LIGO-E970173-00-V

PROCESS SYSTEMS INTERNATIONAL, INC.		ENGINEERING	NO: V049-1- 162				
WESTBOROUGH, MA				CALCULATIONS	PAGE 1 OF 18		
REV.	DEO #	DATE	BY:	СНЕСК	TITLE:		
0	0559	10/13/97	RAC	Om	Support Design for		
					Adapte	rs LB-1A & LB-1C	
				<u> </u>	BY: R. D. Ciatto	DEPT.: 744	
PROJEC	<u>T:</u> LIGO	Vacuum 1	Equipmen	t	PROJECT NO: V59049		
PURPO:	SE: Suppo B-9 l loads purpo	ort design beam tube for LB-1. ose of this	for the B- manifolds A and LB calculatic	1 adapters However 1C are hig on is to add	is essentially the same as t , as shown in this calculating ther than they are for other ress the higher unbalanced	he design of supports for the ion, the axial unbalanced B-1 or B-9 spools. The load.	
<u>METHO</u>	D: Hand ancho forces forces	calculation or bolt tens s are comp s published	ns are perf sile and sh pared to A l by Hilti f	formed to d ear forces. ISC allowa for the HVA	letermine the maximum me Forces are compared to t bles. Anchor forces are co A concrete anchor system.	ember and hose for B-9. Final member ompared to allowable	
ASSUMPTIONS: See calculation.							
<u>INPUTS</u>	: See cal	culation fo	or unbalan	ced forces	derived form other calcula	tions.	
	NOV 14 1997						
REFERENCES: 1. Hilti Product Technical Guide, 1995. 2. AISC Code, 9 th edition, Allowable Stress Design. 3. Amer. Concrete Inst., ACI 318-89, Building Code Rq'mts for Reinforced Concrete. 4. Doc. No. V049-1-049, Design of Support for Beam Tube Manifold B-9. CALCULATIONS: (SEE ATTACHED)							
<u>CONCLUSIONS</u> : The vertical members for the supports for LB-1A and LB-1B will be larger than those for other similar members and shear bars will be used at the base plates connected to diagonal members to transfer the axial load into the concrete floor.							
<u>NOTES</u> : Modifications resulting from this evaluation are implemented in RFC V049 $-$ 078.							

,

PROCESS SYSTEMS INTERNATIONAL, INC. WESTBOROUGH, MA	ENGINEERING CALCULATIONS	NO: V049-1-162 Rev. No. 0 Page 2 of 18		
PROJECT: LIGO VACUUM EQUIPMENT	PROJECT NO:	V59049		
CALCULATION TITLE: Support Design for Adapters LB-1A and LB-1B				

L

Devision Waters	
Devicion IEstern	
Kevision flistory	3
Summary of Results	4
Detailed Calculations	5

PROCESS SYSTEMS INTERNATIONAL, INC. WESTBOROUGH, MA	ENGINEERING CALCULATIONS	NO: V049-1-162 Rev. No. 0 Page 3 of 18		
PROJECT: LIGO VACUUM EQUIPMENT	PROJECT NO:	V59049		
CALCULATION TITLE: Support Design for Adapters LB-1A and LB-1B				

REVISION HISTORY

Rev. 0

•

.

Original Issue - Oct. 1997

BDOCESS SYSTEMS INTEDNATIONAL INC	ENCINEEPING	NO: V049-1-162				
WESTROROUCH, MA	CALCULATIONS	Rev. No. 0				
		Page 4 of 14				
PROJECT: LIGO VACUUM EOUIPMENT	PROJECT NO:	V59049				
CALCULATION TITLE: Support Design for Ada	pters LB-1A and LB-1B					
Summary of Results						
Support Assemblies for Louisiana Spools LB-1A	& LB-1C.					
Anchors - Use 4 1"Ø Hilti HVA Standard concrete anchors at base plates connected to diagonal members. Use HAS standard rod with 8 1/4" embedment.						
Use 4"Ø Hilti HVA anchors with 1 Super rod.	2 3/8" embedment at vertica	l members. Use				
Vertical members						
TS 6x4x1/2 (6" dimension shall be A500 Grade C (50 ksi yield stress)	TS 6x4x1/2 (6" dimension shall be parallel to beam tube centerline.) A500 Grade C (50 ksi yield stress)					
Alternate: TS 8x4x1/2 A500 Grade B (46 ksi yield stress)						
Base plates for these members are	Base plates for these members are 12"x12"					
Diagonal members						
TS 4x4x1/2 A500 Grade B						
Scarify concrete floor at base plates connected to	Scarify concrete floor at base plates connected to diagonal members.					
Welds - See Dwg. V049-1-B1, Sheet 1.						
Use the following shear bars on base plate connected to diagonal members.						
Underside of O O O O O O O O O O O O O O O O O O	Beam Centerline	3				

.

,

Ref: Dwg. V049-5-003, Sheet 2

Unbalanced forces

Gate valve closed, Beam tube manifold vented

Ref: Calc. No. V049-1-095, Page 1.

Gate valve closed, BSC side vented

PROCESS SYSTEMS INTERNATIONAL, INC.	ENGINEERING	NO: V049-1-162		
WESTBOROUGH, MA	CALCULATIONS	Rev. No. 0		
		Page 6 of 14		
PROJECT: LIGO VACUUM EQUIPMENT	PROJECT NO:	V59049		
CALCULATION TITLE: Support Design for Adapters LB-1A and LB-1B				

 $F_2 = 64.1k$

Ref: Calc. No. V049-1-032, Page 5.

Adapter A2

Tensile force on 72"x48" reducing flange

Force per inch

Check bending in the reducing flange

PROCESS SYSTEMS INTERNATIONAL, INC. WESTBOROUGH, MA		ENGINEERING CALCULATIONS	NO: V049-1-162 Rev. No. 0		
PROJECT: LIGO VACUI	IM FOIIIPMENT	BRO IFCT NO.	Page 7 of 14		
CALCULATION TITLE: Support Design for Adapters LB-1A and LB-1B					
	ID = 48 1/4"				
Diameter at bolt circle:	BC = 78"				
Thickness:	t =]	⁵⁷			
Use Timoshenko, Plates &	Shells, Table 3, P. 62.				
	a = 78/2 = 39" outsi	de radius			
	b = 48.25/2 = 24.125	5 inside radius			
	a/b = 39/24.1 = 1.6				
for F ₁ , use case 9 (beam tu	be manifold vented).				
	k ≈ .35				
	$\sigma_{max} = kP/h^2$				
	h = thickness = 1"	· *			
	σ max = .35 x 32.17 =	= 11.2 ksi	ok		
For BSC side vented, add c	ases 9 and 10.				
Case 10:	k = .30				
	$\sigma_{\rm max} = kqa^2/h^2 = .30$	$x 14.7 \times 39^2 / 1 = 6.7 \text{ ksi}$			
4 3 F.	$\sigma_{total} = 11.2 + 6.7 = 1$	7.9 ksi	ok		
*					
71777					

PROCESS SYSTEMS INTERNATIONAL, INC. WESTBOROUGH, MA	ENGINEERING CALCULATIONS	NO: V049-1-162 Rev. No. 0	
		Page 8 of 14	
PROJECT: LIGO VACUUM EQUIPMENT	PROJECT NO:	V59049	
CALCULATION TITLE: Support Design for Ada	pters LB-1A and LB-1B	• • • • • • • • •	

Support

The maximum support reactions are imposed by F_{2} , when the BSC side of the gate value is vented.

The members will be evaluated by comparison to the support assembly of spool B-9 which was evaluated in calc. no. V049-1-089. The unbalanced load for B-9 is

 $F_r = 38.13k$

Ref: V049-1-089, Page 8A.

Forces must be factored by : $F_2/F_r = 64.1/38.13 = 1.68$

Member ab (TS4x4x1/2, A500 Grade B) corresponds to members 13 & 15 of STAAD model for B-9.

Per Eq. H2-1 of the AISC code, the interaction for members 13 & 15 is .70 < 1.0. Multiply by 1.68:

$$I = 1.68 x .70 = 1.18 > 1.0$$

Hence, this member must be modified for the Louisiana installation.

Member bc corredponds to members 16 & 17 in B-9. Interaction is .652 for member 16 and it is .647 for member 17.

$$I = 1.68 \text{ x} .652 = 1.10 > 1.0$$

Review of the STAAD output shows high bending at joint b, but lower stress at base plate ends of these members.

Check members 12 & 14 in STAAD model.

I = 1.0 for spool B-9 I = 1.68 > 1.0 for B-1 in Louisiana.

For this short member the high stress is due to bending at the same location, point b. The maximum axial stress is only

 $f_t = 4628$ psi in members 16 & 17.

PROCESS SYSTEMS INTERNATIONAL, INC.	ENGINEERING	NO: V049-1-162		
WESTBOROUGH, MA	CALCULATIONS	Rev. No. 0		
		Page 9 of 14		
PROJECT: LIGO VACUUM EQUIPMENT	PROJECT NO:	V59049		
CALCULATION TITLE: Support Design for Adapters LB-1A and LB-1B				

: the vertical member will be changed to a deeper section to resist the bending.

Check bending in members 12 & 14 of STAAD model for spool B-9.

P = 38.13/2 = 19.1k

Ref: V049-1-089, Page 10.

$$M = 9P = 171.6 \text{ in } -k$$

The member is a TS 4x4x1/2,

$$S = 6.13 \text{ in}^3$$

fs = M/S = 171 6/6 13 = 28.0 ksi

This agrees with bending stress in STAAD output for case 2, which is vacuum load, the largest load. See V049-1-089, p. 29 for bending about member Y - axis.

For member bd in spool B-1, the moment arm is 10 in, the force is:

$$P = F_2/2 = 64.1/2 = 32.1 \text{ k}$$

The bending moment at point d in bd is

$$M = 10 \times 32.1 = 321 \text{ in-k}$$

Change member abd to a TS 6x4x1/2, $S_x = 11.8$ in³.

 $f_b = M/S_x = 321/11.8 = 27.2 \text{ ksi}$

PROCESS SYSTEMS INTERNATIONAL, INC. WESTBOROUGH, MA	ENGINEERING CALCULATIONS	NO: V049-1-162 Rev. No. 0 Page 10 of 14		
PROJECT: LIGO VACUUM EQUIPMENT	PROJECT NO:	V59049		
CALCULATION TITLE: Support Design for Adapters LB-1A and LB-1B				

Get other forces in the frame. Let member abd take all bending.

Let member be be pin-ended which is conservative for abd. Forces are:

$$60P = 70 \times 32.1$$

P = 37.45 k
T = 37.45 k
 $60V_a = 10 \times 32.1$
 $V_a = 5.4$ k
 $V_c = 32.1 + 5.4 = 37.5$ k

Compression in member bc

 $F = .707(P + V_b) = .707(37.45 + 37.5) = 53.0 k$

Keep TS 4x4x1/2 for bc. Compressive stress is

 $f_a = F/A = 53.0/6.36 = 8.33 \text{ ksi}$

Length of bc

$$L = 60/.707 = 84.9$$
 in $= 7.1$ ft

Allowable column load is

 $P_{cr} = 134 \ k > 53 \ k$

ok

PROCESS SYSTEMS INTERNATIONAL, INC.	ENGINEERING	NO: V049-1-162		
WESTBOROUGH, MA	CALCULATIONS	Rev. No. 0		
		Page 11 of 14		
PROJECT: LIGO VACUUM EQUIPMENT	PROJECT NO:	V59049		
CALCULATION TITLE: Support Design for Adapters LB-1A and LB-1B				

Ref: AISC, Page 3-43.

Check member ab for combined tension & bending at point b.

A = 8.36 for TS 6x4x1/2f_t = T/A = 37.45/8.36 = 4.5 ksi F_t = .60 F_y = .60 x 46 = 27.6 f_t/F_t = .16 F_b = .66F_y = .66 x 46 = 30.4 f_b/F_b = 27.2/30.4 = .90 f_t/F_t + f_b/F_b = .16 + .90 = 1.06 > 1.0

For the TS 6x4x1/2, use A500 Grade C, $F_y = 50$ ksi

 $F_t = 27.6 \text{ x } 50/46 = 30 \text{ ksi}$

 $F_b = 30.4 \text{ x } 50/46 = 33 \text{ ksi}$

$$f_t/F_t + f_b/F_b = 4.5/30 + 27.2/33 = .15 + .82 = .97 < 1.0$$

As an alternate, try TS 8 x 4 x 1/2

A = 10.4 in²

$$f_t = 37.45/10.4 = 3.6$$
 ksi
 $S_x = 18.8$ in3
 $f_t = 321/18.8 = 17.1$ ksi

For A500, Grade B

$$f_t/F_t + f_b/F_b = 3.6/27.6 + 17.1/30.4 = .13 + .56 = .69 < 1.0$$

ok

ok

Check weld at base plate at point a. For 3/8" fillet.

PROCESS SYSTEMS INTERNATIONAL, INC.	ENGINEERING CALCULATIONS	NO: V049-1-162
WESTBOROUGH, MA		Rev. No. 0
· · · · · · · · · · · · · · · · · · ·		Page 12 of 14
PROJECT: LIGO VACUUM EQUIPMENT	PROJECT NO:	V59049
CALCULATION TITLE: Support Design for Ad	anters LB-1A and LB-1B	

$$A_w = .707 \text{ x} .375 (2x6 + 2x4) = 5.30 \text{ in}^2$$

 $\mathbf{f}_{\mathbf{v}} = (\mathbf{T} + \mathbf{V}_{\mathbf{a}}) / \mathbf{A}_{\mathbf{w}}$

=(37.45+5.4)/5.30=8.1 ksi

Check weld in base plate at c. Length:

 $L = 2(4/.707) + 2 \times 4 = 19.3$ in

$$A_w = .707 \text{ x} .25 \text{ x} 19.3 = 3.41 \text{ in}^2$$

 $f_v = F/A_w = 53/3.4 = 15.5 \text{ ksi} < 21.0 \text{ ksi}$

Weld of member bc at point b is ok for load, F, from review of Dwg. V049-4-B1, Sheet 1.

Anchors at base plate A. For 1" diameter HVA anchors with STD rod & 12 3/8 " embedment.

$$T_{all} = 16.45 \text{ k}$$

 $V_{all} = 16.68 \text{ k}$

These values are used for 3000 psi concrete for HAS super rod with 12 3/8 " embedment.

Bolt tension (multiply by 1.25 to account for prying).

 $T = 37.45 \times 1.25/4 = 11.7 \text{ k per anchor}$

Shear

 $V = V_a/2$ (only 2 anchors are assumed to resist shear) = 5.4/2 = 2.7

$$T/T_{all} + V/V_{all} = 11.7/16.45 + 2.7/16.68 = .71 + .16 = .87 < 1.0$$
 ok

Use 5/3 shear tension interaction equation.

$$(T/T_{all})^{5/3} + (V/V_{all})^{5/3} = .57 + .10 = .67 < 1.0$$
 ok

ok -

PROCESS SYSTEMS INTERNATIONAL, INC. WESTBOROUGH, MA	ENGINEERING CALCULATIONS	NO: V049-1-162 Rev. No. 0 Page 14 of 14
PROJECT: LIGO VACUUM EQUIPMENT	PROJECT NO:	V59049
CALCULATION TITLE: Support Design for Ada	apters LB-1A and LB-1B	

 $f_c = 7$ ksi for grout

$$f_p \leq f_c$$

Shear friction at floor

When floor at plate c is roughened with 1/4" indentations, per ACI 11.7.9,

 $\mathbf{V}_{\mathbf{nmax}} = .2\mathbf{f}_{\mathbf{c}}^{*}\mathbf{A}_{\mathbf{c}} \qquad (\text{ACI 11.7.5})$

 $f_c^* = 3000$ psi for floor in Louisiana

$$Ac = 12 \times 12 = 144 \text{ in}^2$$

 $V_{nmax} = .2 \times 3000 \times 144 = 86.4 k$ >> $V_c = 37.5 k$

For a 1/4" fillet weld for shear bars,

$$A_w = 8 \times .707 \times .25 \times 2 = 2.83 \text{ in}^2$$

 $f_v = V_c/A_w = 37.5/2.83 = 13.3 \text{ ksi} < 21 \text{ ksi}$ ok

Check 5/8" \emptyset bolt at point d. These are in tension only when the beam tube manifold is vented.

$$F_1 = 32.17 \text{ k}$$

for 6 bolts,

$$T = F_1/6 = 32.17/6 = 5.36 \text{ k}$$

$$T_{all} = 13.5 \text{ k for 5/8"} \oslash \text{ A325 bolt (AISC P. 4-3)} \qquad \text{ok}$$

Note: Shear load due to weight is low.

ok

ok