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1 Introduction

PowerFlux is a program for estimating the flux of monochromatic gravita-
tional waves from a particular source in the sky. It uses short Fourier trans-
form files (SFTs) of 30 minute duration (also called “coherence time”) as
input data. Because of this, PowerFlux is much less sensitive to variations in
phase than coherent methods (for example ComputeFStatistic). The result
is a trade-off of sensitivity for drastic reduction of search space, allowing for
full-sky full-bandwidth searches to be completed in reasonable time.

This algorithm has been previously described in [1, 2, 3].
The original PowerFlux code was designed for efficient computation of

power sums in 0.25 Hz bands while iterating over sky templates, spindowns
and polarizations. A Feldman-Cousins algorithm [4] was then used to obtain
upper limits. A number of auxiliary values were collected as well, in par-
ticular signal-to-noise ratios, locations of outliers and values of Kolmogorov-
Smirnov tests to verify Gaussianity of underlying data.

The all-sky search of full S5 dataset which spanned 2 years of data pre-
sented a number of challenges:

• The spindown step used in the search had to be decreased to 3×10−11 Hz/s
from 5×10−10 Hz/s used in previous searches. This greatly increased
the computing time needed to cover the same range of parameters.

• The larger dataset strained memory limits of available computing clus-
ters. At the moment the largest cluster is ATLAS which makes avail-
able 2 GB of memory per node - a soft limit as actual quad-core ma-
chines have 8 GB of memory which is shared between 4 nodes.

• For a good portion of frequency range full S5 dataset is the most sen-
sitive to date and is expected to be superseded only when advanced
LIGO or Virgo detectors come into operation. This presents a problem
as we cannot rely on more sensitive data to confirm or reject potential
candidates.

These issues were met by rewriting PowerFlux analysis pipeline to ac-
commodate new search methods and increase efficiency. The existing startup
code - including sky grid generation, SFT input-output and software injec-
tion engine - was reused with only minimal changes to accommodate new
pipeline. Thus both original (PowerFlux) and new (PowerFlux2) codes can
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be compiled from the same common code base and tested using the same
software injection code.

Both executables can run from the same configuration file and the options
not applicable to the particular code are ignored.

The following features are new in PowerFlux2:

• Partial power sum cache provides 5-10x speedup when running in single
bin mode.

• The ability to produce upper limits for subsets of the entire data bro-
ken down by time and interferometers, as well as their combinations.
Thus outliers for individual interferometers and using all interferome-
ters together are obtained from the same instance.

• Utilization of vector processing instructions of modern CPUs.

• Extensibility to new methods of computation power sums.

• Higher sensitivity (but slower) loosely coherent mode [5] of computing
power sums.

2 Overview of PowerFlux and loosely coher-

ent methods

PowerFlux estimates power coming from particular direction on the sky by
computing the following weighted sum:

P [k, ft, at] =

∑
t∈SFTs a

2
t |zt,k+ft |2/w4

t∑
t∈SFTs a

4
t/w

4
t

Here we use at for the series of amplitude response coefficients for a particular
polarization and direction on the sky, ft denotes the series of frequency bin
shifts due to Doppler effect and spindown, |zt,ft|2 is the power in bin ft for
SFT acquired at time t and k indexes bin number of the resulting power sum.
The weights wt describe level of noise in individual SFTs and do not depend
on sky location or polarization.

This power is computed for 501 contiguous frequency bins at a time for a
fixed sky location, spindown and polarization. These 501 numbers are used
to compute signal-to-noise ratios, upper limits and other statistics.
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The new loosely coherent mode takes a controllable amount of phase in-
formation into account trading computational efficiency for higher sensitivity.
The particular implementation used in PowerFlux2 uses a double sum with
a Lanczos kernel:

L[k, ft, at] =

∑
t1,t2∈SFTs at1 āt2Kt1,t2(δ)Φ(t1)Φ̄(t2)zt1,k+ft1

z̄t2,k+ft2
/(w2

t1
w2

t2
)∑

t1,t2∈SFTs a
2
t1 ā

2
t2K(t1 − t2)/(w2

t1w
2
t2)

Here Kt1,t2(δ) is the kernel configured at compile time and Φ(t1) is the phase
correction obtained by computing emission time in solar system barycen-
ter frame of reference. The parameter δ governs the amount of phase drift
the search can tolerate in 1800 seconds. The tested values include π, π/2
and π/5. For these values of δ most cross terms are zero and a number of
approximations (discussed later) can significantly speedup the computation.

By analyzing data with successively smaller values of δ the loosely co-
herent code can confirm or reject outliers from original PowerFlux analysis,
while still preserving a large degree of immunity to phase variations that
benefit original PowerFlux method. This provides greater feedback on the
nature of the signal (instrumental or astrophysical) that caused the outlier
as well as confidence that small deviations from accepted astrophysical signal
model.

In addition, the method has sufficient speed to analyze large areas of the
sky at low frequencies where Doppler shifts are small and original PowerFlux
method has difficulty distinguishing between instrumental artifacts and real
signal.

3 Power sum caching

The most significant change in PowerFlux is the introduction of partial power
sum cache. The idea is as follows: suppose we are analyzing a stretch of data
several month long. Then the minimal change in spindown value that the
search can tolerate is determined by this large timebase.

Consider now a partition of the power sum over the entire dataset into
stretches 2 week long. Each stretch can tolerate significantly larger spindown
step. If we precompute the partial power sums for each stretch we can quickly
conclude the entire computation by picking the appropriate partial power
sum altered by some constant frequency shift for each finer spindown value.
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This approach can be further elaborated by noting that the other large
source of frequency shift is Doppler effect from Earth orbital velocity vector
which also stays almost constant on the scale of a few weeks. Thus additional
savings can be realized by extending the same principle to groups of nearby
sky templates.

The actual implementation groups all of these concepts together.
First, we compute power sums for groups of sky templates for which we

can assume constant amplitude response (we will call such a group a “patch”).
Secondly, the only thing that matters for computation of power sums are

per-SFT frequency shift and, for the loosely coherent search, the relative
phase adjustment.

Then an associative cache that uses sequences of frequency shifts as key
will provide a model-independent way to accelerate the code and take ad-
vantage of degeneracy between signal parameters on short timescales.

Several nuances result in improved performance:

• In practice the frequency shifts are real numbers. To use them as a
key one should round them to the nearest point on a frequency grid.
For single bin PowerFlux mode this means rounding to the nearest
frequency bin.

• Two sequences of shifts that are different by the same constant in every
term can be easily derived from the same power sum if it had enough
extra points to accommodate the offset.

• It is best to group SFTs by the magnitude of their frequency shift.
This way they are more likely to differ by only a constant shift from
previously computed group.

The result of all these improvements is that a single spindown run in
single-bin PowerFlux mode usually sees cache efficiency on the order of 90%,
while a multiple spindown run can achieve efficiency of 95%. The cached
sums still need to be accumulated and analyzed, so the overall gain in speed
is between 5x (for single spindown run) to 10x (for multiple spindowns).
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4 PowerFlux2 architecture

4.1 Data flow

The data flow of PowerFlux can be followed on figure 1. We start with 1800-
second short Fourier transforms (SFTs), which are first analyzed without
demodulation to establish general noise levels and isolation sharp lines which
are typically caused by detector artifacts.

A summing engine generates sky and spindown templates and precom-
putes quantities needed to determine Doppler shift, emission times in solar
system barycenter frame and amplitude response. An index of SFTs needed
to analyze the particular chunk of data is created and populated with infor-
mation for each template in turn.

With this summing plan in hand we query the cache engine for computed
partial power sums. If an existing sum is found in cache it is returned im-
mediately. If not the caching engine calls an appropriate function to compute
the partial power sum.

When partial power sums computed for all chunks they are passed on to
the statistics code which produces upper limits and signal-to-noise ratios for
any combination of consecutive chunks for individual interferometer or all
interferometers combined and the results are saved into log files.

1800sec
Periodograms

Noise
decomposition

Line
detection

Doppler
shifts

Amplitude
modulation

Detector response

Veto

Partial sum

Upper limits
and 

outliers

Cache 
engine

Summing engine

Summing 
plan

Figure 1: Flowchart of PowerFlux code
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4.2 Data structures overview

Like its predecessor, PowerFlux2 is structured as a computational engine
where a library of functions operates on data structures that carry informa-
tion throughout the pipeline.

The following data structures are particularly important:

• PARTIAL POWER SUM carries the results of accumulating power from a
subset of available SFTs. Instead of specializing to particular polar-
izations (as has been done in earlier version of PowerFlux) we carry
the coefficients of the polynomials (quadratic in power and quartic in
weight) that depend on polarization coefficients.

• SEGMENT INFO is filled in with information on a single SFT to be included
into PARTIAL POWER SUM

• SIMPLE CACHE keeps the cache of previously computed partial power
sums.

• POWER SUM contains information on particular template (sky location,
spindown and sub-bin frequency shift) and computed partial power
sum.

• SUMMING CONTEXT carries the parameters that define which particular
flavour of power sum is being computed as well as information local
to a particular computational thread. In the current code there is one
such structure for each allocated thread.

• ALIGNMENT COEFFS specifies a particular polarization and contains pre-
computed coefficients ready to convert a PARTIAL POWER SUM into a weighted
sum for computation of upper limits.

• POINT STATS is used to store computed upper limit, signal-to-noise ratio
and other statistics for a particular polarization, sky location, spindown
and sub-bin frequency shift.

• POWER SUM STATS carries aggregate information for a particular power
sum or a set of templates.

• EXTREME INFO carries aggregate information for the entire computation.
The skymap members are NULL by default which saves memory in
batched analysis.
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4.3 Partial power sum

The figure 2 shows the declaration of the PARTIAL POWER SUM structure. The
weighted power sum depends quadratically on amplitude modulation, while
the sum of weights depends on it in the fourth degree. The individual com-
ponents are labeled pp, pc and cc for the quadratic case and pppp, pppc and
so on for the quartic case.

typedef struct {

int type;

int nbins;

REAL c_weight_pppp;

REAL c_weight_pppc;

REAL c_weight_ppcc;

REAL c_weight_pccc;

REAL c_weight_cccc;

REAL *weight_pppp;

REAL *weight_pppc;

REAL *weight_ppcc;

REAL *weight_pccc;

REAL *weight_cccc;

/* power sums - plus^2, plus*cross and cross^2*/

REAL *power_pp;

REAL *power_pc;

REAL *power_cc;

int offset; /* this is the index of the bin with index 0 in the output (i.e. firstbin) */

int weight_arrays_non_zero;

int collapsed_weight_arrays;

} SUFFIX(PARTIAL_POWER_SUM);

Figure 2: PARTIAL POWER SUM

There are two sets of fields accumulating weights - the constant fields
hold overall weight, while weight arrays are used only of line avoidance is
being performed.
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4.4 SFT information

The array of structures SEGMENT INFO 3 is used as a summing plan for the un-
cached power sum functions. It carries the information on which SFTs with
what frequency shifts and amplitude response coefficients will be summed.
The actual functions are thus isolated from a specific signal model that is
used in the power sum accumulation function.

The code implementing partial power sum cache ignores amplitude re-
sponse coefficients, so they should be kept fixed between calls to reset the
cache.

typedef struct {

/* fields below are filled in when computing power */

/* amplitude response factors to use in power sum - note these are kept constant throughout the patch */

float f_plus;

float f_cross;

/* bin shift to apply, this is in units of 1/coherence_time - as opposed to power sums */

double bin_shift;

double diff_bin_shift; /* linear component, drift from one frequency bin to another */

/* fields below are filled in when locating segments */

/* for convenience, same as datasets[dataset].gps[segment] */

double gps;

double detector_velocity[3]; /* also from datasets[dataset] */

double coherence_time;

/* segment coordinates */

int dataset;

int segment;

int index; /* arbitrary index for use by power_sum accumulation code, typically for referencing private data */

} SEGMENT_INFO;

Figure 3: SEGMENT INFO
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4.5 Simple cache

To speedup computation PowerFlux keeps an associative cache 4 of com-
puted partial power sums. The id member identifies which particular pipeline
flavour created it.

During execution the cache collects statistics on its performance. Besides
basic hits and misses counters, a cache fault can be caused by an overwrite

when key collision occurs or large shift when we are requesting to compute
a power sum with a constant frequency offset too large to be accommodated
by built-in window.

The cache structure is reset for different sets of templates (“patches”)
and different SFT sets. The SFT count it expects is kept in segment count

variable. The actual cache keys are the sequences of SEGMENT INFO structures
kept in si member. Their hashes are stored in the key field of the structure.

typedef struct {

long id;

/* statistics */

long hits;

long misses;

long overwrites;

long large_shifts;

int max_size;

/* cache contents */

int segment_count;

int size;

int free;

int *key;

SEGMENT_INFO **si;

PARTIAL_POWER_SUM_F **pps;

} SIMPLE_CACHE;

Figure 4: SIMPLE CACHE
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4.6 Power sums

The POWER SUM 5 data structure wraps PARTIAL POWER SUM with information
sufficient to calculation frequency shift and amplitude response passed to par-
tial power sum functions. It thus acts as a template. The partial power sum
will hold the accumulated data, and min gps and max gps members record
the actual sampled timebase.

An array of power sum structures is passed to power sum accumulation
function and all the templates specified by the array are computed simulta-
neously and share the same cache.

typedef struct S_POWER_SUM {

float freq_shift; /* additional shift e.g. for half-bin sampling */

float spindown;

float ra;

float dec;

float patch_ra;

float patch_dec;

double min_gps;

double max_gps;

float e[26];

float patch_e[26];

int skyband;

PARTIAL_POWER_SUM_F *pps;

} POWER_SUM;

Figure 5: POWER SUM

4.7 Summing context

The summing context keeps thread specific information as well as methods
defining which particular computation is being done.

The figure 6 shows the declaration of the structure. The method get uncached power sum

performs the actual computation of partial power sum and defines the search
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typedef struct S_SUMMING_CONTEXT {

void (*get_uncached_power_sum)(struct S_SUMMING_CONTEXT *ctx, SEGMENT_INFO *si, int count, PARTIAL_POWER_SUM_F *pps);

void (*accumulate_power_sum_cached)(struct S_SUMMING_CONTEXT *ctx, SEGMENT_INFO *si, int count, PARTIAL_POWER_SUM_F *pps);

void (*accumulate_power_sums)(struct S_SUMMING_CONTEXT *ctx, struct S_POWER_SUM *ps, int count, double gps_start, double gps_stop, int veto_mask);

int cache_granularity;

double inv_cache_granularity;

double half_inv_cache_granularity;

int diff_shift_granularity;

double inv_diff_shift_granularity;

double half_inv_diff_shift_granularity;

int sidereal_group_count; /* group sfts falling on similar times of the day in this many groups */

double summing_step; /* process SFTs in blocks of this many seconds each */

int time_group_count; /* group SFTs by their GPS time within a block into this many groups - used by loosely coherent code */

void *cache;

void (*free_cache)(struct S_SUMMING_CONTEXT *ctx);

void (*print_cache_stats)(struct S_SUMMING_CONTEXT *ctx);

void (*reset_cache)(struct S_SUMMING_CONTEXT *ctx, int segment_count, int template_count);

void *patch_private_data;

/* dynamic parameters */

int loose_first_half_count;

} SUMMING_CONTEXT;

Figure 6: SUMMING CONTEXT
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being performed. The accumulate methods implement the cache of previ-
ously computed power sums as well as calling sequence that makes most use
of it. The same method can be shared between different search codes, but
usually needs tuning to make the most of the cache while still accurately
computing the power sums.

The most important tuning parameter is cache granularity which con-
trols the sub-frequency bin tolerance of the cache for the purpose of comput-
ing frequency shifts. The parameter diff shift granularity performs the
same function for frequency-dependent Doppler shift variation that loosely
coherent search is sensitive to.

To make the most use of the cache the SFTs are partitioned in blocks of
summing step seconds and each block is further partitioned into sidereal group count

groups by the magnitude of the frequency shift - in most cases it mostly de-
pends on the hour of day.

4.8 Alignment coefficients

The ALIGNMENT COEFFS 7 structure holds precomputed amplitude response
coefficients, which make easy to compute numerator and denominator of
weighted power sum by simply taking a dot product of (pp, pc, cc) and (pppp, pppc, ppcc, pccc, cccc)
members of the alignment structure with accumulated PARTIAL POWER SUM.

An array of alignment coefficients is allocated - one for each sampled
polarization. A circular polarization is always added, so the total number of
polarizations sampled is npsi·niota+1.

4.9 Point statistics

The point statistics structure 8 contains upper limit and signal-to-noise ratio
estimates for a particular template and particular polarization, as well as
many other statistic parameters of various usefulness. The iota and psi

members specify particular polarization this data was computed for. The
four last fields are used to convey complete information on point for which
the values were achieved - which is the maximum of upper limit and signal-
to-noise ratio (both maximums are achieved for the same frequency bin).

ks value has the value of Kolmogorov-Smirnov statistic when statistics-function

is set to sorted. Otherwise the code fills in m1 neg, m3 neg and m4 members
which are the negative parts of first and third moments and a fourth moment.
These are used to check for Gaussianity of computed power sums.
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typedef struct {

float iota;

float psi;

float pp;

float pc;

float cc;

float pppp;

float pppc;

float ppcc;

float pccc;

float cccc;

} ALIGNMENT_COEFFS;

Figure 7: ALIGNMENT COEFFS

weight loss fraction describes how much underlying data was discarded
due to line veto.

4.10 Accumulated statistics

POWER SUM STATS 9 holds the accumulated statistics from POINT STATS struc-
tures computed for many polarizations and templates.

The inclusion of complete POINT STATS structures for highest upper limit
and signal-to-noise ratio points allows to identify where they were achieved.

4.11 Extremal points

The structure EXTREME INFO 10 carries information about points which achieve
maxima and minima of various statistics over different sets of templates. The
skymap members contain maxima over spindowns, polarizations and frequen-
cies. They can be set to NULL to conserve memory. The band info members
carry information about extremal points in each sky band.

There is one extreme info structure for each chunk of SFT data under
analysis. The member first chunk and last chunk specify the start and end
of the contiguous set of SFTs to analyze. veto num indicates whether we are
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typedef struct {

double iota;

double psi;

double ul;

double ll;

double centroid;

double snr;

double M;

double S;

double ks_value;

double m1_neg;

double m3_neg;

double m4;

double max_weight;

double weight_loss_fraction;

int ks_count;

int bin;

/* the following fields are for convenience and are filled in by outside code based on value of bin */

double frequency;

double spindown;

double ra;

double dec;

} POINT_STATS;

Figure 8: POINT STATS

18



typedef struct {

POINT_STATS highest_ul;

POINT_STATS highest_snr;

POINT_STATS highest_ks;

POINT_STATS highest_M;

POINT_STATS highest_S;

POINT_STATS highest_circ_ul;

double max_weight_loss_fraction;

double max_weight;

double min_weight;

double max_m1_neg;

double min_m1_neg;

double max_m3_neg;

double min_m3_neg;

double max_m4;

double min_m4;

int ntemplates;

} POWER_SUM_STATS;

Figure 9: POWER SUM STATS
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using SFTs from a particular detector only, or all detectors simultaneously
(-1).

typedef struct {

char *name;

float *ul_skymap;

float *circ_ul_skymap;

float *snr_skymap;

float *ul_freq_skymap;

float *circ_ul_freq_skymap;

float *snr_freq_skymap;

float *snr_ul_skymap;

float *max_weight_skymap;

float *min_weight_skymap;

float *weight_loss_fraction_skymap;

float *ks_skymap;

POWER_SUM_STATS *band_info;

int *band_valid_count;

int *band_masked_count;

/* convenience info for keeping track of which ei is which */

int first_chunk;

int last_chunk;

int veto_num;

} EXTREME_INFO;

Figure 10: EXTREME INFO

5 Single bin semi-coherent statistic

The single-bin semi-coherent summing mode is turned on by specifying averaging-mode=one.
This implements conventional weighted power sum algorithm, with several
optimizations that increase speed by up to a factor of 10 when iterating over
many small spindown steps. The “single-bin” refers to the use of a single
power bin from each Hann windowed SFT. It is possible to create a vari-
ation of the same algorithm that uses several SFT bins for more accurate
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power estimation (called “matched filter” mode), however the matched filter
employed for that purpose is computationally expensive and the results are
more sensitive to sub-bin frequency shift.

5.1 Computation of partial power sums

The uncached partial power sum function computes the partial power sum
taking into account amplitude modulation and SFT noise level. The weight
estimation can be performed either by using the TMedians as in the first ver-
sion of PowerFlux, or by computing variance of SFT bins actually used. This
results in small improvement in sensitivity. The non-robustness of variance
is actually useful as it deemphasizes SFTs with large spikes. Which of the
two methods is used is determined by tmedian-noise-level parameter.

If line veto is on, the algorithm avoids lines by subtracting out the con-
tribution of affected frequency bins.

Two variants of the function has been written - a regular C implementa-
tion and an optimized version using explicit calls to functions implementing
vector based arithmetic.

5.2 Caching of partial power sums

The cached accumulation function implements a hash table that holds previ-
ously computed power sums. This assumes that amplitude modulation con-
stants are the same for all templates being processed, therefore, the cache
is emptied at the start of each patch with different amplitude modulation
constants.

The key is based on the well-known modulo arithmetic algorithm applied
to frequency bin shifts. The value of the first bin shift is subtracted out as
translation by integer number of frequency bin can be easily accommodated
by computing slightly more frequency bins than necessary.

5.3 Power sum accumulation

The power sum accumulation function computes the power sums in blocks
of summing step seconds (by default 10 days). Each block is partitioned into
SFT groups by the magnitude of the frequency shifts. The total number
of groups is governed by sidereal-group-count parameter. Note that the
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groups do not have to be equal in length, in fact computation will be more
efficient in the case of one large group.

6 Loosely coherent statistic

The loosely coherent method is activated by specifying averaging-mode=loose single bin.
This turns on higher sensitivity, though slower, mode meant for investigation
of small portions of the sky.

The code is contained in files single bin loosely coherent sum.c and
single bin loosely coherent sum.h which define uncached partial power sum
function as well as corresponding accumulation methods.

6.1 Computation of partial power sums

The uncached partial power sum function assumes that its input is split into
two sets of SFTs (which may coincide). The number of SFTs in the first step
is governed by parameter loose first half count in the summing context.
This function returns the double sum:

Pk =
∑
i,j

b∗kjKjiaki

where aki are phase corrected SFT bins from the first set, index k differen-
tiates different SFT bins, while i corresponds to time. bki denotes the phase
corrected SFT bins from the second set. The kernel Kij is a suitable loosely
coherent kernel. In the present implementation we have explored exponen-
tial kernel described in [5], the sinc kernel and two variations of the Lanczos
kernels. The latter have been chosen for regular use as it provides the best
trade-off between flatness for a limited amount phase mismatch and keeping
the most coefficients of Kij zero.

The kernel presently used is based on Lanczos kernel with parameter 3
defined in function lanczos kernel3:

K̃ij(δ) =

{
δ |ti − tj| /1800.0 sec > 3.0 0.0
else sinc(δ |ti − tj| /1800.0 sec)sinc(δ |ti − tj| /5400.0 sec)

where sinc(x) = sin(x)
x

is the well-known sinc function. ti are the GPS times
of the SFTs being summed and δ is the parameter describing tolerance to
the phase mismatch.
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The full kernel takes into account weights and amplitude modulation:

Kij = F
√
wjK̃ji

√
wi

where wi are the conventional inverse square PowerFlux weights and A is one
of quadratic amplitude modulation factors F 2

+, F 2
× or F+F×. The imaginary

component of amplitude modulation is neglected to fit the existing PowerFlux
array layout (more details are in section 7.

Neither background subtraction nor line avoidance are implemented.

6.2 Caching of partial power sums

The cached accumulation function follows the same algorithm as the one
for single bin power sum method, except that key depends on differential
shift as well as a regular one - this is to account for phase variance between
neighbouring frequency bins.

6.3 Power sum accumulation

The power sum accumulation function is different in two respects: first, it is a
double sum over SFT sets from each group. Secondly, the block is partitioned
into groups both by sidereal time (as in single bin case) and, in addition,
by time as well. The latter is done to speed up computation - for large δ
values there is no reason to compute matrix elements between groups widely
spaced SFT sets.

Also, the default value of summing step parameter that describes the
length of one block is 3 days, not 10 as for single bin code.

7 Processing of amplitude modulation in Pow-

erFlux2

There are two ways to derive the formulas for universal polarization coef-
ficients appropriate for computing bilinear products. One way is to apply
mathematical technique of polarization of homogeneous polynomials, while
the other is to derive it from the basics.

We will follow the formalism of [1, 6, 7, 8]
Let us consider a single SFT and an elliptically polarized source with

major axis tilted at an angle ψ w.r.t. vertical axis.
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We assume that during SFT period (usually 30 minutes or less) the fre-
quency of source can be assumed constant.

h′+ = A+ cos(ωt)
h′× = A× sin(ωt)

A generic pulsar signal can be represented as A+ = h0 (1 + cos2(ι)) /2,

A× = h0 cos(ι), with h0 = A++
√
A2

+ − A2
× and cos(ι) = A×/

(
A+ +

√
A2
× − A2

+

)
We will assume that demodulation is performed for a fixed frame of plus

and cross polarizations rotated at an angle α. In this coordinate system we
have:

h+ = A+ cos(ωt) cos(ε)− A× sin(ωt) sin(ε)
h× = A+ cos(ωt) sin(ε) + A× sin(ωt) cos(ε)

where we introduced ε = 2(ψ − α).
The signal amplitude in SFT bin corresponding to frequency ω is then

z =
∫

(F+h+ + F×h×) e−iωtdt =
= 1

2
(F+(A+ cos(ε) + iA× sin(ε)) + F×(A+ sin(ε)− iA× cos(ε)))

= 1
2

(A+(F+ cos(ε) + F× sin(ε)) + iA×(F+ sin(ε))− F× cos(ε)))

For the computation of loosely coherent statistic we are concerned with
the product z1z̄2 of signal amplitudes from two SFTs.

Rez1z̄2 = 1
4
Re
(
A+(F 1

+ cos(ε) + F 1
× sin(ε)) + iA×(F 1

+ sin(ε)− F 1
× cos(ε))

)
·

·
(
A+(F 2

+ cos(ε) + F 2
× sin(ε))− iA×(F 2

+ sin(ε)− F 2
× cos(ε))

)
=

= 1
4

(
A2

+(F 1
+ cos(ε) + F 1

× sin(ε))(F 2
+ cos(ε) + F 2

× sin(ε)) +
+ A2

×(F 1
+ sin(ε))− F 1

× cos(ε))(F 2
+ sin(ε))− F 2

× cos(ε))
)

24



Grouping terms with products of F+ and F× we obtain:

Rez1z̄2 = 1
4

(
A2

+(F 1
+ cos(ε) + F 1

× sin(ε))(F 2
+ cos(ε) + F 2

× sin(ε))+
+ A2

×(F 1
+ sin(ε))− F 1

× cos(ε))(F 2
+ sin(ε)− F 2

× cos(ε))
)

=
= 1

4

(
F 1
+F

2
+(A2

+ cos2(ε) + A2
× sin2(ε)) + F 1

+F
2
×(A2

+ − A2
×) cos(ε) sin(ε)+

+F 1
×F

2
+(A2

+ − A2
×) cos(ε) sin(ε) + F 2

×F
2
×(A2

+ sin2(ε) + A2
× cos2(ε))

)
=

= 1
4

(
F 1
+F

2
+(A2

+ cos2(ε) + A2
× sin2(ε))+

+(F 1
+F

2
× + F 1

×F
2
+)(A2

+ − A2
×) sin(2ε)+

+F 1
×F

2
×(A2

+ sin2(ε) + A2
× cos2(ε))

)
=

= 1
4

(
(F 1

+F
2
+ + F 1

×F
2
×)(A2

+ + A2
×)+

+(F 1
+F

2
+ − F 1

×F
2
×)(A2

+ − A2
×) cos(2ε)+

+ (F 1
+F

2
× + F 1

×F
2
+)(A2

+ − A2
×) sin(2ε)

)
= 1

4

(
F 1
+F

2
+((A2

+ + A2
×) + (A2

+ − A2
×) cos(2ε))+

+F 1
×F

2
×((A2

+ + A2
×)− (A2

+ − A2
×) cos(2ε))+

+ (F 1
+F

2
× + F 1

×F
2
+)(A2

+ − A2
×) sin(2ε)

)
Similarly

Imz1z̄2 = 1
4
Im
(
A+(F 1

+ cos(ε) + F 1
× sin(ε)) + iA×(F 1

+ sin(ε)− F 1
× cos(ε))

)
·

·
(
A+(F 2

+ cos(ε) + F 2
× sin(ε))− iA×(F 2

+ sin(ε)− F 2
× cos(ε))

)
=

= 1
4

(
F 1
+F

2
×A+A× − F 1

×F
2
+A+A×

)
=

= 1
4

(
F 1
+F

2
× − F 1

×F
2
+

)
A+A×

Thus the response of a single SFT bin can be decomposed into detector
response terms F 1

+F
2
+, F 1

×F
2
×, F 1

+F
2
× + F 1

×F
2
+ and F 1

+F
2
× − F 1

×F
2
+ and corre-

sponding polarization dependent coefficients that are universal for all SFTs.
If one computes partial power sums for detector response terms alone - an
effort equivalent to sampling 3-5 individual polarizations - then it is possible
to reconstruct power sums for any polarization without summing over the
entire SFT set.

The single bin code is only concerned with the case z1 = z2 in which case
the imaginary component is identically zero.

The imaginary component is neglected in loosely coherent search code
as original partial power sum structures were constructed for single bin case
alone. This does not result in a large impact for two reasons:

• The antenna pattern factors evolve slowly in time making it small for
closely spaced SFTs. For π/2 search the kernel coefficients is less than
5% of maximum value for SFTs 2 hours apart. For π/5 search the
distance is 5 hours.
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• The product A+A× is small for linear polarizations which make up
the overall upper limit. Thus the losses from not taking Imz1z̄2 into
account for elliptically polarized signals are made up by overestimate
when demodulating them as linearly polarized signals.

The overall correction is a combination of these two factors. For example,
when considering π/2 search we can bound the effect of evolution of ampli-
tude modulation factors as 2 hours/24 hours = 8.3%. As the power injected
by the signal varies by a factor of 8 between linearly polarized signals and
circularly polarized signals the overall upper limit will not be affected.

8 Example output

The figures 12 and 14 contain example output produced using configuration
files shown on figures 15, 16 and 17.

These configuration files can be obtained from lsc-docs CVS or copy-
and-pasted from this document. To reproduce the output put all configura-
tion files in a suitable directory along with ephemeris files earth05-09.dat

and sun05-09.dat which can be found in lalapps repository. Then, using
either multithreaded version of PowerFlux 2 powerflux-mt2 or condorized
single-threaded executable powerflux-condor2 run the following commands:

powerflux-mt2 --config=config.single_bin

powerflux-mt2 --config=config.single_bin_zoomed

powerflux-mt2 --config=config.loose_pi_2

This will create directories single bin, single bin zoomed and loose pi 2

with the images and log files.
In all cases we have made a linearly polarized injection into Gaussian

noise that spanned several months. The injection strength was chosen to
produce a signal-to-noise ratio of 8.29 - a typical value for an outlier to be
followed up. Figure 12 shows the entire sky as would be explored in typical
PowerFlux run. Figure 14 shows a skymap produced using regular single-bin
code (left) and a skymap made with loosely coherent search with δ = π/2
and 10x magnification.

Figure 13 shows corresponding skymap of upper limits. The injection
is barely visible in the top right corner due to less sensitive region at the
equator.
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outer_loop

assign_cutoff_veto

assign_detector_veto

assign_per_dataset_cutoff_veto

create_segments

free_extreme_info

output_extreme_info

create_summing_context

free_summing_context

max_gps

min_gps

do_single_job

jobs_done_ratio

reset_jobs_done_ratio

wait_for_all_done

get_max_threads

make_plot

make_RGBPic

outer_loop_cruncher

submit_job

weight_cmp

allocate_extreme_info

accumulate_power_sum_cached1

accumulate_power_sum_cached_diff

accumulate_power_sums_sidereal_step

accumulate_single_bin_loose_power_sums_sidereal_step

allocate_simple_cache

get_uncached_loose_single_bin_partial_power_sum

sse_get_uncached_single_bin_power_sum

find_segments

free_simple_cache

print_simple_cache_stats

reset_simple_cache

set_concurrency

expand_jobs

clone_templates

free_templates

generate_patch_templates

log_extremes

mark_sky_point effective_weight_ratio

fast_stationary_effective_weight_ratiopower_sum_stats

Figure 11: Call graph of PowerFlux2 outer loop function. This does not
include calls to methods of summing context.
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On all skymaps the square pixels describe patches - multiple templates
were sampled for each patch.

Figure 12: Example skymap of signal-to-noise ratios using single-bin Power-
Flux2 mode. The injection was performed at RA=2.0 and DEC=1.0. Each
square corresponds to a sky patch - a set of templates that used the same
amplitude response coefficients.
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Figure 13: Example skymap of upper limits using single-bin PowerFlux2
mode. The injection was performed at RA=2.0 and DEC=1.0 and is barely
visible, compared to equatorial points where we are less sensitive.

29



Figure 14: Zoomed view of the injection. The area displayed in both pic-
tures is a disk with 0.3 radians radius centered at the location of the out-
lier of figure 12. The left image has been made with single-bin code. The
right image was produced by loosely coherent code using δ = π/2 and
sky-resolution-ratio=0.25.

9 Running PowerFlux on the cluster

The monolithic PowerFlux binary adapts readily to running on multiple
CPUs. The simplest way to use more computing power is to start a multi-
threaded version on machine with many cores. It will automatically utilize as
many cores as are available, while sharing input and output arrays between
different threads.

If condor controlled cluster is available it is best to run condor-enabled
version of PowerFlux under “standard” universe which enables checkpoint-
ing. In this configuration it is feasible to have individual instances run com-
plete over a few days with the entire analysis taking weeks or months. One
drawback of this approach is that since we are running single-threaded each
instance needs its own input and output arrays which can take 2 GB or more
of memory. If memory consumption is a problem the sky can be partitioned
into slices to reduce the size of internal skymaps - but there is no workaround
if you are dominated by the size of the input data.

Once the analysis is complete the log files powerflux.log and data.log
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should be used to extract upper limits, signal-to-noise ratios, outliers and
other statistics.

A number of scripts make setting up dags and collecting data easy. They
are stored in the scripts subdirectory in PowerFlux tree and should be used
as a guide for setting up new analysis.

In particular, the following scripts can be of use:

• make run.tcl - generate dag and other supporting files for PowerFlux
analysis run.

• make 1800 sfts.tcl - generate dag for producing PowerFlux-style Hann
windowed SFTs.

• normalize sft name.tcl - rename SFTs in accordance with common
LDR usage.

• make native sft injection run.tcl - generate dag and supporting files
for software injection run.

• archive.tcl - compress one or more directories in tarball for archiving.
This is done in background. The original directory can be removed on
successful completion.

• find outlier matches.tcl - compile the initial list of coincident outliers
from PowerFlux data.log file. This is done with very loose constraints
to reduce the amount of data to more managable (several GB) size.

• make outlier histogram.tcl - compute outlier histogram data from
powerflux.log file.

The collected data can easily exceed 10 GB for a large run. At these size
loading into analysis program such as R is awkward (though possible) and
it is best to first upload the data to a database (such as MySQL) and then
analyze one frequency band at a time.

10 PowerFlux configuration options

When started with --help option PowerFlux prints out a summary of avail-
able command line switches:
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powerflux 1.4.41-64

Powerflux analysis program

Usage: powerflux [OPTIONS]...

-h, --help Print help and exit

-V, --version Print version and exit

-c, --config=STRING configuration file (in gengetopt format) to

pass parameters

--label=STRING arbitrary string to be printed in the beginning

of PowerFlux log file (default=‘’)

--sky-grid=STRING sky grid type (arcsin, plain_rectangular,

sin_theta) (default=‘sin_theta’)

--skymap-orientation=STRING

orientation of produced skymaps: equatorial,

ecliptic, band_axis (default=‘equatorial’)

--skyband-method=STRING method of assigning band numbers: angle, S

(default=‘S’)

--nskybands=INT split sky in this many bands for logging

maximum upper limits (default=‘11’)

--large-S=DOUBLE value of S to consider good enough

--band-axis=STRING which band axis to use for splitting sky into

bands (perpendicular to band axis) (possible

values: equatorial, auto,

explicit(float,float,float) (default=‘auto’)

--band-axis-norm=DOUBLE norm of band axis vector to use in S value

calculation

--sky-marks-file=STRING file describing how to mark up a sky

--fine-factor=INT make fine grid this times finer (default=‘5’)

--skymap-resolution=DOUBLE

specify skymap resolution explicitly

--skymap-resolution-ratio=DOUBLE

adjust default coarseness of the grid by this

factor (default=‘1.0’)

--small-weight-ratio=DOUBLE

ratio that determines which weight is too small

to include in max statistics (default=‘0.2’)

--strain-norm-factor=DOUBLE

strain normalization factor to prevent
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overflowing of the exponent

(default=‘1e-20’)

--lock-file=STRING file to lock when reading SFTs in order to

globally serialize disk access

--enable-dataset-locking=INT

set to 1 to enable dataset level locking

(default=‘1’)

--retry-delay=INT number of seconds to wait before retrying I/O

(default=‘2’)

--lock-retry-delay=INT number of seconds to wait before trying to

acquire lock again (default=‘10’)

-s, --dataset=STRING dataset file

-i, --initial-dataset-seed=INT

initial seed to use for generating gaussian

data (default=‘12345’)

--input-format=STRING format of input files (GEO, SFT, Power)

(default=‘GEO’)

--dump-data=STRING file to output loaded SFT data into, for

testing

--dump-sftv2=STRING directory to output loaded data, together with

dataset description

-o, --output=STRING output directory

--flat-output=STRING output directory to contain all files, with no

subdirectories (for globus condor)

--ephemeris-path=STRING path to detresponse program from lalapps

--earth-ephemeris=STRING Earth ephemeris file, overrides ephemeris-path

argument

--sun-ephemeris=STRING Sun ephemeris file, overrides ephemeris-path

argument

-f, --first-bin=INT first frequency bin in the band to be analyzed

-n, --nbins=INT number of frequency bins to analyze

(default=‘501’)

--side-cut=INT number of bins to cut from each side due to

corruption from doppler shifts

--expected-timebase=DOUBLE

expected timebase in months (default=‘6’)

--hist-bins=INT number of bins to use when producing histograms

(default=‘200’)

-d, --detector=STRING detector location (i.e. LHO or LLO), passed to

detresponse
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--doppler-multiplier=DOUBLE

a constant to multiply Doppler shifts by (1.0

corresponds to standard physics)

(default=‘1.0’)

--dInv=DOUBLE inverse distance to expected source in seconds

(default=‘0.0’)

--spindown-start-time=DOUBLE

specify spindown start time in GPS sec. Assumed

to be the first SFT segment by default

--frequency-offset=DOUBLE (small) frequency offset - used to achieve

fractional bin shifts (default=‘0.0’)

--spindown-start=DOUBLE first spindown value to process

(default=‘0.0’)

--spindown-step=DOUBLE step for processing multiple spindown values

(default=‘5e-10’)

--spindown-count=INT how many separate spindown values to process

(default=‘1’)

--fdotdot=DOUBLE second frequency derivative (default=‘0.0’)

--orientation=DOUBLE additional orientation phase, specifying 0.7853

will turn plus into cross (default=‘0’)

--nlinear-polarizations=INT

even number of linear polarizations to profile,

distributed uniformly between 0 and PI/2

(default=‘4’)

--no-demodulation=INT do not perform demodulation stage, analyze

background only (default=‘0’)

--no-decomposition=INT do not perform noise decomposition stage,

output simple statistics only (default=‘0’)

--no-candidates=INT do not perform analysis to identify candidates

(default=‘0’)

--no-am-response=INT force AM_response() function to return 1.0

irrespective of the arguments (default=‘0’)

--no-secondary-skymaps=INT

do not store values not essential for upper

limits and followup (default=‘0’)

--averaging-mode=STRING 1 - use one bin, 3 - average 3, matched - use 7

bin matched filter (default=‘1’)

--subtract-background=INT subtract rank 1 matrix in order to flatten

noise spectrum (default=‘0’)

--do-cutoff=INT neglect contribution from SFT with high
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effective noise level (default=‘1’)

--filter-lines=INT perform detection of lines in background noise

and veto corresponding frequency bins

(default=‘1’)

--ks-test=INT perform Kolmogorov-Smirnov test for normality

of averaged powers (default=‘1’)

--compute-betas=INT compute beta coefficients as described in

PowerFlux polarizations document

(default=‘0’)

--upper-limit-comp=STRING upper limit compensation factor - used to

account for windowing in SFTs (possible

values: Hann, flat, arbitrary number)

(default=‘Hann’)

--lower-limit-comp=STRING lower limit compensation factor - used to

account for windowing in SFTs (possible

values: Hann, flat, arbitrary number)

(default=‘Hann’)

--write-dat=STRING regular expression describing which *.dat files

to write (default=‘.*’)

--write-png=STRING regular expression describing which *.png files

to write (default=‘.*’)

--dump-points=INT output averaged power bins for each point in

the sky (default=‘0’)

--dump-candidates=INT output SFT data for first N candidates

(default=‘0’)

--focus-ra=DOUBLE focus computation on a circular area with

center at this RA

--focus-dec=DOUBLE focus computation on a circular area with

center at this DEC

--focus-radius=DOUBLE focus computation on a circular area with this

radius

--only-large-cos=DOUBLE restrict computation to points on the sky with

cos of angle to band axis larger than a given

number

Group: injection

--fake-linear Inject linearly polarized fake signal

--fake-circular Inject circularly polarized fake signal

--fake-ref-time=DOUBLE time of signal start (default=‘0’)

--fake-ra=DOUBLE RA of fake signal to inject (default=‘3.14’)
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--fake-dec=DOUBLE DEC of fake signal to inject (default=‘0.0’)

--fake-iota=DOUBLE iota of fake signal to inject (default=‘0.0’)

--fake-psi=DOUBLE orientation of fake signal to inject

(default=‘0.0’)

--fake-phi=DOUBLE phase of fake signal to inject (default=‘0.0’)

--fake-spindown=DOUBLE spindown of fake signal to inject

(default=‘0.0’)

--fake-strain=DOUBLE amplitude of fake signal to inject

(default=‘1e-23’)

--fake-freq=DOUBLE frequency of fake signal to inject

--fake-dInv=DOUBLE inverse distance to source of fake signal in

seconds (default=‘0.0’)

--fake-modulation-depth=DOUBLE

depth of sinusoidal phase modulation in radians

(default=‘0.0’)

--fake-modulation-freq=DOUBLE

frequency of sinusoidal phase modulation

(default=‘0.0’)

--fake-modulation-phase=DOUBLE

phase of sinusoidal phase modulation

(default=‘0.0’)

--snr-precision=DOUBLE Assumed level of error in detection strength -

used for listing candidates (default=‘0.2’)

--max-candidates=INT Do not optimize more than this number of

candidates (default=‘-1’)

--min-candidate-snr=DOUBLE

Do not optimize candidates with SNR below this

level (default=‘5.0’)

--output-initial=INT write initial candidates into log file

(default=‘0’)

--output-optimized=INT write optimized (second pass) candidates into

log file (default=‘0’)

--output-cache=INT write out all candidates in cache to log file

(default=‘0’)

--extended-test=INT Perform extended self test (default=‘0’)

--max-sft-report=INT Maximum count of SFTs to report with veto

information (default=‘100’)

--num-threads=INT Use that many threads for computation

(default=‘-1’)

--niota=INT Number of iota values to use in alignment grid
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(default=‘3’)

--npsi=INT Number of psi values to use in alignment grid

(default=‘6’)

--nfshift=INT Number of sub-bin frequency shifts to sample

(default=‘2’)

--nchunks=INT Partition the timebase into this many chunks

for sub period analysis (default=‘5’)

--split-ifos=INT Split interferometers in separate chunks

(default=‘1’)

--weight-cutoff-fraction=DOUBLE

Discard sfts with small weights that contribute

this fraction of total weight

(default=‘0.04’)

--per-dataset-weight-cutoff-fraction=DOUBLE

Discard sfts with small weights that contribute

this fraction of total weight in each dataset

(default=‘0.04’)

--power-max-median-factor=DOUBLE

This determines scaling factor between median

and maximum of exponentially distributed

variable. Used for computing power sum

weights (default=‘0.1’)

--tmedian-noise-level=INT Use TMedians to estimate noise level (as

opposed to in-place standard deviation)

(default=‘1’)

--summing-step=DOUBLE integration step size, in seconds

--max-first-shift=INT larger values accomodate bigger spindown ranges

but require more bins to be computed in

uncached function (default=‘10’)

--statistics-function=STRING

specify statistics postprocessing to apply.

Possible values: linear, sorted

(default=‘linear’)

--dump-power-sums=INT Write out all power sum data into data.log

file. It is recommend to restrict the sky to

very few pixels (default=‘0’)

--compute-skymaps=INT allocate memory and compute skymaps with final

results (default=‘0’)

--fine-grid-skymarks=INT use sky marks from the fine grid, this uses

constant spindown (default=‘0’)
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--half-window=INT number of bins to exclude to the left and to

the right of highest point when computing

linear statistics (default=‘20’)

--tail-veto=INT do not report outlier if its frequency is

within that many bins from the tail - happens

with steep spectrum (default=‘10’)

--cache-granularity=INT granularity of power cache frequency shift

resolution, in fractions of a frequency bin

(default=‘-1’)

--sidereal-group-count=INT

separate SFTs in that many groups by frequency

shift

--time-group-count=INT separate SFTs in that many groups by gps time

--phase-mismatch=DOUBLE maximal phase mismatch over coherence length to

assume when using loosely coherent mode

(default=‘1.570796’)

--bypass-powersum-cache=INT

bypass partial power sum cache (default=‘0’)

10.1 config

Specify the first part of SFT file name. The complete name is formed by
appending an SFT number to the end.

Instead of specifying arguments on the command line it is possible to
create a file with each line containing option value pair. The ”–” prefix in
front of the option name must to be omitted.

In the following PowerFlux options would be referred by their name as
used in the configuration file, for command line use prepend "--".

10.2 Input/Output options

10.2.1 config

Configuration file with more options. This can be supplied more than once.

10.2.2 dataset

Specify file containing description of the data to load.
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10.2.3 input-format

Specify the format of input SFT files.

• Power refers to ASCII header binary body power-only files produces by
make sft op

• SFT refers to ASCII header binary body SFT files produced by make sft op

• GEO refers to binary header binary body GEO-style SFT files in common
use in LSC.

10.2.4 segments-file

Allows to restrict processing to only SFT files that are inside a list of segments
described in the ASCII file specified with this option.

Each line specifies a single segment described the starting GPS time fol-
lowed by ending GPS time. The rest of line is discarded (this makes possible
to use standard segment list files).

10.2.5 veto-segments-file

Same as segments-file except this option specifies the list of times not to
process. Useful for vetoing parts of data.

10.2.6 ephemeris-path

Path to files with ephemeris data (they can be found, for example, in lalapps/src/detresponse/

directory).

10.2.7 earth-ephemeris

Specify Earth ephemeris file explicitly. This overrides ephemeris-path op-
tion.

10.2.8 sun-ephemeris

Specify Sun ephemeris file explicitly. This overrides ephemeris-path option.

10.2.9 skymarks

Specify file describing sky partitioning into areas for data collection.
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10.2.10 output

Specify directory to put output of PowerFlux into. Everything that Power-
Flux writes will be located in this directory.

10.3 Analysis parameters

10.3.1 first-bin

Specify first bin of 501 bin stretch to analyze. This is an integer in units of
1/1800 Hz. It specifies the source (i.e. decoded) frequency, not frequency as
received by the detector.

10.3.2 nbins

Number of frequency bins to analyze. The default is 501. At the moment
this value should not be changed - there are some hard-coded constants
that rely on this number. In particular, the Feldman-Cousins method relies
on constants produced by Monte-Carlo simulation on the assumption that
nbins= 501.

10.3.3 side-cut

Due to the need to apply Doppler shift the actual number of bins read from
SFT file is larger than nbins and varies with frequency and spindown. Nor-
mally PowerFlux will compute the number of extra bins to read automati-
cally. This option allows an explicit override. Specifying --side-cut=100

will cause PowerFlux to read all bins from first-bin−100 to first-bin+nbins+100.

10.3.4 spindown-start

Specify initial spindown value to process. It is a floating-point value in units
of Hz/sec. Negative values correspond to frequency decreasing with time.

10.3.5 spindown-count

Specify the number of spindown values to process starting with value specified
by spindown-start option.
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10.3.6 spindown-step

Specify the increment between spindown values to process. Can be positive
or negative.

10.3.7 nfshift

Number of sub-bin steps to sample. The frequency resolution will in units of
1/nfshift of frequency bin.

10.3.8 nchunks

Break up the loaded dataset into nchunks equally spaced segments and report
results for any contiguous combination.

10.3.9 niota

Sample niota + 1 values, including 0 (for circular polarization) and π/2 (for
linear polarization).

10.3.10 npsi

Sample npsi orientation values. The total number of polarizations sampled
is npsi · niota + 1, as circular polarization does not depend on ψ.

10.3.11 phase-mismatch

Maximum allowable phase mismatch for loosely coherent searches.

10.3.12 doppler-multiplier

An additional multiplier to apply to Doppler shifts. This is equivalent to
adjusting the speed of gravitational waves. This should be set to the default
value of 1.0 for loosely coherent modes.

10.3.13 dInv

Inverse distance to expected source in seconds. This is only used by loosely
coherent modes which are phase sensitive.
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10.4 Analysis options

10.4.1 no-demodulation

Do not perform demodulation, stop after analyzing background. Since Feldman-
Cousins is not performed nbins can be specified to an arbitrary number,
although values exceeding 25 Hz require lots of computer memory (in excess
of 2 Gb).

It is convenient to specify --side-cut=0 to provide greater control over
starting frequency.

10.4.2 no-decomposition

Only read in SFT files and output simple statistics. This is even faster than
no-demodulation option. Same suggestions apply.

10.4.3 no-am-response

Assume that amplitude response is always 1.0 irrespective of time or sky
position.

10.4.4 skymap-resolution

PowerFlux computes optimal resolution of skymaps automatically (It de-
pends mostly on magnitude of Doppler shifts). This options allows to spec-
ify resolution explicitly skymaps. This option is very handy for comparing
PowerFlux skymap output for different frequency bands.

10.4.5 skymap-resolution-ratio

PowerFlux computes optimal resolution of skymaps automatically (It de-
pends mostly on magnitude of Doppler shifts). This options allows to force
skymaps to have a finer or coarser resolution by a given factor.

10.4.6 small-weight-ratio

PowerFlux discards data in weighted sum that is assigned too small a weight.
This option allows to specify it.
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For a perfect instrument setting this ratio to 0 will produce the best result
as the weighting scheme used will make good use even of data with very small
weights.

In practice, discarding SFTs saves CPU cycles so it makes sense to skip
those which provide marginal improvement.

Furthermore, the SFTs with small weight can often have radically differ-
ent noise spectrum. The default value is prudent 0.2.

10.4.7 three-bins

Specifying three-bins=1 causes PowerFlux to average every neighbouring
three bins in its analysis. Because of this Doppler tracks are widened and a
coarser skymaps may be used while still retaining full sky coverage.

The drawback is a factor of
√

2 loss in sensitivity.

10.4.8 do-cutoff

Enabled by default. Setting it to 0 will turn off Cutoff computation. This is
similar to specifying --small-weight-ratio=0.0

10.4.9 filter-lines

Perform automatic detection of lines in background noise and veto corre-
sponding frequency bins. Up to 5 frequency bins can be vetoed.

10.4.10 subtract-background

Subtract rank 1 matrix formed from TMedians and FMedians in order to im-
prove noise performance for sky positions with large variation in Doppler
shifts. Turning this option on will clobber signals from sky positions with
small variation in Doppler shifts, therefore one should combine it with only-large-cos=0.3.

10.5 Data reporting options

10.5.1 skymap-orientation

The skymaps produced by PowerFlux can have different orientations to please
the user. Possible choices are equatorial, ecliptic or ”band-axis” - with band
axis vector pointing to the North pole.
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10.5.2 nskybands

Split sky in a given number of bands and report analysis results for each
band individually.

10.5.3 skyband-method

Specify method used to partition sky into regions.
Possible values are angle and S. The latter method is useful on short

timebases, while the former can used to partition the sky into bands along
declination.

10.5.4 band-axis

By default PowerFlux computes optimal band axis automatically (this has to
do with average detector acceleration during analyzed data set). However, it
may be useful to specify it explicitly - for example for comparison of results
between different interferometers.

Possible values are equatorial, auto and explicit(%f,%f,%f).

10.5.5 band-axis-norm

Specify the norm of band axis vector explicitly. This is useful for comparison
of results between different IFOs.

10.5.6 large-S

Specify values of S function considered to be good enough. All sky points
with S value larger or equal to this value will be assigned to band 0.

10.5.7 only-large-cos

Restrict computation to only those areas of sky which projection to band axis
has absolute value larger than a value specified to this option. If you want
to do this (due to presence of line artifacts, for example) the recommended
value is 0.3.

This cleans up the results reported for entire skymap and can significantly
reduce computation time requirements.
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10.5.8 ks-test

Perform and output results of Kolmogorov-Smirnov test for compliance of av-
eraged weighted power with gaussian distribution with parameters employed
later to establish Feldman-Cousins limits. This increases the computation
time, but is a highly recommended cross check for analysis. High values of
KS statistic indicate bands with pathological noise floor behaviour.

10.5.9 upper-limit-comp

A factor to multiply upper limits reported in strain units. One can specify
a floating-point number or ”Hann” for Hann windowed SFTs. This factor
is used to account for the fact that non bin-centered (in frequency) signals
would have smaller amplitude than bin-centered ones. For Hann windowed
SFTs, using 1-bin mode the factor is 1/0.85.

10.5.10 lower-limit-comp

A factor to multiply lower limits reported in strain units. One can specify
a floating-point number or ”Hann” for Hann windowed SFTs. This factor
is used to account for the fact that non bin-centered (in frequency) signals
would have smaller amplitude than bin-centered ones. For Hann windowed
SFTs, using 1-bin mode the factor is 1.

10.5.11 write-dat

By default PowerFlux writes a binary file with data for each plot it makes.
You can use this option to specify a regular expression to filter what will
actually be written.

This can significantly reduce storage requirements for PowerFlux output,
as well as speed up computation.

10.5.12 write-png

By default PowerFlux creates a number of plots. You can use this option to
specify a regular expression to filter what will actually be written.

This can significantly reduce storage requirements for PowerFlux output,
as well as speed up computation.
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10.6 Software injections

The following options provide interface to software injections done by Pow-
erFlux itself (as opposed to using external programs). The injections are
power-only, modeled with assumption of random phase of incoming signal to
a particular frequency bin.

10.6.1 fake-linear

Perform injection of linearly polarized signal.

10.6.2 fake-circular

Perform injection of circularly polarized signal.

10.6.3 fake-ra

Specify right ascension of injected signal source in radians (values from 0 to
2π are acceptable).

10.6.4 fake-dec

Specify declination of injected signal source in radians (values from −π/2 to
π/2 are acceptable).

10.6.5 fake-orientation

Specify polarization of injected signal (assumed to be linearly polarized).
Valid values are between 0 and π/4.

10.6.6 fake-spindown

Specify spindown of injected signal in units of Hz/sec.

10.6.7 fake-strain

Specify strain of injected signal.

10.6.8 fake-freq

Specify frequency of injected signal.
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10.6.9 fake-dInv

Specify inverse distance to source of injected signal.

10.6.10 fake-modulation-depth

Specify modulation depth A of injected signal according to the formula
A sin(2πfmt+ φ).

10.6.11 fake-modulation-freq

Specify modulation frequency fm of injected signal according to the formula
A sin(2πfmt+ φ).

10.6.12 fake-modulation-phase

Specify modulation phase φ of injected signal according to the formulaA sin(2πfmt+
φ).
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11 Appendix A: example configuration files

dataset random.dst

input-format GEO

earth-ephemeris earth05-09.dat

sun-ephemeris sun05-09.dat

sky-marks all_sky_marks.txt

first-bin 180000

nbins 501

do-cutoff 1

filter-lines 1

averaging-mode one

spindown-start-time 793154935

spindown-start -1e-8

expected-timebase 7

write-dat NONE

#write-png NONE

subtract-background 1

ks-test 1

compute-betas 0

output-initial 1

max-candidates 0

fake-ref-time 793154935

fake-ra 2.0

fake-dec 1.0

fake-iota 1.570796

fake-psi 0.392699

fake-phi 0.0

fake-spindown -1e-8

fake-strain 3e-24

fake-freq 100.1389

skymap-resolution-ratio 1

compute-skymaps 1

initial-dataset-seed 0

nchunks 1

fine-factor 5

output single_bin

Figure 15: config.single bin
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dataset random.dst

input-format GEO

earth-ephemeris earth05-09.dat

sun-ephemeris sun05-09.dat

sky-marks all_sky_marks.txt

sky-grid targeted_rectangular

first-bin 180000

nbins 501

do-cutoff 1

filter-lines 1

averaging-mode one

spindown-start-time 793154935

spindown-start -1e-8

expected-timebase 7

write-dat NONE

#write-png NONE

subtract-background 1

ks-test 1

compute-betas 0

output-initial 1

max-candidates 0

fake-ref-time 793154935

fake-ra 2.0

fake-dec 1.0

fake-iota 1.570796

fake-psi 0.392699

fake-phi 0.0

fake-spindown -1e-8

fake-strain 3e-24

fake-freq 100.1389

focus-ra 1.978040

focus-dec 1.009798

focus-radius 0.3

skymap-resolution-ratio 1

compute-skymaps 1

initial-dataset-seed 0

nchunks 1

fine-factor 5

output single_bin_zoomed

Figure 16: config.single bin zoomed
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dataset random.dst

input-format GEO

earth-ephemeris earth05-09.dat

sun-ephemeris sun05-09.dat

sky-marks all_sky_marks.txt

sky-grid targeted_rectangular

first-bin 180000

nbins 501

do-cutoff 1

filter-lines 0

averaging-mode single_bin_loose

spindown-start-time 793154935

spindown-start -1e-8

expected-timebase 7

write-dat NONE

#write-png NONE

subtract-background 1

ks-test 1

compute-betas 0

output-initial 1

max-candidates 0

fake-ref-time 793154935

fake-ra 2.0

fake-dec 1.0

fake-iota 1.570796

fake-psi 0.392699

fake-phi 0.0

fake-spindown -1e-8

fake-strain 3e-24

fake-freq 100.1389

focus-ra 1.978040

focus-dec 1.009798

focus-radius 0.3

skymap-resolution-ratio 0.25

compute-skymaps 1

initial-dataset-seed 0

nchunks 1

fine-factor 5

output loose_pi_2

Figure 17: config.loose pi 2
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#

# Mark general sky areas

#

band "south" "" 0.0 1.570796 -2.0 -0.65

band "midsouth" "" 0.0 1.570796 -0.65 -0.3

band "equator" "" 0.0 1.570796 -0.3 0.3

band "midnorth" "" 0.0 1.570796 0.3 0.65

band "north" "" 0.0 1.570796 0.65 2.0

#

# Using J2000, equatorial coordinates

# All numbers in radians

#

#disk "North_pole" "" 4.712389 1.16 0.05

#disk "South_pole" "" 1.570796 -1.16 0.05

line_response "Lines" "" 0.05 3

# Mask

#band "" "" 1.570796 0.0 -2 0

#band "" "" 2.199115 0.0 0 2

Figure 18: all sky marks.txt

new_dataset "H1_test1"

detector "LHO"

gaussian_fill 793154935 900 20001 1e-24

apply_hanning_filter

Figure 19: random.dst
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