

PURPOSE: The as-built floor elevations at the corner station and the left end station of the Washington site are more than 1 inch lower than planned. This calculation evaluates the effects of extending the equipment grout pads to accommodate the low floors on the anchorage design.

METHOD: Hand calculations are performed to determine the maximum anchor bolt tensile and shear forces. These are compared to allowable forces published by Hilti for the HVA concrete anchor system.

ASSUMPTIONS: See calculation.

INPUTS: See calculation for unbalanced forces and anchor loads derived in other calculations.

REFERENCES: 1. Hilti Product Technical Guide, 1995.
2. Amer. Concrete Inst., ACI 318-89, Building Code Rq'mts for Reinforced Concrete.
3. Rogers Surveying, Survey Data for LIGO - Hanford, Job No. 15597, transmitted with TIM 70.

CALCULATIONS: (SEE ATTACHED)

CONCLUSIONS: Required modifications to the vacuum equipment concrete anchorage are summarized on sheets 4 and 5 of this calculation.

NOTES: Modifications resulting from this evaluation are implemented in RFCs V049-072 to - 076.

PROCESS SYSTEMS INTERNATIONAL, INC.	ENGINEERING	NO: V049-1-160
	CALCSTBOROUGH, MA	

TABLE OF CONTENTS
Revision History 3
Required Changes 4
Shear Bars 5
Summary of Results 6
Detailed Calculations 7

PROCESS SYSTEMS INTERNATIONAL, INC.	ENGINEERING	NO: V049-1-160
WESTBOROUGH, MA	CALCULATIONS	
		Rev. No. 0
		Page 3 of 22
PROJECT: LIGO VACUUM EQUIPMENT	PROJECT NO:	V59049
CALCULATION TITLE: Redesign of Equipment Anchorage for Extended Grout Pads		

REVISION HISTORY

Rev. 0
Original Issue - Oct. 1997

PROCESS SYSTEMS INTERNATIONAL, INC. WESTBOROUGH, MA	ENGINEERING CALCULATIONS	NO: V049-1-160
		Rev. No. 0
		Page 4 of 17
PROJECT: LIGO VACUUM EQUIPMENT	PROJECT NO:	V59049
CALCULATION TITLE: Redesign of Equipment Anchorage for Extended Grout Pads		

Required Changes
1.

All rod length must increase at corner station and end station for the left arm.
2.

Shear bars must be added to underside of base plates for WBSC-7 \& 8, WB-6, $7,2 \mathrm{~A}, 2 \mathrm{~B}, 3 \mathrm{~A}, \& 5 \mathrm{~A}$, and WB-9A \& 9B.
3.

Change anchor rod from HAS standard to HAS super for mode cleaner tubes:

WB-2A
WB-2B
WB-3A
WB-5A

This change is required only at base plates connected to diagonal members.
4. Roughen concrete floor with $1 / 4$ inch indentations.
5. Increase preload torque on super rods to $400 \mathrm{ft}-\mathrm{lb}$ and decrease torque on standard rods to $250 \mathrm{ft}-\mathrm{lb}$.

PROCESS SYSTEMS INTERNATIONAL, INC.	ENGINEERING	NO: V049-1-160
	CALCULATIONS	Rev. No. 0
		Page 5 of 17
PROJECT: LIGO VACUUM EQUIPMENT	PROJECT NO:	V59049
CALCULATION TTTLE: Redesign of Equipment Anchorage for Extended Grout Pads		

Shear bars are to be added to WBSC-7 and WBSC-8 on undersides of base plates.

Other base plates listed in item 2 of the previous sheet (plates connected to diagonal members) shall be modified to add shear bars as follows.

Beam center line

Bars must be perpendicular to beam centerline.

PROCESS SYSTEMS INTERNATIONAL, INC. WESTBOROUGH, MA	ENGINEERING CALCULATIONS	NO: V049-1-160
		Rev. No. 0
		Page 6 of 17
PROJECT: LIGO VACUUM EQUIPMENT	PROJECT NO:	V59049

CALCULATION TITLE: Redesign of Equipment Anchorage for Extended Grout Pads
SUMMARY OF RESULTS

Component	Unbal. Force Kips	Ref. Calc. V049-1 -	Anchor Type	Embedment in.	Max Bolt Tension Kips	Max Bolt Shear, K	$\underset{\text { Interaction }}{\mathrm{S} / \mathrm{T}}$	Status
WHAMs	45.5	032 P. 8	HAS Std	$81 / 4$		1.9		ok
$\begin{aligned} & \text { WCPs } \\ & \text { (long) } \end{aligned}$	27.6	083 P. 8	HAS Super	$123 / 8$	5.5	8.6	$<.76$	
WCPs (short)	27.6	083 P. 8	HAS Super	$123 / 8$	10	8.6	76	ok
Adapters WB-6, WB-7	32.2	095 P. 8	HAS Super	$123 / 8$	11.6	10.2	1.00	ok - Shear Lugs added
Mode Cleaner Tubes	32.6	087 P. 1	HAS Super	$81 / 4$	$\begin{array}{\|l\|} \hline 2.7 \text { at } \\ \text { diagonal } \end{array}$	9.8	. 46	ok -- Shear Lugs added
WB-1A, WB-1B	18.6	088 P. 8	HAS Std.	$81 / 4$	0	5.4	<1.0	ok
$\begin{aligned} & \text { WB-9A, } \\ & \text { WB-9B } \end{aligned}$	38.1	089 P. 10	HAS Super	$81 / 4$	0	11	<1.0	ok - Shear Lugs added
WBSC1, WBSC3	16	032 P. 5	HAS Std	$81 / 4$	2.1	4	. 71	ok
WBSC2	~ 0	032 P. 5					N/A	
WBSC4	16	032 P .7	HAS Std	$81 / 4$	4.2	4	. 90	ok
WBSC5 WBSC6	~ 0	032 P. 12					N/A	
$\begin{aligned} & \text { WBSC } 9 \\ & \text { WBSC } 10 \end{aligned}$	25.4	032 P. 13	HAS Super	$123 / 8$	3.33	6.4	58	ok
$\begin{aligned} & \text { WBSC7 } \\ & \text { WBSC8 } \end{aligned}$	45.5	024 P. 5	HAS Super	$123 / 8$	1.1	18.4	>1.0	ok - Shear Lugs added

PROCESS SYSTEMS INTERNATIONAL, INC. WESTBOROUGH, MA	ENGINEERING CALCULATIONS	NO: V049-1-160
		Rev. No. 0
		Page 7 of 17
PROJECT: LIGO VACUUM EQUIPMENT	PROJECT NO:	V59049
CALCULATION TITLE: Redesign of Equipment Anchorage for Extended Grout Pads		

Detailed Calculations

The floor height is 1 " $+/$ - lower than the design height. The $3 "+/$ grout pads will become $4 "+/$. Assume that the maximum grout pad height is $4.5^{\prime \prime}$. (This upper limit was confirmed by the Rogers survey data, Ref. 3.)

The shear, V , on the attachment will cause excessive bending of bolts. Therefore, the grout must resist the load and transfer force to the scarified floor. In the above sketch, the left anchor has sufficient edge distance to the right to resist V, which is also to the right. The right bolt, however, has low shear capacity for that load since the edge distance to the right is so small.

HAMS

High unbalanced loads exist at HAMS at ends of arms. At the Washington site these are WHAMs $1,6,7$, and 12 . The unbalanced force is 45.5 k . For these components the average shear load is

$$
\begin{aligned}
& \mathrm{F}=45.5 / 24 \text { bolts }=1.9 \mathrm{k} \text { per bolt } \\
& \mathrm{V}=1.9 \ll \mathrm{~V}_{\text {all }}=8 \mathrm{k} \text { for Hilti HAS standard rod } \quad \text { ok }
\end{aligned}
$$

0	0	0	0	$\rightarrow V$
0	0	0	0	\rightarrow

PROCESS SYSTEMS INTERNATIONAL, INC. WESTBOROUGH, MA	ENGINEERING CALCULATIONS	NO: V049-1-160
		Rev. No. 0
		Page 8 of 17
PROJECT: LIGO VACUUM EQUIPMENT	PROJECT NO:	V59049
CALCULATION TITLE: Redesign of Equipment Anchorage for Extended Grout Pads		

Cryopumps

The unbalanced force is 27.6 k (Ref. V049-1-083, p. 8). Both the long and short pumps have the same shear force in base plates at the diagonal members. But, the short pump has higher tensile loads since legs are closer together.

Long pumps - force at each bolt

$$
\mathrm{T}=5.5 \mathrm{k} \text { and } \mathrm{V}=4.3 \mathrm{k} \text { (Ref. V049-1-083, p. 80) }
$$

Shear tension interaction

$$
\mathrm{S} / \mathrm{T}=.70 \text { for the standard rod. }
$$

Short pump - force at each bolt

$$
\begin{aligned}
& \mathrm{T}=10 \mathrm{k} \text { and } \mathrm{V}=4.3 \mathrm{k}(\text { Ref. V049-1-083, p. 38) } \\
& \mathrm{S} / \mathrm{T}=.61 \text { for super rod. }
\end{aligned}
$$

The anchor embedment for both components is $123 / 8^{c}$. At the base plates connected to the diagonal members, 2 anchors have enough edge distance to resist the force through the grout as discussed on the previous sheet. Then, doubling the shear force gives

$$
\begin{aligned}
& \mathrm{V}=2 \times 4.3=8.6 \mathrm{k} \\
& \mathrm{~V}_{\text {all }}=16.7 \mathrm{k} \text { for the super bolts }
\end{aligned}
$$

Shear tension interaction is

$$
\begin{aligned}
\mathrm{S} / \mathrm{T} & =\left(\mathrm{T} / \mathrm{T}_{\text {all }}\right)^{5 / 3}+\left(\mathrm{V} / \mathrm{V}_{\text {all }}\right)^{5 / 3}=(10 / 16.5)^{5 / 3}+(8.6 / 16.7)^{5 / 3} \\
& =.43+.33=.76
\end{aligned}
$$

ok
\therefore Cryopumps base plates that are anchored with super Hilti HAS rods using a minimum embedment of $123 / 8$ " are acceptable.

PROCESS SYSTEMS INTERNATIONAL, INC. WESTBOROUGH, MA	ENGINEERING CALCULATIONS	NO: V049-1-160
		Rev. No. 0
		Page 9 of 17
PROJECT: LIGO VACUUM EQUIPMENT	PROJECT NO:	V59049
CALCULATION TITLE: Redesign of Equipment Anchorage for Extended Grout Pads		

Adapters WB-6 and WB-7
These are similar to the short cryopumps. The unbalanced force is 32.2 k (Ref. V049-1-095, p. 8).

$$
\begin{aligned}
& \mathrm{T}=11.6 \mathrm{k} \text { per bolt }(\text { Ref. V049-1-095, p. 42) } \\
& \mathrm{V}=5.1 \mathrm{k} \text { per bolt " " " " } \\
& \mathrm{S} / \mathrm{T}=.75 \text { for the super rod with an embedment of } 123 / 8 "
\end{aligned}
$$

Double the shear force as was done for the cryopump at the base plate connected to the diagonal member.

T

$$
\begin{aligned}
\mathrm{V}= & 10.2 \\
\mathrm{~S} / \mathrm{T} & =\mathrm{T} / \mathrm{T}_{\text {all }}+\mathrm{V} / \mathrm{V}_{\text {all }} \\
& =11.6 / 16.5+10.2 / 16.7 \\
& =.70+.61=1.28
\end{aligned}
$$

Using the alternate $5 / 3$ interaction formula

$$
\mathrm{S} / \mathrm{T}=\left(\mathrm{T} / \mathrm{T}_{\text {all }}\right)^{5 / 3}+\left(\mathrm{V} / \mathrm{V}_{\text {all }}\right)^{5 / 3}
$$

$$
=.56+.44=1.00 \quad \text { ok }
$$

Mode Cleaner Tubes

WB-2A
WB-2B
WB-3A
WB-5A

The unbalanced force is 32.6 k (Ref. V049-1-087, p. 1)
$\mathrm{T}=2.7$ at base plate connected to diagonal members
$\mathrm{V}=4.9 \mathrm{k}$
$\mathrm{S} / \mathrm{T}=.89$ for standard rod with $81 / 4^{\prime \prime}$ embedment (Ref. V049-1-087, p. 46)

| PROCESS SYSTEMS INTERNATIONAL, INC. |
| :--- | :--- | :--- |
| WESTBOROUGH, MA | ENGINEERING | CALCULATIONS |
| :--- |

Double the shear force as was done for the cryopumps and WB-6 and WB-7.

$$
\mathrm{V}=9.8 \mathrm{k}
$$

Allowable shear force $=7.7 \mathrm{k}$, ultimate shear capacity $=21.8 \mathrm{k}$. If the bolts are changed to Super,

$$
\begin{aligned}
& \text { Vall }=16.7 \mathrm{k} \\
& \mathrm{~V}<\mathrm{V}_{\text {all }}
\end{aligned}
$$

gives
\therefore Use super rod for the base plates connected to the diagonal members. Check interaction.

$$
\mathrm{S} / \mathrm{T}=(2.7 / 16.5)^{5 / 3}+(9.8 / 16.7)^{5 / 3}=.05+.41=.46 \mathrm{ok}
$$

Beam tube manifold WB-1A and WB-1B
The unbalanced force $=18.6 \mathrm{k}$ (Ref. V049-1-088, p. 8)

$$
\begin{aligned}
& \mathrm{T}=0(\text { Ref. V049-1-088, p. } 43) \\
& \mathrm{V}=2.7 \mathrm{k} \text { per bolt } \\
& \mathrm{S} / \mathrm{T}=.63
\end{aligned}
$$

Again, double the bolt shear at the base plate connected to the diagonal member.

$$
\mathrm{V}=5.4 \mathrm{k}<\text { Vall for HAS standard rod with } 81 / 4 \text { " embedment ok }
$$

Beam tube manifold WB-9A and WB-9B

The unbalanced force is 38.1 k (Ref. V049-1-089, p. 10)

$$
\begin{aligned}
& \mathrm{T}=0 \text { (Ref. V049-1-089, p. 36) } \\
& \mathrm{V}=5.5 \mathrm{k} \text { at base plate connected to the diagonal member } \\
& \mathrm{S} / \mathrm{T}=.98 \text { for HAS standard rod with } 81 / 4 \text { " embedment }
\end{aligned}
$$

Double the shear at the base plate connected to the diagonal member.

$$
\begin{aligned}
& V=11.0 \mathrm{k} \\
& \text { Vall }=8 \text { for standard rod }
\end{aligned}
$$

PROCESS SYSTEMS INTERNATIONAL, INC. WESTBOROUGH, MA	ENGINEERING CALCULATIONS	NO: V049-1-160
		Rev. No. 0
		Page 11 of 17
PROJECT: LIGO VACUUM EQUIPMENT	PROJECT NO:	V59049
CALCULATION TITLE: Redesign of Equipment Anchorage for Extended Grout Pads		

But, HAS super rod will be used at the base plate connected to the diagonal member.

$$
\text { Vall }=16.7>11.0 \mathrm{k} \quad \text { ok }
$$

Beam Splitters
WBSC1 and WBSC3

The unbalanced force $=16 \mathrm{k}$ (Ref. V049-1-032, p. 5)

$2 \mathrm{Tx} 84=16 \times 70$
$\mathrm{T}=6.67 \mathrm{k}$ per column
$\mathrm{T}=6.67 / 4=1.7 \mathrm{k}$ per anchor
$\mathrm{V}=16 / 16=1 \mathrm{k}$ average per bolt
Increase T by 25% for prying
$\mathrm{T}=1.25 \times 1.7=2.1$

See sketch to left and below. Most shear is resisted by 1 bolt because edge distance is small for other 3 anchors.
\therefore Multiply V by 4
$\mathrm{V}=4 \mathrm{k}$ per anchor.
$\mathrm{T} / \mathrm{T}_{\text {all }}+\mathrm{V} / \mathrm{V}_{\text {all }}=2.1 / 11+4 / 7.7=.71<1$
HAS standard rod embeded $81 / 4$ " is acceptable.

| PROCESS SYSTEMS INTERNATIONAL, INC. |
| :--- | :--- | :--- |
WESTBOROUGH, MA	\quad	ENGINEERING	
CALCULATIONS	\quad	CO: V049-1-160	
:---	:---		
Rev. No. 0			
PROJECT: LIGO VACUUM EQUIPMENT 12 of 17			
CALCULATION TITLE: Redesign of Equipment Anchorage for Extended Grout Pads			

WBSC2 - This component has negligible unbalanced load. (Ref. V049-1-032, p. 6) ok
WBSC4 - The unbalanced force for this component is 16 k in 2 directions.
(Ref. V049-1-032, p. 7)
The analysis is similar to that performed for WBSC1 and 3. The tensile force is doubled at one plate.

$$
\begin{aligned}
& \mathrm{T}=2 \times 2.1=4.2 \mathrm{k} \text { per bolt } \\
& \text { Shear } \mathrm{V}=4 \mathrm{k} \text { (same as WBSC1 \& } 3 \text {) } \\
& \mathrm{T} / \mathrm{T}_{\text {all }}+\mathrm{V} / \mathrm{V}_{\text {all }}=4.2 / 11+4 / 7.7 \\
& =.38+.52=.90
\end{aligned}
$$

\therefore HAS standard rod with an $81 / 4^{\prime \prime}$ embedment is acceptable for BSC4.
WBSC5 \& WBSC6 - No unbalanced load.
ok
Ref. V049-1-032, p. 12

WBSC9 \& WBSC10 -- End Station

Unbalanced force $=25.4 \mathrm{k}($ Ref. V049-1-032, p. 13). From the previous sheet for WBSC1 \& 3,

$$
\begin{aligned}
& \mathrm{T}=2.1 \times 25.4 / 16=3.33 \mathrm{k} \\
& \mathrm{~V}=4 \times 25.4 / 16=6.35 \\
& \mathrm{~T} / \mathrm{T}_{\text {all }}+\mathrm{V} / \mathrm{V}_{\text {afl }}=3.33 / 11+6.35 / 7.7=.30+.82=1.12>1.0
\end{aligned}
$$ for standard rod with $81 / 4^{\prime \prime}$ embedment. For super rod with $123 / 8^{\prime \prime}$ embedment that is used at the end of the beam tube arm,

$$
\mathrm{T} / \mathrm{T}_{\text {all }}+\mathrm{V} / \mathrm{V}_{\text {all }}=3.33 / 16.5+6.35 / 16.7=.20+.38=.58 \quad \text { ok }
$$

Note: All rods for WBSC9 \& 10 are HAS super. Rod for base plates at ends of arms have 12 $3 / 8^{\prime \prime}$ embed. Rods for other plates have $81 / 4$ " embedment.

PROCESS SYSTEMS INTERNATIONAL, INC. WESTBOROUGH, MA	ENGINEERING CALCULATIONS	NO: V049-1-160
		Rev. No. 0
		Page 13 of 17
PROJECT: LIGO VACUUM EQUIPMENT	PROJECT NO:	V59049

CALCULATION TITLE: Redesign of Equipment Anchorage for Extended Grout Pads

WBSC7 \& WBSC8

Unbalanced forces

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{x}}=45.5 \mathrm{k} \\
& \mathrm{~F}_{\mathrm{z}}=29.5 \mathrm{k}
\end{aligned}
$$

Ref. V049-1-024, p. 5.
Tensile force in column due to Fx

$$
\begin{aligned}
& 2 \mathrm{~T} \times 84=\mathrm{F}_{\mathrm{x}} \times 70=45.5 \times 70 \\
& \mathrm{~T}=19.0 \mathrm{k}
\end{aligned}
$$

Tensile force in column due to Fz

$$
\mathrm{T}=19.0 \times 29.5 / 45.5=12.3 \mathrm{k}
$$

Total column tensile force.

$$
\mathrm{T}=19.0+12.3=31.3 \mathrm{k}
$$

Force per bolt with 25% prying factor,

$$
\mathrm{T}=(31.3 / 4) \times 1.25=9.8 \mathrm{k}
$$

Maximum shear applied by Fx

$$
\mathrm{V}=45.5 / 4=11.4 \mathrm{k}
$$

Interaction:

$$
\begin{aligned}
\mathrm{S} / \mathrm{T} & =\left(\mathrm{T} / \mathrm{T}_{\mathrm{all}}\right)^{5 / 3}+\left(\mathrm{V} / \mathrm{V}_{\mathrm{all}}\right)^{5 / 3}=(9.8 / 16.5)^{5 / 3}+(11.4 / 16.7)^{5 / 3} \\
& =(.59)^{5 / 3}+(.68)^{5 / 3}=.95
\end{aligned}
$$

ok
\therefore Use HAS super rod with $123 / 8$ embedment.

PROCESS SYSTEMS INTERNATIONAL, INC. WESTBOROUGH, MA	ENGINEERING CALCULATIONS	NO: V049-1-160
		Rev. No. 0
		Page 14 of 17
PROJECT: LIGO VACUUM EQUIPMENT	PROJECT NO:	V59049
CALCULATION TITLE: Redesign of Equipment Anchorage for Extended Grout Pads		

Check WBSC7 \& WBSC8 using forces computed on p. 28 of V049-1-024.
Node 1
$\mathrm{T}=1.1 \mathrm{k}$ per bolt
$\mathrm{V}=18.4 \mathrm{k}$ due to Fx (max value)
$\mathrm{T} / \mathrm{T}_{\text {all }}+\mathrm{V} / \mathrm{V}_{\text {all }}=1.1 / 16.5+18.4 / 16.7=1.17^{*}$
This is 10% greater than allowable on shear alone.
Node 4

$$
\begin{aligned}
& \mathrm{T}=0 \\
& \mathrm{~V}=5.8 \text { due to } \mathrm{Fx} \text { (max value) }
\end{aligned}
$$

$$
\mathrm{V} / \mathrm{V}_{\text {all }}=5.8 / 17.7=.35 \quad \text { ok }
$$

Node 7

$$
\begin{aligned}
& \mathrm{T}=0 \\
& \mathrm{~V}=15.6
\end{aligned}
$$

$$
\mathrm{V} / \mathrm{V}_{\text {all }}=15.6 / 16.7=.95 \quad \text { ok }
$$

Node 10

$$
\begin{aligned}
& \mathrm{T}=8.75 \\
& \mathrm{~V}=6.5 \\
& \mathrm{~T} / \mathrm{T}_{\mathrm{all}}+\mathrm{V} / \mathrm{V}_{\mathrm{all}}=8.75 / 16.5+6.5 / 16.7=.53+.39=.92
\end{aligned}
$$

*See the following sheets. Shear will be resisted by shear bars on the bottom of plates.
Check base plate tear out for WBSC7 \& 8 which have maximum shear.

$$
V=18.4 \mathrm{k}
$$

Assume that the minimum distance from the hole to the plate edge is 1.0 in . This is very conservative.

$$
\begin{aligned}
& A_{v}=2 \times 1 \times 1=2 \mathrm{in}^{2} \\
& \mathrm{f}_{\mathrm{v}}=18.4 / 2=9.2 \mathrm{ksi}
\end{aligned}
$$

$\left.\begin{array}{|l|l|l|}\hline \text { PROCESS SYSTEMS INTERNATIONAL, INC. } & \text { ENGINEERING } \\ \text { WESTBOROUGH, MA }\end{array}\right)$

Check bolt torque for the slip critical connection. Bolt torque for the major components is

$$
\mathrm{T}=375 \mathrm{ft}-\mathrm{lb}=4.5 \mathrm{in}-\mathrm{k}
$$

Get bolt tension, Ft

$$
\begin{aligned}
& \mathrm{T}=.20 \mathrm{DF}_{\mathrm{t}} \text { (Ref. Shigley Eq. 7-16) } \\
& \mathrm{D}=1 \mathrm{in} \\
& \mathrm{~F}_{\mathrm{t}}=4.5 /(.20 \times 1)=22.5 \mathrm{k}
\end{aligned}
$$

Bolt tensile stress, $\quad \mathrm{A}_{\mathrm{b}}=.785 \mathrm{in} 2$

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{t}}=\mathrm{Ft} / \mathrm{A}_{\mathrm{b}}=22.5 / .785=28.7 \cong .50 \mathrm{Fu} \\
& \mathrm{f}_{\mathrm{t}} \ll .50 \mathrm{~F}_{\mathrm{u}} \text { for A193 B7, } \mathrm{F}_{\mathrm{u}}=125 \mathrm{ksi}
\end{aligned}
$$

Get max slip load, Ps (shear), that can be resisted by a single rod.

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{s}}=\mathrm{mnF}_{\mathrm{k}} \mathrm{ks} \text { (Ref. NF-3000, p. 79, ASME III). } \\
& \mathrm{m}=\text { no. of shear planes }=2(\mathrm{NF} 3324.6) \\
& \mathrm{n}=\text { no. of bolts }=1 \\
& \mathrm{k}_{\mathrm{s}}=\text { slip coefficient (Table NF } 3324.6(\mathrm{a}) \\
& \quad=.45 \text { for zinc silicate paint. } \\
& \mathrm{P}_{\mathrm{s}}=2 \times 1 \times 22.5 \times .45=20.3 \mathrm{k}
\end{aligned}
$$

\therefore A maximum shear force of 20.3 k can be resisted before the bolt slips and the gap closes.
The slip resistance is an upper bound since Shigley's equation may account for some thread lubrication. Also, the precise slip coefficient, ks, is not known but is probably not less than .30 . To get a lower bound slip resistance, use .30 for both thread friction and k_{s}.

$$
\begin{aligned}
& \mathrm{T}=.30 \mathrm{D} \mathrm{~F}_{\mathrm{t}} \\
& \mathrm{~F}_{\mathrm{t}}=4.5 /(.30 \times 1)=15 \mathrm{k} \\
& \mathrm{f}_{\mathrm{t}}=\mathrm{F}_{\mathrm{t}} / \mathrm{A}_{\mathrm{b}}=15 / .785=19.1 \mathrm{ksi} \\
& \mathrm{P}_{\mathrm{s}}=2 \times 1 \times 15 \times .30=9 \mathrm{k}
\end{aligned}
$$

For HAS super rods increase torque to $400 \mathrm{ft}-\mathrm{lb}$.

$$
P_{s}=9 \times 400 / 375=9.6 \mathrm{k} \mathrm{~min} \text { value }
$$

PROCESS SYSTEMS INTERNATIONAL, INC. WESTBOROUGH, MA	ENGINEERING CALCULATIONS	NO: V049-1-160
		Rev. No. 0
		Page 16 of 17
PROJECT: LIGO VACUUM EQUIPMENT	PROJECT NO:	V59049
CALCULATION TITLE: Redesign of Equipment Anchorage for Extended Grout Pads		

Hence, shear add bars to base plates connected to diagonal members at:
WBSC7 \& 8
WB-6 \& 7,
mode cleaner tubes WB-2A, 2B, 3 A \& 5A
WB-9A \& 9B
Also, chip concrete to expose aggregate at these plates.
Since $400 \mathrm{ft}-\mathrm{lb}$ may be too high a torque for HAS standard rods, use $250 \mathrm{ft}-\mathrm{lb}$ for these anchors.

$$
P_{s}=9 \times(250 / 375)=6 \mathrm{k} \text { min value }>5.4 \text { at WB- } 1 \mathrm{~A} \& 1 \mathrm{~B} . \quad \text { ok }
$$

The shear force for WBSC7 \& 8 is only slightly lower than P_{5}; therefore it is necessary to shear bars to the bottom of the base plates of these units to transfer the shear force to the scarified floor.

Try adding 8 " $x 1$ " bars to the bottom of each base plate.

PROCESS SYSTEMS INTERNATIONAL, INC. WESTBOROUGH, MA	ENGINEERING CALCULATIONS	NO: V049-1-160
		Rev. No. 0
		Page 17 of 17
PROJECT: LIGO VACUUM EQUIPMENT	PROJECT NO:	V59049
CALCULATION TITLE: Redesign of Equipment Anchorage for Extended Grout Pads		

Bearing stress on grout

$$
\mathrm{f}=\mathrm{F}_{\mathrm{x}} /(8 \times 1)=18.4 / 8=2.3 \mathrm{ksi} \ll 7 \mathrm{ksi} \quad \text { ok }
$$

Try 1/4" fillet weld

$$
\mathrm{f}_{\mathrm{v}}=18.4 /(2 \times 8 \times .707 \times(1 / 4))
$$

$$
=6.5 \mathrm{ksi}<21 \mathrm{ksi} \quad \text { ok }
$$

Check maximum shear friction between grout and concrete floor
Base plate area

$$
A=14 \times 14=196 \text { in2 (min }- \text { doesn't account for beveled edge of grout }
$$ pad)

$\mathrm{V}_{\max }=24 \mathrm{k}$ (Ref. V049-1-024, p. 38)
$\mathrm{f}_{\mathrm{V}}=24 / 196=.122 \mathrm{ksi}=122 \mathrm{psi}$
Check allowable shear friction from the ACI code.

$$
\begin{aligned}
& V_{\mathrm{n}}=\mathrm{A}_{\mathrm{vf}} \times \mathrm{f}_{\mathrm{y}} \times \mu \text { (Ref. ACI 11.7.4) } \\
& \mathrm{A}_{\mathrm{vf}}=\text { area of Hilti's }=4 \times .785=3.14 \text { in }^{2} \\
& \mathrm{f}_{\mathrm{y}}=60 \mathrm{ksi} \mathrm{max}<\mathrm{F}_{\mathrm{y}} \text { for A193 B7 (Super rods) } \\
& \mu=1.0 \lambda \\
& \lambda=1.0 \\
& \mathrm{~V}_{\mathrm{n}}=3.14 \times 60 \times 1=188 \mathrm{k} \gg 24 \mathrm{k}
\end{aligned}
$$

But the concrete must be roughened per ACI 11.7.9 to amplitude of $1 / 4 \mathrm{in}$.
The maximum shear friction resistance is

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{n} \text { max }}=.2 \mathrm{f}_{\mathrm{c}} \mathrm{~A}_{\mathrm{c}}<800 \mathrm{~A}_{\mathrm{c}} \mathrm{lb} \text { (Ref. ACI 11.7.5) } \\
& \mathrm{f}^{\prime} \mathrm{c}=4000 \mathrm{psi} \text { for floor } \\
& \mathrm{A}_{\mathrm{c}}=12 \times 12=144 \text { for small base plate } \\
& \begin{aligned}
\mathrm{V}_{\mathrm{n} \text { max }} & =.2 \times 4000 \times 144=800 \times 144=115200 \mathrm{lb} \\
& =115 \mathrm{k} \gg 24 \mathrm{k}
\end{aligned}
\end{aligned}
$$

