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Abstract. We derive a simple relationship between the energy emitted in
gravitational waves for a narrowband source and the distance to which that emission
can be detected by a single detector. We consider both linearly polarized and
elliptically polarized gravitational waves. We also consider several emission patterns:
isotropic emission (unrealistic but simple), and emission patterns appropriate for
sources that emit linearly or circularly polarized waves. We ignore cosmological effects.

PACS numbers: 04.80.Nn

1. Relating EGW to hrss

We first relate the total energy emitted in gravitational waves, EGW, to the LIGO-Virgo

standard measure for burst amplitude at the detector, hrss.

The flux (energy per unit area per unit time) of a gravitational wave is

FGW =
c3

16πG
〈ḣ2

+(t) + ḣ2
×(t)〉 ,

where the angle brackets denote an average over several periods. For a burst of duration

≤ T we can compute the average by integrating over the duration:

FGW =
c3

16πG

1

T

∫ T/2

−T/2
dt
[
ḣ2

+(t) + ḣ2
×(t)

]
(1)

=
c3

16πG

1

T

∫ T/2

−T/2
dt

[
(∫ ∞
−∞
df ′ exp (i2πf ′t)(i2πf ′)h̃∗+(f ′)

∫ ∞
−∞
df exp (−i2πft)(−i2πf)h̃+(f)

)
+ (same, +→ ×)

]
(2)

Since h+,× → 0 outside −T/2 < t < T/2, we may extend the time integration to

t→ ±∞. The time integral then evaluates to a delta function, δ(f − f ′), giving

FGW =
πc3

4G

1

T

∫ ∞
−∞
dff 2

(
|h̃+(f)|2 + |h̃×(f)|2

)
. (3)
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1.1. Isotropic emission

To compute the total energy EGW emitted, we need to integrate the flux FGW assuming

some emission pattern. Let us first assume isotropic emission. Then

EGW = 4πD2
LTFGW (4)

=
π2c3

G
D2

L

∫ ∞
−∞
dff 2

(
|h̃+(f)|2 + |h̃×(f)|2

)
. (5)

If we assume that the signal is narrowband with central frequency f0, we obtain

EGW =
π2c3

G
D2

Lf
2
0h

2
rss , (6)

where the root-sum-square amplitude hrss is given by ‡

h2
rss =

∫ ∞
−∞
df
(
|h̃+(f)|2 + |h̃×(f)|2

)
. (7)

1.2. Linear motion emission

Axisymmetric motion will produce linearly polarized emission with pattern

h+(t) = sin2(ι)h(t) , (8)

h×(t) = 0 , (9)

where ι is the angle between the symmetry axis and the line-of-sight to the observer,

and we have selected a polarization basis aligned with this symmetry axis. The energy

emitted in a narrowband signal is then

EGW =
πc3

4G
D2

L

∫ 1

−1

d(cos ι)

∫ 2π

0

dλ

∫ ∞
−∞
dff 2

(
sin4(ι) |h̃(f)|2

)
=

8

15

π2c3

G
D2

Lf
2
0h

2
rss , (10)

where λ is the azimuthal angle in the source frame. This is 8/15 times the result for

isotropic emission, (6).

1.3. Rotating system emission

Rotational motion (such as from a circular binary) will produce emission with pattern

h+(t) =
1

2
(1 + cos2(ι))A(t) cos Φ(t) , (11)

h×(t) = cos(ι)A(t) sin Φ(t) , (12)

where ι is the angle between the rotation axis and the line-of-sight to the observer, and

we have selected a polarization basis aligned with this symmetry axis. We assume A(t)

varies slowly enough compared to Φ(t) that h+ and h× are approximately orthogonal.

‡ Strictly speaking, we define hrss as the root-sum-square amplitude from an optimally oriented source.
This differs slightly from the standard LIGO-Virgo definition, which includes the inclination factors.
In practice, however, all LIGO-Virgo papers to date have only simulated optimally oriented sources.
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The energy emitted in a narrowband signal is then

EGW =
πc3

4G
D2

L

∫ 1

−1

d(cos ι)

∫ 2π

0

dλ

∫ ∞
−∞
dff 2

(
(1 + cos2(ι))2

4
+ cos2(ι)

)
|h̃(f)|2

=
2

5

π2c3

G
D2

Lf
2
0h

2
rss , (13)

where h̃(f) is the Fourier transform of A(t) cos Φ(t). This is 2/5 times the result for

isotropic emission, (6).

2. Relating EGW to Signal-To-Noise Ratio

The detectability of a generic signal is determined mainly by its expected signal-to-noise

ratio ρ for a matched filter. For a narrowband signal, ρ has a simple relationship to the

hrss amplitude. We start from

ρ2 = 2

∫ ∞
−∞
df
|F+h̃+(f) + F×h̃×(f)|2

S(f)
, (14)

where S(f) is the one-sided noise power spectrum, and F+,×(θ, φ, ψ) are the antenna

responses to the sky position (θ, φ) and polarization ψ. We may expand the square

in (14) and drop the h̃+h̃
∗
× terms for all signals of interest: for elliptically polarized

signals the two waveforms are orthogonal, while for linearly polarized signals h̃× = 0.

(The waveforms are also orthogonal in the unpolarized case, where the two polarizations

are independent stochastic timeseries. An example is white-noise bursts.) Assuming a

narrowband signal, we find

ρ2 = Θ2 h2
rss

16S(f0)
, (15)

where we define the angle factor

Θ2 ≡ 16

{
F 2

+(θ, φ, ψ)(1+cos2(ι)
2

)2 + F 2
×(θ, φ, ψ) cos2(ι) elliptical

F 2
+(θ, φ, ψ) 2 sin4 ι linear

(16)

Note that all dependence on the four angles θ, φ, ψ, and ι is contained in Θ (the factor

of 16 is for convenience, and follows the notation used in [1]). Substituting (6), (10), or

(13) gives

ρ2 = Θ2 G

α16π2c3

EGW

S(f0)D2
Lf

2
0

, (17)

where α = 1 for isotropic emission, 8/15 for linearly polarized emission, and 2/5 for

circularly polarized emission.

3. Effective Range

We can now combine the results for EGW and ρ to compute the typical distance to which

a source is detectable. We will follow the approach used in Section V of [1].
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Consider a homogenous isotropic distribution of sources with rate density Ṅ . A

signal from a given source will be detectable if the received signal-to-noise is above some

threshold value ρdet. The mean rate of detections will then be

Ṅdet = 4πṄ

∫ ∞
0

drr2P (ρ2 > ρ2
det) . (18)

Here P (ρ2 > ρ2
det) is the probability that the signal-to-noise of a source at given distance

r with random θ, φ, ψ, and ι will be above threshold. Using (17), we may write this

probability as

P (ρ2 > ρ2
det) = P (Θ2 >

r2

r2
0

) , (19)

where we have defined the fiducial distance

r2
0 =

G

α16π2c3

EGW

S(f0)f 2
0ρ

2
det

. (20)

Our detection rate is thus

Ṅdet =
4

3
πr3

0Ṅ

[
3

∫ ∞
0

dx x2P (Θ2 > x2)

]
. (21)

The integral is easily evaluated numerically:∫ ∞
0

dx x2P (Θ2 > x2) =

{
1.838± 0.002 elliptical

3.436± 0.005 linear
(22)

Following [1], we define the effective detection range Deff
L as the radius enclosing a

spherical volume V such that the rate of detections is ṄV :

Deff
L = r0

[
3

∫ ∞
0

dx x2P (Θ2 > x2)

]1/3

(23)

= β

(
G

π2c3

EGW

S(f0)f 2
0ρ

2
det

)1/2

. (24)

where

β ≡ (16α)−1/2

[
3

∫ ∞
0

dx x2P (Θ2 > x2)

]1/3

=

{
0.698 elliptical

0.745 linear
. (25)

We note that for both linear and elliptical polarization, β is equal to 1/
√

2 to within a

few percent. A convenient approximation is thus

Deff
L '

(
G

2π2c3

EGW

S(f0)f 2
0ρ

2
det

)1/2

. (26)
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