						140-297 <u>0174-00</u> -V		
PROC	ESS SYST	EMS INTE	ERNATION	NAL, INC.	ENGINEERING	NO: V049-1- 160		
	WES	TBOROU	GH, MA		CALCULATIONS	PAGE 1 OF 22		
REV.	DEO #	DATE	BY:	CHECK	TITLE:			
0	0556	10/6/97	ROCT	DMpong	·	Washington Site		
		ļ		· · · · · · · · · · · · · · · · · · ·	Redesign	of Equipment Anchorage		
	ļ				for E	Extended Grout Pads		
•					BY: R. D. Ciatto	DEPT.: 744		
PROJE	<u>CT:</u> LIGO	Vacuum	Equipmen	t	PROJECT NO: V590	49		
PURPO	SE: The a Wash the e on the	s-built flo hington sit ffects of e he anchora	or elevation e are more xtending t age design	ons at the co e than 1 inc he equipme	orner station and the left h lower than planned. T ent grout pads to accomm	end station of the his calculation evaluates modate the low floors		
METHO	<u>)D:</u> Hand shear HVA	calculation forces. T concrete	ns are perf hese are c anchor sys	formed to d ompared to stem.	letermine the maximum and allowable forces published	anchor bolt tensile and hed by Hilti for the		
ASSUMPTIONS: See calculation. INPUTS: See calculation for unbalanced forces and anchor loads derived in other calculations.								
REFERENCES: 1. Hilti Product Technical Guide, 1995. 2. Amer. Concrete Inst., ACI 318-89, Building Code Rq'mts for Reinforced Concrete. 3. Rogers Surveying, Survey Data for LIGO – Hanford, Job No. 15597, transmitted with TIM 70								
CALCU	LATIONS	<u>):</u> (SEE A	TTACHE	D)		Nov 1 4 1997		
CONCL	<u>USIONS:</u>	Required on sheets	modificati 4 and 5 of	ons to the v f this calcul	vacuum equipment conce ation.	rete anchorage are summarized		
NOTES	Modifica	tions resu	lting from	this evalua	tion are implemented in	RFCs V049 - 072 to - 076.		

,

.

PROCESS SYSTEMS INTERNATIONAL, INC. WESTBOROUGH, MA	ENGINEERING CALCULATIONS	NO: V049-1-160 Rev. No. 0 Page 2 of 22					
PROJECT: LIGO VACUUM EQUIPMENT	PROJECT NO:	V59049					
CALCULATION TITLE: Redesign of Equipment Anchorage for Extended Grout Pads							

.

.

PROCESS SYSTEMS INTERNATIONAL, INC. WESTBOROUGH, MA	ENGINEERING CALCULATIONS	NO: V049-1-160 Rev. No. 0 Page 3 of 22						
PROJECT: LIGO VACUUM EQUIPMENT	PROJECT NO:	V59049						
CALCULATION TITLE: Redesign of Equipment Anchorage for Extended Grout Pads								

REVISION HISTORY

Rev. 0

.

Original Issue - Oct. 1997

PROCESS SY	STEMS INTERNATIONAL, INC.	ENGINEERING	NO: V049-1-160		
W	ESTBOROUGH, MA	CALCULATIONS	Rev. No. 0		
			Page 4 of 17		
PROJECT: L	IGO VACUUM EQUIPMENT	PROJECT NO:	V59049		
CALCULATI	ON TITLE: Redesign of Equipment Ar	chorage for Extended Grou	rt Pads		
e			••••		
Required Cl	handes				
- NE(11))					
Required Ci	langes				
1	All rod length must increase	at corner station and end	station for the left		
1.	All rod length must increase	e at corner station and end	station for the left		
1.	All rod length must increase arm.	e at corner station and end	station for the left		
1. 2	All rod length must increase arm.	e at corner station and end s	station for the left or WBSC-7 & 8		
1. 2.	All rod length must increase arm. Shear bars must be added to WB 6 7 2A 2B 3A & 5A a	e at corner station and end s o underside of base plates for and WB 9A & 9B	station for the left or WBSC-7 & 8,		
1. 2.	All rod length must increase arm. Shear bars must be added to WB-6,7,2A,2B,3A, & 5A, a	e at corner station and end s o underside of base plates fo and WB-9A & 9B.	station for the left or WBSC-7 & 8,		
1. 2.	All rod length must increase arm. Shear bars must be added to WB-6,7,2A,2B,3A, & 5A, a Change anchor rod from H/	e at corner station and end s o underside of base plates fo and WB-9A & 9B.	station for the left or WBSC-7 & 8,		
1. 2. 3.	All rod length must increase arm. Shear bars must be added to WB-6,7,2A,2B,3A, & 5A, a Change anchor rod from HA	e at corner station and end so o underside of base plates fo and WB-9A & 9B. AS standard to HAS super	station for the left or WBSC-7 & 8, for mode cleaner		

WB-2A WB-2B WB-3A WB-5A

This change is required only at base plates connected to diagonal members.

4. Roughen concrete floor with 1/4 inch indentations.

5. Increase preload torque on super rods to 400 ft-lb and decrease torque on standard rods to 250 ft-lb.

Shear bars are to be added to WBSC-7 and WBSC-8 on undersides of base plates.

Other base plates listed in item 2 of the previous sheet (plates connected to diagonal members) shall be modified to add shear bars as follows.

PROCESS SYSTEMS INTERNATIONAL, INC.	ENGINEERING	NO: V049-1-160					
WESTBOROUGH, MA	CALCULATIONS	Rev. No. 0					
		Page 6 of 17					
PROJECT: LIGO VACUUM EQUIPMENT	PROJECT NO:	V59049					
CALCULATION TITLE: Redesign of Equipment Anchorage for Extended Grout Pads							

]		<u> </u>	_	1		T			1					<u> </u>		η		Τ	T	1		Γ		T	
Status		ok			ok		ok – Shear	Lugs added)	ok - Shear	Lugs added)	ok		ok – Shear	Lugs added	ok			ok			ok		ok - Shear	Lugs added
S/T Interaction			<.76		.76		1.00			.46			<1.0		<1.0		71		N/A	06'	N/A		58		> 1.0	
Max Bolt Shear, K		1.9	8.6		8.6		10.2			9.8			5.4		11		4			4			6.4		18.4	
Max Bolt Tension	kips		5.5		10		11.6			2.7 at	diagonal	I	0		0		2.1			4.2			3.33		1.1	
Embed- ment	'n,	8 1/4	12 3/8		12 3/8		12 3/8			8 1/4			8 1/4		8 1/4		8 1/4			8 1/4			12 3/8		12 3/8	
Anchor Type		HAS Std.	HAS Super		HAS Super		HAS Super			HAS Super			HAS Std.		HAS Super		HAS Std			HAS Std			HAS Super	•	HAS Super	
Ref. Calc. V049-1-		032 P. 8	083 P. 8		083 P. 8		095 P. 8			087 P.1			088 P. 8		089 P. 10		032 P. 5		032 P. S	032 P. 7	032 P. 12		032 P.13		024 P. 5	
Unbal. Force	Kips	45.5	27.6		27.6		32.2			32.6			18.6		38.1		16		02	16	~ 0		25.4		45.5	
Component		WHAMs	WCPs	(long)	WCPs	(short)	Adapters	WB-6,	WB-7	Mode	Cleaner	Tubes	WB-1A,	WB-1B	WB-9A,	WB-9B	WBSC1,	WBSC3	WBSC2	WBSC4	WBSC5	WBSC6	WBSC9	WBSC10	WBSC7	WBSC8

SUMMARY OF RESULTS

,

-

PROCESS SYSTEMS INTERNATIONAL, INC.	ENGINEERING	NO: V049-1-160					
WESTBOROUGH, MA	CALCULATIONS	Rev. No. 0					
		Page 7 of 17					
PROJECT: LIGO VACUUM EQUIPMENT	PROJECT NO:	V59049					
CALCULATION TITLE: Redesign of Equipment Anchorage for Extended Grout Pads							

Detailed Calculations

The floor height is 1^{+} - lower than the design height. The 3^{+} - grout pads will become 4^{+} -. Assume that the maximum grout pad height is 4.5". (This upper limit was confirmed by the Rogers survey data, Ref. 3.)

The shear, V, on the attachment will cause excessive bending of bolts. Therefore, the grout must resist the load and transfer force to the scarified floor. In the above sketch, the left anchor has sufficient edge distance to the right to resist V, which is also to the right. The right bolt, however, has low shear capacity for that load since the edge distance to the right is so small.

HAMS

High unbalanced loads exist at HAMS at ends of arms. At the Washington site these are WHAMs 1,6,7, and 12. The unbalanced force is 45.5k. For these components the average shear load is

F = 45.5/24 bolts = 1.9 k per bolt

 $V = 1.9 \ll V_{all} = 8 k$ for Hilti HAS standard rod

PROCESS SYSTEMS INTERNATIONAL, INC.	ENGINEERING	NO: V049-1-160					
WESTBOROUGH, MA	CALCULATIONS	Rev. No. 0					
		Page 8 of 17					
PROJECT: LIGO VACUUM EQUIPMENT	PROJECT NO:	V59049					
CALCULATION TITLE: Redesign of Equipment Anchorage for Extended Grout Pads							

Cryopumps

The unbalanced force is 27.6 k (Ref. V049-1-083, p. 8). Both the long and short pumps have the same shear force in base plates at the diagonal members. But, the short pump has higher tensile loads since legs are closer together.

Long pumps – force at each bolt

$$T = 5.5 \text{ k}$$
 and $V = 4.3 \text{ k}$ (Ref. V049-1-083, p. 80)

Shear tension interaction

S/T = .70 for the standard rod.

Short pump – force at each bolt

T = 10 k and V = 4.3 k (Ref. V049-1-083, p. 38)

S/T = .61 for super rod.

The anchor embedment for both components is 12 3/8 ". At the base plates connected to the diagonal members, 2 anchors have enough edge distance to resist the force through the grout as discussed on the previous sheet. Then, doubling the shear force gives

$$V = 2 \times 4.3 = 8.6 \text{ k}$$

 $V_{all} = 16.7$ k for the super bolts

Shear tension interaction is

$$S/T = (T/T_{all})^{5/3} + (V/V_{all})^{5/3} = (10/16.5)^{5/3} + (8.6/16.7)^{5/3}$$

= .43 + .33 = .76 ok

 \therefore Cryopumps base plates that are anchored with super Hilti HAS rods using a minimum embedment of 12 3/8 " are acceptable.

PROCESS SYSTEMS INTERNATIONAL, INC.	ENGINEERING	NO: V049-1-160					
WESTBOROUGH, MA	CALCULATIONS	Rev. No. 0					
		Page 9 of 17					
PROJECT: LIGO VACUUM EQUIPMENT	PROJECT NO:	V59049					
CALCULATION TITLE: Redesign of Equipment Anchorage for Extended Grout Pads							

Adapters WB-6 and WB-7

These are similar to the short cryopumps. The unbalanced force is 32.2 k (Ref. V049-1-095, p. 8).

T = 11.6 k per bolt (Ref. V049-1-095, p. 42) V = 5.1 k per bolt """" S/T = .75 for the super rod with an embedment of 12 3/8"

Double the shear force as was done for the cryopump at the base plate connected to the diagonal member.

V = 10.2S/T = T/T_{all} + V/V_{all} = 11.6/16.5 + 10.2/16.7 = .70 + .61 = 1.28

Using the alternate 5/3 interaction formula

$$S/T = (T/T_{all})^{5/3} + (V/V_{all})^{5/3}$$

= .56 + .44 = 1.00 ok

Mode Cleaner Tubes

WB-2A	
WB-2B	
WB-3A	
WB-5A	

The unbalanced force is 32.6 k (Ref. V049-1-087, p. 1)

T = 2.7 at base plate connected to diagonal members V = 4.9 k S/T = .89 for standard rod with 8 1/4" embedment (Ref. V049-1-087, p. 46)

PROCESS SYSTEMS INTERNATIONAL, INC.	ENGINEERING	NO: V049-1-160		
WESTBOROUGH, MA	CALCULATIONS	Rev. No. 0		
		Page 10 of 17		
PROJECT: LIGO VACUUM EQUIPMENT	PROJECT NO:	V59049		
CALCULATION TITLE: Redesign of Equipment A	nchorage for Extended Grou	nt Pads		

Double the shear force as was done for the cryopumps and WB-6 and WB-7.

V = 9.8 k

Allowable shear force = 7.7k, ultimate shear capacity = 21.8 k. If the bolts are changed to Super,

gives

Vall = 16.7 k $V < V_{all}$

: Use super rod for the base plates connected to the diagonal members. Check interaction.

$$S/T = (2.7/16.5)^{5/3} + (9.8/16.7)^{5/3} = .05 + .41 = .46$$
 ok

ok

Beam tube manifold WB-1A and WB-1B

The unbalanced force = 18.6 k (Ref. V049-1-088, p. 8)

T = 0 (Ref. V049-1-088, p. 43) V = 2.7 k per bolt S/T = .63

Again, double the bolt shear at the base plate connected to the diagonal member.

V = 5.4 k < Vall for HAS standard rod with 8 1/4" embedment ok

Beam tube manifold WB-9A and WB-9B

The unbalanced force is 38.1 k (Ref. V049-1-089, p. 10)

T = 0 (Ref. V049-1-089, p. 36) V = 5.5 k at base plate connected to the diagonal member S/T = .98 for HAS standard rod with 8 1/4 " embedment

Double the shear at the base plate connected to the diagonal member.

V = 11.0 kVall = 8 for standard rod

PROCESS SYSTEMS INTERNATIONAL, INC.	ENGINEERING	NO: V049-1-160					
WESTBOROUGH, MA	CALCULATIONS	Rev. No. 0					
		Page 11 of 17					
PROJECT: LIGO VACUUM EQUIPMENT	PROJECT NO:	V59049					
CALCULATION TITLE: Redesign of Equipment Anchorage for Extended Grout Pads							

But, HAS super rod will be used at the base plate connected to the diagonal member. Vall = 16.7 > 11.0 k ok

Beam Splitters

WBSC1 and WBSC3

The unbalanced force = 16 k (Ref. V049-1-032, p. 5)

 $2Tx84 = 16 \times 70$ T = 6.67 k per column T = 6.67/4 = 1.7 k per anchor V = 16/16 = 1 k average per bolt

Increase T by 25% for prying T = 1.25 x 1.7 = 2.1

See sketch to left and below. Most shear is resisted by 1 bolt because edge distance is small for other 3 anchors. \therefore Multiply V by 4 V = 4 k per anchor.

 $T/T_{all} + V/V_{all} = 2.1/11 + 4/7.7 = .71 < 1$

HAS standard rod embeded 8 1/4 " is acceptable.

PROCESS SYSTEMS INTERNATIONAL, INC.	ENGINEERING	NO: V049-1-160
WESTBOROUGH, MA	CALCULATIONS	Rev. No. 0
		Page 12 of 17
PROJECT: LIGO VACUUM EQUIPMENT	PROJECT NO:	V59049
CALCULATION TITLE: Redesign of Equipment Anchorage for Extended Grout Pads		

WBSC2 – This component has negligible unbalanced load. (Ref. V049-1-032, p. 6) ok

WBSC4 – The unbalanced force for this component is 16 k in 2 directions. (Ref. V049-1-032, p. 7)

The analysis is similar to that performed for WBSC1 and 3. The tensile force is doubled at one plate.

 $T = 2 \ge 2.1 = 4.2$ k per bolt

Shear V = 4 k (same as WBSC1 & 3)

 $T/T_{all} + V/V_{all} = 4.2/11 + 4/7.7$ =.38 + .52 = .90 ok

 \therefore HAS standard rod with an 8 1/4" embedment is acceptable for BSC4.

WBSC5 & WBSC6 – No unbalanced load. Ref. V049-1-032, p. 12

WBSC9 & WBSC10 -- End Station Unbalanced force = 25.4 k (Ref. V049-1-032, p. 13). From the previous sheet for WBSC1 & 3,

 $T = 2.1 \ge 25.4/16 = 3.33 k$

 $V = 4 \ge 25.4/16 = 6.35$

 $T/T_{all} + V/V_{all} = 3.33/11 + 6.35/7.7 = .30 + .82 = 1.12 > 1.0$ for standard rod with 8 1/4" embedment. For super rod with 12 3/8" embedment that is used at the end of the beam tube arm,

$$T/T_{all} + V/V_{all} = 3.33/16.5 + 6.35/16.7 = .20 + .38 = .58$$
 ok

Note: All rods for WBSC9 & 10 are HAS super. Rod for base plates at ends of arms have 12 3/8" embed. Rods for other plates have 8 1/4" embedment.

PROCESS SYSTEMS INTERNATIONAL, INC.	ENGINEERING	NO: V049-1-160
WESTBOROUGH, MA	WESTBOROUGH, MA CALCULATIONS	Rev. No. 0
		Page 13 of 17
PROJECT: LIGO VACUUM EQUIPMENT	PROJECT NO:	V59049
CALCULATION TITLE: Redesign of Equipment A	nchorage for Extended Grou	nt Pads

WBSC7 & WBSC8

Unbalanced forces

 $F_x = 45.5 \text{ k}$ $F_z = 29.5 \text{ k}$

Ref. V049-1-024, p. 5.

Tensile force in column due to Fx

 $2T \ge 84 = F_x \ge 70 = 45.5 \ge 70$ T = 19.0 k

Tensile force in column due to Fz

T = 19.0 x 29.5/45.5 = 12.3 k

Total column tensile force.

T = 19.0 + 12.3 = 31.3k

Force per bolt with 25 % prying factor,

 $T = (31.3/4) \times 1.25 = 9.8 k$

Maximum shear applied by Fx

$$V = 45.5/4 = 11.4 \text{ k}$$

Interaction:

$$S/T = (T/T_{all})^{5/3} + (V/V_{all})^{5/3} = (9.8/16.5)^{5/3} + (11.4/16.7)^{5/3}$$
$$= (.59)^{5/3} + (.68)^{5/3} = .95$$

... Use HAS super rod with 12 3/8 embedment.

Plate with max tension

 \sim max ten this bolt from F_x

PROCESS SYST	EMS INTERNATIONAL, INC.	ENGINEERING	NO: V049-1-160	
WES	TBOROUGH, MA	CALCULATIONS	Rev. No. 0	
			Page 14 of 17	
PROJECT: LIGO	O VACUUM EQUIPMENT	PROJECT NO:	V59049	
CALCULATION	TITLE: Redesign of Equipment Ar	chorage for Extended Grout	Pads	
Check WBSC7	& WBSC8 using forces computed	on p. 28 of V049-1-024.		
Node 1	T = 1.1 k per bolt			
V = 18.4 k due to Fx (max value)				
	$T/T_{all} + V/V_{all} = 1.1/16.5 + 18.4/16.7 = 1.17*$			
This is 10% gre	ater than allowable on shear alone.			
Node 4	$\mathbf{T} = 0$			
V = 5.8 due to Ev (may		1e)		
	$V/V_{\rm eff} = 5.8/17.7 = 35$	$V/V_{\rm eff} = 5.8/17.7 = 35$		
	77 Van 0.0, 27, 7 .00			
Node 7	$\mathbf{T} = 0$			
	V = 15.6		-	
	$V/V_{all} = 15.6/16.7 = .95$		ok	
Node 10	T = 8.75			
	V = 6.5			
	$T/T_{all} + V/V_{all} = 8.75/16.5 +$	-6.5/16.7 = .53 + .39 = .92	ok	
	L/Lail · Y/Yall 0.75/10.5	0.0110.1 .00 .00 = .02	OK OK	

*See the following sheets. Shear will be resisted by shear bars on the bottom of plates.

Check base plate tear out for WBSC7 & 8 which have maximum shear.

18.4 k

0

1"

.

V = 18.4 k

Assume that the minimum distance from the hole to the plate edge is 1.0 in. This is very conservative.

7

 $A_v = 2 \times 1 \times 1 = 2 \text{ in}^2$ $f_v = 18.4/2 = 9.2 \text{ ksi}$ ok

1" thick base plate A36

PROCESS SYSTEMS INTERNATIONAL, INC.	ENGINEERING	NO: V049-1-160
WESTBOROUGH, MA	CALCULATIONS	Rev. No. 0
		Page 15 of 17
PROJECT: LIGO VACUUM EQUIPMENT	PROJECT NO:	V59049
CALCULATION TITLE: Redesign of Equipment Anchorage for Extended Grout Pads		

Check bolt torque for the slip critical connection. Bolt torque for the major components is

T = 375 ft-lb = 4.5 in-k

Get bolt tension, Ft

 $T = .20 D F_t$ (Ref. Shigley Eq. 7-16)

D = 1 in

 $F_t = 4.5/(.20 \times 1) = 22.5 \text{ k}$

Bolt tensile stress, $A_b = .785$ in2

 $f_t = Ft/A_b = 22.5/.785 = 28.7 \cong .50$ Fu $f_t << .50$ Fu for A193 B7, $F_u = 125$ ksi

Get max slip load, Ps (shear), that can be resisted by a single rod.

$$\begin{split} P_s &= mnF_tks \text{ (Ref. NF-3000, p. 79, ASME III).} \\ m &= no. \text{ of shear planes} = 2 \text{ (NF 3324.6)} \\ n &= no. \text{ of bolts} = 1 \\ k_s &= slip \text{ coefficient (Table NF 3324.6(a)} \\ &= .45 \text{ for zinc silicate paint.} \\ P_s &= 2 \text{ x 1 x } 22.5 \text{ x } .45 = 20.3 \text{ k} \end{split}$$

 \therefore A maximum shear force of 20.3 k can be resisted before the bolt slips and the gap closes.

The slip resistance is an upper bound since Shigley's equation may account for some thread lubrication. Also, the precise slip coefficient, ks, is not known but is probably not less than .30. To get a lower bound slip resistance, use .30 for both thread friction and k_s .

 $T = .30 D F_t$ $F_t = 4.5/(.30 x 1) = 15 k$ $f_t = F_t/A_b = 15/.785 = 19.1 ksi$ $P_s = 2 x 1 x 15 x .30 = 9 k$

For HAS super rods increase torque to 400 ft-lb.

 $P_s = 9 \times 400/375 = 9.6 \text{ k min value}$

PROCESS SYSTEMS INTERNATIONAL, INC.	ENGINEERING	NO: V049-1-160	
WESTBOROUGH, MA	CALCULATIONS	Rev. No. 0	
		Page 16 of 17	
PROJECT: LIGO VACUUM EQUIPMENT	PROJECT NO:	V59049	
CALCULATION TITLE: Redesign of Equipment Anchorage for Extended Grout Pads			

Hence, shear add bars to base plates connected to diagonal members at: WBSC7 & 8 WB-6 & 7, mode cleaner tubes WB-2A, 2B, 3 A & 5A WB-9A & 9B Also, chip concrete to expose aggregate at these plates.

Since 400 ft-lb may be too high a torque for HAS standard rods, use 250 ft-lb for these anchors.

 $P_s = 9 \times (250/375) = 6 \text{ k min value} > 5.4 \text{ at WB-1A & 1B}.$ ok

The shear force for WBSC7 & 8 is only slightly lower than P_s ; therefore it is necessary to shear bars to the bottom of the base plates of these units to transfer the shear force to the scarified floor.

Try adding 8"x1" bars to the bottom of each base plate.

PROCESS SVSTEMS		ENCINEEDING	NO. V040 1 160	
WESTR	DROUCH, MA	CALCHIATIONS	NU: YU47-1-100	
		CALCULATIONS	Rev. No. 0 Rega 17 of 17	
PROJECT. LICO V	ACHIM FOIDMENT	PPO IFCT NO.	V50040	
CALCULATION TIT	LE: Redesign of Equipment Ar	charage for Extended Grou	t Pade	
	LEE. Redesign of Equipment AI	Interage for Extended Grou		
		· · · · · ·		
Bearing stress on gr	out			
	$f = F_x/(8 \times 1) = 18.4/8 = 2.3$	ksi << 7 ksi	ok	
TT 1 / 422 (711 - 4 - 1 1				
ITY 1/4 milet weid	f = 19 A/(2 - 2) P = 707 + (1)	4))		
	$I_v = 10.4/(2 \times 0 \times .707 \times (1/2))$ = 6.5 ksi < 21 ksi	4))	ok	
	0.5 KOI > 21 KOI		UN .	
Check maximum she	ear friction between grout and	concrete floor		
Dece alete erre		1 24 40 1 3		
Base plate area	$A = 14 \times 14 = 196 \text{ in } 2 \text{ (min)}$	- doesn't account for beve	led edge of grout	
	pad)			
	$V_{max} = 24 \text{ k}$ (Ref V049-1-0)	24 n 38)		
		- , p. 50)		
	$f_v = 24/196 = .122$ ksi = 122	2 psi		
Check allowable she	ar friction from the ACI code.			
		11.71.4		
	$V_n = A_{vf} x t_y x \mu$ (Ref. ACI	11.7.4)		
	$A_{vf} = arca or min s = 4 x$. f = 60 kgi max < F for A10	$3 \mathbf{R7} (\text{Super rode})$		
	$H = 3.0 \lambda$	o Dr (Super rous)		
	$\lambda = 1.0$			
	$V_{\rm x} = 3.14 \ge 60 \ge 1 = 188k >$	> 74 k		
	VE SATAGOAT TOORS	~ 27 K		
But the concrete mu	st be roughened per ACI 11.7.	9 to amplitude of 1/4 in.		
	-	-		
The maximum shear	friction resistance is			
	$\mathbf{V} = 00 + \mathbf{z}00 + 0$			
	$v_{n max} = .21 c A_c \le 800 A_c lb ($	(Kei. ACI 11.7.5)		
	1 = 4000 psi iof floof A = 12 y 12 = 144 for an all	have plate		
	$m_c = 12 \times 12 = 144$ IOF small $V = 2 \times 4000 \times 144 = 90$	10 se plate		
	$v_{n max} = .2 \times 4000 \times 144 = 80$ = 115 \b \s \2010 \L	JU X 144 - 115200 ID	ok	
	11J K << 24 K		UK	