

DC Readout for Advanced LIGO

P Fritschel
LSC meeting
Hannover, 21 August 2003

Heterodyne & homodyne readouts

□ Heterodyne: traditional RF modulation/demodulation

- > RF phase modulation of input beam
- Lengths chosen to transmit first-order RF sideband(s) to antisymmetric output port with high efficiency
 - ❖ Initial LIGO: RF sidebands are in principal balanced at AS port
 - AdLIGO: with detuned signal recycling, one RF sideband is stronger than the other
- RF sideband(s) serve as local oscillator to beat with GW-produced field
 - Signal: amplitude modulation of RF photocurrent

□ Homodyne: DC readout

- ➤ Main laser field (carrier) serves as local oscillator
 - ❖ Signal: amplitude modulation of GW-band photocurrent
- Two components of local oscillator:
 - Field arising from loss differences in the arms
 - Field from intentional offset from dark fringe

Why DC readout now?

- □ Requires an output mode cleaner
 - Technical amplitude noise on the total output power would be much too high
- □ GW-band laser power noise has to be extremely low in any case
 - > Radiation pressure noise from unbalanced arms
- □ Anticipated technical noise difficulties with unbalanced RF sidebands
- □ Anticipated sensitivity advantage: lack of nonstationary noise increase

Technical noise sensitivity

Noise Source	RF readout	DC readout
Laser frequency noise	~10x more sensitive	Less sensitive since carrier is filtered
Laser amplitude noise	Sensitivity identical for frequencies below ~100 Hz; both driven by technical radiation pressure	
	10-100x more sensitive above 100Hz	Carrier is filtered
Laser pointing noise	Sensitivity essentially the same	
Oscillator phase noise	-140 dBc/rtHz at 100 Hz	NA

Implementation comparison

Output mode cleaner

- > RF:
 - ❖ long mode cleaner, like the input MC
 - individually isolation mirrors
- > DC:
 - ❖ Short, monolithic: 0.5-1 m (similar to a pre-mode cleaner)
 - Requires a bit more beam size reduction

Photodetection

- > Both
 - High quantum efficiency, low back-scatter
 - In-Vacuum
 - ❖ Low power, < 100 mW</p>
- > RF
 - ❖ Low capacitance, 180 MHz ?

Quantum noise comparison

Buonanno &Chen: Quantum noise + thermal noise

- parameters optimized for NS-NS binaries
- single optimal demod phase chosen for RF
- SNR for homodyne higher than heterodyne by
 - 5% for spherical mirrors
 - 10% for mexican hat mirrors

Making the DC local oscillator

■ Two components

- Carrier field due to loss differences (not controllable?)
- Carrier field due to dark fringe offset (controllable)

■ Loss mismatch component

- > Average arm round trip loss: 75 ppm
- Difference between arms: 30 ppm
- Output power due to mismatch: 1.6 mW

Detection angle, β

- Tuned by adjusting fringe offset
- Broadband (NS-NS) optmimum:
 - Fringe offset power: approx. 0.3 mW
 - Differential arm offset: approx. 1 pm
- Can tune from 0 to 80 deg with 0-100 mW of fringe offset power

Summary

- □ Sensitivity of a DC readout is a 'little better' than that of an RF readout: 5-10%
- ☐ Technical noise sensitivity favors DC readout
- □ Technical implementation favors DC readout
- □ Proceeding with DC readout as baseline design
 - Output mode cleaner design:
 - Vibration isolation
 - Sensing and control: length and alignment
 - Could we switch later to RF readout? Hardest part would be changing the output mode cleaner (to pass the RF sidebands)