5 | e
Š | other | ¥o, | except | <u>آ</u> | any other way, except by written con | 5 | |--------|-------|-----|--------------------------|----------|--------------------------------------|---| | £ | | , | PARSONS to the borrower. | Towe | ٠ | | | 10.4 | | | | | | | | | | | | | | ı | | | | | | | | | INPUT/OUTPUT SUMMARY FOR AIR HANDLING UNIT AH-01 (TYP 2 SYSTEMS) OUTPUTS SYSTEM FEATURES ANALOG GENERAL DIGITAL ANALOG ALARMS PROGRAMS MEASURED CALCULATED SYSTEM, APPARATUS, SUPPLEMENTARY OR AREA POINT DESCRIPTION OUTSIDE TEMERATURE OUTSIDE RELATIVE HUMIDITY PREHEAT COIL, HC-14 PREHEAT COIL, HC-15 AIR FILTER AF-OI (TYP 2) 2 SENSORS AIR FILTER AF-02 (TYP 2) 2 SENSORS MIXING AIR DAMPER OI MIXING AIR DAMPER 02 COOLING COIL CC-01 COOLING COIL CC-02 . HUMIDIFIER HU-01 . HUMIDIFIER HU-02 SUPPLY FAN SF-01 SUPPLY FAN SF-02 SUPPLY AIR TEMP (TYP 2) SUPPLY AIR RELATIVE HUMIDITY ROOM TEMPERATURE (TYPICAL 5 ZONES) SPACE AVERAGE RELATIVE HUMIDITY ZONE DUCT HEATER (VEA) ZONE DUCT HEATERS (TYPICAL 5 ZONES) SMOKE DETECTOR (SD-01) MIXING AIR TEMP MIXING AIR RELATIVE HUMIDITY AIR COMPRESSORS (TYP 2) TOILET EXHAUST FAN, EF-OI AIR FLOW DIAGRAM HEPA FILTERS FLOOR PLANS 4 | | INPUTS | | | | | | | · | | | | | OUTPUTS | | | | | | Т | SYSTEM FEATURES | | | | | | | | ES | | | | | | | | | | | |---|---------------------------|----------------------------|-------------------|--------|-------------------|----------|----------|-------------------|-------------------|--------|-------------|-------------------|---------|-------------------|--------------------------|-------------------|-------------------|-------------------|----------------------|-----------------|-------------------|------------|-------------------|-------|-------------|-----------------|------------|-------------------|-----------|-------|--------------|---|---------------|---------------|--------------|-----------------|----|------------------------------| | SYSTEM,
APPARATUS,
OR AREA POINT
DESCRIPTION | | ANALOG MEASURED CALCULATED | | | | | \prod | BINARY | | | DIGITAL | | | ANALOG | | T | ALARMS | | | | PROGRAMS | | | | | | | GENERAL | | | | | | | | | | | | | TEMPERATURE
POESCI INC | HA. | AIR FLOW | LEVEL | WW. | ENTHALPT | RUN TIME | WET BULB TEMP | STATUS | SMOKE | FREEZE | AIR FLOW
METER | | OFF-ON | OFF-AUTO-ON
OFF-HI-LO | OPEN-CLOSE | MOL 17 - STAIGE | VALVE POSITION | SET POINT ADJOSTMENT | SCR CONTROL | HI ANALOG | LOW ANALOG | LOW BINARY | PROOF | | TIME SCHEDULING | DUTY CYCLE | START/STOP OPTION | SMOKE CNT | TRENO | MAINT WK ORD | | | COLOR GRAPHIC | | | | SUPPLEMENTARY
NOTES | | ATER CHILLER, CH-OI | • | TT | | 1 | | \top | • | TT | • | Ť | H | 1 | \top | • | + | 11 | + | | • | 什 | • | | Ħ | + | H | | # | 9 | # | | | + | H | - | ╁ | ₩ | + | | | VATER CHILLER, CH-02 | • | Π | | 1 | | | • | TT | • | 十 | H | \top | \top | • | 十 | $\dagger \dagger$ | $\dagger\dagger$ | $\forall \exists$ | • | 廾 | • | - | $\dagger \dagger$ | + | $\dag \dag$ | | + | | ++ | - | | ╬ | H | + | + | ╂╂ | + | | | HILLED WATER PUMP, WP-01 | | 1 | 1 | 1 | | 1 | • | TT | | 十 | ff | T | \top | | + | $\dagger \dagger$ | $\dagger \dagger$ | $\forall \exists$ | + | H | | + | $\dagger \dagger$ | | $\dag \dag$ | | + | | ++ | ╬ | | ╬ | H | ╁ | + | ╁┼ | + | | | HILLED WATER PUMP, WP-02 | | 1 | T | • | | 1 | • | $\dagger \dagger$ | | \top | H | \top | \top | | \top | $\dagger \dagger$ | †† | + | 十 | $\dag \dag$ | • | + | $\dagger \dagger$ | | $\dag \dag$ | | + | | ++ | + | | ╁ | H | ╁ | ╁ | ╂┼ | +- | | | CHILLED WATER RETURN TEMP | • | Π | T | | П | 1 | \sqcap | $\dagger \dagger$ | 11 | 十 | ff | \top | \top | $\dagger \dagger$ | \top | Ħ | $\dagger \dagger$ | $\dagger \dagger$ | \top | 廾 | $\dagger \dagger$ | + | $\dagger \dagger$ | + | 什 | ff | + | + | ╁╁ | ٦, | ╁ | ╅ | ╁┼ | ╁ | + | ╟╫ | + | <u> </u> | | HILLED WATER SUPPLY TEMP | • | H | \top | | \sqcap | 1 | 十 | tt | tt | 十 | ff | \dagger | 十 | $\dagger \dagger$ | 十 | ff | $\dagger\dagger$ | + | 十 | $\dag \dag$ | $\dagger \dagger$ | + | H | + | ╁┼ | $\dag \dag$ | + | + | H | | ++ | + | ${\mathbb H}$ | + | + | ╁┼ | + | | | HILLED WATER BOOSTER PUMP | • | 11 | 11 | \top | Ħ | 1 | • | 什 | • | \top | $\dag \dag$ | $\dagger \exists$ | 十 | | 十 | tt | $\dagger\dagger$ | $\dagger \dagger$ | + | H | $\dagger \dagger$ | + | H | + | ╁┼ | ╁┼ | + | | H | - | | + | H | ╁ | H | ╟╫ | ╫ | Charles Charles Construction | | HILLED WATER FLOW DIAGRAM | | TT | T | | П | 1 | | $\dagger \dagger$ | 11 | \top | 十 | T | 十 | H | 十 | $\dag \dag$ | $\dagger\dagger$ | + | 十 | $\vdash \vdash$ | H | ╁ | H | + | ╁┼ | ╁┼ | + | + | ╁┼ | ╬ | 11 | + | H. | + | Н | $\vdash \vdash$ | + | PUMP BY VE CONTRACTOR | | LOOR PLANS | | $\dagger \dagger$ | $\dagger \dagger$ | | $\dagger \dagger$ | + | \vdash | ff | $\dagger \dagger$ | + | 十 | $\dagger \dagger$ | + | $\dagger \dagger$ | + | $\dag \dag$ | $\dagger \dagger$ | ++ | + | ╁┼ | ╁┼ | + | Н | + | ╁┼ | ╁┼ | ╂╢ | | ╁┼ | + | ╫ | + | | - | \mathbb{H} | $\vdash \vdash$ | + | | #### NOTES: 2 - 1. FOR LECEND, ABBREVIATIONS AND GENERAL NOTES SEE SHEETS LA-H-001 AND LA-H-002. - SMOKE DETECTORS WILL BE HARD WIRED TO THE SUPPLY FAILS SF-01 & SF-02 MOTOR STARTER TO STOP FAILS WHEN SHOKE DETECTED IN THE RETURN AIR STREAM, ALSO SMOKE DETECTORS WILL BE SOFTWARE CONNECTED TO DOC CONTROL PANEL AND THE FACILITY CONTROL ROOM. DATE: 07/22:96 TIME: 13:42:25 DESIGN FILE: 1:\ligo\site2\mu\lah231.soz - CONTROL SYSTEM SHALL BE STAND ALONE TYPE AND CONNECTED TO THE MAIN CONTROL AND MONITORING SYSTEM AT THE FACILITY CONTROL ROOM IN THE CORNER STATION BUILDING. - 4. VACUUM EQUIPMENT ROOM WILL BE PROVIDED WITH FOUR TEMPERATURE SENSORS TO CONTROL THE RESPECTIVE DUCT HEATER, SYSTEM MAY AVERAGE THE READING OF THE FOUR ROOM TEMPERATURE SENSORS OR SELECT ANY SENSOR TO CONTROL THE DUCT HEATER. ## SEQUENCE OF OPERATION: #### I. CHILLED WATER PLANT: UPON A SIGNAL FROM THE CENTRAL CONTROL SYSTEM THE PACKAGED CONTROLS PROVIDED WITH THE WATER CHILLER WILL PERFORM THE FOLLOWING: - A. THE LEAD CHILLED WATER PUMP (MP-01) WILL START TO ESTABLISH STEADY WATER FLOW THROUGH THE SYSTEM, - B. UPON PROOF OF ESTABLISHED WATER FLOW THE LEAD CHILLER (CH-OI) WILL START TO MAINTAIN THE LEAVING CHILLED WATER TEMPERATURE - C. THE PACKAGED DOC CONTROLS ON THE WATER CHILLER WILL CYCLE THE REFRIGERATION COMPRESSORS IN SEQUENCE TO MATCH THE SYSTEM THERMAL LOAD. - D. WHEN THE THERMAL LOAD DROPS BELOW THE MINIMUM OPERATING CAPACITY OF THE WATER CHILLER, THE PACKAGED CONTROL WILL - ACTIVATE THE HOT GAS BYPASS CYCLE. - E. PACKAGED CONTROLS WILL RUN SELF DIAGNOSTICS TEST BEFORE STARTING THE REFRIGERATION COMPRESSORS TO PROVE THAT ALL OPERATING CONDITIONS ARE WITHIN THE NORMAL LIMITS. - F. PACKAGED CONTROLS WILL CONTINUOUSLY MONITOR THE CHILLER OPERATION AND REPORT ANY OPERATIONAL OR SAFETY ALARMS TO THE OPERATOR COMPUTER IN THE FACILITY CONTROL ROOM. PACKAGED CONTROLS WILL AUTOMATICALLY STOP THE MALFUNCTIONING WATER CHILLER AND START THE STANOBY CHILLER. - G. CENTRAL CONTROL SYSTEM WILL ALTERNATE THE LEAD AND STANDBY WATER CHILLERS TO MAINTAIN EQUAL OPERATING PERIODS ON BOTH WATER CHILLERS. ### II. AIR HANDLING SYSTEM: UPON A SIGNAL FROM THE CENTRAL CONTROL SYSTEM THE LEAD SUPPLY AIR FAN (SF-01) WILL START TO ESTABLISH A STEADY AIR FLOW THROUGH THE SYSTEM. THE DOC CONTROLS WILL PERFORM THE FOLLWING: 18 \MU2 $|\Omega|$ ∞ 7 OUE ഗ \bigcirc ∞ LIGOLAF.BDR - A. MODULATE THE CONTROLLABLE PITCH VANES ON THE SUPPLY AIR FANS TO MAINTAIN THE DESIRED CONSTANT AIR VOLUME FLOW RATE REGARDLESS OF THE SYSTEM STATIC PRESSURE. - B. THE TEMPERATURE SENSORS LOCATED DOWN STREAM OF THE OUTSIDE AIR PREHEAT COILS WILL BE USED TO CONTROL THE CAPACITY OF THE DUCT ELECTRIC HEATERS TO MAINTAIN THE OUTSIDE AIR DRY BULB TEMPERATURE AT 50°F. - C. THE TEMPERATURE SENSOR LOCATED DOWN STREAM OF THE COOLING COIL WILL BE USED TO MODULATE THE 3-WAY CONTROL VALVE ON THE CHILLED WATER LOOP TO MAINTAIN THE LEAVING AIR DRY BULB TEMPERATURE AT THE SET POINT (50°F). - D. THE DOC CONTROLS WILL COMPARE THE SPACE ROOM TEMPERATURE SENSORS AND MODULATE THE FACE AND BYPASS DAMPER BASED ON THE MOST DEMANDING ZONE. - E. THE ROOM TEMPERATURE SENSORS (TOTAL 4) OF VACUUM EQUIPMENT AREA SHALL BE USED TO MODULATE THE SCR CONTROLS ON THE RESPECTIVE ELECTRIC DUCT HEATER TO MAINTAIN THE ROOM TEMPERATURE SETPOINT (72°F) - F. THE ROOM TEMPERATURE SENSORS FOR OTHER ROOMS SHALL BE USED TO SECUENCE THE CAPACITY CONTROL STAGES OF THEIR RESPECTIVE DUCT HEATERS TO MAINTAIN THE ROOM TEMPERATURE SET POINT. - G. WHEN THE ROOM TEMPERATURE RISES 5 DEGREES F ABOVE THE SETPOINT, THE CONTROL SYSTEM SHALL REPORT AN ALARM SIGNAL TO THE FACILITY CONTROL ROOM. - H. THE RELATIVE HUMIDITY SENSOR LOCATED IN VACUUM EQUIPMENT ROOM SHALL BE USED TO SEQUENCE THE CAPACITY CONTROL STAGES OF THE ELECTRIC HUMIDIFIER TO MAINTAIN THE SPACE MINIMUM RELATIVE HUMIDITY SETPOINT (30 % RH). - I. THE SMONE DUCT DETECTOR IN THE RETURN AIR DUCTS SHALL STOP THE SUPPLY AIR FANS WHEN SMOKE IS DETECTED IN THE RETURN AIR STRAM AND REPORT AN ALARM SIGNAL (AUDIO AND VISIUAL) AT THE FACILITY CONTROL ROOM AND LOCAL CONTROL PANEL. THE SPACE DIFFERENTIAL PRESSURE SENSORS SHALL BE USED TO MODULATE THE MOTORIZED CONTROL DAMPERS ON THE RETURN AIR DUCTS AND THE OUTSIDE AIR DUCTS TO MAINTAIN THE SPACE PRESSURIZATION AT THE SETPOINT. # III. EQUIPMENT START UP: - A. ALL WATER CHILLER SHALL BE SOFT START - B. THE SUPPLY AIR FANS SF-01 & SF-02 SHALL START AT THE MINIMUM STATIC PRESSURE AND GRADUALLY INCREASE THE SYSTEM STATIC PRESSURE TO MAINTAIN THE DESIRED AIR FLOW RATE. - C. THE BUILDING PRESSURIZATION SENSORS FOR LVEA AND OSB (LAB AREA) SHALL MODULATE THE MOTORIZED DAMPERS LOCATED ON THE RETURN AIR & OUTSIDE AIR DAMPERS TO START AT 100% RETURN AIR AND GRADUALLY MODULATE THE DAMPERS TO MAINTAIN THE BUILDING PRESSURIZATION SETPOINT. #### IV. TOILET EXHAUST FAME A. THE TOILET EXHAUST FAN WILL RUN CONTINUOUSLY.