sqrt{ }$
$\mathbf{3}$	0.33	9	0.33 v	$\sqrt{ }$
$\mathbf{4}$	0.33	12	0.33 v	$\sqrt{ }$

Adjust the input voltage until the voltage across the load resistor $=1 \mathrm{v}$ r.m.s. Record the current monitor output values.
8.2 Current Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	1.91	2	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{2}$	1.92	5	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{3}$	1.92	8	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{4}$	1.92	11	$1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}$	$\sqrt{ }$

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	Pass/Fail: Equal? $\mathbf{(+ / - 0 . 1 v)}$
$\mathbf{1}$	1.95	1	1.86 vdc	$\sqrt{ }$
$\mathbf{2}$	1.95	4	1.86 vdc	$\sqrt{ }$
$\mathbf{3}$	1.95	7	1.86 v dc	$\sqrt{ }$
$\mathbf{4}$	1.95	10	1.86 vdc	$\sqrt{ }$

8.4 Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu \mathrm{V} \sqrt{\mathrm{Hz}}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA $\sqrt{ } \mathrm{Hz}$ should give $2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}$ out.

Ch.	Output $(\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})$	$\div($ Pre-amplifier gain)	Expected Value	Comparison
$\mathbf{1}$		1.59	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{2}$		1.42	$2.9 \mu \mathrm{~V} \mathrm{~Hz}$	$\sqrt{ }$
$\mathbf{3}$		1.31	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{4}$		1.52	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$

```
Unit.
................T_ACQ_P71
```

\qquad

```
Serial No
Test Engineer.....Xen.
Date
1/10/10
9. Distortion
Switch the filters out. Increase input voltage to 5 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.
```

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{2}$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$

Unit.
.T_ACQ_P71. Serial No
Test Engineer.....Xen
Date.
1/10/10.

10 Load tests and Frequency response check

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

10.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo (Vo/20)	Specification	Pass/Fail
Ch1	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch2	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch3	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch4	67.5 mV	3.4 mA	>2.5mA peak	\checkmark

10Hz

Vo r.m.s	Peak lo $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.066	4.7 mA	$>\mathbf{~ 2 . 5 m A ~ p e a k ~}$	$\sqrt{ }$
Ch2	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.067	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

100 Hz

	Vor.m.s	$\begin{gathered} \text { Peak lo } \\ (\mathrm{Vo} / 20) \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	0.325	23.0 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch2	0.323	22.8 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch3	0.325	22.8 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch4	0.325	23.0 mA	>2.5mA peak	\checkmark

200 Hz

Vo r.m.s	Peak lo $($ Vo/20 $) \times$ 1.414	Specification	Pass/Fail	
Ch1	0.391	27.6 mA	$\boldsymbol{> 2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.390	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.391	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.391	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

Vo r.m.s	Peak lo $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.414	29.3 mA	$>\mathbf{2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.....Xen
Date
1/10/10.

10.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1 Hz

	Vo peak	Peak lo (Vo/20)	Specification	Pass/Fail
Ch1	45 mV	2.3 mA	$>\mathbf{2 . 5 m A}$ peak	
Ch2	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch3	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch4	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	

10 Hz

	Vo peak	Peak lo (Vo/20)	Specification	Pass/Fail
Ch1	16 mV	800 uA	$>2.5 \mathrm{~mA}$ peak	
Ch2	15 mV	750 uA	$>2.5 \mathrm{~mA}$ peak	
Ch3	16 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch4	13 mV	650 uA	$>2.5 \mathrm{~mA}$ peak	

100 Hz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.123	9.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.126	8.9 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.130	9.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.128	9.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.238	16.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.242	17.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.246	17.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.243	17.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.....Xen
Date. 1/10/10.

10.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	1.96	2.8	140.0 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA }}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	2.3	3.3	162.6 mA	>125mA peak	\checkmark
Ch2	2.3	3.3	162.6 mA	>125mA peak	\checkmark
Ch3	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$
Ch4	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$

5 kHz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x 1 . 4 1 4}$	Specification	Pass/Fail
Ch1	1.67	2.4	118.1 mA	>125mA peak	
Ch2	1.67	2.4	118.1 mA	>125mA peak	
Ch3	1.67	2.4	118.1 mA	>125mA peak	
Ch4	1.67	2.4	118.1 mA	>125mA peak	

Test Engineer.....Xen
Date .1/10/10

11. Noise Measurements

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

Measure the noise output at 10 Hz .

	Spec in $\mathrm{dB} V \sqrt{ } \mathrm{~Hz}$	Measured @ 10 Hz	$-60 \mathrm{~dB}=$	Measured in $\mathrm{nV} \sqrt{ } \mathrm{Hz}$	OK?
Ch1	-143.5	-93.0	-153.0	22.4	$\sqrt{ }$
Ch2	-143.5	-92.4	-152.4	24.0	$\sqrt{ }$
Ch3	-143.5	-92.3	-152.3	24.3	$\sqrt{ }$
Ch4	-143.5	-92.0	-152.0	25.1	$\sqrt{ }$

Notes:

Specified noise output current at $10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}$ (worst case)
Total resistance at 10 Hz , in Low noise mode $=6.7 \mathrm{k}$
Amplifier noise voltage should therefore be $=67 \mathrm{nV} \sqrt{\mathrm{Hz}}$
$67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}$

```
Unit.
TACQ71P
Serial No
```

\qquad

```Test EngineerRMC
```

Date 8/11/10

12. Final Assembly Tests

1. Remove the lid of the box. $\sqrt{ }$
2. Unplug all external connections. $\sqrt{ }$
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight. $\sqrt{ }$
4. Check that all internal connectors are firmly mated. V
5. Tighten the screw-locks holding all the external connectors. $\sqrt{ }$
6. Check that all the LEDs are nicely centred. $\sqrt{ }$
7. Check that all links W4 are in place. $\sqrt[V]{ }$
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TACQ71P
Driver board ID	TACQ71
Driver board Drawing No/Issue No	D0901047_V4
Monitor board ID	MON253__
Monitor board Drawing No/Issue No	D070480_5_K

9. Check the security of any modification wires. None
10. Visually inspect. $\sqrt{ }$
11. Put the lid on and fasten all screws, $\sqrt{ }$

Check all external screws for tightness. $\sqrt{ }$

LIGO Laboratory / LIGO Scientific Collaboration

Advanced LIGO UK

March 2010

Triple Acquisition Driver Unit Test Report

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT

```
Unit...............T ACQ P72...........................Serial No.
Test Engineer.....Xen.
Date................13/10/10
```

Drive Card ID......T ACQ72
Monitor Card ID...Mon235.
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

1. Description

Block diagram

Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
_ACQ_P72.
Serial No
Test Engineer.....Xen.
Date
13/10/10
```


2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz )
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.

Links:

Check that the links W2 and W4 are present on each channel.

Test Engineer..
Date
13/10/10.

4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{l \mid}$
5	0V	\sqrt{l}		
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
5	0V	$\sqrt{\|c\|}$		
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	$\sqrt{ }$

PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
11	V - (TP2)	-17 v Supply	$\sqrt{ }$
12	V - (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	0 V (TP3)		$\sqrt{ }$
24	0 V (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

5. TEST SET UP

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit
```

\qquad

``` T_ACQ_P72
``` \(\qquad\)
Date
 13/10/10
```


## 6. Power

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents

$\mathbf{+ 1 6 . 5}$ supply current (mA)	- $\mathbf{1 6 . 5}$ supply current (mA)
500 mA	400 mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	$\sqrt{2}$	$\sqrt{ }$
Rear Panel	$\sqrt{ }$	$\sqrt{ }$

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen.
Date. 13/10/10.

## 7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\checkmark$	$\checkmark$	$\checkmark$
Ch2	$\sqrt{ }$	$\checkmark$	$\checkmark$
Ch3	$\checkmark$	$\checkmark$	$\checkmark$
Ch4	$\sqrt{ }$	$\checkmark$	$\checkmark$

TEST RELAYS

Channel	Indicator		OK?
Ch1	ON	OFF	
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

## ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\checkmark$	$\checkmark$	$\checkmark$
Ch2	$\checkmark$	$\checkmark$	$\checkmark$
Ch3	$\checkmark$	$\checkmark$	$\checkmark$
Ch4	$\checkmark$	$\checkmark$	$\checkmark$

```
Unit
 .T_ACQ_P72.
 Serial No
Test Engineer.....Xen.
```

Date
13/10/10.

## 8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

### 8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S   Monitor	Expected value	Pass/Fail:   Equal? (+/-0.1v)
$\mathbf{1}$	0.33	3	0.33 v	$\sqrt{ }$
$\mathbf{2}$	0.33	6	0.33 v	$\sqrt{ }$
$\mathbf{3}$	0.33	9	0.33 v	$\sqrt{ }$
$\mathbf{4}$	0.33	12	0.33 v	$\sqrt{ }$

Adjust the input voltage until the voltage across the load resistor $=1 \mathrm{v}$ r.m.s. Record the current monitor output values.
8.2 Current Monitors

Ch.	Output	V, I and R.M.S   Monitor	Expected   Value	Pass/Fail:   Equal? (+/- 0.1v)
$\mathbf{1}$	1.92	2	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{2}$	1.92	5	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{3}$	1.92	8	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{4}$	1.91	11	$1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}$	$\sqrt{ }$

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S   Monitor	Expected   Value	Pass/Fail:   Equal? (+/- 0.1v)
$\mathbf{1}$	1.96	1	1.86 vdc	$\sqrt{ }$
$\mathbf{2}$	1.95	4	1.86 vdc	$\sqrt{ }$
$\mathbf{3}$	1.96	7	1.86 vdc	$\sqrt{ }$
$\mathbf{4}$	1.95	10	1.86 vdc	$\sqrt{ }$

### 8.4 Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu \mathrm{V} \sqrt{ } \mathrm{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA $\sqrt{\mathrm{Hz}}$ should give $2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}$ out.

Ch.	Output   $(\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})$	$\div($ Pre-amplifier   gain $)$	Expected   Value	Comparison
$\mathbf{1}$		1.57	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{2}$		1.66	$2.9 \mu \mathrm{~V} \mathrm{~Hz}$	$\sqrt{ }$
$\mathbf{3}$		1.30	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{4}$		1.45	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$

```
Unit.
 .T_ACQ_P72
 2..
 Serial No
Test Engineer.....Xen.
Date
13/10/10
```


## 9. Distortion

```
Switch the filters out. Increase input voltage to 5 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.
```

	Acquisition Mode:   Distortion Free?	Non-Acquisition Mode:   Distortion Free?
Ch1	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{2}$	$\sqrt{ }$

Unit.
.T_ACQ_P72. Serial No
Test Engineer.....Xen.
Date
.13/10/10.

## 10 Load tests and Frequency response check

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

### 10.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo (Vo/20)	Specification	Pass/Fail
Ch1	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch2	67.5 mV	3.4 mA	>2.5mA peak	$\checkmark$
Ch3	67.5 mV	3.4 mA	>2.5mA peak	$\checkmark$
Ch4	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$

10Hz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.066	4.7 mA	$>\mathbf{~ 2 . 5 m A ~ p e a k ~}$	$\sqrt{ }$
Ch2	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

100 Hz

	Vor.m.s	$\begin{gathered} \text { Peak lo } \\ (\mathrm{Vo} / 20) \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	0.324	22.9 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch2	0.324	22.9 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch3	0.323	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch4	0.322	22.8 mA	>2.5mA peak	$\checkmark$

200 Hz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times$ 1.414	Specification	Pass/Fail	
Ch1	0.390	27.6 mA	$\boldsymbol{> 2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.391	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.390	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.389	27.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Peak lo   $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.414	29.3 mA	$>\mathbf{2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

### 10.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo   (Vo/20)	Specification	Pass/Fail
Ch1	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch2	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch3	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch4	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	

10 Hz

	Vo peak	Peak lo   $($ Vo/20 $)$	Specification	Pass/Fail
Ch1	16 mV	800 uA	$>2.5 \mathrm{~mA}$ peak	
Ch2	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch3	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch4	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	

100 Hz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.129	9.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.132	9.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.122	8.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.125	8.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.246	17.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.249	17.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.237	16.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.240	17.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.. Xen.
Date 13/10/10

### 10.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	1.97	2.8	137.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA }}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	2.3	3.3	162.6 mA	>125mA peak	$\checkmark$
Ch2	2.3	3.3	162.6 mA	>125mA peak	$\checkmark$
Ch3	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$
Ch4	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$

5 kHz

	Vo r.m.s	Vo pk.	Peak Io (Vo/20)   $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	1.67	2.4	118.1 mA	>125mA peak	
Ch2	1.67	2.4	118.1 mA	$>125 \mathrm{~mA}$ peak	
Ch3	1.67	2.4	118.1 mA	$>125 \mathrm{~mA}$ peak	
Ch4	1.68	2.4	118.8 mA	>125mA peak	

## 11. Noise Measurements

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.


Measure the noise output at 10 Hz .

	Spec in   $\mathrm{dB} V \sqrt{ } \mathrm{~Hz}$	Measured @   10 Hz	$-60 \mathrm{~dB}=$	Measured in   $\mathrm{nV} \sqrt{ } \mathrm{Hz}$	OK?
Ch1	-143.5	-92.3	-152.3	24.3	$\sqrt{ }$
Ch2	-143.5	-91.2	-151.2	27.5	$\sqrt{ }$
Ch3	-143.5	-92.9	-152.9	22.6	$\sqrt{ }$
Ch4	-143.5	-91.9	-151.9	25.4	$\sqrt{ }$

## Notes:

Specified noise output current at $10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}$ (worst case)
Total resistance at 10 Hz , in Low noise mode $=6.7 \mathrm{k}$
Amplifier noise voltage should therefore be $=67 \mathrm{nV} \sqrt{\mathrm{Hz}}$
$67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}$

```
Unit.
\(\qquad\)
```Test EngineerRMCDate8/11/10
```


12. Final Assembly Tests

1. Remove the lid of the box. $\sqrt{ }$
2. Unplug all external connections. $\sqrt{ }$
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight. $\sqrt{ }$
4. Check that all internal connectors are firmly mated. V
5. Tighten the screw-locks holding all the external connectors. $\sqrt{ }$
6. Check that all the LEDs are nicely centred. $\sqrt{ }$
7. Check that all links W4 are in place. $\sqrt[V]{ }$
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TACQ72P
Driver board ID	TACQ73
Driver board Drawing No/Issue No	D0901047_V4
Monitor board ID	MON235
Monitor board Drawing No/Issue No	D070480_5_K

9. Check the security of any modification wires. None
10. Visually inspect. $\sqrt{ }$
11. Put the lid on and fasten all screws, $\sqrt{ }$

Check all external screws for tightness. $\sqrt{ }$

LIGO Laboratory / LIGO Scientific Collaboration

Advanced LIGO UK

March 2010

Triple Acquisition Driver Unit Test Report

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT

```
Unit...............T ACQ P73...........................Serial No.
Test Engineer.....Xen.
Date................12/10/10
```

Drive Card ID......T ACQ73
Monitor Card ID...Mon64
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

1. Description

Block diagram

Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
ACQ_P73
3..
Serial No
Test Engineer.....Xen.
Date
12/10/10
```


2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz )
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.
Replaced J6 on the Driver board.

Links

Check that the links W2 and W4 are present on each channel.

Test Engineer..
Date
12/10/10.

4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{l \mid}$
5	0V	\sqrt{l}		
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
5	0V	$\sqrt{\|c\|}$		
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	$\sqrt{ }$

PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	\checkmark
10	V+ (TP1)	+17 v Supply	$\sqrt{ }$
11	V- (TP2)	-17 v Supply	\checkmark
12	$\mathrm{~V}-$ (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	OV (TP3)		$\sqrt{ }$
24	OV (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

5. TEST SET UP

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit.
                .T_ACQ_P73
```

\qquad
Date
12/10/10

```

\section*{6. Power}

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents
\begin{tabular}{|c|c|}
\hline \(\mathbf{+ 1 6 . 5}\) supply current (mA) & - \(\mathbf{1 6 . 5}\) supply current (mA) \\
\hline 500 mA & 400 mA \\
\hline
\end{tabular}

Check that all power LEDs are illuminated.
\begin{tabular}{|c|c|c|}
\hline LEDs & Plus & Minus \\
\hline Front Panel & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Rear Panel & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen.
Date. 12/10/10.

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{|l|}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

TEST RELAYS
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline Ch1 & ON & OFF & \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{ACQUISITION RELAYS}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|l|}{Indicator} & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch2 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch3 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch4 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline
\end{tabular}
```

Unit
.T_ACQ_P73.
Test Engineer.....Xen.

```

Date
12/10/10.

\section*{8. Monitor Outputs}

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

\subsection*{8.1 Voltage Monitors}
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output: & \begin{tabular}{c} 
V, I and R.M.S \\
Monitor
\end{tabular} & Expected value & \begin{tabular}{c} 
Pass/Fail: \\
Equal? (+/-0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & 0.33 & 3 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 0.33 & 6 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 0.33 & 9 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 0.33 & 12 & 0.33 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

Adjust the input voltage until the voltage across the load resistor \(=1 \mathrm{v}\) r.m.s. Record the current monitor output values.
8.2 Current Monitors
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output & \begin{tabular}{c} 
V, I and R.M.S \\
Monitor
\end{tabular} & \begin{tabular}{c} 
Expected \\
Value
\end{tabular} & \begin{tabular}{c} 
Pass/Fail: \\
Equal? (+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & 1.94 & 2 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 1.94 & 5 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 1.94 & 8 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 1.94 & 11 & \(1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.3 R.M.S Monitors
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output & \begin{tabular}{c} 
V, I and R.M.S \\
Monitor
\end{tabular} & \begin{tabular}{c} 
Expected \\
Value
\end{tabular} & \begin{tabular}{c} 
Pass/Fail: \\
Equal? (+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & 1.98 & 1 & 1.86 vdc & \\
\hline \(\mathbf{2}\) & 1.98 & 4 & 1.86 vdc & \\
\hline \(\mathbf{3}\) & 1.97 & 7 & 1.86 vdc & \\
\hline \(\mathbf{4}\) & 1.97 & 10 & 1.86 vdc & \\
\hline
\end{tabular}

\subsection*{8.4 Noise Monitors}
- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in \(\mu \mathrm{V} \sqrt{ } \mathrm{Hz}\) on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \(\sqrt{ } \mathrm{Hz}\) should give \(2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}\) out.
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c} 
Output \\
\((\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})\)
\end{tabular} & \begin{tabular}{c}
\(\div(\) Pre-amplifier \\
gain)
\end{tabular} & \begin{tabular}{c} 
Expected \\
Value
\end{tabular} & Comparison \\
\hline \(\mathbf{1}\) & & 1.05 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & & 1.27 & \(2.9 \mu \mathrm{~V} \mathrm{~Hz}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & & 1.76 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & & 1.88 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit.
T_ACQ_P73

```
\(\qquad\)
```

 Serial No
 Test Engineer.....Xen.
Date
12/10/10

```

\section*{9. Distortion}
```

Switch the filters out. Increase input voltage to 5 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

```
\begin{tabular}{|c|c|c|}
\hline & \begin{tabular}{c} 
Acquisition Mode: \\
Distortion Free?
\end{tabular} & \begin{tabular}{c} 
Non-Acquisition Mode: \\
Distortion Free?
\end{tabular} \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{2}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit.
.T_ACQ_P73. Serial No
Test Engineer.....Xen.
Date
12/10/10.
10 Load tests and Frequency response check
Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

\subsection*{10.1 Noisy Mode}

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vo peak & \begin{tabular}{c} 
Peak lo \\
\((\) Vo/20 \()\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 67.5 mV & 3.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 67.5 mV & 3.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 67.5 mV & 3.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 67.5 mV & 3.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

10Hz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c} 
Peak lo \\
\((\) Vo/20 \() \times \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.066 & 4.7 mA & \(>\mathbf{~ 2 . 5 m A ~ p e a k ~}\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.066 & 4.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.066 & 4.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.066 & 4.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vor.m.s & \[
\begin{gathered}
\text { Peak lo } \\
(\mathrm{Vo} / 20) \times 1.414 \\
\hline
\end{gathered}
\] & Specification & Pass/Fail \\
\hline Ch1 & 0.321 & 22.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch2 & 0.325 & 23.0 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch3 & 0.323 & 22.8 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch4 & 0.321 & 22.7 mA & >2.5mA peak & \(\checkmark\) \\
\hline
\end{tabular}

200Hz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c} 
Peak lo \\
\((\) Vo/20 \() \times\) 1.414
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.388 & 27.4 mA & \(\boldsymbol{> 2 . 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.391 & 27.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.389 & 27.5 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.388 & 27.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c} 
Peak lo \\
\((\) Vo/20 \() \times \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.414 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.415 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.414 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.413 & 29.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Engineer.....Xen..
Date.
12/10/10

\subsection*{10.2 Low noise Mode}

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1 Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo peak & \begin{tabular}{c} 
Peak lo \\
(Vo/20)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 45 mV & 2.3 mA & \(>\mathbf{2 . 5 m A}\) peak & \\
\hline Ch2 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch3 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch4 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo peak & \begin{tabular}{c} 
Peak lo \\
\((\) Vo/20 \()\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 15 mV & 750 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch2 & 12 mV & 600 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch3 & 16 mV & 800 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch4 & 16 mV & 800 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo r.m.s & \begin{tabular}{c} 
Peak lo \\
(Vo/20) \(\mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.117 & 8.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.127 & 9.0 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.128 & 9.0 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.125 & 8.8 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

200 Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo r.m.s & \begin{tabular}{c} 
Peak lo \\
(Vo/20) \(\mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.230 & 16.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.243 & 17.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.244 & 17.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.240 & 17.0 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c} 
Peak lo \\
(Vo/20) \(\mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.367 & 25.9 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.370 & 26.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.370 & 26.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.368 & 26.0 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Engineer.. .Xen.
Date 12/10/10

\subsection*{10.3 Acquisition Mode}

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100 Hz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c} 
Peak lo (Vo/20) \\
\(\mathbf{x} \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 1.96 & 2.8 & 138.6 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 1.99 & 2.8 & 140.7 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 1.98 & 2.8 & 140.0 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 1.97 & 2.8 & 139.3 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

200 Hz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c} 
Peak lo (Vo/20) \\
\(\mathbf{x} 1.414\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\sqrt{ }\) \\
\hline Ch3 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\sqrt{ }\) \\
\hline Ch4 & 2.2 & 3.1 & 155.5 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA }}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Vor.m.s & Vo pk. & \[
\begin{gathered}
\hline \text { Peak lo (Vo/20) } \\
\times 1.414 \\
\hline
\end{gathered}
\] & Specification & Pass/Fail \\
\hline Ch1 & 2.2 & 3.1 & 155.5 mA & >125mA peak & \(\checkmark\) \\
\hline Ch2 & 2.3 & 3.3 & 162.6 mA & >125mA peak & \(\checkmark\) \\
\hline Ch3 & 2.3 & 3.3 & 162.6 mA & \(>125 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 2.2 & 3.1 & 155.5 mA & >125mA peak & \(\checkmark\) \\
\hline
\end{tabular}

5 kHz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c} 
Peak Io (Vo/20) \\
\(\mathbf{x} 1.414\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 1.65 & 2.3 & 116.7 mA & >125mA peak & \\
\hline Ch2 & 1.67 & 2.4 & 118.1 mA & >125mA peak & \\
\hline Ch3 & 1.67 & 2.4 & 118.1 mA & \(>125 \mathrm{~mA}\) peak & \\
\hline Ch4 & 1.66 & 2.3 & 117.4 mA & >125mA peak & \\
\hline
\end{tabular}

Test Engineer.....Xen
Date.................12/10/10

\section*{11. Noise Measurements}

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.


Measure the noise output at 10 Hz .
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \begin{tabular}{c} 
Spec in \\
\(\mathrm{dB} V \mathrm{~V} \mathrm{~Hz}\)
\end{tabular} & \begin{tabular}{c} 
Measured @ \\
10 Hz
\end{tabular} & \(-60 \mathrm{~dB}=\) & \begin{tabular}{c} 
Measured in \\
\(\mathrm{nV} \sqrt{ } \mathrm{Hz}\)
\end{tabular} & OK? \\
\hline Ch1 & -143.5 & -91.0 & -151.0 & 28.2 & \(\checkmark\) \\
\hline Ch2 & -143.5 & -93.1 & -153.1 & 22.1 & \(\sqrt{ }\) \\
\hline Ch3 & -143.5 & -91.5 & -151.5 & 26.6 & \(\sqrt{ }\) \\
\hline Ch4 & -143.5 & -92.2 & -152.2 & 24.5 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Notes:}

Specified noise output current at \(10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}\) (worst case)
Total resistance at 10 Hz , in Low noise mode \(=6.7 \mathrm{k}\)
Amplifier noise voltage should therefore be \(=67 \mathrm{nV} \sqrt{\mathrm{Hz}}\)
\(67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}\)
```

Unit.
\qquad

```Test EngineerRMCDate8/11/10
```


12. Final Assembly Tests

1. Remove the lid of the box. $\sqrt{ }$
2. Unplug all external connections. $\sqrt{ }$
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight. $\sqrt{ }$
4. Check that all internal connectors are firmly mated. $\sqrt{ }$
5. Tighten the screw-locks holding all the external connectors. $\sqrt{ }$
6. Check that all the LEDs are nicely centred. $\sqrt{ }$
7. Check that all links $W 4$ are in place. $\sqrt{ }$
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TACQ73P
Driver board ID	TACQ73P
Driver board Drawing No/Issue No	D0901047_V4
Monitor board ID	MON64
Monitor board Drawing No/Issue No	D070480_4_K

9. Check the security of any modification wires. None
10. Visually inspect. $\sqrt{ }$
11. Put the lid on and fasten all screws, $\sqrt{ }$

Check all external screws for tightness. $\sqrt{ }$

LIGO Laboratory / LIGO Scientific Collaboration

Advanced LIGO UK

March 2010

Triple Acquisition Driver Unit Test Report

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT

```
Unit................T ACQ P74............................Serial No.
Test Engineer.....Xen.
Date...............13/10/10
```

Drive Card ID.......T ACQ74
Monitor Card ID....Mon185.
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

1. Description

Block diagram

Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
                T_ACQ_P74
```

\qquad

```
Serial No
Test Engineer.....Xen.
Date
13/10/10
```


2. Test equipment

```
Power supplies (At least \(+/-20 v\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz )
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.

Links:

Check that the links W2 and W4 are present on each channel.

Test Engineer..
Date
13/10/10.

4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{l \mid}$
5	0V	\sqrt{l}		
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
5	0V	$\sqrt{\|c\|}$		
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	$\sqrt{ }$

PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
11	V - (TP2)	-17 v Supply	$\sqrt{ }$
12	V - (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	0 V (TP3)		$\sqrt{ }$
24	0 V (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

5. TEST SET UP

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit.
                T_ACQ_P74
```

\qquad
Date
13/10/10.

```

\section*{6. Power}

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents
\begin{tabular}{|c|c|}
\hline \(\mathbf{+ 1 6 . 5}\) supply current (mA) & - \(\mathbf{1 6 . 5}\) supply current (mA) \\
\hline 500 mA & 400 mA \\
\hline
\end{tabular}

Check that all power LEDs are illuminated.
\begin{tabular}{|c|c|c|}
\hline LEDs & Plus & Minus \\
\hline Front Panel & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Rear Panel & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen.
Date. 13/10/10.

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|l|}{Indicator} & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch2 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch3 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch4 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline
\end{tabular}

TEST RELAYS
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{ACQUISITION RELAYS}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|l|}{Indicator} & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch2 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch3 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Ch4 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline
\end{tabular}
```

Unit
.T_ACQ_P74
Serial No
Test Engineer.....Xen.

```

Date
.13/10/10.

\section*{8. Monitor Outputs}

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

\subsection*{8.1 Voltage Monitors}
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output: & \begin{tabular}{c} 
V, I and R.M.S \\
Monitor
\end{tabular} & Expected value & \begin{tabular}{c} 
Pass/Fail: \\
Equal? (+/-0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & 0.33 & 3 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 0.33 & 6 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 0.33 & 9 & 0.33 v & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 0.33 & 12 & 0.33 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

Adjust the input voltage until the voltage across the load resistor \(=1 \mathrm{v}\) r.m.s. Record the current monitor output values.
8.2 Current Monitors
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output & \begin{tabular}{c} 
V, I and R.M.S \\
Monitor
\end{tabular} & \begin{tabular}{c} 
Expected \\
Value
\end{tabular} & \begin{tabular}{c} 
Pass/Fail: \\
Equal? (+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & 1.92 & 2 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 1.92 & 5 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 1.92 & 8 & 1.86 v r.m.s & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 1.92 & 11 & \(1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.3 R.M.S Monitors
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & Output & \begin{tabular}{c} 
V, I and R.M.S \\
Monitor
\end{tabular} & \begin{tabular}{c} 
Expected \\
Value
\end{tabular} & \begin{tabular}{c} 
Pass/Fail: \\
Equal? (+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & 1.95 & 1 & 1.86 vdc & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & 1.96 & 4 & 1.86 vdc & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & 1.95 & 7 & 1.86 vdc & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & 1.94 & 10 & 1.86 vdc & \(\sqrt{ }\) \\
\hline
\end{tabular}

\subsection*{8.4 Noise Monitors}
- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in \(\mu \mathrm{V} \sqrt{ } \mathrm{Hz}\) on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \(\sqrt{ } \mathrm{Hz}\) should give \(2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}\) out.
\begin{tabular}{|c|c|c|c|c|}
\hline Ch. & \begin{tabular}{c} 
Output \\
\((\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z})}\)
\end{tabular} & \begin{tabular}{c}
\(\div(\) Pre-amplifier \\
gain)
\end{tabular} & \begin{tabular}{c} 
Expected \\
Value
\end{tabular} & Comparison \\
\hline \(\mathbf{1}\) & & 0.98 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & & 1.48 & \(2.9 \mu \mathrm{~V} \mathrm{~Hz}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & & 1.02 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & & 1.77 & \(2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit.
................T_ACQ_P74
4..
Serial No.
Test Engineer.....Xen.
Date.
13/10/10.

```

\section*{9. Distortion}
```

Switch the filters out. Increase input voltage to 5 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

```
\begin{tabular}{|c|c|c|}
\hline & \begin{tabular}{c} 
Acquisition Mode: \\
Distortion Free?
\end{tabular} & \begin{tabular}{c} 
Non-Acquisition Mode: \\
Distortion Free?
\end{tabular} \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{2}\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit.
T_ACQ_P74. Serial No
Test Engineer.....Xen.
Date.
.13/10/10.
10 Load tests and Frequency response check
Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

\subsection*{10.1 Noisy Mode}

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vo peak & Peak lo (Vo/20) & Specification & Pass/Fail \\
\hline Ch1 & 67.5 mV & 3.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch2 & 67.5 mV & 3.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch3 & 67.5 mV & 3.4 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch4 & 67.5 mV & 3.4 mA & >2.5mA peak & \(\checkmark\) \\
\hline
\end{tabular}

10Hz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c} 
Peak lo \\
\((\) Vo/20 \() \times \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.066 & 4.7 mA & \(>\mathbf{~ 2 . 5 m A ~ p e a k ~}\) & \(\sqrt{ }\) \\
\hline Ch2 & 0.066 & 4.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.066 & 4.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.066 & 4.7 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vor.m.s & \[
\begin{gathered}
\text { Peak lo } \\
(\mathrm{Vo} / 20) \times 1.414 \\
\hline
\end{gathered}
\] & Specification & Pass/Fail \\
\hline Ch1 & 0.322 & 22.8 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch2 & 0.322 & 22.8 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch3 & 0.323 & 22.8 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch4 & 0.324 & 22.9 mA & >2.5mA peak & 1 \\
\hline
\end{tabular}

200Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vor.m.s & \[
\begin{gathered}
\text { Peak lo } \\
(\mathrm{Vo} / 20) \times 1.414
\end{gathered}
\] & Specification & Pass/Fail \\
\hline Ch1 & 0.389 & 27.5 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch2 & 0.389 & 27.5 mA & >2.5mA peak & \(\checkmark\) \\
\hline Ch3 & 0.390 & 27.6 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch4 & 0.390 & 27.6 mA & >2.5mA peak & \(\checkmark\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c} 
Peak lo \\
\((\) Vo/20 \() \times \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.414 & 29.3 mA & \(>\mathbf{2 . 5 m A}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.415 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.415 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.414 & 29.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Engineer.. Xen.
Date
13/10/10

\subsection*{10.2 Low noise Mode}

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo peak & \begin{tabular}{c} 
Peak lo \\
(Vo/20)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 45 mV & 2.3 mA & \(>\mathbf{2 . 5 m A}\) peak & \\
\hline Ch2 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch3 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch4 & 45 mV & 2.3 mA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|l|c|c|c|c|}
\hline & Vo peak & \begin{tabular}{c} 
Peak lo \\
\((\) Vo/20 \()\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 15 mV & 750 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch2 & 16 mV & 800 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch3 & 16 mV & 800 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline Ch4 & 16 mV & 800 uA & \(>2.5 \mathrm{~mA}\) peak & \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vo r.m.s & \begin{tabular}{c} 
Peak lo \\
(Vo/20) \(\mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.129 & 9.1 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.130 & 9.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.124 & 8.8 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.126 & 8.9 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

200 Hz
\begin{tabular}{|c|c|c|c|c|}
\hline & Vo r.m.s & \begin{tabular}{c} 
Peak lo \\
(Vo/20) \(\mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.245 & 17.3 mA & \(>2.5 \mathrm{~mA}\) peak & \(\checkmark\) \\
\hline Ch2 & 0.248 & 17.5 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.240 & 17.0 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.242 & 17.1 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|c|c|c|c|c|}
\hline Vo r.m.s & \begin{tabular}{c} 
Peak lo \\
(Vo/20) \(\mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 0.369 & 26.1 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch2 & 0.370 & 26.2 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 0.369 & 26.1 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 0.369 & 26.1 mA & \(>2.5 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Engineer..
Date 13/10/10.

800uA

\subsection*{10.3 Acquisition Mode}

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100 Hz
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c} 
Peak Io (Vo/20) \\
\(\mathbf{x} 1.414\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 1.97 & 2.8 & 139.3 mA & >125mA peak & \(\checkmark\) \\
\hline Ch2 & 1.98 & 2.8 & 140.0 mA & \(>125 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch3 & 1.98 & 2.8 & 140.0 mA & \(>125 \mathrm{~mA}\) peak & \(\sqrt{ }\) \\
\hline Ch4 & 1.98 & 2.8 & 140.0 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

200 Hz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c} 
Peak Io (Vo/20) \\
\(\mathbf{x} 1.414\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 2.2 & 3.1 & 155.5 mA & >125mA peak & \(\sqrt{ }\) \\
\hline Ch2 & 2.2 & 3.1 & 155.5 mA & >125mA peak & \(\sqrt{ }\) \\
\hline Ch3 & 2.2 & 3.1 & 155.5 mA & >125mA peak & \(\sqrt{ }\) \\
\hline Ch4 & 2.2 & 3.1 & 155.5 mA & >125mA peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

1 kHz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c} 
Peak lo (Vo/20) \\
\(\mathbf{x} \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/FaiI \\
\hline Ch1 & 2.3 & 3.3 & 162.6 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\checkmark\) \\
\hline Ch2 & 2.3 & 3.3 & 162.6 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\checkmark\) \\
\hline Ch3 & 2.3 & 3.3 & 162.6 mA & \(\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}\) & \(\checkmark\) \\
\hline Ch4 & 2.3 & 3.3 & 162.6 mA & \(\boldsymbol{> 1 2 5 m A}\) peak & \(\sqrt{ }\) \\
\hline
\end{tabular}

5 kHz
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Vo r.m.s & Vo pk. & \begin{tabular}{c} 
Peak lo (Vo/20) \\
\(\mathbf{x} \mathbf{1 . 4 1 4}\)
\end{tabular} & Specification & Pass/Fail \\
\hline Ch1 & 1.67 & 2.4 & 118.1 mA & \(>125 \mathrm{~mA}\) peak & \\
\hline Ch2 & 1.67 & 2.4 & 118.1 mA & \(>125 \mathrm{~mA}\) peak & \\
\hline Ch3 & 1.68 & 2.4 & 118.8 mA & \(>125 \mathrm{~mA}\) peak & \\
\hline Ch4 & 1.67 & 2.4 & 118.1 mA & \(>125 \mathrm{~mA}\) peak & \\
\hline
\end{tabular}

\section*{11. Noise Measurements}

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.


Measure the noise output at 10 Hz .
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \begin{tabular}{c} 
Spec in \\
\(\mathrm{dB} V \mathrm{~V} \mathrm{~Hz}\)
\end{tabular} & \begin{tabular}{c} 
Measured @ \\
10 Hz
\end{tabular} & \(-60 \mathrm{~dB}=\) & \begin{tabular}{c} 
Measured in \\
\(\mathrm{nV} \sqrt{ } \mathrm{Hz}\)
\end{tabular} & OK? \\
\hline Ch1 & -143.5 & -92.9 & -152.9 & 22.6 & \(\checkmark\) \\
\hline Ch2 & -143.5 & -93.9 & -153.9 & 20.2 & \(\sqrt{ }\) \\
\hline Ch3 & -143.5 & -91.3 & -151.3 & 27.2 & \(\sqrt{ }\) \\
\hline Ch4 & -143.5 & -92.4 & -152.4 & 24.0 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Notes:}

Specified noise output current at \(10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}\) (worst case)
Total resistance at 10 Hz , in Low noise mode \(=6.7 \mathrm{k}\)
Amplifier noise voltage should therefore be \(=67 \mathrm{nV} \sqrt{\mathrm{Hz}}\)
\(67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}\)
```

Unit.

```
\(\qquad\)
\(\qquad\)
``` Serial No
``` \(\qquad\)
```Test EngineerRMCDate8/11/10
```


## 12. Final Assembly Tests

1. Remove the lid of the box. $\sqrt{ }$
2. Unplug all external connections. $\sqrt{ }$
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight. $\sqrt{ }$
4. Check that all internal connectors are firmly mated. $V$
5. Tighten the screw-locks holding all the external connectors. $\sqrt{ }$
6. Check that all the LEDs are nicely centred. $\sqrt{ }$
7. Check that all links $W 4$ are in place. $\sqrt{ }$
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TACQ74P
Driver board ID	TACQ74P
Driver board Drawing No/Issue No	D0901047_V4
Monitor board ID	MON185
Monitor board Drawing No/Issue No	D070480_4_K

9. Check the security of any modification wires. None
10. Visually inspect. $\sqrt{ }$
11. Put the lid on and fasten all screws, $\sqrt{ }$

Check all external screws for tightness. $\sqrt{ }$

## LIGO Laboratory / LIGO Scientific Collaboration

## Advanced LIGO UK

March 2010

## Triple Acquisition Driver Unit Test Report

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research<br>University of Glasgow<br>Phone +44 (0) 1413305884<br>Fax +44 (0) 1413306833<br>E-mail k.strain@physics.gla.ac.uk<br>Engineering Department<br>CCLRC Rutherford Appleton Laboratory<br>Phone +44 (0) 1235445297<br>Fax +44 (0) 1235445843<br>E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT

```
Unit...............T ACQ P75...........................S..Serial No.
Test Engineer.....Xen.
Date................2/8/10
```

Drive Card ID......T ACQ75
Monitor Card ID...Mon196
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

## 1. Description

## Block diagram



## Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
```

$\qquad$

```
 T_ACQ_P75
 5.
 Serial No
Test Engineer.....Xen.
Date
2/8/10
```


## 2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz)
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	



## 3. Inspection

## Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.

## Links:

Check that the links W2 and W4 are present on each channel.

Test Engineer..
Date

## 4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{l \mid}$
5	0V	$\sqrt{l}$		
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

## LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
5	0V	$\sqrt{\|c\|}$		
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	$\sqrt{ }$

## PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
11	V - (TP2)	-17 v Supply	$\sqrt{ }$
12	V - (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	0 V (TP3)		$\sqrt{ }$
24	0 V (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

## 5. TEST SET UP



Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

## Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit
```

$\qquad$

```
 T_ACQ_P75
 5.
 Serial No
Test Engineer.....Xen.
Date
2/8/10
```


## 6. Power

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents

$\mathbf{+ 1 6 . 5}$ supply current (mA)	- 16.5 supply current (mA)
500 mA	400 mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	$\sqrt{ }$	$\sqrt{ }$
Rear Panel	$\sqrt{ }$	$\sqrt{ }$

If the supplies are correct, proceed to the next test.

Test Engineer.
Date

## 7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{\|c\|}$	$\sqrt{ }$	$\sqrt{ }$

TEST RELAYS

Channel	Indicator		OK?
Ch1	ON	OFF	
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\checkmark$	$\sqrt{ }$

## ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{\|l\|}$	$\sqrt{ }$	$\sqrt{ }$

```
Unit. T_ACQ_P75 Serial No
Test Engineer.....Xen
```

Date. .2/8/10

## 8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

### 8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S   Monitor	Expected value	Pass/Fail:   Equal? (+/-0.1v)
$\mathbf{1}$	0.33	3	0.33 v	$\sqrt{ }$
$\mathbf{2}$	0.33	6	0.33 v	$\sqrt{ }$
$\mathbf{3}$	0.33	9	0.33 v	$\sqrt{ }$
$\mathbf{4}$	0.33	12	0.33 v	$\sqrt{ }$

Adjust the input voltage until the voltage across the load resistor $=1 \mathrm{v}$ r.m.s. Record the current monitor output values.
8.2 Current Monitors

Ch.	Output	V, I and R.M.S   Monitor	Expected   Value	Pass/Fail:   Equal? (+/- 0.1v)
$\mathbf{1}$	1.91	2	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{2}$	1.91	5	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{3}$	1.91	8	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{4}$	1.91	11	$1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}$	$\sqrt{ }$

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S   Monitor	Expected   Value	Pass/Fail:   Equal? (+/- 0.1v)
$\mathbf{1}$	1.94	1	1.86 vdc	$\sqrt{ }$
$\mathbf{2}$	1.94	4	1.86 vdc	$\sqrt{ }$
$\mathbf{3}$	1.95	7	1.86 vdc	$\sqrt{ }$
$\mathbf{4}$	1.95	10	1.86 vdc	$\sqrt{ }$

### 8.4 Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu \mathrm{V} \sqrt{ } \mathrm{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA $\sqrt{ } \mathrm{Hz}$ should give $2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}$ out.

Ch.	Output   $(\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})$	$\div($ Pre-amplifier   gain $)$	Expected   Value	Comparison
$\mathbf{1}$		1.80	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{2}$		1.23	$2.9 \mu \mathrm{~V} \mathrm{~Hz}$	$\sqrt{ }$
$\mathbf{3}$		0.92	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{4}$		1.20	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$

```
Unit
..............T_ACQ_P75
5.
Serial No
Test Engineer.....Xen.
Date.
.2/8/10
```


## 9. Distortion

```
Switch the filters out. Increase input voltage to 5 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.
```

	Acquisition Mode:   Distortion Free?	Non-Acquisition Mode:   Distortion Free?
Ch1	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{2}$	$\sqrt{ }$

```
Unit.
```

$\qquad$

```
 T_ACQ_P75
Test Engineer.....Xen.
Date
.2/8/10
```

$\qquad$
$\qquad$

10 Load tests and Frequency response check
Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

### 10.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo (Vo/20)	Specification	Pass/Fail
Ch1	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch2	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch3	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch4	67.5 mV	3.4 mA	>2.5mA peak	$\checkmark$

10 Hz

	Vor.m.s	$\begin{gathered} \text { Peak lo } \\ (\mathrm{Vo} / 20) \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch2	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch3	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch4	0.066	4.7 mA	>2.5mA peak	$\checkmark$

100 Hz

Vo r.m.s	Peak lo   $(\mathbf{V o / 2 0}) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.324	22.9 mA	$>\mathbf{2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.325	23.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.323	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.321	22.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200Hz

	Vor.m.s	$\begin{gathered} \text { Peak lo } \\ (\mathrm{Vo} / 20) \times 1.414 \end{gathered}$	Specification	Pass/Fail
Ch1	0.390	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch2	0.391	27.6 mA	>2.5mA peak	$\checkmark$
Ch3	0.390	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch4	0.388	27.4 mA	>2.5mA peak	$\checkmark$

1 kHz

Vo r.m.s	Peak lo   $(\mathbf{V o / 2 0}) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.414	29.3 mA	$\boldsymbol{> 2 . 5 m A}$ peak	$\checkmark$
Ch2	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.413	29.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Unit.
.T_ACQ_P75.
Test Engineer.....Xen.
Date. 2/8/10

### 10.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1 Hz

	Vo peak	Peak lo   (Vo/20)	Specification	Pass/Fail
Ch1	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch2	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch3	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch4	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	

10 Hz

	Vo peak	Peak lo   $($ Vo/20 $)$	Specification	Pass/Fail
Ch1	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch2	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch3	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch4	15 mV	750 uA	$>2.5 \mathrm{~mA}$ peak	

100 Hz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.121	8.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.122	8.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.131	9.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.123	8.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.234	16.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.236	16.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.248	17.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.238	16.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.368	26.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.368	26.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.. Xen.
Date 2/8/10

### 10.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x 1 . 4 1 4}$	Specification	Pass/Fail
Ch1	1.98	2.8	140 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\checkmark$
Ch2	1.98	2.8	140 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\checkmark$
Ch3	1.97	2.8	140 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\checkmark$
Ch4	1.97	2.8	140 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA }}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	2.3	3.3	162.6 mA	>125mA peak	$\checkmark$
Ch2	2.3	3.3	162.6 mA	>125mA peak	$\checkmark$
Ch3	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$
Ch4	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$

5 kHz

	Vo r.m.s	Vo pk.	Peak Io (Vo/20)   $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	1.68	2.4	118.8 mA	>125mA peak	$\checkmark$
Ch2	1.68	2.4	118.8 mA	>125mA peak	$\sqrt{ }$
Ch3	1.68	2.4	118.8 mA	>125mA peak	$\sqrt{ }$
Ch4	1.67	2.4	118.1 mA	>125mA peak	$\sqrt{ }$

```
Unit
 .T_ACQ_P75

\section*{11. Noise Measurements}

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

Measure the noise output at 10 Hz .
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \begin{tabular}{c}
Spec in \\
\(\mathrm{dB} V \mathrm{~V} \mathrm{~Hz}\)
\end{tabular} & \begin{tabular}{c}
Measured @ \\
10 Hz
\end{tabular} & \(-60 \mathrm{~dB}=\) & \begin{tabular}{c}
Measured in \\
\(\mathrm{nV} \sqrt{ } \mathrm{Hz}\)
\end{tabular} & OK? \\
\hline Ch1 & -143.5 & -91.4 & -151.4 & 26.9 & \(\checkmark\) \\
\hline Ch2 & -143.5 & -91.7 & -151.7 & 26.0 & \(\sqrt{ }\) \\
\hline Ch3 & -143.5 & -92.0 & -152.0 & 25.1 & \(\sqrt{ }\) \\
\hline Ch4 & -143.5 & -94.0 & -154.0 & 20.0 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Notes:}

Specified noise output current at \(10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}\) (worst case)
Total resistance at 10 Hz , in Low noise mode \(=6.7 \mathrm{k}\)
Amplifier noise voltage should therefore be \(=67 \mathrm{nV} \sqrt{ } \mathrm{Hz}\)
\(67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}\)
```UnitTACQ75PSerial No
```

\qquad
Test Engineer RMC
Date 8/11/10

12. Final Assembly Tests

1. Remove the lid of the box. $\sqrt{ }$
2. Unplug all external connections. $\sqrt{ }$
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight. $\sqrt{ }$
4. Check that all internal connectors are firmly mated. V
5. Tighten the screw-locks holding all the external connectors. $\sqrt{ }$
6. Check that all the LEDs are nicely centred. $\sqrt{ }$
7. Check that all links W4 are in place. $\sqrt[V]{ }$
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TACQ75P
Driver board ID	TACQ75P
Driver board Drawing No/Issue No	D0901047_V4
Monitor board ID	MON196
Monitor board Drawing No/Issue No	D070480_4_K

9. Check the security of any modification wires. None
10. Visually inspect. $\sqrt{ }$
11. Put the lid on and fasten all screws, $\sqrt{ }$

Check all external screws for tightness. $\sqrt{ }$

LIGO Laboratory / LIGO Scientific Collaboration

Advanced LIGO UK

March 2010

Triple Acquisition Driver Unit Test Report

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT

```
Unit...............T ACQ P76...........................S..Serial No.
Test Engineer.....Xen.
Date................2/8/10
```

Drive Card ID......T ACQ76
Monitor Card ID...Mon59
Contents
1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

1. Description

Block diagram

Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
```

\qquad

```
                            T_ACQ_P76
                        6.
                                    Serial No
Test Engineer.....Xen.
Date
2/8/10
```


2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz )
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.

Links

Check that the links W2 and W4 are present on each channel.

4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{l \mid}$
5	0V	\sqrt{l}		
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
5	0V	$\sqrt{\|c\|}$		
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	$\sqrt{ }$

PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
11	V - (TP2)	-17 v Supply	$\sqrt{ }$
12	V - (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	0 V (TP3)		$\sqrt{ }$
24	0 V (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

5. TEST SET UP

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit.
```

\qquad

``` T_ACQ_P76
```

\qquad

6. Power

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents

$\mathbf{+ 1 6 . 5}$ supply current (mA)	- $\mathbf{1 6 . 5}$ supply current (mA)
500 mA	400 mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	$\sqrt{ }$	$\sqrt{ }$
Rear Panel	$\sqrt{ }$	$\sqrt{ }$

If the supplies are correct, proceed to the next test.
\qquad

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{\|c\|}$	$\sqrt{ }$	$\sqrt{ }$

TEST RELAYS

Channel	Indicator		OK?
Ch1	ON	OFF	
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	\checkmark	$\sqrt{ }$

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

```
Unit
                            T_ACQ_P76
                                    Serial No
Test Engineer.....Xen.
Date
2/8/10
```


8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S Monitor	Expected value	Pass/Fail: Equal? (+/-0.1v)
$\mathbf{1}$	0.33	3	0.33 v	$\sqrt{ }$
$\mathbf{2}$	0.33	6	0.33 v	$\sqrt{ }$
$\mathbf{3}$	0.33	9	0.33 v	$\sqrt{ }$
$\mathbf{4}$	0.33	12	0.33 v	$\sqrt{ }$

Adjust the input voltage until the voltage across the load resistor $=1 \mathrm{v}$ r.m.s. Record the current monitor output values.
8.2 Current Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	1.93	2	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{2}$	1.92	5	$1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}$	$\sqrt{ }$
$\mathbf{3}$	1.93	8	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{4}$	1.92	11	$1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}$	$\sqrt{ }$

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	1.96	1	1.86 vdc	$\sqrt{ }$
$\mathbf{2}$	1.95	4	1.86 vdc	$\sqrt{ }$
$\mathbf{3}$	1.96	7	1.86 vdc	$\sqrt{ }$
$\mathbf{4}$	1.96	10	1.86 vdc	$\sqrt{ }$

8.4 Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu \mathrm{V} \sqrt{ } \mathrm{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA $\sqrt{ } \mathrm{Hz}$ should give $2.9 \mu \mathrm{~V} \sqrt{\mathrm{H} z}$ out.

Ch.	Output $(\boldsymbol{\mu} \mathbf{V} \sqrt{ } \mathbf{H z})$	\div (Pre-amplifier gain)	Expected Value	Comparison
$\mathbf{1}$		1.06	$2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}$	$\sqrt{ }$
$\mathbf{2}$		1.68	$2.9 \mu \mathrm{~V} \mathrm{~Hz}$	$\sqrt{ }$
$\mathbf{3}$		1.57	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{4}$		1.01	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$

```
Unit
................T_ACQ_P76
6.
Serial No
Test Engineer.....Xen.
Date
.2/8/10
```


9. Distortion

```
Switch the filters out. Increase input voltage to 5 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.
```

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{2}$	$\sqrt{ }$

```
Unit.
``` \(\qquad\)
``` T_ACQ_P76 Serial No
Test Engineer.....Xen.
Date. .2/8/10
```


10 Load tests and Frequency response check

\qquad

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

10.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo (Vo/20)	Specification	Pass/Fail
Ch1	67.5 mV	3.4 mA	$\boldsymbol{> 2 . 5 m A}$ peak	\checkmark
Ch2	67.5 mV	3.4 mA	$\boldsymbol{> 2 . 5 m A}$ peak	$\sqrt{ }$
Ch3	67.5 mV	3.4 mA	$\boldsymbol{> 2 . 5 m A}$ peak	$\sqrt{ }$
Ch4	67.5 mV	3.4 mA	$\boldsymbol{> 2 . 5 m A}$ peak	$\sqrt{ }$

10 Hz

	Vor.m.s	$\begin{gathered} \text { Peak lo } \\ (\mathrm{Vo} / 20) \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	0.067	4.7 mA	>2.5mA peak	\checkmark
Ch2	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch3	0.066	4.7 mA	>2.5mA peak	\checkmark
Ch4	0.067	4.7 mA	>2.5mA peak	\checkmark

100 Hz

	Vo r.m.s	Peak lo $($ Vo/20 $) \times$ 1.414	Specification	Pass/Fail
Ch1	0.326	23.0 mA	$\boldsymbol{> 2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.324	22.9 mA	$\boldsymbol{> 2 . 5 m A}$ peak	$\sqrt{ }$
Ch3	0.321	22.7 mA	$\boldsymbol{> 2 . 5 m A}$ peak	$\sqrt{ }$
Ch4	0.325	23.0 mA	$\boldsymbol{> 2 . 5 m A}$ peak	$\sqrt{ }$

200Hz

Vo r.m.s	Peak lo $(\mathbf{V o / 2 0}) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.391	27.6 mA	$\boldsymbol{> 2 . 5 m A}$ peak	\checkmark
Ch2	0.390	27.6 mA	$\boldsymbol{> 2 . 5 m A}$ peak	\checkmark
Ch3	0.389	27.5 mA	$\boldsymbol{> 2 . 5 m A}$ peak	\checkmark
Ch4	0.390	27.6 mA	$\boldsymbol{> 2 . 5 m A}$ peak	\checkmark

1 kHz

Vo r.m.s	Peak lo $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.414	29.3 mA	$\boldsymbol{> 2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.415	29.3 mA	$\boldsymbol{> 2 . 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	0.414	29.3 mA	$\boldsymbol{> 2 . 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	0.414	29.3 mA	$\boldsymbol{> 2 . 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$

Unit.
.T_ACQ_P76. Serial No
Test Engineer.....Xen.
Date. 2/8/10

10.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo (Vo/20)	Specification	Pass/Fail
Ch1	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch2	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch3	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch4	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	

10 Hz

	Vo peak	Peak lo $($ Vo/20)	Specification	Pass/Fail
Ch1	16 mV	800 uA	$>2.5 \mathrm{~mA}$ peak	
Ch2	16 mV	800 uA	$>2.5 \mathrm{~mA}$ peak	
Ch3	16 mV	800 uA	$>2.5 \mathrm{~mA}$ peak	
Ch4	16 mV	800 uA	$>2.5 \mathrm{~mA}$ peak	

100 Hz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.130	9.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.126	8.9 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.126	8.9 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.126	8.9 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.246	17.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.242	17.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.242	17.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.242	17.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.. Xen.
Date 2/8/10

10.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x 1 . 4 1 4}$	Specification	Pass/Fail
Ch1	1.98	2.8	140 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	1.98	2.8	140 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch3	1.98	2.8	140 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch4	1.97	2.8	140 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA }}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	>125mA peak	$\sqrt{ }$
Ch2	2.3	3.3	162.6 mA	>125mA peak	\checkmark
Ch3	2.2	3.1	155.5 mA	>125mA peak	$\sqrt{ }$
Ch4	2.2	3.1	155.5 mA	>125mA peak	$\sqrt{ }$

5 kHz

	Vo r.m.s	Vo pk.	Peak Io (Vo/20) $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	1.66	2.3	117.4 mA	>125mA peak	\checkmark
Ch2	1.68	2.4	118.8 mA	>125mA peak	$\sqrt{ }$
Ch3	1.66	2.3	117.4 mA	>125mA peak	$\sqrt{ }$
Ch4	1.66	2.3	117.4 mA	>125mA peak	$\sqrt{ }$

```
Unit
                T_ACQ_P76

\section*{11. Noise Measurements}

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.


Measure the noise output at 10 Hz .
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \begin{tabular}{c} 
Spec in \\
\(\mathrm{dB} V \sqrt{ } \mathrm{~Hz}\)
\end{tabular} & \begin{tabular}{c} 
Measured @ \\
10 Hz
\end{tabular} & \(-60 \mathrm{~dB}=\) & \begin{tabular}{c} 
Measured in \\
\(\mathrm{nV} \sqrt{ } \mathrm{Hz}\)
\end{tabular} & OK? \\
\hline Ch1 & -143.5 & -93.3 & -153.3 & 21.6 & \(\sqrt{ }\) \\
\hline Ch2 & -143.5 & -92.4 & -152.4 & 24.0 & \(\sqrt{ }\) \\
\hline Ch3 & -143.5 & -92.2 & -152.2 & 24.5 & \(\sqrt{ }\) \\
\hline Ch4 & -143.5 & -93.2 & -153.2 & 21.9 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Notes:}

Specified noise output current at \(10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}\) (worst case)
Total resistance at 10 Hz , in Low noise mode \(=6.7 \mathrm{k}\)
Amplifier noise voltage should therefore be \(=67 \mathrm{nV} \sqrt{\mathrm{Hz}}\)
\(67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}\)
```

Unit.

```
\(\qquad\)
``` TACQ76P
``` \(\qquad\)
``` Serial No
``` \(\qquad\)
```

Test Engineer RMC
Date 8/11/10

```

\section*{12. Final Assembly Tests}
1. Remove the lid of the box. \(\sqrt{ }\)
2. Unplug all external connections. \(\sqrt{ }\)
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight. \(\sqrt{ }\)
4. Check that all internal connectors are firmly mated. \(V\)
5. Tighten the screw-locks holding all the external connectors. \(\sqrt{ }\)
6. Check that all the LEDs are nicely centred. \(\sqrt{ }\)
7. Check that all links W4 are in place. \(\sqrt[V]{ }\)
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:
\begin{tabular}{|l|l|}
\hline UoB box ID & TACQ76P \\
\hline Driver board ID & TACQ76P \\
\hline Driver board Drawing No/Issue No & D0901047_V4 \\
\hline Monitor board ID & MON59 \\
\hline Monitor board Drawing No/Issue No & D070480_4_K \\
\hline
\end{tabular}
9. Check the security of any modification wires. None
10. Visually inspect. \(\sqrt{ }\)
11. Put the lid on and fasten all screws, \(\sqrt{ }\)

Check all external screws for tightness. \(\sqrt{ }\)

\section*{LIGO Laboratory / LIGO Scientific Collaboration}

\section*{Advanced LIGO UK}

March 2010

\section*{Triple Acquisition Driver Unit Test Report}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

\author{
Institute for Gravitational Research \\ University of Glasgow \\ Phone +44 (0) 1413305884 \\ Fax +44 (0) 1413306833 \\ E-mail k.strain@physics.gla.ac.uk \\ Engineering Department \\ CCLRC Rutherford Appleton Laboratory \\ Phone +44 (0) 1235445297 \\ Fax +44 (0) 1235445843 \\ E-mail J.Greenhalgh@rl.ac.uk
}

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT}
```

Unit................T ACQ P77.............................Serial No..
Test Engineer.....Xen.
Date................26/8/10

```

Drive Card ID.......T ACQ77
Monitor Card ID....Mon229
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

\section*{1. Description}

\section*{Block diagram}


\section*{Description}

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.
```

Unit
T_ACQ_P77
Serial No
Test Engineer.....Xen.
Date
26/8/10

```

\section*{2. Test equipment}
```

Power supplies (At least $+/-20 \mathrm{v}$ variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz)
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & ISO-TECH & ISR622 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77III & \\
\hline Signal analyzer & Agilent & 35670A & \\
\hline Pre-amplifier & Stanford Systems & SR560 & \\
\hline
\end{tabular}


\section*{3. Inspection}

\section*{Workmanship}

Inspect the general workmanship standard and comment: \(\sqrt{ }\)
Capacitors C35 and C27 have been changed to 1 nF on all channels.

\section*{Links:}

Check that the links W2 and W4 are present on each channel.

\section*{4. Continuity Checks}

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\sqrt{ }\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\sqrt{ }\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\sqrt{ }\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\sqrt{l \mid}\) \\
\hline 5 & 0V & \(\sqrt{l}\) \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\sqrt{ }\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\sqrt{ }\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\sqrt{ }\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{LED Mon}
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\sqrt{ }\) \\
\hline 2 & Imon2P & & 6 & \(\sqrt{ }\) \\
\hline 3 & Imon3P & & 7 & \(\sqrt{ }\) \\
\hline 4 & Imon4P & & 8 & \(\sqrt{ }\) \\
\hline 5 & 0V & \(\sqrt{|c|}\) \\
\hline 6 & Imon1N & & 18 & \(\sqrt{ }\) \\
\hline 7 & Imon2N & & 19 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 20 & \(\sqrt{ }\) \\
\hline 9 & Imon4N & & 21 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{PD from Sat}
\begin{tabular}{|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & \(\mathrm{~V}+\) (TP1) & +17 v Supply & \(\sqrt{ }\) \\
\hline 10 & \(\mathrm{~V}+\) (TP1) & +17 v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17 v Supply & \(\sqrt{ }\) \\
\hline 12 & \(\mathrm{~V}-\) (TP2) & -17 v Supply & \(\sqrt{ }\) \\
\hline 13 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 22 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}


Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, \(4=\) positive input
Drive Input J3 pins 6, 7, 8, \(9=\) negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, \(10=+16.5 \mathrm{v}\)
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, \(25=0 v\)
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin \(1 \quad\) Ch1 \(-=\mathrm{J} 4\) pin 9
Ch2 \(+=\mathrm{J} 4\) pin \(3 \quad\) Ch2- \(=\mathrm{J} 4\) pin 11
Ch3 \(+=\mathrm{J} 4\) pin \(5 \quad\) Ch3- \(=\mathrm{J} 4\) pin 13
Ch4+ = J4 pin \(7 \quad\) Ch4- \(=\mathrm{J} 4\) pin 15
```

Unit.

```
\(\qquad\)
```

 .T_ACQ_P77
    ```
\(\qquad\)
Test Engineer.....Xen.
Date.................26/8/10
```


6. Power

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents

| $\mathbf{+ 1 6 . 5}$ supply current (mA) | - $\mathbf{1 6 . 5}$ supply current (mA) |
| :---: | :---: |
| 500 mA | 400 mA |

Check that all power LEDs are illuminated.

| LEDs | Plus | Minus |
| :---: | :---: | :---: |
| Front Panel | $\sqrt{2}$ | $\sqrt{ }$ |
| Rear Panel | $\sqrt{ }$ | $\sqrt{ }$ |

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen.
Date. 26/8/10

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER

| Channel | Indicator | | OK? |
| :---: | :---: | :---: | :---: |
| | ON | OFF | |
| Ch1 | $\sqrt{2}$ | $\sqrt{ }$ | $\sqrt{ }$ |
| Ch2 | $\sqrt{ }$ | $\sqrt{ }$ | $\sqrt{ }$ |
| Ch3 | $\sqrt{ }$ | $\sqrt{ }$ | $\sqrt{ }$ |
| Ch4 | $\sqrt{\|c\|}$ | $\sqrt{ }$ | $\sqrt{ }$ |

TEST RELAYS

| Channel | Indicator | | OK? |
| :---: | :---: | :---: | :---: |
| Ch1 | ON | OFF | |
| Ch2 | $\sqrt{ }$ | $\sqrt{ }$ | $\sqrt{ }$ |
| Ch3 | $\sqrt{ }$ | $\sqrt{ }$ | $\sqrt{ }$ |
| Ch4 | $\sqrt{ }$ | \checkmark | $\sqrt{ }$ |

ACQUISITION RELAYS

| Channel | Indicator | | OK? |
| :---: | :---: | :---: | :---: |
| | ON | OFF | |
| Ch1 | $\sqrt{2}$ | $\sqrt{ }$ | $\sqrt{ }$ |
| Ch2 | $\sqrt{ }$ | $\sqrt{ }$ | $\sqrt{ }$ |
| Ch3 | $\sqrt{ }$ | $\sqrt{ }$ | $\sqrt{ }$ |
| Ch4 | $\sqrt{\|l\|}$ | $\sqrt{ }$ | $\sqrt{ }$ |

```
Unit
                            .T_ACQ_P77.
                                    Serial No
Test Engineer.....Xen.
```

Date.
26/8/10

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

8.1 Voltage Monitors

| Ch. | Output: | V, I and R.M.S
 Monitor | Expected value | Pass/Fail:
 Equal? (+/-0.1v) |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | 0.33 | 3 | 0.33 v | $\sqrt{ }$ |
| $\mathbf{2}$ | 0.33 | 6 | 0.33 v | $\sqrt{ }$ |
| $\mathbf{3}$ | 0.33 | 9 | 0.33 v | $\sqrt{ }$ |
| $\mathbf{4}$ | 0.33 | 12 | 0.33 v | $\sqrt{ }$ |

Adjust the input voltage until the voltage across the load resistor $=1 \mathrm{v}$ r.m.s. Record the current monitor output values.
8.2 Current Monitors

| Ch. | Output | V, I and R.M.S
 Monitor | Expected
 Value | Pass/Fail:
 Equal? (+/- 0.1v) |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | 1.91 | 2 | 1.86 v r.m.s | $\sqrt{ }$ |
| $\mathbf{2}$ | 1.91 | 5 | 1.86 v r.m.s | $\sqrt{ }$ |
| $\mathbf{3}$ | 1.91 | 8 | 1.86 v r.m.s | $\sqrt{ }$ |
| $\mathbf{4}$ | 1.92 | 11 | $1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}$ | $\sqrt{ }$ |

8.3 R.M.S Monitors

| Ch. | Output | V, I and R.M.S
 Monitor | Expected
 Value | Pass/Fail:
 Equal? $(+/-\mathbf{0 . 1 v})$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | 1.95 | 1 | 1.86 v dc | $\sqrt{ }$ |
| $\mathbf{2}$ | 1.95 | 4 | 1.86 vdc | $\sqrt{ }$ |
| $\mathbf{3}$ | 1.96 | 7 | 1.86 v dc | $\sqrt{ }$ |
| $\mathbf{4}$ | 1.95 | 10 | 1.86 vdc | $\sqrt{ }$ |

8.4 Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu \mathrm{V} \sqrt{ } \mathrm{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA $\sqrt{ } \mathrm{Hz}$ should give $2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}$ out.

| Ch. | Output
 $(\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})$ | $\div($ Pre-amplifier
 gain $)$ | Expected
 Value | Comparison |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | | 1.58 | $2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$ | $\sqrt{ }$ |
| $\mathbf{2}$ | | 1.65 | $2.9 \mu \mathrm{~V} \mathrm{~Hz}$ | $\sqrt{ }$ |
| $\mathbf{3}$ | | 1.42 | $2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$ | $\sqrt{ }$ |
| $\mathbf{4}$ | | 1.82 | $2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$ | $\sqrt{ }$ |

```
Unit
...............T_ACQ_P77
```

\qquad

```
Serial No
Test Engineer.....Xen.
Date................26/8/10.
```


9. Distortion

```
Switch the filters out. Increase input voltage to 5 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.
```

| | Acquisition Mode:
 Distortion Free? | Non-Acquisition Mode:
 Distortion Free? |
| :---: | :---: | :---: |
| Ch1 | $\sqrt{ }$ | $\sqrt{ }$ |
| Ch2 | $\sqrt{ }$ | $\sqrt{ }$ |
| Ch3 | $\sqrt{ }$ | $\sqrt{ }$ |
| Ch4 | $\sqrt{ }$ | $\sqrt{ }$ |

Unit.
.T_ACQ_P77. Serial No
Test Engineer.....Xen
Date. 26/8/10.

10 Load tests and Frequency response check

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

10.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

| | Vo peak | Peak lo
 (Vol20) | Specification | Pass/Fail |
| :---: | :---: | :---: | :---: | :---: |
| Ch1 | 67.5 mV | 3.4 mA | $>2.5 \mathrm{~mA}$ peak | \checkmark |
| Ch2 | 67.5 mV | 3.4 mA | >2.5mA peak | \checkmark |
| Ch3 | 67.5 mV | 3.4 mA | >2.5mA peak | \checkmark |
| Ch4 | 67.5 mV | 3.4 mA | $>2.5 \mathrm{~mA}$ peak | \checkmark |

10Hz

| | Vor.m.s | $\begin{gathered} \text { Peak lo } \\ (\mathrm{Vo} / 20) \times 1.414 \\ \hline \end{gathered}$ | Specification | Pass/Fail |
| :---: | :---: | :---: | :---: | :---: |
| Ch1 | 0.066 | 4.7 mA | $>2.5 \mathrm{~mA} \mathrm{peak}$ | \checkmark |
| Ch2 | 0.066 | 4.7 mA | $>2.5 \mathrm{~mA}$ peak | \checkmark |
| Ch3 | 0.066 | 4.7 mA | $>2.5 \mathrm{~mA}$ peak | \checkmark |
| Ch4 | 0.066 | 4.7 mA | >2.5mA peak | \checkmark |

100 Hz

| | Vor.m.s | $\begin{gathered} \text { Peak lo } \\ (\mathrm{Vo} / 20) \times 1.414 \\ \hline \end{gathered}$ | Specification | Pass/Fail |
| :---: | :---: | :---: | :---: | :---: |
| Ch1 | 0.323 | 22.8 mA | $>2.5 \mathrm{~mA}$ peak | \checkmark |
| Ch2 | 0.323 | 22.8 mA | $>2.5 \mathrm{~mA}$ peak | \checkmark |
| Ch3 | 0.324 | 22.9 mA | $>2.5 \mathrm{~mA}$ peak | \checkmark |
| Ch4 | 0.323 | 22.8 mA | >2.5mA peak | \checkmark |

200Hz

| Vo r.m.s | Peak lo
 $($ Vo/20 $) \times$ 1.414 | Specification | Pass/Fail | |
| :---: | :---: | :---: | :---: | :---: |
| Ch1 | 0.390 | 27.6 mA | $\boldsymbol{> 2 . 5 m A}$ peak | $\sqrt{ }$ |
| Ch2 | 0.390 | 27.6 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |
| Ch3 | 0.390 | 27.6 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |
| Ch4 | 0.390 | 27.6 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |

1 kHz

| | Vo r.m.s | Peak lo
 $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$ | Specification | Pass/Fail |
| :--- | :---: | :---: | :---: | :---: |
| Ch1 | 0.414 | 29.3 mA | $>\mathbf{2 . 5 m A}$ peak | $\sqrt{ }$ |
| Ch2 | 0.415 | 29.3 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |
| Ch3 | 0.415 | 29.3 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |
| Ch4 | 0.414 | 29.3 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |

Unit.
.T_ACQ_P77. Serial No
Test Engineer.....Xen
Date. .26/8/10.

10.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

| | Vo peak | Peak lo
 (Vo/20) | Specification | Pass/Fail |
| :--- | :---: | :---: | :---: | :---: |
| Ch1 | 45 mV | 2.3 mA | $>2.5 \mathrm{~mA}$ peak | |
| Ch2 | 45 mV | 2.3 mA | $>2.5 \mathrm{~mA}$ peak | |
| Ch3 | 45 mV | 2.3 mA | $>2.5 \mathrm{~mA}$ peak | |
| Ch4 | 45 mV | 2.3 mA | $>2.5 \mathrm{~mA}$ peak | |

10 Hz

| | Vo peak | Peak lo
 $($ Vo/20) | Specification | Pass/Fail |
| :--- | :---: | :---: | :---: | :---: |
| Ch1 | 16 mV | 800 uA | $>2.5 \mathrm{~mA}$ peak | |
| Ch2 | 15 mV | 750 uA | $>2.5 \mathrm{~mA}$ peak | |
| Ch3 | 15 mV | 750 uA | $>2.5 \mathrm{~mA}$ peak | |
| Ch4 | 16 mV | 800 uA | $>2.5 \mathrm{~mA}$ peak | |

100 Hz

| | Vo r.m.s | Peak lo
 (Vo/20) $\mathbf{1 . 4 1 4}$ | Specification | Pass/Fail |
| :---: | :---: | :---: | :---: | :---: |
| Ch1 | 0.133 | 9.4 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |
| Ch2 | 0.130 | 9.2 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |
| Ch3 | 0.132 | 9.3 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |
| Ch4 | 0.126 | 8.9 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |

200 Hz

| | Vo r.m.s | Peak lo
 $($ Vo/20) $\mathbf{1 . 4 1 4}$ | Specification | Pass/Fail |
| :--- | :---: | :---: | :---: | :---: |
| Ch1 | 0.251 | 17.7 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |
| Ch2 | 0.247 | 17.5 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |
| Ch3 | 0.249 | 17.6 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |
| Ch4 | 0.241 | 17.0 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |

1 kHz

| | Vo r.m.s | Peak lo
 (Vo/20) $\mathbf{1 . 4 1 4}$ | Specification | Pass/Fail |
| :--- | :---: | :---: | :---: | :---: |
| Ch1 | 0.370 | 26.2 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |
| Ch2 | 0.370 | 26.2 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |
| Ch3 | 0.370 | 26.2 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |
| Ch4 | 0.369 | 26.1 mA | $>2.5 \mathrm{~mA}$ peak | $\sqrt{ }$ |

Unit.
T_ACQ_P77.
Test Engineer.....Xen
Date 26/8/10.

10.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100 Hz

| | Vo r.m.s | Vo pk. | Peak lo (Vo/20)
 $\mathbf{x} 1.414$ | Specification | Pass/Fail |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Ch1 | 1.97 | 2.8 | 139.3 mA | $\boldsymbol{> 1 2 5 m A}$ peak | $\sqrt{ }$ |
| Ch2 | 1.97 | 2.8 | 139.3 mA | $\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$ | $\sqrt{ }$ |
| Ch3 | 1.98 | 2.8 | 140.0 mA | $\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$ | $\sqrt{ }$ |
| Ch4 | 1.98 | 2.8 | 140.0 mA | $\boldsymbol{> 1 2 5 m A}$ peak | $\sqrt{ }$ |

200 Hz

| | Vo r.m.s | Vo pk. | Peak lo (Vo/20)
 $\mathbf{x} 1.414$ | Specification | Pass/Fail |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Ch1 | 2.2 | 3.1 | 155.5 mA | $\boldsymbol{> 1 2 5 m A}$ peak | $\sqrt{ }$ |
| Ch2 | 2.2 | 3.1 | 155.5 mA | $\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$ | $\sqrt{ }$ |
| Ch3 | 2.2 | 3.1 | 155.5 mA | $\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$ | $\sqrt{ }$ |
| Ch4 | 2.2 | 3.1 | 155.5 mA | $\boldsymbol{> 1 2 5 \mathrm { mA }}$ peak | $\sqrt{ }$ |

1 kHz

| | Vor.m.s | Vo pk. | $\begin{gathered} \text { Peak lo (Vo/20) } \\ \times 1.414 \\ \hline \end{gathered}$ | Specification | Pass/Fail |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Ch1 | 2.3 | 3.3 | 162.6 mA | $>125 \mathrm{~mA}$ peak | \checkmark |
| Ch2 | 2.3 | 3.3 | 162.6 mA | $>125 \mathrm{~mA}$ peak | \checkmark |
| Ch3 | 2.3 | 3.3 | 162.6 mA | $>125 \mathrm{~mA}$ peak | \checkmark |
| Ch4 | 2.3 | 3.3 | 162.6 mA | >125mA peak | \checkmark |

5 kHz

| | Vo r.m.s | Vo pk. | Peak Io (Vo/20)
 $\mathbf{x} 1.414$ | Specification | Pass/Fail |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Ch1 | 1.67 | 2.4 | 118.1 mA | >125mA peak | |
| Ch2 | 1.67 | 2.4 | 118.1 mA | $>125 \mathrm{~mA}$ peak | |
| Ch3 | 1.67 | 2.4 | 118.1 mA | $>125 \mathrm{~mA}$ peak | |
| Ch4 | 1.67 | 2.4 | 118.1 mA | >125mA peak | |

Test Engineer.....Xen
Date 26/8/10.

11. Noise Measurements

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

Measure the noise output at 10 Hz .

| | Spec in
 $\mathrm{dB} V \sqrt{ } \mathrm{~Hz}$ | Measured @
 10 Hz | $-60 \mathrm{~dB}=$ | Measured in
 $\mathrm{nV} \sqrt{ } \mathrm{Hz}$ | OK? |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Ch1 | -143.5 | -93.4 | -153.4 | 21.4 | $\sqrt{ }$ |
| Ch2 | -143.5 | -92.2 | -152.2 | 24.5 | $\sqrt{ }$ |
| Ch3 | -143.5 | -93.1 | -153.1 | 22.1 | $\sqrt{ }$ |
| Ch4 | -143.5 | -92.4 | -152.4 | 24.0 | $\sqrt{ }$ |

Notes:

Specified noise output current at $10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}$ (worst case)
Total resistance at 10 Hz , in Low noise mode $=6.7 \mathrm{k}$
Amplifier noise voltage should therefore be $=67 \mathrm{nV} \sqrt{\mathrm{Hz}}$
$67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}$

```
Unit.
TACQ77P
Serial No
```

\qquad

```Test EngineerRMC
```

Date 8/11/10

12. Final Assembly Tests

1. Remove the lid of the box. $\sqrt{ }$
2. Unplug all external connections. $\sqrt{ }$
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight. $\sqrt{ }$
4. Check that all internal connectors are firmly mated. V
5. Tighten the screw-locks holding all the external connectors. $\sqrt{ }$
6. Check that all the LEDs are nicely centred. $\sqrt{ }$
7. Check that all links W4 are in place. $\sqrt[V]{ }$
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TACQ77P
Driver board ID	TACQ77P
Driver board Drawing No/Issue No	D0901047_V4
Monitor board ID	MON229
Monitor board Drawing No/Issue No	D070480_5_K

9. Check the security of any modification wires. None
10. Visually inspect. $\sqrt{ }$
11. Put the lid on and fasten all screws, $\sqrt{ }$

Check all external screws for tightness. $\sqrt{ }$

LIGO Laboratory / LIGO Scientific Collaboration

Advanced LIGO UK

March 2010

Triple Acquisition Driver Unit Test Report

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT

```
Unit................T ACQ P78.............................Serial No.
Test Engineer.....Xen.
Date................26/8/10
```

Drive Card ID.......T_ACQ78
Monitor Card ID....Mon230
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

1. Description

Block diagram

Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
```

\qquad

``` T_ACQ_P78
```

\qquad

``` Serial No
Test Engineer.....Xen.
Date 26/8/10
```


2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz )
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670 A	
Pre-amplifier	Stanford Systems	SR560	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.

Links:

Check that the links W2 and W4 are present on each channel.

Test Engineer.....Xen.
Date.

4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{l \mid}$
5	0V	\sqrt{l}		
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
5	0V	$\sqrt{\|c\|}$		
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	$\sqrt{ }$

PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
11	V - (TP2)	-17 v Supply	$\sqrt{ }$
12	V - (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	0 V (TP3)		$\sqrt{ }$
24	0 V (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

5. TEST SET UP

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit.
```

\qquad

``` T_ACQ_P78
``` \(\qquad\)
Test Engineer.....Xen.
Date.................25/8/10
```


## 6. Power

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents

$\mathbf{+ 1 6 . 5}$ supply current (mA)	- $\mathbf{1 6 . 5}$ supply current (mA)
500 mA	400 mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	$\sqrt{ }$	$\sqrt{ }$
Rear Panel	$\sqrt{ }$	$\sqrt{ }$

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen...
Date. 25/8/10

## 7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\checkmark$	$\checkmark$	$\checkmark$
Ch2	$\checkmark$	$\checkmark$	$\checkmark$
Ch3	$\checkmark$	$\checkmark$	$\checkmark$
Ch4	$\checkmark$	$\checkmark$	$\checkmark$

TEST RELAYS

Channel	Indicator		OK?
Ch1	ON	OFF	
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\checkmark$	$\sqrt{ }$

## ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\checkmark$	$\checkmark$
Ch2	$\sqrt{ }$	$\checkmark$	$\sqrt{ }$
Ch3	$\checkmark$	$\checkmark$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\checkmark$	$\sqrt{ }$

```
Unit
 .T_ACQ_P78
 Serial No
Test Engineer.....Xen.
```

Date.
25/8/10

## 8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

### 8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S   Monitor	Expected value	Pass/Fail:   Equal? (+/-0.1v)
$\mathbf{1}$	0.33	3	0.33 v	$\sqrt{ }$
$\mathbf{2}$	0.33	6	0.33 v	$\sqrt{ }$
$\mathbf{3}$	0.33	9	0.33 v	$\sqrt{ }$
$\mathbf{4}$	0.33	12	0.33 v	$\sqrt{ }$

Adjust the input voltage until the voltage across the load resistor $=1 \mathrm{v}$ r.m.s. Record the current monitor output values.
8.2 Current Monitors

Ch.	Output	V, I and R.M.S   Monitor	Expected   Value	Pass/Fail:   Equal? (+/- 0.1v)
$\mathbf{1}$	1.91	2	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{2}$	1.91	5	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{3}$	1.92	8	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{4}$	1.91	11	$1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}$	$\sqrt{ }$

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S   Monitor	Expected   Value	Pass/Fail:   Equal? ( $+/ \mathbf{0 . 1 v})$
$\mathbf{1}$	1.95	1	1.86 v dc	$\sqrt{ }$
$\mathbf{2}$	1.95	4	1.86 vdc	$\sqrt{ }$
$\mathbf{3}$	1.95	7	1.86 v dc	$\sqrt{ }$
$\mathbf{4}$	1.95	10	1.86 vdc	$\sqrt{ }$

### 8.4 Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu \mathrm{V} \sqrt{ } \mathrm{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA $\sqrt{ } \mathrm{Hz}$ should give $2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}$ out.

Ch.	Output   $(\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})$	$\div($ Pre-amplifier   gain)	Expected   Value	Comparison
$\mathbf{1}$		1.59	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{2}$		1.59	$2.9 \mu \mathrm{~V} \mathrm{~Hz}$	$\sqrt{ }$
$\mathbf{3}$		1.51	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{4}$		1.74	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$

```
Unit
...............T_ACQ_P78
8..
Serial No
Test Engineer.....Xen.
Date................26/8/10.
```


## 9. Distortion

```
Switch the filters out. Increase input voltage to 5 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.
```

	Acquisition Mode:   Distortion Free?	Non-Acquisition Mode:   Distortion Free?
Ch1	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{2}$	$\sqrt{ }$

Unit.
.T_ACQ_P78.
Test Engineer.....Xen.
Date. .26/8/10.

## 10 Load tests and Frequency response check

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

### 10.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo (Vo/20)	Specification	Pass/Fail
Ch1	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch2	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch3	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch4	67.5 mV	3.4 mA	>2.5mA peak	$\checkmark$

10Hz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.066	4.7 mA	$>\mathbf{~ 2 . 5 m A ~ p e a k ~}$	$\sqrt{ }$
Ch2	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.065	4.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

100 Hz

	Vor.m.s	$\begin{gathered} \text { Peak lo } \\ (\mathrm{Vo} / 20) \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	0.322	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch2	0.324	22.9 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch3	0.324	22.9 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch4	0.321	22.7 mA	>2.5mA peak	1

200 Hz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times$ 1.414	Specification	Pass/Fail	
Ch1	0.389	27.5 mA	$\boldsymbol{> 2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.391	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.390	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.388	27.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Unit.
T_ACQ_P78.
Test Engineer.....Xen
Date. .26/8/10.

### 10.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo   (Vo/20)	Specification	Pass/Fail
Ch1	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch2	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch3	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch4	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	

10 Hz

	Vo peak	Peak lo   $($ Vo/20 $)$	Specification	Pass/Fail
Ch1	13 mV	650 uA	$>2.5 \mathrm{~mA}$ peak	
Ch2	16 mV	800 uA	$>2.5 \mathrm{~mA}$ peak	
Ch3	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch4	12 mV	600 uA	$>2.5 \mathrm{~mA}$ peak	

100 Hz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.128	9.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.133	9.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.131	9.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.129	9.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.244	17.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.251	17.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.248	17.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.246	17.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.371	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.. Xen.
Date .26/8/10.

### 10.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch3	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch4	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA }}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	2.3	3.3	162.6 mA	>125mA peak	$\checkmark$
Ch2	2.3	3.3	162.6 mA	>125mA peak	$\checkmark$
Ch3	2.2	3.1	155.5 mA	>125mA peak	$\sqrt{ }$
Ch4	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$

5 kHz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x 1 . 4 1 4}$	Specification	Pass/Fail
Ch1	1.67	2.4	118.1 mA	>125mA peak	
Ch2	1.67	2.4	118.1 mA	>125mA peak	
Ch3	1.66	2.3	117.4 mA	>125mA peak	
Ch4	1.67	2.4	118.1 mA	>125mA peak	

Test Engineer..... Xen
Date 26/8/10.

## 11. Noise Measurements

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.


Measure the noise output at 10 Hz .

	Spec in   $\mathrm{dB} V \sqrt{ } \mathrm{~Hz}$	Measured @   10 Hz	$-60 \mathrm{~dB}=$	Measured in   $\mathrm{nV} \sqrt{ } \mathrm{Hz}$	OK?
Ch1	-143.5	-91.8	-151.8	25.7	$\sqrt{ }$
Ch2	-143.5	-92.8	-152.8	22.9	$\sqrt{ }$
Ch3	-143.5	-91.5	-151.5	26.6	$\sqrt{ }$
Ch4	-143.5	-90.7	-150.7	29.2	$\sqrt{ }$

## Notes:

Specified noise output current at $10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}$ (worst case)
Total resistance at 10 Hz , in Low noise mode $=6.7 \mathrm{k}$
Amplifier noise voltage should therefore be $=67 \mathrm{nV} \sqrt{ } \mathrm{Hz}$
$67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}$

```
Unit.
TACQ78P
Serial No
```

$\qquad$

```
Test Engineer RMC
Date 8/11/10
```


## 12. Final Assembly Tests

1. Remove the lid of the box. $\sqrt{ }$
2. Unplug all external connections. $\sqrt{ }$
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight. $\sqrt{ }$
4. Check that all internal connectors are firmly mated. $V$
5. Tighten the screw-locks holding all the external connectors. $\sqrt{ }$
6. Check that all the LEDs are nicely centred. $\sqrt{ }$
7. Check that all links W4 are in place. $\sqrt[V]{ }$
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TACQ78P
Driver board ID	TACQ78P
Driver board Drawing No/Issue No	D0901047_V4
Monitor board ID	MON230
Monitor board Drawing No/Issue No	D0701047_V4

9. Check the security of any modification wires. None
10. Visually inspect. $\sqrt{ }$
11. Put the lid on and fasten all screws, $\sqrt{ }$

Check all external screws for tightness. $\sqrt{ }$

## LIGO Laboratory / LIGO Scientific Collaboration

## Advanced LIGO UK

March 2010

## Triple Acquisition Driver Unit Test Report

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research<br>University of Glasgow<br>Phone +44 (0) 1413305884<br>Fax +44 (0) 1413306833<br>E-mail k.strain@physics.gla.ac.uk<br>Engineering Department<br>CCLRC Rutherford Appleton Laboratory<br>Phone +44 (0) 1235445297<br>Fax +44 (0) 1235445843<br>E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT

```
Unit................T ACQ P79.............................Serial No.
Test Engineer.....Xe=n.
Date................6/9/10
```

Drive Card ID.......T ACQ79
Monitor Card ID....Mon231
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

## 1. Description

## Block diagram



## Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
```

$\qquad$

``` T_ACQ_P79
``` \(\qquad\)
``` Serial No
Test Engineer.....Xen.
Date 6/9/10
```


## 2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz)
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	



## 3. Inspection

## Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.

## Links:

Check that the links W2 and W4 are present on each channel.

## 4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{l \mid}$
5	0V	$\sqrt{l}$		
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

## LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
5	0V	$\sqrt{\|c\|}$		
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	$\sqrt{ }$

## PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
11	V - (TP2)	-17 v Supply	$\sqrt{ }$
12	V - (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	0 V (TP3)		$\sqrt{ }$
24	0 V (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

## 5. TEST SET UP



Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

## Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit.
```

$\qquad$

``` T_ACQ_P79 79. Serial No
Test Engineer.....Xen.
Date 6/9/10.
```


## 6. Power

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents

$\mathbf{+ 1 6 . 5}$ supply current (mA)	- $\mathbf{1 6 . 5}$ supply current (mA)
500 mA	400 mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	$\sqrt{2}$	$\sqrt{ }$
Rear Panel	$\sqrt{ }$	$\sqrt{ }$

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen.
Date. 6/9/10

## 7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\checkmark$	$\checkmark$	$\checkmark$
Ch2	$\checkmark$	$\checkmark$	$\checkmark$
Ch3	$\checkmark$	$\checkmark$	$\checkmark$
Ch4	$\checkmark$	$\checkmark$	$\checkmark$

TEST RELAYS

Channel	Indicator		OK?
Ch1	ON	OFF	
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

## ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\checkmark$	$\checkmark$	$\checkmark$
Ch2	$\checkmark$	$\checkmark$	$\checkmark$
Ch3	$\checkmark$	$\checkmark$	$\checkmark$
Ch4	$\checkmark$	$\checkmark$	$\checkmark$

```
Unit. .T_ACQ_P79 Serial No
Test Engineer.....Xen.
```

Date. .6/9/10

## 8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

### 8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S   Monitor	Expected value	Pass/Fail:   Equal? (+/-0.1v)
$\mathbf{1}$	0.33	3	0.33 v	$\sqrt{ }$
$\mathbf{2}$	0.33	6	0.33 v	$\sqrt{ }$
$\mathbf{3}$	0.33	9	0.33 v	$\sqrt{ }$
$\mathbf{4}$	0.33	12	0.33 v	$\sqrt{ }$

Adjust the input voltage until the voltage across the load resistor $=1 \mathrm{v}$ r.m.s. Record the current monitor output values.
8.2 Current Monitors

Ch.	Output	V, I and R.M.S   Monitor	Expected   Value	Pass/Fail:   Equal? (+/- 0.1v)
$\mathbf{1}$	1.91	2	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{2}$	1.91	5	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{3}$	1.91	8	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{4}$	1.91	11	$1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}$	$\sqrt{ }$

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S   Monitor	Expected   Value	Pass/Fail:   Equal? $(+/-\mathbf{0 . 1 v})$
$\mathbf{1}$	1.94	1	1.86 v dc	$\sqrt{ }$
$\mathbf{2}$	1.95	4	1.86 vdc	$\sqrt{ }$
$\mathbf{3}$	1.95	7	1.86 v dc	$\sqrt{ }$
$\mathbf{4}$	1.94	10	1.86 vdc	$\sqrt{ }$

### 8.4 Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu \mathrm{V} \sqrt{ } \mathrm{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA $\sqrt{\mathrm{Hz}}$ should give $2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}$ out.

Ch.	Output   $(\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})$	$\div($ Pre-amplifier   gain)	Expected   Value	Comparison
$\mathbf{1}$		1.66	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{2}$		1.69	$2.9 \mu \mathrm{~V} \mathrm{~Hz}$	$\sqrt{ }$
$\mathbf{3}$		1.61	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{4}$		1.30	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$

```
Unit
..............T_ACQ_P79
79.
Serial No
Test Engineer.....Xen.
Date
6/9/10
```


## 9. Distortion

```
Switch the filters out. Increase input voltage to 5 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.
```

	Acquisition Mode:   Distortion Free?	Non-Acquisition Mode:   Distortion Free?
Ch1	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{2}$	$\sqrt{ }$

Unit.
.T_ACQ_P79. Serial No
Test Engineer.....Xen.
Date.
.6/9/10

## 10 Load tests and Frequency response check

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

### 10.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo (Vo/20)	Specification	Pass/Fail
Ch1	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch2	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch3	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch4	67.5 mV	3.4 mA	>2.5mA peak	$\checkmark$

10Hz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.066	4.7 mA	$>\mathbf{~ 2 . 5 m A ~ p e a k ~}$	$\sqrt{ }$
Ch2	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

100 Hz

	Vor.m.s	$\begin{gathered} \text { Peak lo } \\ (\mathrm{Vo} / 20) \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	0.322	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch2	0.324	22.9 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch3	0.322	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch4	0.321	22.7 mA	>2.5mA peak	1

200 Hz

	Vor.m.s	$\begin{gathered} \text { Peak lo } \\ (\mathrm{Vo} / 20) \times 1.414 \end{gathered}$	Specification	Pass/Fail
Ch1	0.389	27.5 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch2	0.390	27.6 mA	>2.5mA peak	$\checkmark$
Ch3	0.389	27.5 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch4	0.389	27.5 mA	>2.5mA peak	$\checkmark$

1 kHz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.415	29.3 mA	$>\mathbf{2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Unit. .T_ACQ_P79. Serial No
Test Engineer.. ..Xen.
Date.
.6/9/10

### 10.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo   (Vo/20)	Specification	Pass/Fail
Ch1	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch2	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch3	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch4	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	

10 Hz

	Vo peak	Peak Io   (Vo/20)	Specification	Pass/Fail
Ch1	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch2	15 mV	750 uA	$>2.5 \mathrm{~mA}$ peak	
Ch3	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch4	15 mV	750 uA	$>2.5 \mathrm{~mA}$ peak	

100 Hz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.131	9.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.129	9.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.127	9.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.123	8.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Peak lo   $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.248	17.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.246	17.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.243	17.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.238	16.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.368	26.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.. Xen.
Date. .6/9/10

### 10.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	1.99	2.8	140.7 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	1.99	2.8	140.7 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

200Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA }}$ peak	$\sqrt{ }$

1 kHz

	Vor.m.s	Vo pk.	$\begin{gathered} \text { Peak lo (Vo/20) } \\ \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	2.3	3.3	162.6 mA	$>125 \mathrm{~mA}$ peak	$\checkmark$
Ch2	2.3	3.3	162.6 mA	$>125 \mathrm{~mA}$ peak	$\checkmark$
Ch3	2.2	3.1	155.5 mA	$>125 \mathrm{~mA}$ peak	$\checkmark$
Ch4	2.3	3.3	162.6 mA	>125mA peak	$\checkmark$

5 kHz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x 1 . 4 1 4}$	Specification	Pass/Fail
Ch1	1.68	2.4	118.8 mA	>125mA peak	
Ch2	1.68	2.4	118.8 mA	>125mA peak	
Ch3	1.66	2.3	117.4 mA	>125mA peak	
Ch4	1.68	2.4	118.8 mA	>125mA peak	

Test Engineer.....Xen.
Date .6/9/10

## 11. Noise Measurements

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.


Measure the noise output at 10 Hz .

	Spec in   $\mathrm{dB} V \mathrm{~V} \mathrm{~Hz}$	Measured @   10 Hz	$-60 \mathrm{~dB}=$	Measured in   $\mathrm{nV} \sqrt{ } \mathrm{Hz}$	OK?
Ch1	-143.5	-92.3	-152.3	24.3	$\checkmark$
Ch2	-143.5	-92.7	-152.7	23.2	$\sqrt{ }$
Ch3	-143.5	-92.3	-152.3	24.3	$\sqrt{ }$
Ch4	-143.5	-92.1	-152.1	24.8	$\sqrt{ }$

## Notes:

Specified noise output current at $10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}$ (worst case)
Total resistance at 10 Hz , in Low noise mode $=6.7 \mathrm{k}$
Amplifier noise voltage should therefore be $=67 \mathrm{nV} \sqrt{ } \mathrm{Hz}$ $67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{\mathrm{~Hz}}$

```
Unit.
 TACQ79P
 Serial No
```

$\qquad$

```
Test Engineer
 RMC
Date
.8/10/11
```


## 12. Final Assembly Tests

1. Remove the lid of the box. $\sqrt{ }$
2. Unplug all external connections. $\sqrt{ }$
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight. $\sqrt{ }$
4. Check that all internal connectors are firmly mated. $\sqrt{ }$
5. Tighten the screw-locks holding all the external connectors. $\sqrt{ }$
6. Check that all the LEDs are nicely centred. $\sqrt{ }$
7. Check that all links W4 are in place. $\sqrt[V]{ }$
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TACQ78P
Driver board ID	TACQ78
Driver board Drawing No/Issue No	D0901047_V4
Monitor board ID	MON231__5_K
Monitor board Drawing No/Issue No	D070480_5_K

9. Check the security of any modification wires. None
10. Visually inspect. $\sqrt{ }$
11. Put the lid on and fasten all screws,

Check all external screws for tightness.

## LIGO Laboratory / LIGO Scientific Collaboration

## Advanced LIGO UK

## Triple Acquisition Driver Unit Test Report

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research<br>University of Glasgow<br>Phone +44 (0) 1413305884<br>Fax +44 (0) 1413306833<br>E-mail k.strain@physics.gla.ac.uk<br>Engineering Department<br>CCLRC Rutherford Appleton Laboratory<br>Phone +44 (0) 1235445297<br>Fax +44 (0) 1235445843<br>E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT

```
Unit...............T ACQ P80...........................S..Serial No.
Test Engineer.....Xen.
Date................6/9/10
```

Drive Card ID.......T ACQ80
Monitor Card ID....Mon232
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

## 1. Description

## Block diagram



## Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
```

$\qquad$

```
 T_ACQ_P80
```

$\qquad$

```
 Serial No
Test Engineer.....Xen.
Date
6/9/10
```


## 2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz)
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	$33250 A$	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	



## 3. Inspection

## Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.

## Links

Check that the links W2 and W4 are present on each channel.

Test Engineer.....Xen.
Date.

## 4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{l \mid}$
5	0V	$\sqrt{l}$		
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

## LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
5	0V	$\sqrt{\|c\|}$		
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	$\sqrt{ }$

## PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	$\checkmark$
10	$\mathrm{V}+$ (TP1)	+17v Supply	$\checkmark$
11	V - (TP2)	-17v Supply	$\checkmark$
12	V- (TP2)	-17v Supply	$\checkmark$
13	0V (TP3)		$\checkmark$
22	0V (TP3)		$\checkmark$
23	0V (TP3)		$\checkmark$
24	0V (TP3)		$\checkmark$
25	0V (TP3)		$\checkmark$

## 5. TEST SET UP



Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

## Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit.
```

$\qquad$

```
 T_ACQ_P80.
 Serial No
Test Engineer.....Xen.
Date...............26/8/10.
```


## 6. Power

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents

$\mathbf{+ 1 6 . 5}$ supply current (mA)	- 16.5 supply current (mA)
500 mA	400 mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	$\sqrt{2}$	$\sqrt{ }$
Rear Panel	$\sqrt{ }$	$\sqrt{ }$

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen..
Date. 26/8/10

## 7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\checkmark$	$\checkmark$	$\checkmark$
Ch2	$\checkmark$	$\checkmark$	$\checkmark$
Ch3	$\checkmark$	$\checkmark$	$\checkmark$
Ch4	$\checkmark$	$\checkmark$	$\checkmark$

TEST RELAYS

Channel	Indicator		OK?
Ch1	ON	OFF	
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

## ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\checkmark$	$\checkmark$	$\checkmark$
Ch2	$\checkmark$	$\checkmark$	$\checkmark$
Ch3	$\checkmark$	$\checkmark$	$\checkmark$
Ch4	$\checkmark$	$\checkmark$	$\checkmark$

```
Unit
 T_ACQ_P80
Test Engineer.....Xen.
```

Date 26/8/10

## 8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

### 8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S   Monitor	Expected value	Pass/Fail:   Equal? (+/-0.1v)
$\mathbf{1}$	0.33	3	0.33 v	$\sqrt{ }$
$\mathbf{2}$	0.33	6	0.33 v	$\sqrt{ }$
$\mathbf{3}$	0.33	9	0.33 v	$\sqrt{ }$
$\mathbf{4}$	0.33	12	0.33 v	$\sqrt{ }$

Adjust the input voltage until the voltage across the load resistor $=1 \mathrm{v}$ r.m.s. Record the current monitor output values.
8.2 Current Monitors

Ch.	Output	V, I and R.M.S   Monitor	Expected   Value	Pass/Fail:   Equal? (+/- 0.1v)
$\mathbf{1}$	1.92	2	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{2}$	1.92	5	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{3}$	1.92	8	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{4}$	1.92	11	$1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}$	$\sqrt{ }$

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S   Monitor	Expected   Value	Pass/Fail:   Equal? (+/- 0.1v)
$\mathbf{1}$	1.96	1	1.86 vdc	$\sqrt{ }$
$\mathbf{2}$	1.96	4	1.86 vdc	$\sqrt{ }$
$\mathbf{3}$	1.96	7	1.86 vdc	$\sqrt{ }$
$\mathbf{4}$	1.96	10	1.86 vdc	$\sqrt{ }$

### 8.4 Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu \mathrm{V} \sqrt{ } \mathrm{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA $\sqrt{ } \mathrm{Hz}$ should give $2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}$ out.

Ch.	Output   $(\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z})}$	$\div($ Pre-amplifier   gain)	Expected   Value	Comparison
$\mathbf{1}$		1.52	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{2}$		1.75	$2.9 \mu \mathrm{~V} \mathrm{~Hz}$	$\sqrt{ }$
$\mathbf{3}$		1.70	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{4}$		1.72	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$

```
Unit
..............T_ACQ_P80
0..
Serial No
Test Engineer.....Xen.
Date
6/9/10
```


## 9. Distortion

```
Switch the filters out. Increase input voltage to 5 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.
```

	Acquisition Mode:   Distortion Free?	Non-Acquisition Mode:   Distortion Free?
Ch1	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{2}$	$\sqrt{ }$

Test Engineer.....Xen.
Date. .6/9/10

## 10 Load tests and Frequency response check

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

### 10.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo   $($ Vo/20 $)$	Specification	Pass/Fail
Ch1	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

10Hz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.066	4.7 mA	$>\mathbf{~ 2 . 5 m A ~ p e a k ~}$	$\sqrt{ }$
Ch2	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

100 Hz

	Vor.m.s	$\begin{gathered} \text { Peak lo } \\ (\mathrm{Vo} / 20) \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	0.323	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch2	0.323	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch3	0.322	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch4	0.322	22.8 mA	>2.5mA peak	1

200Hz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times$ 1.414	Specification	Pass/Fail	
Ch1	0.390	27.6 mA	$\boldsymbol{> 2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.390	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.390	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.389	27.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.415	29.3 mA	$>\mathbf{2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Unit.
.T_ACQ_P80. Serial No
Test Engineer..
Xen.
Date
.6/9/10

### 10.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo   (Vo/20)	Specification	Pass/Fail
Ch1	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch2	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch3	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch4	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	

10 Hz

	Vo peak	Peak lo   $($ Vo/20 $)$	Specification	Pass/Fail
Ch1	15 mV	750 uA	$>2.5 \mathrm{~mA}$ peak	
Ch2	15 mV	750 uA	$>2.5 \mathrm{~mA}$ peak	
Ch3	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch4	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	

100 Hz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.130	9.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.129	9.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.129	9.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.130	9.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.247	17.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.246	17.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.246	17.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.247	17.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.. Xen.
Date .6/9/10

### 10.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA }}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	2.3	3.3	162.6 mA	>125mA peak	$\checkmark$
Ch2	2.3	3.3	162.6 mA	>125mA peak	$\checkmark$
Ch3	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$
Ch4	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$

5 kHz

	Vo r.m.s	Vo pk.	Peak Io (Vo/20)   $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	1.67	2.4	118.1 mA	>125mA peak	
Ch2	1.68	2.4	118.8 mA	$>125 \mathrm{~mA}$ peak	
Ch3	1.67	2.4	118.1 mA	$>125 \mathrm{~mA}$ peak	
Ch4	1.68	2.4	118.8 mA	>125mA peak	

## 11. Noise Measurements

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.


Measure the noise output at 10 Hz .

	Spec in   $\mathrm{dB} V \sqrt{ } \mathrm{~Hz}$	Measured @   10 Hz	$-60 \mathrm{~dB}=$	Measured in   $\mathrm{nV} \sqrt{ } \mathrm{Hz}$	OK?
Ch1	-143.5	-92.9	-152.9	22.6	$\sqrt{ }$
Ch2	-143.5	-92.1	-152.1	24.8	$\sqrt{ }$
Ch3	-143.5	-92.3	-152.3	24.3	$\sqrt{ }$
Ch4	-143.5	-92.9	-152.9	22.6	$\sqrt{ }$

## Notes:

Specified noise output current at $10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}$ (worst case)
Total resistance at 10 Hz , in Low noise mode $=6.7 \mathrm{k}$
Amplifier noise voltage should therefore be $=67 \mathrm{nV} \sqrt{\mathrm{Hz}}$
$67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}$

```
Unit.
\(\qquad\)
```Test EngineerRMCDate\(.4 / 11 / 10\)
```


12. Final Assembly Tests

1. Remove the lid of the box. $\sqrt{ }$
2. Unplug all external connections. $\sqrt{ }$
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight. $\sqrt{ }$
4. Check that all internal connectors are firmly mated. $\sqrt{ }$
5. Tighten the screw-locks holding all the external connectors.
6. Check that all the LEDs are nicely centred.
7. Check that all links W4 are in place. $\sqrt[V]{ }$
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TACQ80P
Driver board ID	TACQ80P
Driver board Drawing No/Issue No	D0901047_V4
Monitor board ID	MON232
Monitor board Drawing No/Issue No	D070480_V5_K

9. Check the security of any modification wires. None
10. Visually inspect. $\sqrt{ }$
11. Put the lid on and fasten all screws, $\sqrt{ }$

Check all external screws for tightness. $\sqrt{ }$

LIGO Laboratory / LIGO Scientific Collaboration

Advanced LIGO UK

March 2010

Triple Acquisition Driver Unit Test Report

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT

```
Unit...............T ACQ P81............................Serial No.
Test Engineer.....Xen.
Date ._.........7/10/10.
```

Drive Card ID.......T ACQ81
Monitor Card ID....Mon233
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

1. Description

Block diagram

Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
```

\qquad

```
                            T_ACQ_P81
                        1.
                                    Serial No.
Test Engineer.....Xen.
Date
7/9/10
```


2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz )
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.

Links:

Check that the links W2 and W4 are present on each channel.

Test Engineer..
Date.
\qquad
\qquad

4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	OV	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
5	0V	$\sqrt{\|c\|}$		
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	$\sqrt{ }$

PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
11	V - (TP2)	-17 v Supply	$\sqrt{ }$
12	V - (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	0 V (TP3)		$\sqrt{ }$
24	0 V (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

5. TEST SET UP

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit.
```

\qquad

``` T_ACQ_P81
``` \(\qquad\)
``` Serial No
Test Engineer.....Xen.
Date 6/9/10
```


6. Power

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents

$\mathbf{+ 1 6 . 5}$ supply current (mA)	- $\mathbf{1 6 . 5}$ supply current (mA)
500 mA	400 mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	$\sqrt{ }$	$\sqrt{ }$
Rear Panel	$\sqrt{ }$	$\sqrt{ }$

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen.
Date. 6/9/10

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
Ch1	ON	OFF	
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	\checkmark	$\sqrt{ }$

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	\checkmark	\checkmark
Ch2	$\sqrt{ }$	\checkmark	$\sqrt{ }$
Ch3	$\sqrt{ }$	\checkmark	$\sqrt{ }$
Ch4	$\sqrt{ }$	\checkmark	$\sqrt{ }$

```
Unit
                                T_ACQ_P81
Test Engineer.....Xen.
```

Date
.6/9/10

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S Monitor	Expected value	Pass/Fail: Equal? (+/-0.1v)
$\mathbf{1}$	0.33	3	0.33 v	$\sqrt{ }$
$\mathbf{2}$	0.33	6	0.33 v	$\sqrt{ }$
$\mathbf{3}$	0.33	9	0.33 v	$\sqrt{ }$
$\mathbf{4}$	0.33	12	0.33 v	$\sqrt{ }$

Adjust the input voltage until the voltage across the load resistor $=1 \mathrm{v}$ r.m.s. Record the current monitor output values.
8.2 Current Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	1.92	2	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{2}$	1.92	5	$1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}$	$\sqrt{ }$
$\mathbf{3}$	1.92	8	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{4}$	1.92	11	$1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}$	$\sqrt{ }$

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	1.95	1	1.86 vdc	$\sqrt{ }$
$\mathbf{2}$	1.95	4	1.86 vdc	$\sqrt{ }$
$\mathbf{3}$	1.95	7	1.86 vdc	$\sqrt{ }$
$\mathbf{4}$	1.95	10	1.86 vdc	$\sqrt{ }$

8.4 Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu \mathrm{V} \sqrt{\mathrm{Hz}}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA $\sqrt{ } \mathrm{Hz}$ should give $2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}$ out.

Ch.	Output $(\boldsymbol{\mu} \mathbf{V} \sqrt{ } \mathbf{H z})$	\div (Pre-amplifier gain)	Expected Value	Comparison
$\mathbf{1}$		1.44	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{2}$		1.36	$2.9 \mu \mathrm{~V} \mathrm{~Hz}$	$\sqrt{ }$
$\mathbf{3}$		1.87	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{4}$		1.47	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$

```
Unit
...............T_ACQ_P81
```

\qquad

```
Serial No
Test Engineer.....Xen.
Date
6/9/10
```


9. Distortion

```
Switch the filters out. Increase input voltage to 5 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.
```

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{2}$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$

```
Unit.
```

\qquad

```
                            T_ACQ_P81
Test Engineer.....Xen.
Date
.7/9/10
```

10 Load tests and Frequency response check
Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

10.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo (Vol20)	Specification	Pass/Fail
Ch1	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch2	67.5 mV	3.4 mA	>2.5mA peak	\checkmark
Ch3	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch4	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark

10 Hz

Vo r.m.s	Peak lo $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.066	4.7 mA	$>\mathbf{2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

100 Hz

	Vo r.m.s	Peak lo $(\mathrm{Vo/20}) \times$ 1.414	Specification	Pass/Fail
Ch1	0.322	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.324	22.9 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.323	22.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.324	22.9 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

Vo r.m.s	Peak lo $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.389	27.5 mA	$\boldsymbol{> 2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.390	27.6 mA	$>\mathbf{2 . 5 m A}$ peak	$\sqrt{ }$
Ch3	0.390	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.390	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

Vo r.m.s	Peak lo $(\mathbf{V o / 2 0}) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.414	29.3 mA	$\boldsymbol{> 2 . 5 m A}$ peak	\checkmark
Ch2	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Unit.
.T_ACQ_P81 Serial No
Test Engineer.....Xen.
Date. .7/9/10

10.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1 Hz

	Vo peak	Peak lo (Vo/20)	Specification	Pass/Fail
Ch1	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch2	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch3	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch4	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	

10 Hz

	Vo peak	Peak lo $($ Vo/20 $)$	Specification	Pass/Fail
Ch1	15 mV	750 uA	$>2.5 \mathrm{~mA}$ peak	
Ch2	12 mV	600 uA	$>2.5 \mathrm{~mA}$ peak	
Ch3	16 mV	800 uA	$>2.5 \mathrm{~mA}$ peak	
Ch4	16 mV	800 uA	$>2.5 \mathrm{~mA}$ peak	

100 Hz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.130	9.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.128	9.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.128	9.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.128	9.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.247	17.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.245	17.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.244	17.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.244	17.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.. .Xen.
Date .7/9/10

10.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

200 Hz

	Vor.m.s	Vo pk.	$\begin{gathered} \hline \text { Peak lo }(\text { Vo/20 }) \\ \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	$>125 \mathrm{~mA}$ peak	\checkmark
Ch2	2.2	3.1	155.5 mA	$>125 \mathrm{~mA}$ peak	\checkmark
Ch3	2.2	3.1	155.5 mA	$>125 \mathrm{~mA}$ peak	\checkmark
Ch4	2.2	3.1	155.5 mA	>125mA peak	\checkmark

1 kHz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	2.3	3.3	162.6 mA	>125mA peak	\checkmark
Ch2	2.3	3.3	162.6 mA	>125mA peak	\checkmark
Ch3	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$
Ch4	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$

5 kHz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x 1 . 4 1 4}$	Specification	Pass/Fail
Ch1	1.67	2.4	118.1 mA	>125mA peak	
Ch2	1.67	2.4	118.1 mA	>125mA peak	
Ch3	1.67	2.4	118.1 mA	>125mA peak	
Ch4	1.67	2.4	118.1 mA	>125mA peak	

Test Engineer.....Xen.
Date .6/9/10

11. Noise Measurements

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

Measure the noise output at 10 Hz .

	Spec in $\mathrm{dB} V \sqrt{ } \mathrm{~Hz}$	Measured @ 10 Hz	$-60 \mathrm{~dB}=$	Measured in $\mathrm{nV} \sqrt{ } \mathrm{Hz}$	OK?
Ch1	-143.5	-91.7	-151.7	26.0	$\sqrt{ }$
Ch2	-143.5	-93.3	-153.3	21.6	$\sqrt{ }$
Ch3	-143.5	-92.7	-152.7	23.2	$\sqrt{ }$
Ch4	-143.5	-90.9	-150.9	28.5	$\sqrt{ }$

Notes:

Specified noise output current at $10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}$ (worst case)
Total resistance at 10 Hz , in Low noise mode $=6.7 \mathrm{k}$
Amplifier noise voltage should therefore be $=67 \mathrm{nV} \sqrt{ } \mathrm{Hz}$
$67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{\mathrm{~Hz}}$

```
Unit
TACQ81P
Serial No
```

\qquad

```
Test Engineer
RMC
Date
.4/11/10
```


12. Final Assembly Tests

1. Remove the lid of the box. $\sqrt{ }$
2. Unplug all external connections. $\sqrt{ }$
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight. $\sqrt{ }$
4. Check that all internal connectors are firmly mated. $\sqrt{ }$
5. Tighten the screw-locks holding all the external connectors. $\sqrt{ }$
6. Check that all the LEDs are nicely centred. V
7. Check that all links W4 are in place. $\sqrt{ }$
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TACQ81P
Driver board ID	TACQ81P
Driver board Drawing No/Issue No	D0901047_V4
Monitor board ID	MON233
Monitor board Drawing No/Issue No	D070480_5_K

9. Check the security of any modification wires. None
10. Visually inspect. $\sqrt{ }$
11. Put the lid on and fasten all screws, $\sqrt{ }$

Check all external screws for tightness. $\sqrt{ }$

LIGO Laboratory / LIGO Scientific Collaboration

Advanced LIGO UK

March 2010

Triple Acquisition Driver Unit Test Report

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT

```
Unit...............T ACQ P82...........................S..Serial No.
Test Engineer.....Xen.
Date
```

Drive Card ID.......T ACQ82
Monitor Card ID....Mon234
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

1. Description

Block diagram

Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
```

\qquad

```
                            T_ACQ_P82
                        2..
                                    Serial No
Test Engineer.....Xen.
Date
7/9/10
```


2. Test equipment

```
Power supplies (At least \(+/-20 v\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz )
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.

Links:

Check that the links W2 and W4 are present on each channel.

Test Engineer..
Date.

4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{l \mid}$
5	0V	\sqrt{l}		
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
5	0V	$\sqrt{\|c\|}$		
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	$\sqrt{ }$

PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
11	V - (TP2)	-17 v Supply	$\sqrt{ }$
12	V - (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	0 V (TP3)		$\sqrt{ }$
24	0 V (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

5. TEST SET UP

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit
```

\qquad

```
                            T_ACQ_P82
                            82.
                                    Serial No
Test Engineer.....Xen.
Date
6/9/10
```


6. Power

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents

$\mathbf{+ 1 6 . 5}$ supply current (mA)	- 16.5 supply current (mA)
500 mA	400 mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	$\sqrt{ }$	$\sqrt{ }$
Rear Panel	$\sqrt{ }$	$\sqrt{ }$

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen.
Date. 6/9/10

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
Ch1	ON	OFF	
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

```
Unit
                            .T_ACQ_P82.
                                    Serial No
Test Engineer.....Xen.
```

Date.
.7/9/10

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S Monitor	Expected value	Pass/Fail: Equal? (+/-0.1v)
$\mathbf{1}$	0.33	3	0.33 v	$\sqrt{ }$
$\mathbf{2}$	0.33	6	0.33 v	$\sqrt{ }$
$\mathbf{3}$	0.33	9	0.33 v	$\sqrt{ }$
$\mathbf{4}$	0.33	12	0.33 v	$\sqrt{ }$

Adjust the input voltage until the voltage across the load resistor $=1 \mathrm{v}$ r.m.s. Record the current monitor output values.
8.2 Current Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	1.90	2	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{2}$	1.90	5	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{3}$	1.91	8	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{4}$	1.90	11	$1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}$	$\sqrt{ }$

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	Pass/Fail: Equal? $(+/-\mathbf{0 . 1 v})$
$\mathbf{1}$	1.94	1	1.86 vdc	$\sqrt{ }$
$\mathbf{2}$	1.94	4	1.86 vdc	$\sqrt{ }$
$\mathbf{3}$	1.94	7	1.86 v dc	$\sqrt{ }$
$\mathbf{4}$	1.94	10	1.86 vdc	$\sqrt{ }$

8.4 Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu \mathrm{V} \sqrt{\mathrm{Hz}}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA $\sqrt{ } \mathrm{Hz}$ should give $2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}$ out.

Ch.	Output $(\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})$	$\div($ Pre-amplifier gain)	Expected Value	Comparison
$\mathbf{1}$		1.50	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{2}$		1.38	$2.9 \mu \mathrm{~V} \mathrm{~Hz}$	$\sqrt{ }$
$\mathbf{3}$		1.49	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{4}$		1.55	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$

```
Unit
```

\qquad

```
                            T_ACQ_P82.
```

\qquad

```
                                    Serial No
Test Engineer.....Xen.
Date
7/9/10
```


9. Distortion

```
Switch the filters out. Increase input voltage to 5 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.
```

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode: Distortion Free?
Ch1	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{2}$	$\sqrt{ }$

Unit.
.T_ACQ_P82.
Test Engineer.....Xen.
Date. .7/9/10

10 Load tests and Frequency response check

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

10.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo (Vo/20)	Specification	Pass/Fail
Ch1	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch2	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch3	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch4	67.5 mV	3.4 mA	>2.5mA peak	\checkmark

10Hz

Vo r.m.s	Peak lo $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.066	4.7 mA	$>\mathbf{~ 2 . 5 m A ~ p e a k ~}$	$\sqrt{ }$
Ch2	0.067	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

100 Hz

	Vor.m.s	$\begin{gathered} \text { Peak lo } \\ (\mathrm{Vo} / 20) \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	0.322	22.8 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch2	0.327	23.1 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch3	0.322	22.8 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch4	0.322	22.8 mA	>2.5mA peak	1

200 Hz

	Vor.m.s	$\begin{gathered} \text { Peak lo } \\ (\mathrm{Vo} / 20) \times 1.414 \end{gathered}$	Specification	Pass/Fail
Ch1	0.389	27.5 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch2	0.392	27.7 mA	>2.5mA peak	\checkmark
Ch3	0.389	27.5 mA	$>2.5 \mathrm{~mA}$ peak	\checkmark
Ch4	0.388	27.4 mA	>2.5mA peak	\checkmark

1 kHz

Vo r.m.s	Peak lo $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.415	29.3 mA	$>\mathbf{2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.413	29.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Unit.
.T_ACQ_P82. Serial No
Test Engineer.....Xen.
Date. .7/9/10

10.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo (Vo/20)	Specification	Pass/Fail
Ch1	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch2	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch3	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch4	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	

10 Hz

	Vo peak	Peak lo $($ Vo/20 $)$	Specification	Pass/Fail
Ch1	15 mV	750 uA	$>2.5 \mathrm{~mA}$ peak	
Ch2	15 mV	750 uA	$>2.5 \mathrm{~mA}$ peak	
Ch3	15 mV	750 uA	$>2.5 \mathrm{~mA}$ peak	
Ch4	15 mV	750 uA	$>2.5 \mathrm{~mA}$ peak	

100 Hz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.126	8.9 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.131	9.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.125	8.8 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.129	9.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.242	17.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.247	17.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.241	17.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.245	17.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Peak lo (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.368	26.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.. .Xen.
Date .7/9/10

10.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	1.99	2.8	140.7 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	1.98	2.8	140.7 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch3	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch4	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA }}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20) $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	2.3	3.3	162.6 mA	>125mA peak	\checkmark
Ch2	2.3	3.3	162.6 mA	>125mA peak	\checkmark
Ch3	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$
Ch4	2.2	3.1	155.5 mA	>125mA peak	$\sqrt{ }$

5 kHz

	Vo r.m.s	Vo pk.	Peak Io (Vo/20) $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	1.68	2.4	118.8 mA	>125mA peak	
Ch2	1.68	2.4	118.8 mA	$>125 \mathrm{~mA}$ peak	
Ch3	1.67	2.4	118.1 mA	$>125 \mathrm{~mA}$ peak	
Ch4	1.66	2.3	117.4 mA	>125mA peak	

Test Engineer.....Xen
Date .7/9/10

11. Noise Measurements

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

Measure the noise output at 10 Hz .

	Spec in $\mathrm{dB} V \sqrt{ } \mathrm{~Hz}$	Measured @ 10 Hz	$-60 \mathrm{~dB}=$	Measured in $\mathrm{nV} \sqrt{ } \mathrm{Hz}$	OK?
Ch1	-143.5	-89.5	-149.5	33.5	$\sqrt{ }$
Ch2	-143.5	-92.8	-152.8	22.9	$\sqrt{ }$
Ch3	-143.5	-92.5	-152.5	23.7	$\sqrt{ }$
Ch4	-143.5	-93.6	-153.6	20.9	$\sqrt{ }$

Notes:

Specified noise output current at $10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}$ (worst case)
Total resistance at 10 Hz , in Low noise mode $=6.7 \mathrm{k}$
Amplifier noise voltage should therefore be $=67 \mathrm{nV} \sqrt{\mathrm{Hz}}$
$67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}$

```
Unit.
TACQ82P
Serial No
```

\qquad

```Test EngineerRMC
```

Date $.4 / 11 / 10$

12. Final Assembly Tests

1. Remove the lid of the box. $\sqrt{ }$
2. Unplug all external connections. $\sqrt{ }$
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight. $\sqrt{ }$
4. Check that all internal connectors are firmly mated. V
5. Tighten the screw-locks holding all the external connectors. $\sqrt{ }$
6. Check that all the LEDs are nicely centred. $\sqrt{ }$
7. Check that all links W4 are in place. $\sqrt[V]{ }$
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TACQ82P
Driver board ID	TACQ82P
Driver board Drawing No/Issue No	D0901047_V4
Monitor board ID	MON234
Monitor board Drawing No/Issue No	D070480_5_K

9. Check the security of any modification wires. None
10. Visually inspect. $\sqrt{ }$
11. Put the lid on and fasten all screws, $\sqrt{ }$

Check all external screws for tightness. $\sqrt{ }$

LIGO Laboratory / LIGO Scientific Collaboration

Advanced LIGO UK

March 2010

Triple Acquisition Driver Unit Test Report

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT

```
Unit................T ACQ P83.............................Serial No.
Test Engineer.....Xen.
Date................17/9/10
```

Drive Card ID.......T ACQ83
Monitor Card ID....Mon249
Contents

1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

1. Description

Block diagram

Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
ACQ_P83
```

\qquad

```
Serial No
Test Engineer.....Xen.
Date
17/9/10
```


2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz )
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.

Links:

Check that the links W2 and W4 are present on each channel.

Test Engineer.....Xen..
Date.
16/9/10.

4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{l \mid}$
5	0V	\sqrt{l}		
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
5	0V	$\sqrt{\|c\|}$		
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	$\sqrt{ }$

PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	\checkmark
10	V+ (TP1)	+17 v Supply	$\sqrt{ }$
11	V- (TP2)	-17 v Supply	\checkmark
12	$\mathrm{~V}-$ (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	OV (TP3)		$\sqrt{ }$
24	OV (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

5. TEST SET UP

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit.
```

\qquad

``` T_ACQ_P83
``` \(\qquad\)
Test Engineer.....Xen.
Date 16/9/10.
```


## 6. Power

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents

$\mathbf{+ 1 6 . 5}$ supply current (mA)	- $\mathbf{1 6 . 5}$ supply current (mA)
500 mA	400 mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	$\sqrt{ }$	$\sqrt{ }$
Rear Panel	$\sqrt{ }$	$\sqrt{ }$

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen..
Date. 16/9/10

## 7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\checkmark$	$\checkmark$	$\checkmark$
Ch2	$\checkmark$	$\checkmark$	$\checkmark$
Ch3	$\checkmark$	$\checkmark$	$\checkmark$
Ch4	$\checkmark$	$\checkmark$	$\checkmark$

TEST RELAYS

Channel	Indicator		OK?
Ch1	ON	OFF	
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

## ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\checkmark$	$\checkmark$	$\checkmark$
Ch2	$\checkmark$	$\checkmark$	$\checkmark$
Ch3	$\checkmark$	$\checkmark$	$\checkmark$
Ch4	$\checkmark$	$\checkmark$	$\checkmark$

```
Unit.
 .T_ACQ_P83.
Test Engineer.....Xen.
```

Date 16/9/10

## 8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

### 8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S   Monitor	Expected value	Pass/Fail:   Equal? (+/-0.1v)
$\mathbf{1}$	0.33	3	0.33 v	$\sqrt{ }$
$\mathbf{2}$	0.33	6	0.33 v	$\sqrt{ }$
$\mathbf{3}$	0.33	9	0.33 v	$\sqrt{ }$
$\mathbf{4}$	0.33	12	0.33 v	$\sqrt{ }$

Adjust the input voltage until the voltage across the load resistor $=1 \mathrm{v}$ r.m.s. Record the current monitor output values.
8.2 Current Monitors

Ch.	Output	V, I and R.M.S   Monitor	Expected   Value	Pass/Fail:   Equal? (+/- 0.1v)
$\mathbf{1}$	1.92	2	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{2}$	1.92	5	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{3}$	1.92	8	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{4}$	1.92	11	$1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}$	$\sqrt{ }$

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S   Monitor	Expected   Value	Pass/Fail:   Equal? (+/-0.1v)
$\mathbf{1}$	1.96	1	1.86 vdc	$\sqrt{ }$
$\mathbf{2}$	1.95	4	1.86 vdc	$\sqrt{ }$
$\mathbf{3}$	1.95	7	1.86 v dc	$\sqrt{ }$
$\mathbf{4}$	1.95	10	1.86 vdc	$\sqrt{ }$

### 8.4 Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu \mathrm{V} \sqrt{ } \mathrm{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA $\sqrt{ } \mathrm{Hz}$ should give $2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}$ out.

Ch.	Output   $(\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z}})$	$\div($ Pre-amplifier   gain $)$	Expected   Value	Comparison
$\mathbf{1}$		1.30	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{2}$		1.90	$2.9 \mu \mathrm{~V} \mathrm{~Hz}$	$\sqrt{ }$
$\mathbf{3}$		1.60	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{4}$		1.46	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$

```
Unit.
```

$\qquad$

```
 T_ACQ_P83
```

$\qquad$

```
 Serial No
Test Engineer.....Xen.
Date
16/9/10
```


## 9. Distortion

```
Switch the filters out. Increase input voltage to 5 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.
```

	Acquisition Mode:   Distortion Free?	Non-Acquisition Mode:   Distortion Free?
Ch1	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{2}$	$\sqrt{ }$

## Unit.

T_ACQ_P83
Test Engineer.....Xen.
Date .17/9/10.

## 10 Load tests and Frequency response check

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

### 10.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo   $($ Vo/20 $)$	Specification	Pass/Fail
Ch1	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

10Hz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.066	4.7 mA	$>\mathbf{~ 2 . 5 m A ~ p e a k ~}$	$\sqrt{ }$
Ch2	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

100 Hz

	Vor.m.s	$\begin{gathered} \text { Peak lo } \\ (\mathrm{Vo} / 20) \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	0.324	22.9 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch2	0.325	23.0 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch3	0.324	22.9 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch4	0.324	22.9 mA	>2.5mA peak	$\checkmark$

200 Hz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times$ 1.414	Specification	Pass/Fail	
Ch1	0.390	27.6 mA	$\boldsymbol{> 2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.391	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.390	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.390	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.414	29.3 mA	$>\mathbf{2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.416	29.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Unit. .T_ACQ_P83. Serial No
Test Engineer.....Xen.
Date.
.17/9/10.

### 10.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1 Hz

	Vo peak	Peak lo   (Vo/20)	Specification	Pass/Fail
Ch1	45 mV	2.3 mA	$>\mathbf{2 . 5 m A}$ peak	
Ch2	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch3	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch4	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	

10 Hz

	Vo peak	Peak lo   $($ Vo/20 $)$	Specification	Pass/Fail
Ch1	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch2	16 mV	800 uA	$>2.5 \mathrm{~mA}$ peak	
Ch3	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	
Ch4	14 mV	700 uA	$>2.5 \mathrm{~mA}$ peak	

100 Hz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.128	9.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.127	9.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.129	9.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.130	9.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.244	17.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.244	17.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.245	17.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.246	17.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.. Xen.
Date 17/9/10.

### 10.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	1.99	2.8	140.7 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	1.99	2.8	140.7 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA }}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	2.3	3.3	162.6 mA	>125mA peak	$\checkmark$
Ch2	2.3	3.3	162.6 mA	>125mA peak	$\checkmark$
Ch3	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$
Ch4	2.3	3.3	162.6 mA	>125mA peak	$\sqrt{ }$

5 kHz

	Vo r.m.s	Vo pk.	Peak Io (Vo/20)   $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	1.67	2.4	118.1 mA	$>125 \mathrm{~mA}$ peak	
Ch2	1.68	2.4	118.8 mA	$>125 \mathrm{~mA}$ peak	
Ch3	1.67	2.4	118.1 mA	$>125 \mathrm{~mA}$ peak	
Ch4	1.68	2.4	118.8 mA	$>125 \mathrm{~mA}$ peak	

```
Unit
Test Engineer.....Xen.
Date 16/9/10.
```


## 11. Noise Measurements

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.


Measure the noise output at 10 Hz .

	Spec in   $\mathrm{dB} V \sqrt{ } \mathrm{~Hz}$	Measured @   10 Hz	$-60 \mathrm{~dB}=$	Measured in   $\mathrm{nV} \sqrt{ } \mathrm{Hz}$	OK?
Ch1	-143.5	-93.0	-153.0	22.4	$\checkmark$
Ch2	-143.5	-91.2	-151.2	27.5	$\sqrt{ }$
Ch3	-143.5	-92.8	-152.8	22.9	$\sqrt{ }$
Ch4	-143.5	-92.5	-152.5	23.7	$\sqrt{ }$

## Notes:

Specified noise output current at $10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}$ (worst case)
Total resistance at 10 Hz , in Low noise mode $=6.7 \mathrm{k}$
Amplifier noise voltage should therefore be $=67 \mathrm{nV} \sqrt{ } \mathrm{Hz}$
$67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}$

```
Unit
TACQ83P
Serial No
```

$\qquad$

```
Test EngineerRMC
Date
.4/11/10
```


## 12. Final Assembly Tests

1. Remove the lid of the box. $\sqrt{ }$
2. Unplug all external connections. $\sqrt{ }$
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight. $\sqrt{ }$
4. Check that all internal connectors are firmly mated. $\sqrt{ }$
5. Tighten the screw-locks holding all the external connectors. $\sqrt{ }$
6. Check that all the LEDs are nicely centred. $V$
7. Check that all links W4 are in place. $\sqrt[V]{ }$
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TACQ83P
Driver board ID	TACQ83P
Driver board Drawing No/Issue No	D0901047_V4
Monitor board ID	MON249
Monitor board Drawing No/Issue No	D070480_5_K

9. Check the security of any modification wires. None
10. Visually inspect. $\sqrt{ }$
11. Put the lid on and fasten all screws, $\sqrt{ }$

Check all external screws for tightness. $\sqrt{ }$

## LIGO Laboratory / LIGO Scientific Collaboration

## Advanced LIGO UK

March 2010

## Triple Acquisition Driver Unit Test Report

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research<br>University of Glasgow<br>Phone +44 (0) 1413305884<br>Fax +44 (0) 1413306833<br>E-mail k.strain@physics.gla.ac.uk<br>Engineering Department<br>CCLRC Rutherford Appleton Laboratory<br>Phone +44 (0) 1235445297<br>Fax +44 (0) 1235445843<br>E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## TRIPLE ACQUISITION DRIVER UNIT BOARD TEST REPORT

```
Unit...............T ACQ P85...........................S..Serial No.
Test Engineer.....Xen.
Date...............13/10/10
```

Drive Card ID.......T ACQ85
Monitor Card ID....Mon182.
Contents
1 Description
2 Test Equipment
3 Inspection
4 Continuity Checks
5 Test Set Up
6 Power

7 Relay operation
8 Monitor Outputs
8.1 Amplifier Monitors
8.2 Coil Monitors
8.3 R.M.S Monitors
8.4 Noise Monitors
9. Distortion

10 Load Tests
10.1 Noisy Mode
10.2 Low noise Mode
10.3 Acquisition Mode

11 Noise Measurements

12 Final Assembly Tests

## 1. Description

## Block diagram



## Description

The Acquisition unit consists of four identical channels and the power regulators which provide regulated power to the four channels. Each channel consists of a coil drive channel, and monitor circuitry.

The driver has 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a mode which switches the channel off.

```
Unit
_ACQ_P85
```

$\qquad$

```
Date 13/10/10
```


## 2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 kHz)
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77III	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	



## 3. Inspection

## Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Capacitors C35 and C27 have been changed to 1 nF on all channels.

## Links:

Check that the links W2 and W4 are present on each channel.

Test Engineer..
Date
12/10/10.

## 4. Continuity Checks

Continuity to the V, I and R.M.S Monitor (J1)
PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{l \mid}$
5	0V	$\sqrt{l}$		
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

## LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
5	0V	$\sqrt{\|c\|}$		
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\sqrt{ }$
8	Imon3N		20	$\sqrt{ }$
9	Imon4N		21	$\sqrt{ }$

## PD from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\checkmark$
10	V+ (TP1)	+17 v Supply	$\sqrt{ }$
11	V- (TP2)	-17 v Supply	$\checkmark$
12	$\mathrm{~V}-$ (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	OV (TP3)		$\sqrt{ }$
24	OV (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

## 5. TEST SET UP



Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

## Connections:

Differential signal inputs to the board under test:
Drive Input J3 pins 1, 2, 3, $4=$ positive input
Drive Input J3 pins 6, 7, 8, $9=$ negative input
Drive Input J3 pin 5 = ground
Power
DC IN J1 pin 9, $10=+16.5 \mathrm{v}$
DC IN J1 pin 11,12 = -16.5
DC IN J1 pins 22, 23, 24, $25=0 v$
Outputs
Coil Out to Sat (J4)
Ch1+ = J4 pin $1 \quad$ Ch1 $-=\mathrm{J} 4$ pin 9
Ch2 $+=\mathrm{J} 4$ pin $3 \quad$ Ch2- $=\mathrm{J} 4$ pin 11
Ch3 $+=\mathrm{J} 4$ pin $5 \quad$ Ch3- $=\mathrm{J} 4$ pin 13
Ch4+ = J4 pin $7 \quad$ Ch4- $=\mathrm{J} 4$ pin 15

```
Unit.
 .T_ACQ_P85
```

$\qquad$
$\qquad$

```
Test Engineer.....Xen.
Date
 12/10/10
```


## 6. Power

Check the polarity of the wiring from the 3 pin power connector to each of the boards. Viewed from the back of the unit:

A1 Left pin Positive White wire
A2 Middle pin RTN Black wire
A3 Right pin Negative Green wire
If this is correct, Connect power to the unit
Set the supplies to 16.5 v
Turn on

Record Power Supply Currents

$\mathbf{+ 1 6 . 5}$ supply current (mA)	- $\mathbf{1 6 . 5}$ supply current (mA)
500 mA	400 mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	$\sqrt{ }$	$\sqrt{ }$
Rear Panel	$\sqrt{ }$	$\sqrt{ }$

If the supplies are correct, proceed to the next test.

Test Engineer.....Xen.
Date. 12/10/10.

## 7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
FILTER

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\checkmark$	$\checkmark$	$\checkmark$
Ch2	$\checkmark$	$\checkmark$	$\checkmark$
Ch3	$\checkmark$	$\checkmark$	$\checkmark$
Ch4	$\checkmark$	$\checkmark$	$\checkmark$

TEST RELAYS

Channel	Indicator		OK?
Ch1	ON	OFF	
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

## ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\checkmark$	$\checkmark$	$\checkmark$
Ch2	$\checkmark$	$\checkmark$	$\checkmark$
Ch3	$\checkmark$	$\checkmark$	$\checkmark$
Ch4	$\checkmark$	$\checkmark$	$\checkmark$

```
Unit
 T_ACQ_P85
Test Engineer.....Xen.
```

Date
12/10/10

## 8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.
With a 20 Ohm dummy load on each channel, apply an input from the signal generator at 1 kHz , and adjust the amplitude until the output is 1 v r.m.s as measured between TP4 and TP5.
Measure the Voltage Monitor outputs with respect to Ov for each channel.

### 8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S   Monitor	Expected value	Pass/Fail:   Equal? (+/-0.1v)
$\mathbf{1}$	0.33	3	0.33 v	$\sqrt{ }$
$\mathbf{2}$	0.33	6	0.33 v	$\sqrt{ }$
$\mathbf{3}$	0.33	9	0.33 v	$\sqrt{ }$
$\mathbf{4}$	0.33	12	0.33 v	$\sqrt{ }$

Adjust the input voltage until the voltage across the load resistor $=1 \mathrm{v}$ r.m.s. Record the current monitor output values.
8.2 Current Monitors

Ch.	Output	V, I and R.M.S   Monitor	Expected   Value	Pass/Fail:   Equal? (+/- 0.1v)
$\mathbf{1}$	1.92	2	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{2}$	1.92	5	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{3}$	1.92	8	1.86 v r.m.s	$\sqrt{ }$
$\mathbf{4}$	1.92	11	$1.86 \mathrm{v} . \mathrm{m} . \mathrm{s}$	$\sqrt{ }$

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S   Monitor	Expected   Value	Pass/Fail:   Equal? (+/- 0.1v)
$\mathbf{1}$	1.96	1	1.86 vdc	$\sqrt{ }$
$\mathbf{2}$	1.96	4	1.86 vdc	$\sqrt{ }$
$\mathbf{3}$	1.94	7	1.86 vdc	$\sqrt{ }$
$\mathbf{4}$	1.95	10	1.86 vdc	$\sqrt{ }$

### 8.4 Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu \mathrm{V} \sqrt{ } \mathrm{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA $\sqrt{ } \mathrm{Hz}$ should give $2.9 \mu \mathrm{~V} \sqrt{ } \mathrm{~Hz}$ out.

Ch.	Output   $(\boldsymbol{\mu} \mathbf{V} \sqrt{\mathbf{H z})}$	$\div($ Pre-amplifier   gain)	Expected   Value	Comparison
$\mathbf{1}$		0.91	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{2}$		1.51	$2.9 \mu \mathrm{~V} \mathrm{~Hz}$	$\sqrt{ }$
$\mathbf{3}$		0.93	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$
$\mathbf{4}$		0.86	$2.9 \mu \mathrm{~V} \sqrt{\mathrm{~Hz}}$	$\sqrt{ }$

```
Unit.
 T_ACQ_P85
```

$\qquad$

```
 Serial No
Test Engineer.....Xen.
Date
12/10/10
```


## 9. Distortion

```
Switch the filters out. Increase input voltage to 5 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.
```

	Acquisition Mode:   Distortion Free?	Non-Acquisition Mode:   Distortion Free?
Ch1	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{2}$	$\sqrt{ }$

Unit.
T_ACQ_P85
Test Engineer.....Xen.
Date
12/10/10.
10 Load tests and Frequency response check
Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

### 10.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo   $($ Vo/20 $)$	Specification	Pass/Fail
Ch1	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	67.5 mV	3.4 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

10Hz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.067	4.7 mA	$>\mathbf{~ 2 . 5 m A ~ p e a k ~}$	$\sqrt{ }$
Ch2	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.066	4.7 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

100 Hz

	Vor.m.s	$\begin{gathered} \text { Peak lo } \\ (\mathrm{Vo} / 20) \times 1.414 \\ \hline \end{gathered}$	Specification	Pass/Fail
Ch1	0.326	23.0 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch2	0.325	23.0 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch3	0.324	22.9 mA	$>2.5 \mathrm{~mA}$ peak	$\checkmark$
Ch4	0.321	22.7 mA	>2.5mA peak	$\checkmark$

200 Hz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times$ 1.414	Specification	Pass/Fail	
Ch1	0.391	27.6 mA	$\boldsymbol{> 2 . 5 m A}$ peak	$\sqrt{ }$
Ch2	0.391	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.390	27.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.389	27.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

Vo r.m.s	Peak lo   $($ Vo/20 $) \times \mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.414	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.415	29.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.....Xen.
Date.
13/10/10.

### 10.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below. For 1 Hz and 10 Hz , use the oscilloscope. Calculate the output current in each case (Vout/20).

1Hz

	Vo peak	Peak lo   (Vo/20)	Specification	Pass/Fail
Ch1	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch2	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch3	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	
Ch4	45 mV	2.3 mA	$>2.5 \mathrm{~mA}$ peak	

10 Hz

	Vo peak	Peak lo   $($ Vo/20 $)$	Specification	Pass/Fail
Ch1	13 mV	650 uA	$>2.5 \mathrm{~mA}$ peak	
Ch2	16 mV	800 uA	$>2.5 \mathrm{~mA}$ peak	
Ch3	16 mV	800 uA	$>2.5 \mathrm{~mA}$ peak	
Ch4	15 mV	750 uA	$>2.5 \mathrm{~mA}$ peak	

100 Hz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.128	9.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.132	9.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.131	9.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.127	9.0 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	0.244	17.3 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.249	17.6 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.248	17.5 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.243	17.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

1 kHz

Vo r.m.s	Peak lo   (Vo/20) $\mathbf{1 . 4 1 4}$	Specification	Pass/Fail	
Ch1	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch2	0.371	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch3	0.370	26.2 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$
Ch4	0.369	26.1 mA	$>2.5 \mathrm{~mA}$ peak	$\sqrt{ }$

Test Engineer.. Xen.
Date 13/10/10.

### 10.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 5 v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20).

100Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	1.96	2.8	138.6 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch3	1.98	2.8	140.0 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch4	1.97	2.8	139.3 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$

200 Hz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 m A}$ peak	$\sqrt{ }$
Ch2	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch3	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA } \text { peak }}$	$\sqrt{ }$
Ch4	2.2	3.1	155.5 mA	$\boldsymbol{> 1 2 5 \mathrm { mA }}$ peak	$\sqrt{ }$

1 kHz

	Vo r.m.s	Vo pk.	Peak lo (Vo/20)   $\mathbf{x} \mathbf{1 . 4 1 4}$	Specification	Pass/Fail
Ch1	2.3	3.1	162.6 mA	>125mA peak	$\checkmark$
Ch2	2.3	3.1	162.6 mA	>125mA peak	$\checkmark$
Ch3	2.3	3.1	162.6 mA	>125mA peak	$\sqrt{ }$
Ch4	2.3	3.1	162.6 mA	>125mA peak	$\sqrt{ }$

5 kHz

	Vo r.m.s	Vo pk.	Peak Io (Vo/20)   $\mathbf{x} 1.414$	Specification	Pass/Fail
Ch1	1.67	2.4	118.1 mA	>125mA peak	
Ch2	1.67	2.4	118.1 mA	$>125 \mathrm{~mA}$ peak	
Ch3	1.67	2.4	118.1 mA	$>125 \mathrm{~mA}$ peak	
Ch4	1.67	2.4	118.1 mA	>125mA peak	

Test Engineer.....Xen
Date.................13/10/10

## 11. Noise Measurements

As the previous test involves non - representative temperature rises, allow the unit to cool before performing this test.
Replace the filter links W4, on each channel.
Connect the filter test box, and switch in all filters.
Switch it out of Test Mode and out of the Acquisition mode
Use the HP 35670A Dynamic Signal Analyser.
Connect a shorting plug to the demand input to short all positive and negative demands together and to 0 v . Connect 20 Ohm loads to the outputs.
Use Stuart Aston's noise measurement set up, loaded from disc.
Measure the noise output from each channel in turn at the amplifier outputs (TP4 and TP5). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 kHz . Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.


Measure the noise output at 10 Hz .

	Spec in   $\mathrm{dB} V \sqrt{ } \mathrm{~Hz}$	Measured @   10 Hz	$-60 \mathrm{~dB}=$	Measured in   $\mathrm{nV} \sqrt{ } \mathrm{Hz}$	OK?
Ch1	-143.5	-93.3	-153.3	21.6	$\checkmark$
Ch2	-143.5	-87.5	-147.5	42.2	$\sqrt{ }$
Ch3	-143.5	-92.5	-152.5	23.7	$\sqrt{ }$
Ch4	-143.5	-93.1	-153.1	22.1	$\sqrt{ }$

## Notes:

Specified noise output current at $10 \mathrm{~Hz}=10 \mathrm{pA} \sqrt{\mathrm{Hz}}$ (worst case)
Total resistance at 10 Hz , in Low noise mode $=6.7 \mathrm{k}$
Amplifier noise voltage should therefore be $=67 \mathrm{nV} \sqrt{\mathrm{Hz}}$
$67 \mathrm{nV} \sqrt{ } \mathrm{Hz}=-143.5 \mathrm{~dB} \sqrt{ } \mathrm{~Hz}$

```
Unit
TACQ85P
Serial No
```

$\qquad$

```
Test EngineerRMC
Date
.4/11/10
```


## 12. Final Assembly Tests

1. Remove the lid of the box. $\sqrt{ }$
2. Unplug all external connections. $\sqrt{ }$
3. Check that the 4 pillars are in place in the corners of the Boards and that their screws are tight. $\sqrt{ }$
4. Check that all internal connectors are firmly mated. $\sqrt{ }$
5. Tighten the screw-locks holding all the external connectors. $\sqrt{ }$
6. Check that all the LEDs are nicely centred. $V$
7. Check that all links W4 are in place. $\sqrt{ }$
8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	TACQ85P
Driver board ID	TACQ85P
Driver board Drawing No/Issue No	D0901047_V4
Monitor board ID	M0N182
Monitor board Drawing No/Issue No	D070480_4_K

9. Check the security of any modification wires. None
10. Visually inspect. $\sqrt{ }$
11. Put the lid on and fasten all screws, $\sqrt{ }$

Check all external screws for tightness. $\sqrt{ }$

