Ab Initio Property Prediction with Density Functional Theory (DFT) **Relevant to Coating Thermal Noise** Laser Interferometer Gravitational-Wave Observatory

Rand Dannenberg, California Institute of Technology, for the LIGO Optics Working Group

LIGO in Hanford, WA. The twin detector is located in Livingston, LA. When a spacetime wave is generated by black hole or neutron star inspiral, arm lengths change in opposition as it moves though the detector, and a signal results ΔL(wave) ~ 1/1000 of a proton. Atomic motion in the mirrors is a noise source ΔL(noise)!

Basic Noise Formulae:

noise figure of merit S in where a coati

 $z_{high (low)} = total thickness of the high (low) index coating material in units full wave optical thickness at the reference wavelength.$

= abc/d

 $\begin{array}{l} = (\phi_{high} / \phi_{low}) \\ = (n_{low} / n_{high}) \\ = (Y_{high} / Y_{sub} + Y_{sub} / Y_{high}) \\ = (Y_{low} / Y_{sub} + Y_{sub} / Y_{low}) \end{array}$ $= (n_{low} / n_{low}) = (Y_{high})$ $= (Y_{low} / n_{low})$

Ab Initio Example 2: Heat Capacity – Loss Correlation

CASTEP Density Functional Theory calculation showing a trend with specific (atomic) heat capacity, with measured loss angle. The magenta data uses experimental values of the heat capacity $C_{\rm p}$, demonstrating a reasonable prediction of that property as well, Comparing the predicted *ab initio* $C_{\rm V}$ (blue and yellow).

Conclusions & Further Work:

Fluctuation Dissipation Theorem:

Limiting noise source for Advanced LIGO.

Arm Cavity Mirror Coatings chief source.

Coating Thermal Noise:

Noise Inputs Predictable with DFT: • Specific atomic heat capacity C_{Var}

• Thermal expansion $\alpha = gC_{V,\alpha}/3B$.

· Refractive index dispersion.

· Band structure and gap.

· UV optical properties.

• IR vibrations.

Other Things Predictable with DFT:

d SD ETM D

• Elastic Moduli B and Y.

Gruneisen Parameter g.

Goal – Loss Angle Minimization in Coatings:

- L material is IBS SiO₂.
- Seek lower ϕ_H or ϕ_L coating materials.
- Seek designs minimizing *H* volume.
- $\phi_1(SiO_2) \sim 10^{-5}$ rad.
- $\phi_{\rm H}$ (Ta₂O₅) ~ 10⁻⁴ rad.
- TiO₂ doped into Ta₂O₅ lowers loss angle φ_{H} .
- · Mechanism not well understood !

CASTEP Density Functional Theory calculation showing that when TiO2 rutile and anatase phases are doped with SiO₂, there is a plateau in the refractive index for a broad range of bulk moduli. Green points are experimental data, all else is a DFT prediction. Noting (**), coating thermal noise could be minimized in TiO₂ by SiO₂ doping.

 $Ta_2O_5 n \sim 2.09, \phi \sim 3.8x10^{-4}, Y_H = 140 \text{ GPa} \rightarrow S = 38.13 (52.6\% \text{ worse})$

Ti:Ta₂O₅ n ~ 2.09, ϕ ~ 2.3x10⁻⁴, Y_H = 140 GPa → <u>S = 24.97 (baseline)</u>

Si:TiO₂ (50-50) n ~ 2.08 (same thicknesses), $\phi \sim 3.1 \times 10^{-4}$, Y_H = 87 GPa $\rightarrow S = 27.39$ (9.7% worse)

Si:TiO₂ (65-35) n ~ 1.85 (thickness ≈ doubles!), φ ~ 1.9x10⁻⁴, Y_H = 73 GPa → <u>S = 30.16 (20.7% worse</u>)

Modulus tuning in Si: TiO₂ almost effective as loss angle reduction in Ti: Ta₂O₅

Ab Initio Example 3: Thermal Expansion Coefficient

CASTEP Density Functional Theory calculation of CTE using computed values of C, B and the expression $\alpha = qC/3B$ for Gruneisen parameter q=1

• DFT gives reasonable predictions of many properties for films, despite that the DFT input structures are crystalline, but films are amorphous

Rand Dannenberg Pasadena CA 91125 USA

e-mail: rdannenb@ligo.caltech.edu

website: http://www.ligo.caltech.edu

• DFT cannot directly predict thermal noise, but relations between predictable parameters and thermal noise is suggested. • Crown jewel of coating thermal noise Ti:Ta₂O₅ simulations will have to wait until more processors are available (all on 16 processors).

· Mirrors are 1064 nm dielectric coatings.

Brownian motion of material ↔ mechanical loss ø • H material is IBS Ta₂O₅. Brownian motion of material ↔ arm length noise