LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T1000567-v1 Advanced LIGO UK

29 September 2010

OMC Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow

Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833

E-mail <u>k.strain@physics.gla.ac.uk</u> **Engineering Department**

CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297

Fax +44 (0) 1235 445 843 E-mail <u>J.Greenhalgh@rl.ac.uk</u>

School of Physics and Astronomy University of Birmingham

Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail av@star.sr.bham.ac.uk **Department of Physics**

Department of Physics University of StrathclydePhone +44 (0) 1411 548 3360
Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

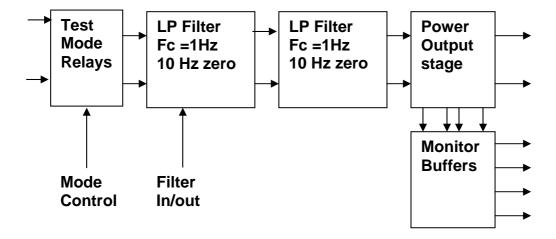
http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html

http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

OMC COIL DRIVER BOARD TEST PLAN


Unit	OMC	10	Serial No	
	_	-		
		10		

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk Tests
- 13. Dynamic range

1. Description

Block diagram

2. Description

Each OMC Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz, followed by a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Unit	OMC ²	10Serial No
Date	29/10/1	

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	
Function Generator	Hitachi	VG-4429	

Unit	OMC 10	.Serial No
	Xen	
Date	29/10/10	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

C21 and C26 have been replaced by a 10nF polypropylene capacitor on all channels.

C200 has been soldered across R5 and R23 on all channels.

Links:

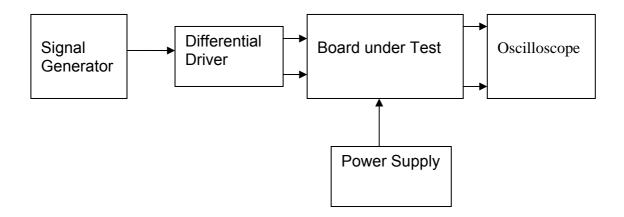
Check that links W4 and W5 are present on each channel. If not, connect them.

Unit	OMC 10.	Serial No
Test Engineer		
Date	29/10/10	

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{}$
2	PD2P	Photodiode B+	2	$\sqrt{}$
3	PD3P	Photodiode C+	3	$\sqrt{}$
4	PD4P	Photodiode D+	Photodiode D+ 4	
	5	0V	$\sqrt{}$	
6	PD1N	Photodiode A-	14	
7	PD2N	Photodiode B-	Photodiode B- 15	
8	PD3N	Photodiode C-	Photodiode C- 16	
9	PD4N	Photodiode D-	17	


J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	√
2	Imon2P		6	V
3	Imon3P		7	V
4	Imon4P		8	V
	5	0V	V	
6	Imon1N		18	V
7	Imon2N		19	V
8	Imon3N		20	V
9	Imon4N		21	V

Power Supply to Satellite box J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	V
10	V+ (TP1)	+17v Supply	√
11	V- (TP2)	-17v Supply	√
12	V- (TP2)	-17v Supply	√
13	0V (TP3)		\checkmark
22	0V (TP3)		
23	0V (TP3)		
24	0V (TP3)		
25	0V (TP3)		√

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

J3 pins 1, 2, $\overline{3}$, 4 = positive input

J3 pins 6, 7, 8, 9 = negative input

J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v

J1 pin 11,12 = -16.5

J1 pins 22, 23, 24, 25 = 0v

Outputs

Ch1- = J4 pin 9
Ch2- = J4 pin 11
Ch3- = J4 pin 13
Ch4- = J4 pin 15

Unit	OMC 10	Serial No	
	Xen		
Date	29/10/10		

6. Power

Check the polarity of the wiring:

3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal +/- 0.5v?
+12v TP5	12.05	1mV	$\sqrt{}$
+15v TP4	14.93	1mV	\checkmark
-15v TP6	-15.17	5mV	\checkmark

All Outputs smooth DC, no oscillation?	1	
--	---	--

Record Power Supply Currents

Supply	Current
+16.5v	350mA
-16.5v	250mA

If the supplies are correct, proceed to the next test.

Unit	OMC 10	Serial No	
	Xen		
Date	29/10/10		

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indi	Indicator	
	ON	OFF	
Ch1	V		V
Ch2	V		V
Ch3	V		
Ch4			

Test Switches

Channel	Indi	Indicator	
	ON	OFF	
Ch1	V		V
Ch2	V		V
Ch3	V		V
Ch4	√		

Unit	$$ OMC $_{ t }$	_10	Serial No	
Test Engineer	Xen	_		
Date	29/10/	/10		

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1Hz.

8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13

at 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.9	5.0	5.0	4.7v to 5v	\checkmark
Ch2	4.9	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch3	4.9	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch4	4.9	5.0	5.0	4.7v to 5v	V

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at 0.1Hz, 1Hz, 10Hz, 100Hz, and 1KHz. Measure and record the Peak to Peak output between TP9 and TP13.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.9	4.7 to 5v	$\sqrt{}$
Ch2	4.9	4.7 to 5v	$\sqrt{}$
Ch3	4.9	4.7 to 5v	$\sqrt{}$
Ch4	4.9	4.7 to 5v	V

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3.3v to 3.7v	$\sqrt{}$
Ch2	3.3	3.3v to 3.7v	V
Ch3	3.3	3.3v to 3.7v	V
Ch4	3.3	3.3v to 3.7v	V

10Hz

	Output	Specification	Pass/Fail
Ch1	0.68	0.48 to 0.75v	\checkmark
Ch2	0.68	0.48 to 0.75v	√
Ch3	0.68	0.48 to 0.75v	√
Ch4	0.68	0.48 to 0.75v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.48	0.4v to 0.5v	$\sqrt{}$
Ch2	0.48	0.4v to 0.5v	$\sqrt{}$
Ch3	0.48	0.4v to 0.5v	$\sqrt{}$
Ch4	0.48	0.4v to 0.5v	V

1 KHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	V
Ch2	0.47	0.4v to 0.5v	V
Ch3	0.47	0.4v to 0.5v	V
Ch4	0.47	0.4v to 0.5v	√

Unit	OMC_10	DSerial No	
Test Engineer	Xen		
Date	29/10/10)	

8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1Hz. Repeat for 1Hz, 10Hz, 100Hz, and 1KHz.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7v to 5v	V
Ch2	4.85	4.7v to 5v	V
Ch3	4.85	4.7v to 5v	√
Ch4	4.85	4.7v to 5v	√

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3v to 3.4v	\checkmark
Ch2	3.2	3v to 3.4v	√
Ch3	3.2	3v to 3.4v	√
Ch4	3.3	3v to 3.4v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.49	0.4v to 0.5v	\checkmark
Ch2	0.48	0.4v to 0.5v	
Ch3	0.48	0.4v to 0.5v	
Ch4	0.49	0.4v to 0.5v	

100Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15v to 0.16v	V
Ch2	0.16	0.15v to 0.16v	√
Ch3	0.16	0.15v to 0.16v	√
Ch4	0.16	0.15v to 0.16v	V

1 KHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14v to 0.16v	V
Ch2	0.16	0.14v to 0.16v	V
Ch3	0.16	0.14v to 0.16v	V
Ch4	0.16	0.14v to 0.16v	√

Unit	OMC_10	.Serial No
Test Engineer	Xen	
Date	29/10/10	

9. Monitor Outputs

Remove links W4 and W5.

Connect a 39 ohm dummy load to each channel.

Apply a 1V r.m.s input at 10Hz measured between TP10 and TP14, and record the differential output from each monitor pair on P1 for each channel. Compare them with the voltage outputs (TP9 to TP13).

Voltage monitors

Ch.	Nominal	Output between TP9 & TP13	Monitor Pins on P1	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.22V	1.22	Pin 1 to Pin 2	1.22	√
2	1.22V	1.22	Pin 5 to Pin 6	1.22	√
3	1.22V	1.22	Pin 9 to Pin 10	1.22	√
4	1.22V	1.22	Pin 13 to Pin 14	1.22	√

Current monitors

Ch.	Nominal	Monitor Pins	Monitor O/P	Pass/Fail: Equal? (+/- 0.1v)
1	0.08V	Pin 3 to Pin 4	0.08	$\sqrt{}$
2	0.08V	Pin 7 to Pin 8	0.08	
3	0.08V	Pin 11 to Pin 12	0.08	
4	0.08V	Pin 15 to Pin 16	0.08	

10. Distortion

Filter out. Increase input voltage to 10v peak, f = 1KHz. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?		
Ch1	$\sqrt{}$		
Ch2	$\sqrt{}$		
Ch3	$\sqrt{}$		
Ch4	$\sqrt{}$		

Unit	OMC	10	.Serial No	
Date	29/10/	10		

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	V	-24.5	V	-24.5	V	-24.5	V
-7v	-17.4	V	-17.4	V	-17.4	V	-17.4	√
-5v	-12.5	V	-12.5		-12.5	V	-12.5	$\sqrt{}$
-1v	-2.5	$\sqrt{}$	-2.5	$\sqrt{}$	-2.5	$\sqrt{}$	-2.5	$\sqrt{}$
0v	0	$\sqrt{}$	0		0	$\sqrt{}$	0	$\sqrt{}$
1v	2.5	V	2.5	V	2.5	V	2.5	V
5v	12.2	V	12.2	V	12.2	V	12.2	V
7v	17.0	V	17.0	V	17.0	V	17.0	V
10v	24.5	V	24.5	V	24.5	V	24.5	V

Unit	Serial No
Test Engineer	•••
Date	

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT CHANNEL	OUTPUT CHANNEL	Output @ 10Hz	Maximum o/p	@ Frequency
Channel 1	Channel 2			-
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Unit	OMC 10	Serial No	
	Xen		
Date	29/10/10		

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range.

Connect a 39 Ohm load resistor to the output of each channel. Switch out the filters. Apply a 10v peak sinusoidal signal at 10 Hz to the input. Check that the signal on TP10 is 10v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not	\checkmark	√	\checkmark	V
Clipping?				

	Theoretical o/p	Measured	OK+/- 0.1v?
Ch1	1.12v	1.14	$\sqrt{}$
Ch2	1.12v	1.14	V
Ch3	1.12v	1.13	V
Ch4	1.12v	1.14	V

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T1000567-v1 Advanced LIGO UK

29 September 2010

OMC Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow

Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833

E-mail <u>k.strain@physics.gla.ac.uk</u> **Engineering Department**

CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297

Fax +44 (0) 1235 445 843 E-mail <u>J.Greenhalgh@rl.ac.uk</u>

School of Physics and Astronomy University of Birmingham

Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail av@star.sr.bham.ac.uk **Department of Physics**

Department of Physics University of StrathclydePhone +44 (0) 1411 548 3360
Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

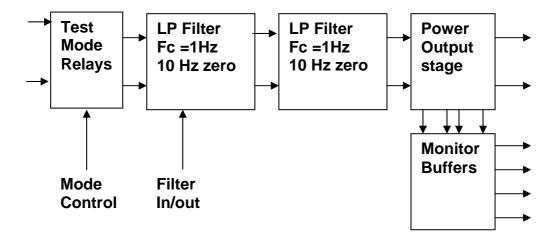
http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html

http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

OMC COIL DRIVER BOARD TEST PLAN


Unit	OMC 2	2Serial No	
		0	

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk Tests
- 13. Dynamic range

1. Description

Block diagram

2. Description

Each OMC Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz, followed by a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Unit	OMC	2Serial No
	_	
Date	27/10/	

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	
Function Generator	Hitachi	VG-4429	

Unit	OMC 2	Serial No
Date		

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

C21 and C26 have been replaced by a 10nF polypropylene capacitor on all channels.

C200 has been soldered across R5 and R23 on all channels.

Links:

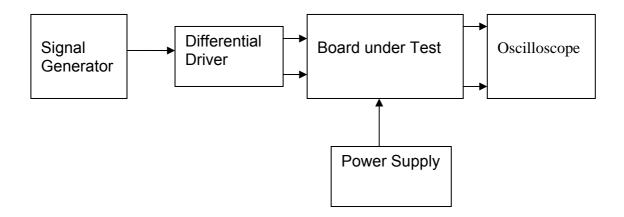
Check that links W4 and W5 are present on each channel. If not, connect them.

Unit	OMC	2Serial No
Test Engineer	Xen	
Data	27/10/	

4. Continuity Checks

J2

PIN	SIGNA	L	DESCRIPTION	ON	To J1 PIN	OK?
1	PD1P		Photodiode /	4+	1	$\sqrt{}$
2	PD2P		Photodiode I	3+	2	$\sqrt{}$
3	PD3P		Photodiode (C+	3	$\sqrt{}$
4	PD4P		Photodiode I) +	4	
	5		0V		$\sqrt{}$	
6	PD1N		Photodiode /	۹-	14	
7	PD2N		Photodiode I	3-	15	
8	PD3N		Photodiode (C-	16	
9	PD4N		Photodiode I	D-	17	


J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	√
2	Imon2P		6	V
3	Imon3P		7	V
4	Imon4P		8	V
	5	0V	V	
6	Imon1N		18	V
7	Imon2N		19	V
8	Imon3N		20	V
9	Imon4N		21	V

Power Supply to Satellite box J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	V
10	V+ (TP1)	+17v Supply	√
11	V- (TP2)	-17v Supply	√
12	V- (TP2)	-17v Supply	√
13	0V (TP3)		\checkmark
22	0V (TP3)		
23	0V (TP3)		
24	0V (TP3)		
25	0V (TP3)		√

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

J3 pins 1, 2, $\overline{3}$, 4 = positive input

J3 pins 6, 7, 8, 9 = negative input

J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v

J1 pin 11,12 = -16.5

J1 pins 22, 23, 24, 25 = 0v

Outputs

Ch1- = J4 pin 9
Ch2- = J4 pin 11
Ch3- = J4 pin 13
Ch4- = J4 pin 15

Unit	OMC 2	Serial No
	Xen	
•	27/10/10	

6. Power

Check the polarity of the wiring:

3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal +/- 0.5v?
+12v TP5	11.99	1mV	
+15v TP4	14.96	1mV	
-15v TP6	-15.02	5mV	√

All Outputs smooth DC, no oscillation?	1	
--	---	--

Record Power Supply Currents

Supply	Current
+16.5v	250mA
-16.5v	350mA

If the supplies are correct, proceed to the next test.

Unit	OMC 2.	Serial No
Date	27/10/10	

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indi	Indicator	
	ON	OFF	
Ch1	V		V
Ch2	V		V
Ch3	V		
Ch4			

Test Switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	V		V
Ch2	V		V
Ch3	V		V
Ch4	√		$\sqrt{}$

Unit	OMC_	2Serial No
Test Engineer	Xen	••••••
Date	27/10/	10

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1Hz.

8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13

at 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.9	5.0	5.0	4.7v to 5v	\checkmark
Ch2	4.9	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch3	4.9	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch4	4.9	5.0	5.0	4.7v to 5v	V

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at 0.1Hz, 1Hz, 10Hz, 100Hz, and 1KHz. Measure and record the Peak to Peak output between TP9 and TP13.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.9	4.7 to 5v	$\sqrt{}$
Ch2	4.9	4.7 to 5v	$\sqrt{}$
Ch3	4.9	4.7 to 5v	$\sqrt{}$
Ch4	4.9	4.7 to 5v	V

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	3.3v to 3.7v	\checkmark
Ch2	3.4	3.3v to 3.7v	V
Ch3	3.4	3.3v to 3.7v	V
Ch4	3.4	3.3v to 3.7v	V

10Hz

	Output	Specification	Pass/Fail
Ch1	0.68	0.48 to 0.75v	\checkmark
Ch2	0.68	0.48 to 0.75v	√
Ch3	0.68	0.48 to 0.75v	√
Ch4	0.68	0.48 to 0.75v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.48	0.4v to 0.5v	√
Ch2	0.48	0.4v to 0.5v	√
Ch3	0.48	0.4v to 0.5v	√
Ch4	0.48	0.4v to 0.5v	√

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.48	0.4v to 0.5v	V
Ch2	0.48	0.4v to 0.5v	√
Ch3	0.48	0.4v to 0.5v	√
Ch4	0.48	0.4v to 0.5v	√

Unit	OMC_	2Serial No
Test Engineer	Xen	
Date	27/10/	10

8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1Hz. Repeat for 1Hz, 10Hz, 100Hz, and 1KHz.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.9	4.7v to 5v	$\sqrt{}$
Ch2	4.9	4.7v to 5v	$\sqrt{}$
Ch3	4.9	4.7v to 5v	V
Ch4	4.9	4.7v to 5v	V

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3v to 3.4v	\checkmark
Ch2	3.3	3v to 3.4v	V
Ch3	3.3	3v to 3.4v	V
Ch4	3.3	3v to 3.4v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.48	0.4v to 0.5v	\checkmark
Ch2	0.48	0.4v to 0.5v	√
Ch3	0.48	0.4v to 0.5v	√
Ch4	0.48	0.4v to 0.5v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15v to 0.16v	V
Ch2	0.16	0.15v to 0.16v	√
Ch3	0.16	0.15v to 0.16v	√
Ch4	0.16	0.15v to 0.16v	V

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14v to 0.16v	V
Ch2	0.16	0.14v to 0.16v	V
Ch3	0.16	0.14v to 0.16v	V
Ch4	0.16	0.14v to 0.16v	√

Unit	OMC	2Serial No
Test Engineer	Xen	
Date	27/10/	10

9. Monitor Outputs

Remove links W4 and W5.

Connect a 39 ohm dummy load to each channel.

Apply a 1V r.m.s input at 10Hz measured between TP10 and TP14, and record the differential output from each monitor pair on P1 for each channel. Compare them with the voltage outputs (TP9 to TP13).

Voltage monitors

Ch.	Nominal	Output between TP9 & TP13	Monitor Pins on P1	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.22V	1.22	Pin 1 to Pin 2	1.22	\checkmark
2	1.22V	1.22	Pin 5 to Pin 6	1.22	\checkmark
3	1.22V	1.22	Pin 9 to Pin 10	1.22	V
4	1.22V	1.22	Pin 13 to Pin 14	1.22	\checkmark

Current monitors

Ch.	Nominal	Monitor Pins	Monitor O/P	Pass/Fail: Equal? (+/- 0.1v)
1	0.08V	Pin 3 to Pin 4	0.08	$\sqrt{}$
2	0.08V	Pin 7 to Pin 8	0.08	
3	0.08V	Pin 11 to Pin 12	0.08	
4	0.08V	Pin 15 to Pin 16	0.08	

10. Distortion

Filter out. Increase input voltage to 10v peak, f = 1kHz. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?	
Ch1	$\sqrt{}$	
Ch2	$\sqrt{}$	
Ch3	$\sqrt{}$	
Ch4	$\sqrt{}$	

Unit	OMC_2.	Serial No
Test Engineer	Xen	
Date	27/10/10	

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	$\sqrt{}$	-24.5	$\sqrt{}$	-24.5	$\sqrt{}$	-24.5	$\sqrt{}$
-7v	-17.4	V	-17.3	V	-17.4	V	-17.4	V
-5v	-12.5	V	-12.5	V	-12.5	V	-12.5	V
-1v	-2.5	$\sqrt{}$	-2.4	$\sqrt{}$	-2.4	$\sqrt{}$	-2.5	$\sqrt{}$
0v	0	\checkmark	0	$\sqrt{}$	0	\checkmark	0	$\sqrt{}$
1v	2.5	V	2.4	V	2.4	V	2.4	V
5v	12.3	V	12.3	V	12.4	V	12.4	V
7v	17.0	V	17.0	V	17.2	V	17.2	V
10v	24.5	V	24.5	V	24.5	V	24.5	V

Unit	.Serial No
Test Engineer	•••
Date	

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT CHANNEL	OUTPUT CHANNEL	Maximum Output	@ Frequency
Channel 1	Channel 2		
Channel 2	Channel 1		
Channel 2	Channel 3		
Channel 3	Channel 2		
Channel 3	Channel 4		
Channel 4	Channel 3		

Unit	OMC 2	Serial No
•		

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range.

Connect a 39 Ohm load resistor to the output of each channel. Switch out the filters. Apply a 10v peak sinusoidal signal at 10 Hz to the input. Check that the signal on TP10 is 10v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not	\checkmark	√	\checkmark	V
Clipping?				

	Theoretical o/p	Measured	OK+/- 0.1v?
Ch1	1.12v	1.13	$\sqrt{}$
Ch2	1.12v	1.13	V
Ch3	1.12v	1.13	√
Ch4	1.12v	1.14	V

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T1000567-v1 Advanced LIGO UK

29 September 2010

OMC Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow

Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833

E-mail <u>k.strain@physics.gla.ac.uk</u> **Engineering Department**

CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297

Fax +44 (0) 1235 445 843 E-mail <u>J.Greenhalgh@rl.ac.uk</u>

School of Physics and Astronomy University of Birmingham

Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail av@star.sr.bham.ac.uk **Department of Physics**

Department of Physics University of StrathclydePhone +44 (0) 1411 548 3360
Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

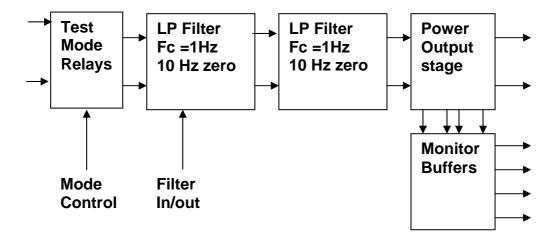
http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html

http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

OMC COIL DRIVER BOARD TEST PLAN


Unit	OMC 3	Serial No
	Xen	
•	27/10/10	

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk Tests
- 13. Dynamic range

1. Description

Block diagram

2. Description

Each OMC Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz, followed by a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Unit	OMC	3Serial No
Date	27/10/1	0

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	
Function Generator	Hitachi	VG-4429	

Unit	OMC 3	Serial No
	Xen	
Date	27/10/10	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

C21 and C26 have been replaced by a 10nF polypropylene capacitor on all channels.

C200 has been soldered across R5 and R23 on all channels.

Links:

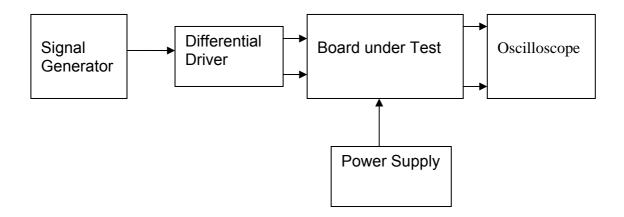
Check that links W4 and W5 are present on each channel. If not, connect them.

Unit	OMC 3	Serial No	
Test Engineer	Xen		
Date	27/10/10		

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+ 1		$\sqrt{}$
2	PD2P	Photodiode B+	2	$\sqrt{}$
3	PD3P	Photodiode C+	3	$\sqrt{}$
4	PD4P	Photodiode D+	4	$\sqrt{}$
	5	0V	$\sqrt{}$	
6	PD1N	Photodiode A-	14	$\sqrt{}$
7	PD2N	Photodiode B-	15	$\sqrt{}$
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	


J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	\checkmark
2	Imon2P		6	V
3	Imon3P		7	V
4	Imon4P		8	V
	5	0V	V	
6	Imon1N		18	V
7	Imon2N		19	V
8	Imon3N		20	V
9	Imon4N		21	√

Power Supply to Satellite box J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	√
11	V- (TP2)	-17v Supply	√
12	V- (TP2)	-17v Supply	√
13	0V (TP3)		V
22	0V (TP3)		√
23	0V (TP3)		√
24	0V (TP3)		√
25	0V (TP3)		√

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

J3 pins 1, 2, $\overline{3}$, 4 = positive input

J3 pins 6, 7, 8, 9 = negative input

J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v

J1 pin 11,12 = -16.5

J1 pins 22, 23, 24, 25 = 0v

Outputs

Ch1- = J4 pin 9
Ch2- = J4 pin 11
Ch3- = J4 pin 13
Ch4- = J4 pin 15

Unit	OMC 3	Serial No
	Xen	
•	27/10/10	

6. Power

Check the polarity of the wiring:

3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal +/- 0.5v?
+12v TP5	12.11	1mV	
+15v TP4	14.94	1mV	
-15v TP6	-15.07	5mV	√

All Outputs smooth DC, no oscillation?	1	
--	---	--

Record Power Supply Currents

Supply	Current
+16.5v	350mA
-16.5v	250mA

If the supplies are correct, proceed to the next test.

Unit	OMC 3	Serial No
Date	27/10/10	

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indi	Indicator	
	ON	OFF	
Ch1	V		V
Ch2	V		V
Ch3	V		
Ch4			

Test Switches

Channel	Indi	Indicator	
	ON	OFF	
Ch1	V		V
Ch2	V		V
Ch3	V		V
Ch4	√		

Unit	OMC_3	Serial No
Test Engineer.	Xen	
Date	27/10/10	

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1Hz.

8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13

at 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.9	5.0	5.0	4.7v to 5v	\checkmark
Ch2	4.9	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch3	4.9	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch4	4.9	5.0	5.0	4.7v to 5v	V

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at 0.1Hz, 1Hz, 10Hz, 100Hz, and 1KHz. Measure and record the Peak to Peak output between TP9 and TP13.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.9	4.7 to 5v	\checkmark
Ch2	4.9	4.7 to 5v	\checkmark
Ch3	4.9	4.7 to 5v	\checkmark
Ch4	4.9	4.7 to 5v	\checkmark

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	3.3v to 3.7v	$\sqrt{}$
Ch2	3.4	3.3v to 3.7v	V
Ch3	3.4	3.3v to 3.7v	V
Ch4	3.4	3.3v to 3.7v	V

10Hz

	Output	Specification	Pass/Fail
Ch1	0.68	0.48 to 0.75v	\checkmark
Ch2	0.68	0.48 to 0.75v	V
Ch3	0.68	0.48 to 0.75v	V
Ch4	0.68	0.48 to 0.75v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.48	0.4v to 0.5v	√
Ch2	0.48	0.4v to 0.5v	√
Ch3	0.48	0.4v to 0.5v	√
Ch4	0.48	0.4v to 0.5v	√

1 KHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	√
Ch2	0.47	0.4v to 0.5v	V
Ch3	0.47	0.4v to 0.5v	V
Ch4	0.47	0.4v to 0.5v	√

Unit	OMC_3	Serial No	
Test Engineer	Xen		
Date	27/10/10		

8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1Hz. Repeat for 1Hz, 10Hz, 100Hz, and 1KHz.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7v to 5v	V
Ch2	4.85	4.7v to 5v	V
Ch3	4.85	4.7v to 5v	√
Ch4	4.85	4.7v to 5v	√

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3v to 3.4v	\checkmark
Ch2	3.3	3v to 3.4v	V
Ch3	3.3	3v to 3.4v	V
Ch4	3.3	3v to 3.4v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.48	0.4v to 0.5v	\checkmark
Ch2	0.48	0.4v to 0.5v	
Ch3	0.48	0.4v to 0.5v	
Ch4	0.46	0.4v to 0.5v	

100Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15v to 0.16v	V
Ch2	0.16	0.15v to 0.16v	√
Ch3	0.16	0.15v to 0.16v	√
Ch4	0.16	0.15v to 0.16v	V

1 KHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14v to 0.16v	V
Ch2	0.16	0.14v to 0.16v	V
Ch3	0.16	0.14v to 0.16v	V
Ch4	0.16	0.14v to 0.16v	√

Unit	OMC_3	Serial No
Test Engine	erXen	
Date	27/10/10	

9. Monitor Outputs

Remove links W4 and W5.

Connect a 39 ohm dummy load to each channel.

Apply a 1V r.m.s input at 10Hz measured between TP10 and TP14, and record the differential output from each monitor pair on P1 for each channel. Compare them with the voltage outputs (TP9 to TP13).

Voltage monitors

Ch.	Nominal	Output between TP9 & TP13	Monitor Pins on P1	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.22V	1.22	Pin 1 to Pin 2	1.22	\checkmark
2	1.22V	1.22	Pin 5 to Pin 6	1.22	\checkmark
3	1.22V	1.22	Pin 9 to Pin 10	1.22	$\sqrt{}$
4	1.22V	1.22	Pin 13 to Pin 14	1.22	V

Current monitors

Ch.	Nominal	Monitor Pins	Monitor O/P	Pass/Fail: Equal? (+/- 0.1v)
1	V80.0	Pin 3 to Pin 4	0.08	
2	0.08V	Pin 7 to Pin 8	0.08	√
3	0.08V	Pin 11 to Pin 12	0.08	$\sqrt{}$
4	0.08V	Pin 15 to Pin 16	0.08	

10. Distortion

Filter out. Increase input voltage to 10v peak, f = 1KHz. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?	
Ch1	$\sqrt{}$	
Ch2	$\sqrt{}$	
Ch3	$\sqrt{}$	
Ch4	$\sqrt{}$	

Unit	OMC 3	Serial No
•	27/10/10	

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	V	-24.5	V	-24.5	V	-24.5	
-7v	-17.4	V	-17.3	V	-17.3	V	-17.4	√
-5v	-12.5	V	-12.5	V	-12.4	V	-12.5	
-1v	-2.5	V	-2.4		-2.4	V	-2.4	$\sqrt{}$
0v	0	V	0	√	0	$\sqrt{}$	0	
1v	2.4	V	2.5	V	2.4	V	2.4	V
5v	12.1	V	12.5	√	12.3	V	12.0	V
7v	17.0	V	17.2	√	17.0	V	17.0	V
10v	24.5	1	24.5		24.5	√	24.5	

Unit	Serial No
Test Engineer	•••
Date	

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT CHANNEL	OUTPUT CHANNEL	Maximum Output	@ Frequency
Channel 1	Channel 2		
Channel 2	Channel 1		
Channel 2	Channel 3		
Channel 3	Channel 2		
Channel 3	Channel 4		
Channel 4	Channel 3		

Unit	OMC 3.	Serial No
_	27/10/10	

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range.

Connect a 39 Ohm load resistor to the output of each channel. Switch out the filters. Apply a 10v peak sinusoidal signal at 10 Hz to the input. Check that the signal on TP10 is 10v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	\checkmark
Clipping?				

	Theoretical o/p	Measured	OK+/- 0.1v?
Ch1	1.12v	1.13	$\sqrt{}$
Ch2	1.12v	1.13	$\sqrt{}$
Ch3	1.12v	1.13	\checkmark
Ch4	1.12v	1.13	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T1000567-v1 Advanced LIGO UK

29 September 2010

OMC Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow

Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833

E-mail <u>k.strain@physics.gla.ac.uk</u> **Engineering Department**

CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297

Fax +44 (0) 1235 445 843 E-mail <u>J.Greenhalgh@rl.ac.uk</u>

School of Physics and Astronomy University of Birmingham

Phone +44 (0) 121 414 6447
Fax +44 (0) 121 414 3722
E-mail av@star.sr.bham.ac.uk **Department of Physics**

Department of Physics University of StrathclydePhone +44 (0) 1411 548 3360
Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

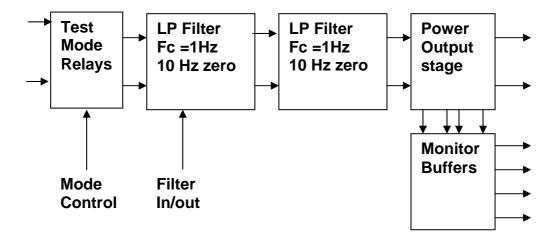
http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html

http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

OMC COIL DRIVER BOARD TEST PLAN


Unit	OMC_4	Serial No	
Date	27/10/10	0	

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk Tests
- 13. Dynamic range

1. Description

Block diagram

2. Description

Each OMC Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz, followed by a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Unit	OMC 4	4Serial No
Date	27/10/1	0

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	
Function Generator	Hitachi	VG-4429	

Unit	OMC 4.	Serial No
-		

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

C21 and C26 have been replaced by a 10nF polypropylene capacitor on all channels.

C200 has been soldered across R5 and R23 on all channels.

Links:

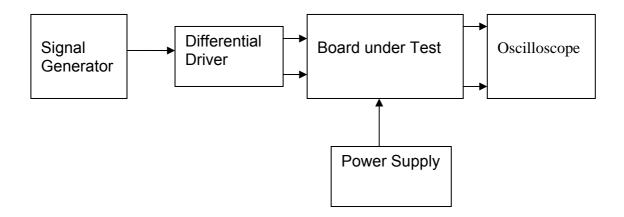
Check that links W4 and W5 are present on each channel. If not, connect them.

Unit	OMC 4	Serial No	
Test Engineer	Xen		
Date	27/10/10		

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{}$
2	PD2P	Photodiode B+	2	$\sqrt{}$
3	PD3P	Photodiode C+	3	$\sqrt{}$
4	PD4P	Photodiode D+	4	
5 0V √				
6	PD1N	Photodiode A-	14	$\sqrt{}$
7	PD2N	Photodiode B-	15	
8	PD3N	Photodiode C-	16	$\sqrt{}$
9	PD4N	Photodiode D-	17	


J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	√
2	Imon2P		6	V
3	Imon3P		7	V
4	Imon4P		8	V
	5	0V	V	
6	Imon1N		18	V
7	Imon2N		19	V
8	Imon3N		20	V
9	Imon4N		21	V

Power Supply to Satellite box J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	
10	V+ (TP1)	+17v Supply	√
11	V- (TP2)	-17v Supply	√
12	V- (TP2)	-17v Supply	√
13	0V (TP3)		√
22	0V (TP3)		√
23	0V (TP3)		√
24	0V (TP3)		√
25	0V (TP3)		√

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

J3 pins 1, 2, $\overline{3}$, 4 = positive input

J3 pins 6, 7, 8, 9 = negative input

J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v

J1 pin 11,12 = -16.5

J1 pins 22, 23, 24, 25 = 0v

Outputs

Ch1- = J4 pin 9
Ch2- = J4 pin 11
Ch3- = J4 pin 13
Ch4- = J4 pin 15

Unit	OMC_4	Serial No	
	Xen		
Date	27/10/10		

6. Power

Check the polarity of the wiring:

3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal +/- 0.5v?
+12v TP5	11.98	1mV	√
+15v TP4	14.93	1mV	√
-15v TP6	-15.03	5mV	√

All Outputs smooth DC, no oscillation?	1	
--	---	--

Record Power Supply Currents

Supply	Current
+16.5v	350mA
-16.5v	250mA

If the supplies are correct, proceed to the next test.

Unit	OMC_4	Serial No	
	Xen		
Date	27/10/10		

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indi	Indicator	
	ON	OFF	
Ch1	V		V
Ch2	V		V
Ch3	V		
Ch4			

Test Switches

Channel	Indi	Indicator	
	ON	OFF	
Ch1	V		V
Ch2	V		V
Ch3	V		V
Ch4	√		

Unit	OMC_4	Serial No	
Test Engineer	Xen		
Date	27/10/10		

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1Hz.

8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13

at 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.9	5.0	5.0	4.7v to 5v	\checkmark
Ch2	4.9	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch3	4.9	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch4	4.9	5.0	5.0	4.7v to 5v	V

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at 0.1Hz, 1Hz, 10Hz, 100Hz, and 1KHz. Measure and record the Peak to Peak output between TP9 and TP13.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.9	4.7 to 5v	$\sqrt{}$
Ch2	4.9	4.7 to 5v	$\sqrt{}$
Ch3	4.9	4.7 to 5v	$\sqrt{}$
Ch4	4.9	4.7 to 5v	V

1Hz

	Output	Specification	Pass/Fail
Ch1	3.35	3.3v to 3.7v	
Ch2	3.35	3.3v to 3.7v	V
Ch3	3.35	3.3v to 3.7v	V
Ch4	3.35	3.3v to 3.7v	V

10Hz

	Output	Specification	Pass/Fail
Ch1	0.67	0.48 to 0.75v	
Ch2	0.68	0.48 to 0.75v	
Ch3	0.68	0.48 to 0.75v	V
Ch4	0.67	0.48 to 0.75v	V

100Hz

	Output	Specification	Pass/Fail
Ch1	0.48	0.4v to 0.5v	$\sqrt{}$
Ch2	0.48	0.4v to 0.5v	$\sqrt{}$
Ch3	0.48	0.4v to 0.5v	$\sqrt{}$
Ch4	0.48	0.4v to 0.5v	V

1 KHz

	Output	Specification	Pass/Fail
Ch1	0.48	0.4v to 0.5v	V
Ch2	0.48	0.4v to 0.5v	V
Ch3	0.47	0.4v to 0.5v	V
Ch4	0.47	0.4v to 0.5v	√

Unit	OMC_	4Serial No
Test Engineer	Xen	•
Date	27/10/	10

8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1Hz. Repeat for 1Hz, 10Hz, 100Hz, and 1KHz.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.9	4.7v to 5v	$\sqrt{}$
Ch2	4.9	4.7v to 5v	$\sqrt{}$
Ch3	4.9	4.7v to 5v	√
Ch4	4.9	4.7v to 5v	√

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3v to 3.4v	
Ch2	3.3	3v to 3.4v	V
Ch3	3.3	3v to 3.4v	√
Ch4	3.3	3v to 3.4v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.49	0.4v to 0.5v	$\sqrt{}$
Ch2	0.50	0.4v to 0.5v	√
Ch3	0.49	0.4v to 0.5v	√
Ch4	0.48	0.4v to 0.5v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15v to 0.16v	V
Ch2	0.16	0.15v to 0.16v	V
Ch3	0.16	0.15v to 0.16v	V
Ch4	0.16	0.15v to 0.16v	√

1 KHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14v to 0.16v	\checkmark
Ch2	0.16	0.14v to 0.16v	√
Ch3	0.16	0.14v to 0.16v	√
Ch4	0.16	0.14v to 0.16v	√

Unit	OMC_4	Serial No	
Test Engineer	Xen		
Date	27/10/10		

9. Monitor Outputs

Remove links W4 and W5.

Connect a 39 ohm dummy load to each channel.

Apply a 1V r.m.s input at 10Hz measured between TP10 and TP14, and record the differential output from each monitor pair on P1 for each channel. Compare them with the voltage outputs (TP9 to TP13).

Voltage monitors

Ch.	Nominal	Output between TP9 & TP13	Monitor Pins on P1	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.22V	1.22	Pin 1 to Pin 2	1.22	\checkmark
2	1.22V	1.22	Pin 5 to Pin 6	1.22	\checkmark
3	1.22V	1.22	Pin 9 to Pin 10	1.22	$\sqrt{}$
4	1.22V	1.22	Pin 13 to Pin 14	1.22	V

Current monitors

Ch.	Nominal	Monitor Pins	Monitor O/P	Pass/Fail: Equal? (+/- 0.1v)
1	0.08V	Pin 3 to Pin 4	0.08	$\sqrt{}$
2	0.08V	Pin 7 to Pin 8	0.08	
3	0.08V	Pin 11 to Pin 12	0.08	
4	0.08V	Pin 15 to Pin 16	0.08	

10. Distortion

Filter out. Increase input voltage to 10v peak, f = 1KHz. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?		
Ch1	$\sqrt{}$		
Ch2	$\sqrt{}$		
Ch3	$\sqrt{}$		
Ch4	$\sqrt{}$		

Unit	OMC 4	Serial No	
Test Engineer	Xen		
Date	27/10/10		

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	$\sqrt{}$	-24.5	$\sqrt{}$	-24.5	$\sqrt{}$	-24.5	$\sqrt{}$
-7v	-17.4	V	-17.4	V	-17.4	V	-17.3	V
-5v	-12.5	V	-12.5	V	-12.5	V	-12.4	V
-1v	-2.4	V	-2.4	V	-2.4	V	-2.4	V
0v	0	V	0	V	0	V	0	V
1v	2.5	V	2.5	V	2.5	V	2.5	V
5v	12.2	V	12.3	$\sqrt{}$	12.2	V	12.1	$\sqrt{}$
7v	17.0	V	12.2	V	17.0	V	12.0	V
10v	24.5	V	24.5	V	24.5	V	24.5	V

Unit	.Serial No
Test Engineer	•••
Date	

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT CHANNEL	OUTPUT CHANNEL	Maximum Output	@ Frequency
Channel 1	Channel 2		
Channel 2	Channel 1		
Channel 2	Channel 3		
Channel 3	Channel 2		
Channel 3	Channel 4		
Channel 4	Channel 3		

Unit	OMC_4	Serial No	
	Xen		
Date	27/10/10		

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range.

Connect a 39 Ohm load resistor to the output of each channel. Switch out the filters. Apply a 10v peak sinusoidal signal at 10 Hz to the input. Check that the signal on TP10 is 10v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not Clipping?	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$

	Theoretical o/p	Measured	OK+/- 0.1v?
Ch1	1.12v	1.13	$\sqrt{}$
Ch2	1.12v	1.13	$\sqrt{}$
Ch3	1.12v	1.13	\checkmark
Ch4	1.12v	1.13	\checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T1000567-v1 Advanced LIGO UK

29 September 2010

OMC Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow

Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833

E-mail <u>k.strain@physics.gla.ac.uk</u> **Engineering Department**

CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297

Fax +44 (0) 1235 445 843 E-mail <u>J.Greenhalgh@rl.ac.uk</u>

School of Physics and Astronomy University of Birmingham

Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> **Department of Physics**

Department of Physics University of StrathclydePhone +44 (0) 1411 548 3360
Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

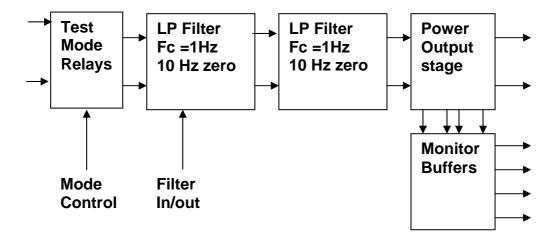
http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html

http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

OMC COIL DRIVER BOARD TEST PLAN


Unit	OMC	_5Serial No	
Date	28/10/	10	

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk Tests
- 13. Dynamic range

1. Description

Block diagram

2. Description

Each OMC Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz, followed by a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Unit	OMC 5.	Serial No
Date	28/10/10	

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	
Function Generator	Hitachi	VG-4429	

Unit	OMC 5	Serial No
Test Engineer.		
Date		

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

C21 and C26 have been replaced by a 10nF polypropylene capacitor on all channels.

C200 has been soldered across R5 and R23 on all channels.

Links:

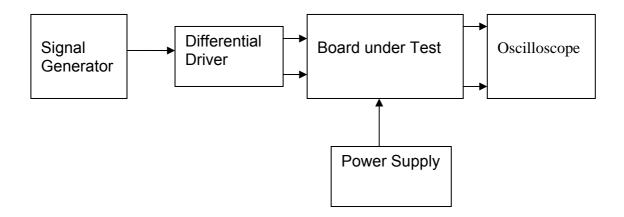
Check that links W4 and W5 are present on each channel. If not, connect them.

Unit	OMC_5	Serial No	o
Test Engineer			
Date	27/10/10		

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{}$
2	PD2P	Photodiode B+	2	$\sqrt{}$
3	PD3P	Photodiode C+	3	$\sqrt{}$
4	PD4P	Photodiode D+	Photodiode D+ 4	
	5	0V	$\sqrt{}$	
6	PD1N	Photodiode A-	14	
7	PD2N	Photodiode B- 15		$\sqrt{}$
8	PD3N	Photodiode C- 16		
9	PD4N	Photodiode D-	17	


J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	√
2	Imon2P		6	V
3	Imon3P		7	V
4	Imon4P		8	V
	5	0V	V	
6	Imon1N		18	V
7	Imon2N		19	V
8	Imon3N		20	V
9	Imon4N		21	V

Power Supply to Satellite box J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	V
10	V+ (TP1)	+17v Supply	√
11	V- (TP2)	-17v Supply	√
12	V- (TP2)	-17v Supply	
13	0V (TP3)		\checkmark
22	0V (TP3)		
23	0V (TP3)		$\sqrt{}$
24	0V (TP3)		$\sqrt{}$
25	0V (TP3)		√

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

J3 pins 1, 2, $\overline{3}$, 4 = positive input

J3 pins 6, 7, 8, 9 = negative input

J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v

J1 pin 11,12 = -16.5

J1 pins 22, 23, 24, 25 = 0v

Outputs

Ch1- = J4 pin 9
Ch2- = J4 pin 11
Ch3- = J4 pin 13
Ch4- = J4 pin 15

Unit	OMC 5.	Serial No
Date	27/10/10	

6. Power

Check the polarity of the wiring:

3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal +/- 0.5v?
+12v TP5	12.04	1mV	\checkmark
+15v TP4	14.86	1mV	\checkmark
-15v TP6	-15.05	5mV	$\sqrt{}$

All Outputs smooth DC, no oscillation?	1	
--	---	--

Record Power Supply Currents

Supply	Current
+16.5v	350mA
-16.5v	250mA

If the supplies are correct, proceed to the next test.

Unit	OMC 5	Serial No	
Test Engineer			
Date	27/10/10		

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	V	V	V
Ch2	V	V	V
Ch3	V	V	V
Ch4	V	V	V

Test Switches

Channel	Indi	Indicator	
	ON	OFF	
Ch1	V		V
Ch2	V		V
Ch3	V		V
Ch4	√		$\sqrt{}$

Unit	OMC_	Serial No
Test Engineer.	Xen	
Date	28/10/	0

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1Hz.

8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13

at 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.9	5.0	5.0	4.7v to 5v	\checkmark
Ch2	4.9	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch3	4.9	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch4	4.9	5.0	5.0	4.7v to 5v	V

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at 0.1Hz, 1Hz, 10Hz, 100Hz, and 1KHz. Measure and record the Peak to Peak output between TP9 and TP13.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.9	4.7 to 5v	$\sqrt{}$
Ch2	4.9	4.7 to 5v	$\sqrt{}$
Ch3	4.9	4.7 to 5v	$\sqrt{}$
Ch4	4.9	4.7 to 5v	V

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	3.3v to 3.7v	$\sqrt{}$
Ch2	3.4	3.3v to 3.7v	V
Ch3	3.4	3.3v to 3.7v	V
Ch4	3.4	3.3v to 3.7v	V

10Hz

	Output	Specification	Pass/Fail
Ch1	0.68	0.48 to 0.75v	\checkmark
Ch2	0.68	0.48 to 0.75v	√
Ch3	0.68	0.48 to 0.75v	√
Ch4	0.68	0.48 to 0.75v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	√
Ch2	0.47	0.4v to 0.5v	√
Ch3	0.47	0.4v to 0.5v	
Ch4	0.47	0.4v to 0.5v	√

1 KHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	√
Ch2	0.47	0.4v to 0.5v	V
Ch3	0.47	0.4v to 0.5v	V
Ch4	0.47	0.4v to 0.5v	√

Unit	OMC_5	Serial No	
Test Engineer	Xen		
Date	28/10/10		

8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1Hz. Repeat for 1Hz, 10Hz, 100Hz, and 1KHz.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7v to 5v	V
Ch2	4.85	4.7v to 5v	V
Ch3	4.85	4.7v to 5v	√
Ch4	4.85	4.7v to 5v	√

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3v to 3.4v	
Ch2	3.2	3v to 3.4v	√
Ch3	3.3	3v to 3.4v	√
Ch4	3.3	3v to 3.4v	V

10Hz

	Output	Specification	Pass/Fail
Ch1	0.50	0.4v to 0.5v	\checkmark
Ch2	0.48	0.4v to 0.5v	
Ch3	0.49	0.4v to 0.5v	V
Ch4	0.49	0.4v to 0.5v	

100Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15v to 0.16v	\checkmark
Ch2	0.16	0.15v to 0.16v	√
Ch3	0.16	0.15v to 0.16v	√
Ch4	0.16	0.15v to 0.16v	√

1 KHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14v to 0.16v	V
Ch2	0.16	0.14v to 0.16v	V
Ch3	0.16	0.14v to 0.16v	V
Ch4	0.16	0.14v to 0.16v	√

Unit	OMC_	5Serial No
Test Engineer	Xen	•
Date	28/10/	10

9. Monitor Outputs

Remove links W4 and W5.

Connect a 39 ohm dummy load to each channel.

Apply a 1V r.m.s input at 10Hz measured between TP10 and TP14, and record the differential output from each monitor pair on P1 for each channel. Compare them with the voltage outputs (TP9 to TP13).

Voltage monitors

Ch.	Nominal	Output between TP9 & TP13	Monitor Pins on P1	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.22V	1.22	Pin 1 to Pin 2	1.22	\checkmark
2	1.22V	1.22	Pin 5 to Pin 6	1.22	\checkmark
3	1.22V	1.22	Pin 9 to Pin 10	1.22	$\sqrt{}$
4	1.22V	1.22	Pin 13 to Pin 14	1.22	V

Current monitors

Ch.	Nominal	Monitor Pins	Monitor O/P	Pass/Fail: Equal? (+/- 0.1v)
1	V80.0	Pin 3 to Pin 4	0.08	$\sqrt{}$
2	0.08V	Pin 7 to Pin 8	0.08	
3	0.08V	Pin 11 to Pin 12	0.08	
4	0.08V	Pin 15 to Pin 16	0.08	

10. Distortion

Filter out. Increase input voltage to 10v peak, f = 1KHz. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?	
Ch1	$\sqrt{}$	
Ch2	$\sqrt{}$	
Ch3	$\sqrt{}$	
Ch4	$\sqrt{}$	

Unit	OMC 5	Serial No
Date	28/10/1	

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	V	-24.5	V	-24.5	$\sqrt{}$	-24.5	V
-7v	-17.4	V	-17.3	V	-17.3	$\sqrt{}$	-17.5	V
-5v	-12.5	V	-12.4	V	-12.5	$\sqrt{}$	-12.5	$\sqrt{}$
-1v	-2.4	$\sqrt{}$	-2.4	√	-2.4	\checkmark	-2.5	$\sqrt{}$
0v	0	$\sqrt{}$	0	$\sqrt{}$	0	\checkmark	0	$\sqrt{}$
1v	2.4	V	2.4	V	2.4	$\sqrt{}$	2.5	V
5v	12.0	V	12.0	V	12.0	$\sqrt{}$	12.3	V
7v	17.0	V	17.0	V	17.0	$\sqrt{}$	17.1	V
10v	24.5	V	24.5	V	24.5	V	24.5	V

Unit	OMC 5	Serial No
Date	28/10/10	

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT CHANNEL	OUTPUT CHANNEL	Output @ 10Hz	Maximum o/p	@ Frequency
Channel 1	Channel 2	-138.4dB	-115.3dB	238Hz
Channel 2	Channel 1	-136.1dB	-108.8dB	234Hz
Channel 2	Channel 3	-132.6dB	-110.7dB	269Hz
Channel 3	Channel 2	-134.5dB	-108.5dB	468Hz
Channel 3	Channel 4	-134.0dB	-107.1dB	251Hz
Channel 4	Channel 3	-137.5dB	-106.4dB	251Hz

Unit	OMC 5	Serial No
Date	28/10/1	

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range.

Connect a 39 Ohm load resistor to the output of each channel. Switch out the filters. Apply a 10v peak sinusoidal signal at 10 Hz to the input. Check that the signal on TP10 is 10v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not	$\sqrt{}$	√	\checkmark	
Clipping?				

	Theoretical o/p	Measured	OK+/- 0.1v?
Ch1	1.12v	1.13	
Ch2	1.12v	1.13	V
Ch3	1.12v	1.13	V
Ch4	1.12v	1.13	V

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T1000567-v1 Advanced LIGO UK

29 September 2010

OMC Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow

Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833

E-mail <u>k.strain@physics.gla.ac.uk</u> **Engineering Department**

CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297

Fax +44 (0) 1235 445 843 E-mail <u>J.Greenhalgh@rl.ac.uk</u>

School of Physics and Astronomy University of Birmingham

Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail av@star.sr.bham.ac.uk **Department of Physics**

Department of Physics University of StrathclydePhone +44 (0) 1411 548 3360
Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

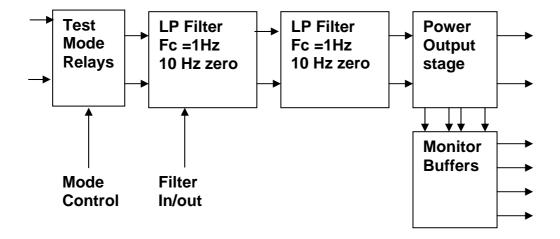
http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html

http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

OMC COIL DRIVER BOARD TEST PLAN


Unit	OMC_6	Serial No	
Date	28/10/1	0	

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk Tests
- 13. Dynamic range

1. Description

Block diagram

2. Description

Each OMC Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz, followed by a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Unit	OMC 6	Serial No
Date	28/10/10	

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	
Function Generator	Hitachi	VG-4429	

Unit	OMC 6	Serial No
	Xen	
	28/10/10	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

C21 and C26 have been replaced by a 10nF polypropylene capacitor on all channels.

C200 has been soldered across R5 and R23 on all channels.

Links:

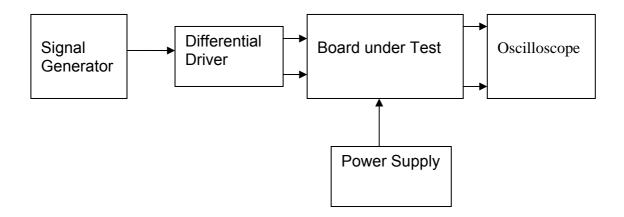
Check that links W4 and W5 are present on each channel. If not, connect them.

Unit	OMC_6	 .Serial No	 	
Date	28/10/10			

4. Continuity Checks

J2

PIN	SIC	SNAL	DESCRIPT	ION	To J1 PIN	OK?
1	PD	1P	Photodiode	Α+	1	
2	PD	2P	Photodiode	B+	2	$\sqrt{}$
3	PD	3P	Photodiode	C+	3	\checkmark
4	PD	4P	Photodiode	D+	4	$\sqrt{}$
		5	0V		$\sqrt{}$	
6	PD	1N	Photodiode	Α-	14	
7	PD	2N	Photodiode	B-	15	
8	PD	3N	Photodiode	C-	16	
9	PD	4N	Photodiode	D-	17	


J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	√
2	Imon2P		6	V
3	Imon3P		7	V
4	Imon4P		8	V
	5	0V	V	
6	Imon1N		18	V
7	Imon2N		19	V
8	Imon3N		20	V
9	Imon4N		21	V

Power Supply to Satellite box J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	$\sqrt{}$
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	√
12	V- (TP2)	-17v Supply	√
13	0V (TP3)		V
22	0V (TP3)		√
23	0V (TP3)		√
24	0V (TP3)		√
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

J3 pins 1, 2, $\overline{3}$, 4 = positive input

J3 pins 6, 7, 8, 9 = negative input

J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v

J1 pin 11,12 = -16.5

J1 pins 22, 23, 24, 25 = 0v

Outputs

Ch1- = J4 pin 9
Ch2- = J4 pin 11
Ch3- = J4 pin 13
Ch4- = J4 pin 15

Unit	OMC 6	Serial No
	Xen	
•	28/10/10	

6. Power

Check the polarity of the wiring:

3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal +/- 0.5v?
+12v TP5	12.02	1mV	
+15v TP4	14.91	1mV	
-15v TP6	-15.02	5mV	√

All Outputs smooth DC, no oscillation?	1	
--	---	--

Record Power Supply Currents

Supply	Current
+16.5v	350mA
-16.5v	250mA

If the supplies are correct, proceed to the next test.

Unit	OMC 6	Serial No
	Xen	
•	28/10/10	

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	V	V	V
Ch2	V	V	V
Ch3	V	V	V
Ch4	V	V	V

Test Switches

Channel	Indi	Indicator	
	ON	OFF	
Ch1	V	√	√
Ch2	V		
Ch3	V		
Ch4	$\sqrt{}$	√	

Unit	OMC_6	Serial No	
Test Engineer	Xen		
Date	28/10/10		

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1Hz.

8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13

at 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.9	5.0	5.0	4.7v to 5v	\checkmark
Ch2	4.9	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch3	4.9	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch4	4.9	5.0	5.0	4.7v to 5v	V

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at 0.1Hz, 1Hz, 10Hz, 100Hz, and 1KHz. Measure and record the Peak to Peak output between TP9 and TP13.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.9	4.7 to 5v	$\sqrt{}$
Ch2	4.9	4.7 to 5v	$\sqrt{}$
Ch3	4.9	4.7 to 5v	$\sqrt{}$
Ch4	4.9	4.7 to 5v	V

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	3.3v to 3.7v	\checkmark
Ch2	3.4	3.3v to 3.7v	V
Ch3	3.4	3.3v to 3.7v	V
Ch4	3.4	3.3v to 3.7v	V

10Hz

	Output	Specification	Pass/Fail
Ch1	0.68	0.48 to 0.75v	\checkmark
Ch2	0.68	0.48 to 0.75v	√
Ch3	0.68	0.48 to 0.75v	√
Ch4	0.67	0.48 to 0.75v	V

100Hz

	Output	Specification	Pass/Fail
Ch1	0.48	0.4v to 0.5v	\checkmark
Ch2	0.48	0.4v to 0.5v	\checkmark
Ch3	0.48	0.4v to 0.5v	\checkmark
Ch4	0.48	0.4v to 0.5v	V

1 KHz

	Output	Specification	Pass/Fail
Ch1	0.48	0.4v to 0.5v	V
Ch2	0.48	0.4v to 0.5v	√
Ch3	0.48	0.4v to 0.5v	√
Ch4	0.48	0.4v to 0.5v	√

Unit	OMC_6	Serial No
Test Engineer	Xen	
Date	28/10/10	

8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1Hz. Repeat for 1Hz, 10Hz, 100Hz, and 1KHz.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7v to 5v	\checkmark
Ch2	4.85	4.7v to 5v	\checkmark
Ch3	4.85	4.7v to 5v	\checkmark
Ch4	4.85	4.7v to 5v	\checkmark

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3v to 3.4v	\checkmark
Ch2	3.3	3v to 3.4v	√
Ch3	3.2	3v to 3.4v	√
Ch4	3.3	3v to 3.4v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.49	0.4v to 0.5v	\checkmark
Ch2	0.50	0.4v to 0.5v	√
Ch3	0.48	0.4v to 0.5v	√
Ch4	0.48	0.4v to 0.5v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15v to 0.16v	V
Ch2	0.16	0.15v to 0.16v	√
Ch3	0.16	0.15v to 0.16v	√
Ch4	0.16	0.15v to 0.16v	V

1 KHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14v to 0.16v	V
Ch2	0.16	0.14v to 0.16v	V
Ch3	0.16	0.14v to 0.16v	V
Ch4	0.16	0.14v to 0.16v	√

Unit	OMC_	6Serial No
_		10

9. Monitor Outputs

Remove links W4 and W5.

Connect a 39 ohm dummy load to each channel.

Apply a 1V r.m.s input at 10Hz measured between TP10 and TP14, and record the differential output from each monitor pair on P1 for each channel. Compare them with the voltage outputs (TP9 to TP13).

Voltage monitors

Ch.	Nominal	Output between TP9 & TP13	Monitor Pins on P1	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.22V	1.22	Pin 1 to Pin 2	1.22	√
2	1.22V	1.22	Pin 5 to Pin 6	1.22	√
3	1.22V	1.22	Pin 9 to Pin 10	1.22	√
4	1.22V	1.22	Pin 13 to Pin 14	1.22	√

Current monitors

Ch.	Nominal	Monitor Pins	Monitor O/P	Pass/Fail: Equal? (+/- 0.1v)
1	0.08V	Pin 3 to Pin 4	0.08	
2	0.08V	Pin 7 to Pin 8	0.08	
3	0.08V	Pin 11 to Pin 12	0.08	
4	0.08V	Pin 15 to Pin 16	0.08	

10. Distortion

Filter out. Increase input voltage to 10v peak, f = 1KHz. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?		
Ch1	$\sqrt{}$		
Ch2	V		
Ch3	V		
Ch4	V		

Unit	OMC 6	Serial No
Test Engineer		
Date	28/10/10	

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	V	-24.5	V	-24.5	$\sqrt{}$	-24.5	V
-7v	-17.4	V	-17.4	V	-17.4	$\sqrt{}$	-17.4	V
-5v	-12.5	V	-12.5	V	-12.5	$\sqrt{}$	-12.5	V
-1v	-2.5	V	-2.4	V	-2.6	\checkmark	-2.5	V
0v	0	V	0	V	0	\checkmark	0	V
1v	2.5	V	2.5	V	2.5	$\sqrt{}$	2.4	V
5v	12.3	V	12.3	V	12.2	\checkmark	12.2	V
7v	17.0	V	17.2	V	17.0	$\sqrt{}$	17.0	V
10v	24.5	V	24.5	V	24.5	V	24.5	V

Unit	Serial No
Test Engineer	•••
Date	

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT CHANNEL	OUTPUT CHANNEL	Output @ 10Hz	Maximum o/p	@ Frequency
Channel 1	Channel 2			-
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Unit	OMC 6	Serial No	
	Xen		
Date	28/10/10		

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range.

Connect a 39 Ohm load resistor to the output of each channel. Switch out the filters. Apply a 10v peak sinusoidal signal at 10 Hz to the input. Check that the signal on TP10 is 10v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not	\checkmark	\checkmark	\checkmark	\checkmark
Clipping?				

	Theoretical o/p	Measured	OK+/- 0.1v?
Ch1	1.12v	1.13	$\sqrt{}$
Ch2	1.12v	1.13	$\sqrt{}$
Ch3	1.12v	1.13	$\sqrt{}$
Ch4	1.12v	1.13	$\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T1000567-v1 Advanced LIGO UK

29 September 2010

OMC Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow

Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833

E-mail <u>k.strain@physics.gla.ac.uk</u> **Engineering Department**

CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297

Fax +44 (0) 1235 445 843 E-mail <u>J.Greenhalgh@rl.ac.uk</u>

School of Physics and Astronomy University of Birmingham

Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail av@star.sr.bham.ac.uk **Department of Physics**

Department of Physics University of StrathclydePhone +44 (0) 1411 548 3360
Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

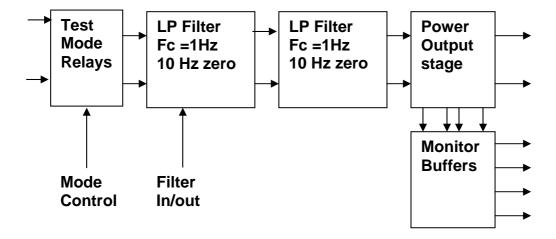
http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html

http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

OMC COIL DRIVER BOARD TEST PLAN


Unit	OMC 7	Serial No
	Xen	
•	29/10/10	

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk Tests
- 13. Dynamic range

1. Description

Block diagram

2. Description

Each OMC Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz, followed by a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Unit	OMC 7.	Serial No
-		

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	
Function Generator	Hitachi	VG-4429	

Unit	OMC 7	Serial No
-		

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

C21 and C26 have been replaced by a 10nF polypropylene capacitor on all channels.

C200 has been soldered across R5 and R23 on all channels.

Links:

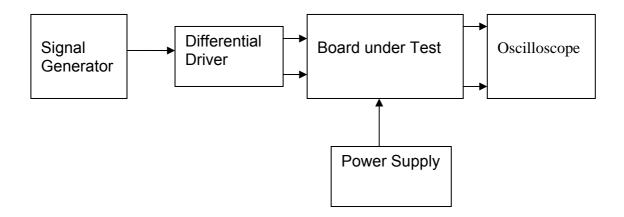
Check that links W4 and W5 are present on each channel. If not, connect them.

Unit	OMC 7	Serial No	
Test Engineer	Xen		
Date	28/10/10		

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	V
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	V
	5	0V	$\sqrt{}$	
6	PD1N	Photodiode A-	14	V
7	PD2N	Photodiode B-	15	V
8	PD3N	Photodiode C-	16	V
9	PD4N	Photodiode D-	17	√


J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	√
2	Imon2P		6	V
3	Imon3P		7	V
4	Imon4P		8	V
	5	0V	V	
6	Imon1N		18	V
7	Imon2N		19	V
8	Imon3N		20	V
9	Imon4N		21	V

Power Supply to Satellite box J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	
10	V+ (TP1)	+17v Supply	√
11	V- (TP2)	-17v Supply	√
12	V- (TP2)	-17v Supply	√
13	0V (TP3)		√
22	0V (TP3)		√
23	0V (TP3)		√
24	0V (TP3)		√
25	0V (TP3)		√

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

J3 pins 1, 2, $\overline{3}$, 4 = positive input

J3 pins 6, 7, 8, 9 = negative input

J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v

J1 pin 11,12 = -16.5

J1 pins 22, 23, 24, 25 = 0v

Outputs

Ch1- = J4 pin 9
Ch2- = J4 pin 11
Ch3- = J4 pin 13
Ch4- = J4 pin 15

Unit	OMC 7	Serial N	10	
Test Engineer				
Date				

6. Power

Check the polarity of the wiring:

3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal +/- 0.5v?
+12v TP5	12.03	1mV	
+15v TP4	15.02	1mV	
-15v TP6	-15.08	5mV	√

All Outputs smooth DC, no oscillation?	1	
--	---	--

Record Power Supply Currents

Supply	Current
+16.5v	350mA
-16.5v	250mA

If the supplies are correct, proceed to the next test.

Unit	OMC 7	Serial No
Date	28/10/10	

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	V	V	V
Ch2	V	V	V
Ch3	V	V	V
Ch4			V

Test Switches

Channel	Indi	Indicator	
	ON	OFF	
Ch1	V	√	√
Ch2	V		
Ch3	V		
Ch4	$\sqrt{}$	√	

Unit	OMC_	7Serial No
Test Engineer.	Xen	•
Date	29/10/	10

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1Hz.

8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13

at 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.9	5.0	5.0	4.7v to 5v	\checkmark
Ch2	4.9	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch3	4.9	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch4	4.9	5.0	5.0	4.7v to 5v	V

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at 0.1Hz, 1Hz, 10Hz, 100Hz, and 1KHz. Measure and record the Peak to Peak output between TP9 and TP13.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.9	4.7 to 5v	$\sqrt{}$
Ch2	4.9	4.7 to 5v	$\sqrt{}$
Ch3	4.9	4.7 to 5v	$\sqrt{}$
Ch4	4.9	4.7 to 5v	V

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	3.3v to 3.7v	\checkmark
Ch2	3.4	3.3v to 3.7v	V
Ch3	3.3	3.3v to 3.7v	V
Ch4	3.3	3.3v to 3.7v	V

10Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.48 to 0.75v	V
Ch2	0.47	0.48 to 0.75v	\checkmark
Ch3	0.47	0.48 to 0.75v	√
Ch4	0.48	0.48 to 0.75v	V

100Hz

	Output	Specification	Pass/Fail
Ch1	0.48	0.4v to 0.5v	√
Ch2	0.48	0.4v to 0.5v	√
Ch3	0.48	0.4v to 0.5v	√
Ch4	0.48	0.4v to 0.5v	√

1 KHz

	Output	Specification	Pass/Fail
Ch1	0.48	0.4v to 0.5v	V
Ch2	0.48	0.4v to 0.5v	√
Ch3	0.48	0.4v to 0.5v	√
Ch4	0.48	0.4v to 0.5v	√

Unit	OMC_	7Serial No
Test Engineer	Xen	
Date	29/10/1	0

8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1Hz. Repeat for 1Hz, 10Hz, 100Hz, and 1KHz.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7v to 5v	
Ch2	4.85	4.7v to 5v	
Ch3	4.85	4.7v to 5v	V
Ch4	4.85	4.7v to 5v	√

1Hz

	Output	Specification	Pass/Fail
Ch1	3.25	3v to 3.4v	
Ch2	3.25	3v to 3.4v	V
Ch3	3.3	3v to 3.4v	V
Ch4	3.3	3v to 3.4v	V

10Hz

	Output	Specification	Pass/Fail
Ch1	0.48	0.4v to 0.5v	\checkmark
Ch2	0.48	0.4v to 0.5v	
Ch3	0.48	0.4v to 0.5v	
Ch4	0.49	0.4v to 0.5v	

100Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15v to 0.16v	V
Ch2	0.16	0.15v to 0.16v	
Ch3	0.16	0.15v to 0.16v	V
Ch4	0.16	0.15v to 0.16v	√

1 KHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14v to 0.16v	V
Ch2	0.16	0.14v to 0.16v	V
Ch3	0.16	0.14v to 0.16v	V
Ch4	0.16	0.14v to 0.16v	√

Unit	OMC 7	.Serial No
Test Engineer	Xen	
-	29/10/10	

9. Monitor Outputs

Remove links W4 and W5.

Connect a 39 ohm dummy load to each channel.

Apply a 1V r.m.s input at 10Hz measured between TP10 and TP14, and record the differential output from each monitor pair on P1 for each channel. Compare them with the voltage outputs (TP9 to TP13).

Voltage monitors

Ch.	Nominal	Output between TP9 & TP13	Monitor Pins on P1	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.22V	1.22	Pin 1 to Pin 2	1.22	√
2	1.22V	1.22	Pin 5 to Pin 6	1.22	√
3	1.22V	1.22	Pin 9 to Pin 10	1.22	√
4	1.22V	1.22	Pin 13 to Pin 14	1.22	√

Current monitors

Ch.	Nominal	Monitor Pins	Monitor O/P	Pass/Fail: Equal? (+/- 0.1v)
1	0.08V	Pin 3 to Pin 4	0.08	
2	0.08V	Pin 7 to Pin 8	0.08	
3	0.08V	Pin 11 to Pin 12	0.08	
4	0.08V	Pin 15 to Pin 16	0.08	

10. Distortion

Filter out. Increase input voltage to 10v peak, f = 1KHz. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?		
Ch1	$\sqrt{}$		
Ch2	$\sqrt{}$		
Ch3	$\sqrt{}$		
Ch4	$\sqrt{}$		

Unit	OMC_7	Serial No	
Test Engineer	Xen		
Date	29/10/10.		

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	V	-24.5	V	-24.5	$\sqrt{}$	-24.5	V
-7v	-17.5	V	-17.4	V	-17.4	$\sqrt{}$	-17.4	V
-5v	-12.5	V	-12.5	V	-12.5	$\sqrt{}$	-12.5	V
-1v	-2.5	V	-2.4	V	-2.5	\checkmark	-2.5	V
0v	0	V	0	V	0	\checkmark	0	V
1v	2.4	V	2.4	V	2.5	$\sqrt{}$	2.5	V
5v	12.0	V	12.0	V	12.5	\checkmark	12.5	V
7v	17.0	V	17.0	V	17.4	V	17.4	V
10v	24.5	V	24.4	V	24.5	$\sqrt{}$	24.5	V

Unit	Serial No
Test Engineer	•••
Date	

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT CHANNEL	OUTPUT CHANNEL	Output @ 10Hz	Maximum o/p	@ Frequency
Channel 1	Channel 2			-
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Unit	OMC 7	Serial No
Date	29/10/10	

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range.

Connect a 39 Ohm load resistor to the output of each channel. Switch out the filters. Apply a 10v peak sinusoidal signal at 10 Hz to the input. Check that the signal on TP10 is 10v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not		V	√	\checkmark
Clipping?				

	Theoretical o/p	Measured	OK+/- 0.1v?
Ch1	1.12v	1.14	V
Ch2	1.12v	1.13	V
Ch3	1.12v	1.13	V
Ch4	1.12v	1.14	V

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T1000567-v1 Advanced LIGO UK

29 September 2010

OMC Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow

Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833

E-mail <u>k.strain@physics.gla.ac.uk</u> **Engineering Department**

CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297

Fax +44 (0) 1235 445 843 E-mail <u>J.Greenhalgh@rl.ac.uk</u>

School of Physics and Astronomy University of Birmingham

Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail av@star.sr.bham.ac.uk **Department of Physics**

Department of Physics University of StrathclydePhone +44 (0) 1411 548 3360
Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

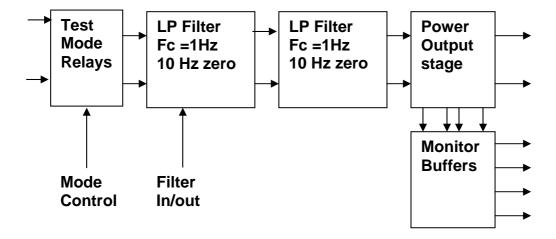
http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html

http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

OMC COIL DRIVER BOARD TEST PLAN


Unit	OMC_	8Serial No	
		-	
Date	29/10/	10	

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk Tests
- 13. Dynamic range

1. Description

Block diagram

2. Description

Each OMC Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz, followed by a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Unit	OMC 8	Serial No
Date	29/10/10	

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	
Function Generator	Hitachi	VG-4429	

Unit	OMC 8	Serial No
	Xen	
Date	29/10/10	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

C21 and C26 have been replaced by a 10nF polypropylene capacitor on all channels.

C200 has been soldered across R5 and R23 on all channels.

Links:

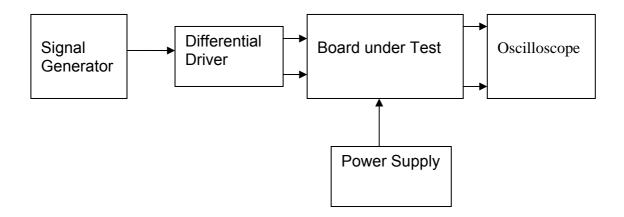
Check that links W4 and W5 are present on each channel. If not, connect them.

Unit	OMC_8	Serial No	
Test Engineer	Xen		
Date	29/10/10		

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	V
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	V
	5	0V	$\sqrt{}$	
6	PD1N	Photodiode A-	14	V
7	PD2N	Photodiode B- 15		V
8	PD3N	Photodiode C- 16		V
9	PD4N	Photodiode D- 17		√


J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	√
2	Imon2P		6	V
3	Imon3P		7	V
4	Imon4P		8	V
	5	0V	V	
6	Imon1N		18	V
7	Imon2N		19	V
8	Imon3N		20	V
9	Imon4N		21	V

Power Supply to Satellite box J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	$\sqrt{}$
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	√
12	V- (TP2)	-17v Supply	√
13	0V (TP3)		\checkmark
22	0V (TP3)		√
23	0V (TP3)		√
24	0V (TP3)		√
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

J3 pins 1, 2, $\overline{3}$, 4 = positive input

J3 pins 6, 7, 8, 9 = negative input

J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v

J1 pin 11,12 = -16.5

J1 pins 22, 23, 24, 25 = 0v

Outputs

Ch1- = J4 pin 9
Ch2- = J4 pin 11
Ch3- = J4 pin 13
Ch4- = J4 pin 15

Unit	OMC 8	Serial No
	Xen	
•	29/10/10	

6. Power

Check the polarity of the wiring:

3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal +/- 0.5v?
+12v TP5	12.05	1mV	
+15v TP4	14.92	1mV	
-15v TP6	-15.01	5mV	√

All Outputs smooth DC, no oscillation?	1	
--	---	--

Record Power Supply Currents

Supply	Current
+16.5v	350mA
-16.5v	250mA

If the supplies are correct, proceed to the next test.

Unit	OMC 8	Serial No	
Test Engineer			
Date	29/10/10		

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indi	Indicator	
	ON	OFF	
Ch1	V		V
Ch2	V		V
Ch3	V		
Ch4			

Test Switches

Channel	Indi	Indicator	
	ON	OFF	
Ch1	V		V
Ch2	V		V
Ch3	V		V
Ch4	√		

Unit	$OMC_{_}$	8Serial No
Test Engineer	Xen	•
Date	29/10/	10

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1Hz.

8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13

at 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.9	5.0	5.0	4.7v to 5v	\checkmark
Ch2	4.9	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch3	4.9	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch4	4.9	5.0	5.0	4.7v to 5v	V

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at 0.1Hz, 1Hz, 10Hz, 100Hz, and 1KHz. Measure and record the Peak to Peak output between TP9 and TP13.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.9	4.7 to 5v	$\sqrt{}$
Ch2	4.9	4.7 to 5v	$\sqrt{}$
Ch3	4.9	4.7 to 5v	$\sqrt{}$
Ch4	4.9	4.7 to 5v	V

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	3.3v to 3.7v	
Ch2	3.4	3.3v to 3.7v	√
Ch3	3.4	3.3v to 3.7v	√
Ch4	3.4	3.3v to 3.7v	V

10Hz

	Output	Specification	Pass/Fail
Ch1	0.68	0.48 to 0.75v	\checkmark
Ch2	0.68	0.48 to 0.75v	√
Ch3	0.68	0.48 to 0.75v	√
Ch4	0.68	0.48 to 0.75v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.48	0.4v to 0.5v	√
Ch2	0.48	0.4v to 0.5v	√
Ch3	0.48	0.4v to 0.5v	√
Ch4	0.48	0.4v to 0.5v	√

1 KHz

	Output	Specification	Pass/Fail
Ch1	0.48	0.4v to 0.5v	√
Ch2	0.48	0.4v to 0.5v	√
Ch3	0.48	0.4v to 0.5v	V
Ch4	0.48	0.4v to 0.5v	

Unit	OMC 8.	Serial No
Test Engineer	Xen	
Date	29/10/10	

8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1Hz. Repeat for 1Hz, 10Hz, 100Hz, and 1KHz.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7v to 5v	
Ch2	4.85	4.7v to 5v	$\sqrt{}$
Ch3	4.85	4.7v to 5v	V
Ch4	4.85	4.7v to 5v	√

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3v to 3.4v	\checkmark
Ch2	3.3	3v to 3.4v	√
Ch3	3.3	3v to 3.4v	√
Ch4	3.3	3v to 3.4v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.48	0.4v to 0.5v	$\sqrt{}$
Ch2	0.50	0.4v to 0.5v	√
Ch3	0.49	0.4v to 0.5v	√
Ch4	0.50	0.4v to 0.5v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15v to 0.16v	V
Ch2	0.16	0.15v to 0.16v	√
Ch3	0.16	0.15v to 0.16v	√
Ch4	0.16	0.15v to 0.16v	V

1 KHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14v to 0.16v	V
Ch2	0.16	0.14v to 0.16v	V
Ch3	0.16	0.14v to 0.16v	V
Ch4	0.16	0.14v to 0.16v	√

Unit	OMC_8	Serial No
Test Engineer.	Xen	
Date	29/10/1	0

9. Monitor Outputs

Remove links W4 and W5.

Connect a 39 ohm dummy load to each channel.

Apply a 1V r.m.s input at 10Hz measured between TP10 and TP14, and record the differential output from each monitor pair on P1 for each channel. Compare them with the voltage outputs (TP9 to TP13).

Voltage monitors

Ch.	Nominal	Output between TP9 & TP13	Monitor Pins on P1	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.22V	1.22	Pin 1 to Pin 2	1.22	\checkmark
2	1.22V	1.22	Pin 5 to Pin 6	1.22	\checkmark
3	1.22V	1.22	Pin 9 to Pin 10	1.22	$\sqrt{}$
4	1.22V	1.22	Pin 13 to Pin 14	1.22	V

Current monitors

Ch.	Nominal	Monitor Pins	Monitor O/P	Pass/Fail: Equal? (+/- 0.1v)
1	0.08V	Pin 3 to Pin 4	0.08	
2	0.08V	Pin 7 to Pin 8	0.08	
3	0.08V	Pin 11 to Pin 12	0.08	
4	0.08V	Pin 15 to Pin 16	0.08	

10. Distortion

Filter out. Increase input voltage to 10v peak, f = 1KHz. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?		
Ch1	$\sqrt{}$		
Ch2	$\sqrt{}$		
Ch3	$\sqrt{}$		
Ch4	$\sqrt{}$		

Unit	OMC 8	Serial No
Date	29/10/10	

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	V	-24.5	V	-24.5	V	-24.5	V
-7v	-17.5	V	-17.5	V	-17.5	V	-17.5	V
-5v	-12.5	V	-12.5	V	-12.5	V	-12.5	√
-1v	-2.5	V	-2.5	V	-2.5	V	-2.5	
0v	0	V	0	V	0	V	0	V
1v	2.5	V	2.5	V	2.5	V	2.5	√
5v	12.2	V	12.2	V	12.2	V	12.2	√
7v	17.5	V	17.5	V	17.5	V	17.5	√
10v	24.5	V	24.5		24.5	V	24.5	1

Unit	Serial No
Test Engineer	
Date	

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT CHANNEL	OUTPUT CHANNEL	Output @ 10Hz	Maximum o/p	@ Frequency
Channel 1	Channel 2		-	
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Unit	OMC 8	Serial No
	Xen	
•	29/10/10	

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range.

Connect a 39 Ohm load resistor to the output of each channel. Switch out the filters. Apply a 10v peak sinusoidal signal at 10 Hz to the input. Check that the signal on TP10 is 10v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	√
Clipping?				

	Theoretical o/p	Measured	OK+/- 0.1v?
Ch1	1.12v	1.13	$\sqrt{}$
Ch2	1.12v	1.14	$\sqrt{}$
Ch3	1.12v	1.13	$\sqrt{}$
Ch4	1.12v	1.14	$\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T1000567-v1 Advanced LIGO UK

29 September 2010

OMC Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow

Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833

E-mail <u>k.strain@physics.gla.ac.uk</u> **Engineering Department**

CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297

Fax +44 (0) 1235 445 843 E-mail <u>J.Greenhalgh@rl.ac.uk</u>

School of Physics and Astronomy University of Birmingham

Phone +44 (0) 121 414 6447
Fax +44 (0) 121 414 3722
E-mail av@star.sr.bham.ac.uk **Department of Physics**

Department of Physics University of StrathclydePhone +44 (0) 1411 548 3360
Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

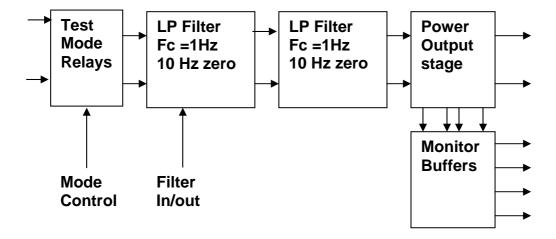
http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html

http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

OMC COIL DRIVER BOARD TEST PLAN


Unit	OMC	9Serial No	
		-	
Date	29/10/	/10	

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk Tests
- 13. Dynamic range

1. Description

Block diagram

2. Description

Each OMC Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz, followed by a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Unit	OMC 9.	Serial No
Date	29/10/10	

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	
Function Generator	Hitachi	VG-4429	

Unit	OMC 9	.Serial No
	Xen	
	29/10/10	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

C21 and C26 have been replaced by a 10nF polypropylene capacitor on all channels.

C200 has been soldered across R5 and R23 on all channels.

Links:

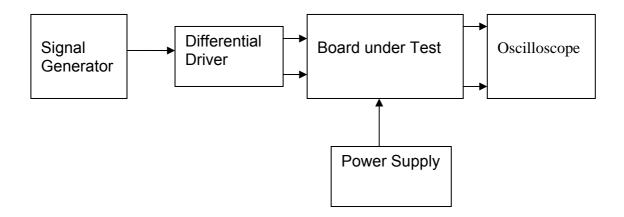
Check that links W4 and W5 are present on each channel. If not, connect them.

Unit	OMC_9	Serial No	
Test Engineer	Xen		
Date	29/10/10		

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{}$
2	PD2P	Photodiode B+	2	$\sqrt{}$
3	PD3P	Photodiode C+	3	$\sqrt{}$
4	PD4P	Photodiode D+	4	$\sqrt{}$
	5	0V	$\sqrt{}$	
6	PD1N	Photodiode A-	14	
7	PD2N	Photodiode B-	15	$\sqrt{}$
8	PD3N	Photodiode C-	16	$\sqrt{}$
9	PD4N	Photodiode D-	17	


J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	√
2	Imon2P		6	V
3	Imon3P		7	V
4	Imon4P		8	V
	5	0V	V	
6	Imon1N		18	V
7	Imon2N		19	V
8	Imon3N		20	V
9	Imon4N		21	V

Power Supply to Satellite box J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	√
10	V+ (TP1)	+17v Supply	√
11	V- (TP2)	-17v Supply	√
12	V- (TP2)	-17v Supply	√
13	0V (TP3)		√
22	0V (TP3)		√
23	0V (TP3)		√
24	0V (TP3)		√
25	0V (TP3)		√

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

J3 pins 1, 2, $\overline{3}$, 4 = positive input

J3 pins 6, 7, 8, 9 = negative input

J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v

J1 pin 11,12 = -16.5

J1 pins 22, 23, 24, 25 = 0v

Outputs

Ch1- = J4 pin 9
Ch2- = J4 pin 11
Ch3- = J4 pin 13
Ch4- = J4 pin 15

Unit	OMC 9	Serial No
	Xen	
•	29/10/10	

6. Power

Check the polarity of the wiring:

3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal +/- 0.5v?
+12v TP5	12.06	1mV	\checkmark
+15v TP4	14.95	1mV	\checkmark
-15v TP6	-14.95	5mV	$\sqrt{}$

All Outputs smooth DC, no oscillation?	1	
--	---	--

Record Power Supply Currents

Supply	Current
+16.5v	350mA
-16.5v	250mA

If the supplies are correct, proceed to the next test.

Unit	OMC 9	Serial No
Date	29/10/10	

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indi	Indicator	
	ON	OFF	
Ch1	V		V
Ch2	V		V
Ch3	V		
Ch4			

Test Switches

Channel	Indi	Indicator	
	ON	OFF	
Ch1	V		V
Ch2	V		V
Ch3	V		V
Ch4	√		

Unit	OMC_9	Serial No
Test Engineer	Xen	
Date	29/10/10	

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1Hz.

8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13

at 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.9	5.0	5.0	4.7v to 5v	\checkmark
Ch2	4.9	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch3	4.9	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch4	4.9	5.0	5.0	4.7v to 5v	V

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at 0.1Hz, 1Hz, 10Hz, 100Hz, and 1KHz. Measure and record the Peak to Peak output between TP9 and TP13.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.9	4.7 to 5v	$\sqrt{}$
Ch2	4.9	4.7 to 5v	$\sqrt{}$
Ch3	4.9	4.7 to 5v	$\sqrt{}$
Ch4	4.9	4.7 to 5v	V

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3.3v to 3.7v	V
Ch2	3.3	3.3v to 3.7v	V
Ch3	3.3	3.3v to 3.7v	V
Ch4	3.3	3.3v to 3.7v	V

10Hz

	Output	Specification	Pass/Fail
Ch1	0.68	0.48 to 0.75v	
Ch2	0.68	0.48 to 0.75v	V
Ch3	0.68	0.48 to 0.75v	V
Ch4	0.68	0.48 to 0.75v	V

100Hz

	Output	Specification	Pass/Fail
Ch1	0.48	0.4v to 0.5v	√
Ch2	0.48	0.4v to 0.5v	√
Ch3	0.48	0.4v to 0.5v	√
Ch4	0.48	0.4v to 0.5v	√

1 KHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	√
Ch2	0.47	0.4v to 0.5v	V
Ch3	0.47	0.4v to 0.5v	V
Ch4	0.47	0.4v to 0.5v	V

Unit	OMC_9	Serial No
Test Engineer	Xen	
Date	29/10/10	

8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1Hz. Repeat for 1Hz, 10Hz, 100Hz, and 1KHz.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7v to 5v	V
Ch2	4.85	4.7v to 5v	√
Ch3	4.85	4.7v to 5v	√
Ch4	4.85	4.7v to 5v	√

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3v to 3.4v	
Ch2	3.3	3v to 3.4v	V
Ch3	3.3	3v to 3.4v	√
Ch4	3.3	3v to 3.4v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.48	0.4v to 0.5v	\checkmark
Ch2	0.48	0.4v to 0.5v	\checkmark
Ch3	0.48	0.4v to 0.5v	√
Ch4	0.48	0.4v to 0.5v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15v to 0.16v	V
Ch2	0.16	0.15v to 0.16v	√
Ch3	0.16	0.15v to 0.16v	√
Ch4	0.16	0.15v to 0.16v	V

1 KHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14v to 0.16v	V
Ch2	0.16	0.14v to 0.16v	V
Ch3	0.16	0.14v to 0.16v	V
Ch4	0.16	0.14v to 0.16v	√

Unit	OMC_9.	Serial No
Test Engineer.	Xen	
Date	29/10/10	

9. Monitor Outputs

Remove links W4 and W5.

Connect a 39 ohm dummy load to each channel.

Apply a 1V r.m.s input at 10Hz measured between TP10 and TP14, and record the differential output from each monitor pair on P1 for each channel. Compare them with the voltage outputs (TP9 to TP13).

Voltage monitors

Ch.	Nominal	Output between TP9 & TP13	Monitor Pins on P1	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.22V	1.22	Pin 1 to Pin 2	1.22	\checkmark
2	1.22V	1.22	Pin 5 to Pin 6	1.22	\checkmark
3	1.22V	1.22	Pin 9 to Pin 10	1.22	$\sqrt{}$
4	1.22V	1.22	Pin 13 to Pin 14	1.22	V

Current monitors

Ch.	Nominal	Monitor Pins	Monitor O/P	Pass/Fail: Equal? (+/- 0.1v)
1	0.08V	Pin 3 to Pin 4	0.08	
2	0.08V	Pin 7 to Pin 8	0.08	
3	0.08V	Pin 11 to Pin 12	0.08	
4	0.08V	Pin 15 to Pin 16	0.08	

10. Distortion

Filter out. Increase input voltage to 10v peak, f = 1KHz. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?	
Ch1	$\sqrt{}$	
Ch2	$\sqrt{}$	
Ch3	$\sqrt{}$	
Ch4	$\sqrt{}$	

Unit	OMC 9	Serial No
Date	29/10/10	

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	V	-24.5	V	-24.5	V	-24.5	
-7v	-17.4	V	-17.4	V	-17.4	V	-17.4	√
-5v	-12.5	V	-12.5	V	-12.5	V	-12.5	
-1v	-2.5	V	-2.5	V	-2.5	V	-2.5	
0v	0	V	0	V	0	V	0	
1v	2.5	V	2.5	V	2.5	V	2.5	V
5v	12.2	V	12.2	V	12.2	V	12.2	V
7v	17.0	V	17.0	V	17.0	V	17.0	V
10v	24.5	V	24.5	V	24.5	V	24.5	

Unit	Serial No
Test Engineer	•••
Date	

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT CHANNEL	OUTPUT CHANNEL	Output @ 10Hz	Maximum o/p	@ Frequency
Channel 1	Channel 2			-
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

Unit	OMC 9	Serial No
	Xen	
•	29/10/10	

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range.

Connect a 39 Ohm load resistor to the output of each channel. Switch out the filters. Apply a 10v peak sinusoidal signal at 10 Hz to the input. Check that the signal on TP10 is 10v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not	\checkmark	\checkmark	\checkmark	\checkmark
Clipping?				

	Theoretical o/p	Measured	OK+/- 0.1v?
Ch1	1.12v	1.14	$\sqrt{}$
Ch2	1.12v	1.14	V
Ch3	1.12v	1.13	V
Ch4	1.12v	1.14	V

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T1000567-v1 Advanced LIGO UK

29 September 2010

OMC Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow

Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833

E-mail <u>k.strain@physics.gla.ac.uk</u> **Engineering Department**

CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297

Fax +44 (0) 1235 445 843 E-mail <u>J.Greenhalgh@rl.ac.uk</u>

School of Physics and Astronomy University of Birmingham

Phone +44 (0) 121 414 6447
Fax +44 (0) 121 414 3722
E-mail av@star.sr.bham.ac.uk **Department of Physics**

Department of Physics University of StrathclydePhone +44 (0) 1411 548 3360
Fax +44 (0) 141 552 2891

E-mail N.Lockerbie@phys.strath.ac.uk

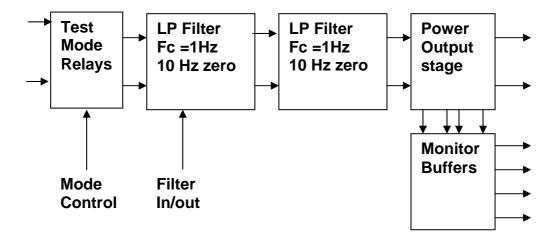
http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html

http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

OMC COIL DRIVER BOARD TEST PLAN


Unit	OMC_	1Serial No	
Test Engineer	Xen		
Date	27/10/1	0	

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk Tests
- 13. Dynamic range

1. Description

Block diagram

2. Description

Each OMC Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz, followed by a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

Unit	OMC 1	Serial No
Test Engineer		
Date	27/10/10	

2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77111	
Signal analyzer	Agilent	35670A	
Pre-amplifier	Stanford Systems	SR560	
DVM	TENMA	72-7730	
V/I calibrator	Time Electronics	1044	
Function Generator	Hitachi	VG-4429	

Unit	OMC 1	Serial No
Test Engineer	Xen	
Date	15/10/10	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{}$

C21 and C26 have been replaced by a 10nF polypropylene capacitor on all channels.

C200 has been soldered across R5 and R23 on all channels.

Links:

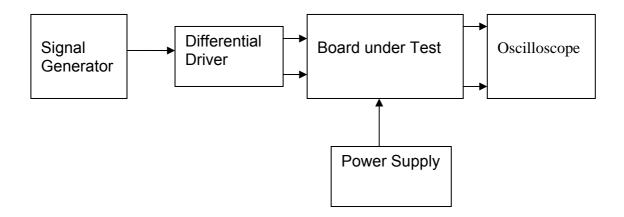
Check that links W4 and W5 are present on each channel. If not, connect them.

Unit	OMC_1	Serial No	٠	
Test Engineer	Xen			
Date	15/10/10			

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{}$
2	PD2P	Photodiode B+	2	$\sqrt{}$
3	PD3P	Photodiode C+	3	$\sqrt{}$
4	PD4P	Photodiode D+	4	$\sqrt{}$
	5	0V	$\sqrt{}$	
6	PD1N	Photodiode A-	14	$\sqrt{}$
7	PD2N	Photodiode B-	15	$\sqrt{}$
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D- 17		


J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	√
2	Imon2P		6	V
3	Imon3P		7	V
4	Imon4P		8	V
	5	0V	V	
6	Imon1N		18	V
7	Imon2N		19	V
8	Imon3N		20	V
9	Imon4N		21	V

Power Supply to Satellite box J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	√
10	V+ (TP1)	+17v Supply	√
11	V- (TP2)	-17v Supply	√
12	V- (TP2)	-17v Supply	√
13	0V (TP3)		√
22	0V (TP3)		√
23	0V (TP3)		√
24	0V (TP3)		√
25	0V (TP3)		√

5. TEST SET UP

Note:

- (1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
- (2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:

J3 pins 1, 2, $\overline{3}$, 4 = positive input

J3 pins 6, 7, 8, 9 = negative input

J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v

J1 pin 11,12 = -16.5

J1 pins 22, 23, 24, 25 = 0v

Outputs

Ch1- = J4 pin 9
Ch2- = J4 pin 11
Ch3- = J4 pin 13
Ch4- = J4 pin 15

Unit	OMC 1	Serial No	
	Xen		
Date	15/10/10		

6. Power

Check the polarity of the wiring:

3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal +/- 0.5v?
+12v TP5	12.01	1mV	
+15v TP4	14.96	2mV	
-15v TP6	-15.03	10mV	√

All Outputs smooth DC, no oscillation?	1	
--	---	--

Record Power Supply Currents

Supply	Current
+16.5v	350mA
-16.5v	450mA

If the supplies are correct, proceed to the next test.

Unit	OMC 1	Serial No
Test Engineer		
Date	15/10/10	

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indi	Indicator	
	ON	OFF	
Ch1	V		V
Ch2	V		V
Ch3	V		
Ch4			

Test Switches

Channel	Indi	Indicator	
	ON	OFF	
Ch1	V		V
Ch2	V		V
Ch3	V		V
Ch4	V		

Unit	OMC_	1Serial No
Test Engineer	Xen	
Date	26/10/1	10

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1Hz.

8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13

at 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.9	5.0	5.0	4.7v to 5v	\checkmark
Ch2	4.9	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch3	4.9	5.0	5.0	4.7v to 5v	$\sqrt{}$
Ch4	4.9	5.0	5.0	4.7v to 5v	V

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at 0.1Hz, 1Hz, 10Hz, 100Hz, and 1KHz. Measure and record the Peak to Peak output between TP9 and TP13. **0.1Hz**

	Output	Specification	Pass/Fail
Ch1	4.9	4.7 to 5v	V
Ch2	4.9	4.7 to 5v	\checkmark
Ch3	4.9	4.7 to 5v	√
Ch4	4.9	4.7 to 5v	√

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	3.3v to 3.7v	\checkmark
Ch2	3.4	3.3v to 3.7v	V
Ch3	3.4	3.3v to 3.7v	V
Ch4	3.4	3.3v to 3.7v	V

10Hz

	Output	Specification	Pass/Fail
Ch1	0.68	0.48 to 0.75v	
Ch2	0.68	0.48 to 0.75v	V
Ch3	0.68	0.48 to 0.75v	V
Ch4	0.68	0.48 to 0.75v	V

100Hz

	Output	Specification	Pass/Fail
Ch1	0.48	0.4v to 0.5v	√
Ch2	0.48	0.4v to 0.5v	√
Ch3	0.48	0.4v to 0.5v	√
Ch4	0.48	0.4v to 0.5v	√

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	√
Ch2	0.47	0.4v to 0.5v	V
Ch3	0.47	0.4v to 0.5v	V
Ch4	0.47	0.4v to 0.5v	V

Unit	OMC_1	Serial No
Test Engineer	Xen	
Date	26/10/10	

8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1Hz. Repeat for 1Hz, 10Hz, 100Hz, and 1KHz.

0.1Hz

	Output	Specification	Pass/Fail
Ch1	4.9	4.7v to 5v	$\sqrt{}$
Ch2	4.9	4.7v to 5v	$\sqrt{}$
Ch3	4.9	4.7v to 5v	V
Ch4	4.9	4.7v to 5v	√

1Hz

	Output	Specification	Pass/Fail
Ch1	3.2	3v to 3.4v	\checkmark
Ch2	3.2	3v to 3.4v	√
Ch3	3.2	3v to 3.4v	√
Ch4	3.2	3v to 3.4v	√

10Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4v to 0.5v	\checkmark
Ch2	0.48	0.4v to 0.5v	
Ch3	0.50	0.4v to 0.5v	
Ch4	0.48	0.4v to 0.5v	√

100Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15v to 0.16v	$\sqrt{}$
Ch2	0.16	0.15v to 0.16v	√
Ch3	0.16	0.15v to 0.16v	√
Ch4	0.16	0.15v to 0.16v	V

1 kHz

	Output	Specification	Pass/Fail
Ch1	0.15	0.14v to 0.16v	V
Ch2	0.15	0.14v to 0.16v	√
Ch3	0.15	0.14v to 0.16v	√
Ch4	0.15	0.14v to 0.16v	√

Unit	OMC_1	Serial No
Test Engineer	Xen	
Date	26/10/1	0

9. Monitor Outputs

Remove links W4 and W5.

Connect a 39 ohm dummy load to each channel.

Apply a 1V r.m.s input at 10Hz measured between TP10 and TP14, and record the differential output from each monitor pair on P1 for each channel. Compare them with the voltage outputs (TP9 to TP13).

Voltage monitors

Ch.	Nominal	Output between TP9 & TP13	Monitor Pins on P1	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
1	1.22V	1.22	Pin 1 to Pin 2	1.22	\checkmark
2	1.22V	1.22	Pin 5 to Pin 6	1.22	\checkmark
3	1.22V	1.22	Pin 9 to Pin 10	1.22	$\sqrt{}$
4	1.22V	1.22	Pin 13 to Pin 14	1.22	V

Current monitors

Ch.	Nominal	Monitor Pins	Monitor O/P	Pass/Fail: Equal? (+/- 0.1v)
1	0.08V	Pin 3 to Pin 4	0.079	
2	0.08V	Pin 7 to Pin 8	0.079	
3	0.08V	Pin 11 to Pin 12	0.079	
4	0.08V	Pin 15 to Pin 16	0.079	

10. Distortion

Filter out. Increase input voltage to 10v peak, f = 1KHz. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?		
Ch1	$\sqrt{}$		
Ch2	V		
Ch3	√		
Ch4	V		

Unit	OMC_1	Serial No)
Test Engineer			
Date	26/10/10		

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	V	-24.5	V	-24.5	V	-24.5	V
-7v	-17.5	V	-17.5	V	-17.5	V	-17.5	V
-5v	-12.5	V	-12.5	V	-12.5	V	-12.5	V
-1v	-2.5	V	-2.5	√	-2.4	V	-2.3	V
0v	0	V	0	V	0	V	0	
1v	2.5	V	2.4	V	2.5	V	2.3	V
5v	12.5	V	12.0	V	12.5	V	12.3	V
7v	17.3	√	17.0	√	17.5	V	17.2	V
10v	24.5		24.5		24.5	V	24.5	

Unit	.Serial No
Test Engineer	•••
Date	

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT CHANNEL	OUTPUT CHANNEL	Maximum Output	@ Frequency
Channel 1	Channel 2		
Channel 2	Channel 1		
Channel 2	Channel 3		
Channel 3	Channel 2		
Channel 3	Channel 4		
Channel 4	Channel 3		

Unit	OMC 1	Serial No
Test Engineer		
Date	26/10/10	

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range.

Connect a 39 Ohm load resistor to the output of each channel. Switch out the filters. Apply a 10v peak sinusoidal signal at 10 Hz to the input. Check that the signal on TP10 is 10v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not	\checkmark	√	\checkmark	V
Clipping?				

	Theoretical o/p	Measured	OK+/- 0.1v?
Ch1	1.12v	1.1	
Ch2	1.12v	1.1	$\sqrt{}$
Ch3	1.12v	1.1	V
Ch4	1.12v	1.1	V