# LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY SPECIFICATION

E040512-

-01- D

Drawing No Rev. Group

Sheet 1 of 3

# **Beamsplitter (Wedged) Specifications**

| APPROVALS              | DATE     | REV | DCN NO. | BY | CHECK | DCC | DATE |
|------------------------|----------|-----|---------|----|-------|-----|------|
| AUTHOR: H. Armandula   | 05-20-05 |     |         |    |       |     |      |
| CHECKED:               |          |     |         |    |       |     |      |
| APPROVED: P. Fritschel |          |     |         |    |       |     |      |
| DCC RELEASE            |          |     |         |    |       |     |      |

#### 1 Material

Fused silica 7980 - Low inclusion- Grade OA

#### 2 Dimensions

2" dia. +0/- .010"

Thickness:  $1/2" \pm .010"$ 

Chamfers:  $0.002'' \pm 0.001''$  @  $45^{\circ} \pm 15^{\circ}$ 

## 3 Surface Roughness

#### Side 1

Superpolished - < 1 Angstrom over central 80 % of diameter with 10-5 scratch-dig; best effort for 0/0

20-10 scratch-dig outside central 80 % of diameter

#### Side 2

< 5 Angstrom over central 80 % of diameter

## 4 Surface Figure

#### Side 1

Flat  $\leq \lambda/10$  at 632.8 over central 80% of diameter

#### Side 2

Flat  $\leq \lambda/10$  at 632.8 over central 80% of diameter

## 5 Wedge

30 arc minutes  $\pm 5$  arc minutes

# 6 Coating

Wavelength: 1064 nm

Angle of incidence: 45° for all beamsplitters

#### LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY



#### **SPECIFICATION**

E040512- -01- D

Drawing No Rev. Group

Sheet 2 of 3

# **Beamsplitter (Wedged) Specifications**

#### **Beamsplitter-1**

Side 1

50:50 (**R:T**) for "**P**" polarization Absolute value of (**R-T**) < 2%

Side 2

AR: "P" polarization

 $\mathbf{R} < /=1000 \text{ ppm} - \text{Best effort for} < 500 \text{ppm}$ 

## **Beamsplitter-2**

Side 1

50:50 **(R:T)** for **"S"** polarization Absolute value of (R-T) < 1%

Side 2

"S" polarization

**AR:** R < /= 1000 ppm - Best effort for < 500 ppm

## **Beamsplitter-3**

Side 1

90:10 (**R:T**) for "**P"** polarization  $R = 90\% \pm 2\%$ 

Side 2

"P" polarization

**AR:** R < /= 1000 ppm - Best effort for < 500 ppm

**Beamsplitter-4** 

90:10 (**R:T**) for "S" polarization

 $R = 90\% \pm 2\%$ 

Side 2

"S" polarization

**AR**: R < /= 1000 ppm - Best effort for < 500 ppm

## Coating vendor to provide:

- 1. One 1" dia. witness sample from each coating run
- 2. Two spectrophotometer graphs of the reflectance and transmittance of the HR coatings; one covering the spectrum from 530nm to 1200nm; the other, with increased sensitivity, showing wavelengths from 900nm to 1100nm

# LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY LIGO

# **SPECIFICATION**

E040512--01- D Drawing No Rev. Group of 3 Sheet 3

# **Beamsplitter (Wedged) Specifications**

| 3. Spec | 3. Spectrophotometer graphs of the reflectance of the AR coating taken as cited above. |    |  |  |  |  |  |
|---------|----------------------------------------------------------------------------------------|----|--|--|--|--|--|
|         |                                                                                        |    |  |  |  |  |  |
|         |                                                                                        |    |  |  |  |  |  |
|         |                                                                                        |    |  |  |  |  |  |
|         |                                                                                        |    |  |  |  |  |  |
|         |                                                                                        |    |  |  |  |  |  |
|         |                                                                                        |    |  |  |  |  |  |
|         |                                                                                        |    |  |  |  |  |  |
|         |                                                                                        |    |  |  |  |  |  |
|         |                                                                                        |    |  |  |  |  |  |
|         |                                                                                        |    |  |  |  |  |  |
|         |                                                                                        |    |  |  |  |  |  |
|         |                                                                                        |    |  |  |  |  |  |
|         |                                                                                        |    |  |  |  |  |  |
|         |                                                                                        |    |  |  |  |  |  |
|         |                                                                                        |    |  |  |  |  |  |
|         |                                                                                        |    |  |  |  |  |  |
|         |                                                                                        |    |  |  |  |  |  |
|         |                                                                                        |    |  |  |  |  |  |
|         |                                                                                        |    |  |  |  |  |  |
|         |                                                                                        |    |  |  |  |  |  |
|         |                                                                                        |    |  |  |  |  |  |
|         |                                                                                        |    |  |  |  |  |  |
|         |                                                                                        |    |  |  |  |  |  |
|         |                                                                                        |    |  |  |  |  |  |
|         |                                                                                        |    |  |  |  |  |  |
|         |                                                                                        |    |  |  |  |  |  |
|         |                                                                                        |    |  |  |  |  |  |
|         |                                                                                        |    |  |  |  |  |  |
|         |                                                                                        |    |  |  |  |  |  |
|         |                                                                                        |    |  |  |  |  |  |
|         |                                                                                        |    |  |  |  |  |  |
|         |                                                                                        |    |  |  |  |  |  |
|         |                                                                                        |    |  |  |  |  |  |
|         |                                                                                        |    |  |  |  |  |  |
|         |                                                                                        |    |  |  |  |  |  |
|         |                                                                                        |    |  |  |  |  |  |
|         |                                                                                        |    |  |  |  |  |  |
|         |                                                                                        |    |  |  |  |  |  |
|         | LIGO Form CS-02 (11/00                                                                 | )) |  |  |  |  |  |