
LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY
- LIGO -

CALIFORNIA INSTITUTE OF TECHNOLOGY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Document Type LIGO--T000047-03 E- Nov. 2002

e2e primitive module
- Reference Manual -

Biplab Bhawal, Matt Evans,

Malik Rahman and Hiro Yamamoto

Distribution of this draft:

xyz

California Institute of Technology
LIGO Project - MS 51-33

Pasadena CA 91125
Phone (626) 395-2129
Fax (626) 304-9834

E-mail: info@ligo.caltech.edu

LI
G

O
-D

R
AF

T
Massachusetts Institute of Technology

LIGO Project - MS 20B-145
Cambridge, MA 01239
Phone (617) 253-4824
Fax (617) 253-7014

E-mail: info@ligo.mit.edu

WWW: http://www.ligo.caltech.edu/

This is an internal working note
of the LIGO Project..

Table of Contents

Index

file /home/e2e/Software/docs/e2e/e2e_manual/T000047_primitiveRef.fm5 - printed November 1, 2002

LIGO--T000047-01

nd to
fly in
ments
ese

ve the
eads

ed to

ture of
. The
etting

ject-
endent

dual
urce),
inputs

is job

is to
tical

form
arrier
ient of
odes is
ze of
some

output
rtant

tween

rimitive
. Of
and
LI

G
O

-D
R

AF
T

1 WHAT IS THIS DOCUMENT
This document contains the complete and most up-to-date list of primitive modules of the E
End LIGO simulation program. The physics implemented in each module is described brie
this document, and the details of the physics and formulations are given in separate docu
([1], [2], [3], [4]). The common process is to use alfi, a GUI front end of e2e, to combine th
primitives to define a configuration to be simulated using the physics simulation program, sa
configuration in a file (.box is an extension of the file name), and the simulation program r
this file when it runs. In Ch.10, the syntax of this description file is provided in case you ne
deal with the content of the file directly.

2 USING THE PROGRAM - STEP BY STEP

2.1. A quick overview for E2E-user:

For using the end to end simulation programme, it is not necessary to know about the struc
source codes. However, knowledge of a few basic features may turn out to be useful
following discussion assumes that you have already gone through our other document “G
Started with E2E”).

The End-to-End (popularly called E2E) simulation codes have been written with the ob
oriented approach of C++ language. The code is modular. Each component is almost indep
of others.

In order to set up your own experiment, the first step is to properly place your indivi
instruments and components. E2E provides these: e.g., field_gen (alias laser so
sideband_gen or phase_adder (alias phase-modulator), pd_demod (the detector), mirror2 (2
and 2 outputs) or mirror4 (4 inputs and 4 outputs), lens, power_meter etc. You need to do th
of assembling by creating what we call*.box file using our graphical interface, Alfi, or writing
your description file (see document “Getting Started with E2E”). The next obvious step
connect all these components meaningfully together and bring them to life. In an op
experiment, this is done by laser. However, we intellectuals, prefer to call it “field”.

Our field is a class which, at its heart, contains important information about laser light in the
of a vector of a vector: Each element of the parent vector represents a frequency of light (c
or sideband), whereas each element of the offspring vector represents the complex coeffic
the amplitude of laser in a particular mode of Hermite-Gaussian basis. The basis of these m
also carried by the field class itself in the form of its two important private members: waist-si
beam and distance to waist. As will be explained in sec. 2.1 below, this class also carries
important information about how you wish to perform your experiments.

The basic task of each module is to accept some input field and/or data and provide some
field and/or data. These can interact with each other directly or with the help of another impo
module,“prop” , the propagator (if these are exchanging fields and there is a distance be
them).

We also developed some modules which represent composite representations of some p
modules, e.g., “cav_sum”, a Fabry-Perot cavity or “rec_sum”, a recycled Michelson cavity
course, one can form a FP cavity or Michelson cavity using primitive modules of mirrors
page 2 of 55

LIGO--T000047-01

ons of
d, we

d also

the

gnal is
the

l the
ame is
tem

to be
sfer
,
e (e.g.,
ag

ing

for the
iables
asy to
eal
LI
G

O
-D

R
AF

T

props. However, inside these composite modules which are just like black-boxes, calculati
many round-trips are performed with the help of ready-made formulas and thus, if we nee
may use them for fast computation.

In next two subsections we describe all modules, their inputs, outputs, other parameters an
various data types that these modules use.

2.2. modeler and modeler_freq

modeler is an application to simulate the specified system in the time domain.

modeler_freqis an applciation which calculate the transfer function of the specified system in
following way.

The system to be analyzed has one input source and multiple output ports. A sinusoidal si
suplied to the input port, Ain sin(ω t). The program runs until the outputs become stable, i.e.,
amplitudes of the frequency become constant, Ai sin(ω t + φi), for each output. Then the
amplitude of the transfer function is calculated as Ai / Ain and the phase shift to beφi.

If the system is complex, it may take a long time or an unpredictable amount of time unti
outputs become stable. To analyse these systems, create an output port whose n
“ANALYZE_FLAG”. When an outport with this name exists, modeler_freq analyzes the sys
only whenthis output is not zero.

E.g., if one wants to calculate transfer functions of the LIGO system, the analysis needs
done after the field in the cavity is fully built up and is stationary. To calculate these tran
functions, create an output “ANALYZE_FLAG” which is 0 during the lock acquisition process
and set it to non zero when the powers of the two arms are larger than some threshold valu
95% of the full power). Better yet is to wait a little bit to let the field buildup fully before the fl
is turned on.

2.3. Data types and existing modules

Table 1: "Data types" summarizes data types used in the multi-mode version of Adlib, defin

settings for modules and passing data between modules. “type name” is the name used
documentation purpose, while “data type” is the name used in the C++ code. The real var
are refered to using “adlib_real” as the data type as much as possible, so that it would be e
switch to different byte sizes. “adlib_complex” and “field” also use adlib_real for the r
variable. The default is double type.

1

2

“ANALYZE_FLAG”

N

Figure 1: modeler_freq
page 3 of 55

LIGO--T000047-01

iven
LI
G

O
-D

R
AF

T
Table 3: "Primitive Modules" is a table of all primitive modules. The details of modules are g
later. The units of quantities used in these modules are as follows.

Table 1: Data types

type name description example data type

complex zeros and poles of digi-
tal filter

adlib_complex

vector_complex array1d<adlib_complex>

integer number of sidebands of
field

int

vector_integer array1d<int>

real reflectance of mirrors adlib_real

vector_real power or phase of
field_gen

array1d<adlib_real>

field input and output of
optics objects

field

string type specification of
data_in

string

boolean freq_flag of
power_meter

bool

clamp data representing position, rotation, force and
torque. Explicit form is defined in adlib_types.h.
Nth bit of clamp.flag is true if Nth data is meaning-
ful, i.e., if (flag&(1<<N) != 0) meaningful.

mirror position and
rotation, connection
between mechanical
modules.

clamp

bundle collection of data with names. DNToBundle is
used to merge data with name to a bundle, and
DNFromBundle is used to extract data from a bun-
dle by identifying by name

multiple data passed
together between boxes

adlib_bundle

unknown data type assigned to a port whose data type is
determined by other conditions, like the output
port of data_in which is determined by the “type”
setting.

output of data_in N/A

Table 2: Units

Quantity Unit

length m

time second

Power watts

Frequency either Hz or rad/sec. (see module description)

Field watts
page 4 of 55

LIGO--T000047-01

ning is

-

N

d t type

dat
(Se

ger (0),
Filter

da

data

(Se

ps

(Se
 6),
r (not
, max-

m

squ
LI
G

O
-D

R
AF

T

For many modules, the main input and output are named as “0”. When appropriate, the mea
placed in () following the “0”.

Table 3: Primitive Modules

angle radian

k =

boolean (in setting) yes/no or true/false

boolean (logic unit) real value is used to represent true or false status. A value rep
resent true if it is larger than “threshold”, false otherwise.

ame Function in out setting

I/O

ata_in used to get data into the
simulation

none “0” variable type "type" string ("real"), "init" outpu
(???)

a_reader
c. 4.13.)

read data from a file and
generates interpolated or
extrapolated data series.

none “output” vector_real “fileName” string, numData inte
skipLines(0) integer, boolean use
(true)

ta_out used to get data out of the
simulation (a "probe")

"0" variable type none none

_viewer

c. 4.14.)

Interavively view data "0" variable type none none

d_out

c. 4.28.)

accumulate the input,
calculate psd of the input
and write to a file

“0” real
“activate(1)” real

disk file whose name is
the full path of this
primitive

f_from (0.1), f_to (10) real
logSpacing (true) boolean
N_freqs (100), Lowpass_Order (
Highpass_Order (6), SlopePowe
defined), N_TffT (1), N_delT (4)
Counter (100) integer

Real Function

adder implements z = a*x + b*y "a"(1.0) "x"(0.0)
"b"(1.0) "y"(0.0) real

 "0" real none

sine the sine function

out = amplitude x sin(2π t
+ φ)

"0" (time) "amplitude"
"frequency" "phase"
real

 "0" real none

are_root the square root function

out = sqrt(in)

"0" real "0" real none

Table 2: Units

Quantity Unit

2π λ⁄ m
1–
page 5 of 55

LIGO--T000047-01

in

digi
(Se

eal

A
(Se s”

ue)

D
(Se

),
e”

li

d

Inpu ise.

fl

s

har
(Se

 r

 rn

N

LI
G

O
-D

R
AF

T

verse the inverse function

out = 1 / in

"0" real "0" real none

tal_filter
c. 4.17.)

a digital filter

out = digiatl filter (in)

"0" real

“resetOn”

 "0" real "zero" "pole" (in rad/sec.) "gain" r

"zeropair" "polepair" complex

“forceQuad” boolean (false)

“sampelTime”(0) real

DC
c. 4.20.)

Discritize the input with
the specified sampleTIme.

“0” real “0” real “gain”(1), “sampleTime”(0),
“integrationTime”(0) real, “numBit
integer(0), “signedInt” boolean (tr

AC
c. 4.21.)

digitize the input value
using finite number of bits.
A noise model based on bit
flipping is included.

“0” real “0” real “gain” real(1), “numBits” integer(0
“signedInt” boolean (true), “flipTim
real(0)

miter models a circuit with rails

if in < lower, out = lower

if in > upper, out = upper

"0" "upper" "lower"
real

"0" real none

elay add one delay explicily. “0” real “0” real none

Logic functions
t "val" is evaluated to be true if val > threshold, otherwise false. Output is true_val if the result is logical true, false_val otherw

and logical AND "a","b" real "0" real "threshold" (0.9), "true_val" (5),
"false_val" (0.0) real

or logical OR "a","b" real "0" real same as above

xor exclusive OR “a”,”b” real “0” real same as above

a>b comparison "a","b" real "0" real same as above

not negation "0" real "0" real same as above

ipflop flipflop
if (reset) state = false; else
{ if(set) state=true;}

“set”, “reset” real “0” real same as above
initial state is false

witch if the input value “bool” is
true, the input value “high”
is returned as the output,
else the input value “low”
is returned.

"bool" "low" "high"
real

"0" real same as above

dSwitch
c. 4.26.)

Connect one of the inputs
to the output based on the
switch (ON if non-zero)

“ONinput”,
“OFFinput” unknown

“out” unknonwn switch(1) real

Data Generation

nd_flat generates random numbers
with a flat distribution

"range" real "0" real none

d_norm generates random numbers
with a normal distribution

"width" real "0" real none

ame Function in out setting
page 6 of 55

LIGO--T000047-01

c

la

field2
(Se

fie

com

com

cla

xyz

re

Clam

(Se

ing)

e output

N

LI
G

O
-D

R
AF

T

lock generates the time none "0" real none

Unit Conversion

m2k converts wavelength to
wavenumber

out = 2π / in

"0" real "0" real none

f2k converts frequency to
wavenumber

out = 2π in / c

"0" real "0" real none

Type Conversion

complex
c. 4.11.)

converts a field to a
complex number

"0" field, "dk" real,
“m”, “n” integer

"0" complex none

ld2info gives info about the field “0” field “spot_size” real none

plex2reim converts a complex number
to real and imaginary

real = Re(in * exp(i phi))

imag = Im(in * exp(i phi))

"0" complex, "phi" real "real" "imag" real none

plex2aphi converts a complex number
to amplitude and phase

amp = abs(in * exp(i phi))

phi = Arg(in * exp(i phi))

"0" complex "amp" "phi" real none

mp2xyz convert clamp to indiviual
components and flag

“0” clamp “X”,’Y”,”Z”,”thetaX”,
“thetaY”, “thetaZ”,
“FX”,. “FY”, “FZ”,
“torqueX”, “torqueY”,
“torqueZ” real

“flag” integer

none

2clamp Combine individual data to
make a clamp data. flag is
automatically calculated
based on the link.

“X”,...,”thetaX”,... real “0” clamp none

al2vec Convert a real value to a
vector of real with one data

out = in,just type changes

“0” real “0” vector_real none

pToBun-
dle
c. 4.27.)

Convert clamp data into a
bundle

“in” clamp “out” bundle “nameNN” where NN=00~12 (str

default values are the same as th
names of clamp2xyz.

Field Operation

ame Function in out setting
page 7 of 55

LIGO--T000047-01

fie
(Se (0.01),

ist_Y”
er(1),

ool(no)

side
(Se

sideb

fld_m
(Se

freq
(Se

pow
(Se

, “m”,
ger ,

beam
(Se

bea
(Se

pd
(Se

teger

(Se

m
(Se

N

LI
G

O
-D

R
AF

T

ld_gen
c. 4.1.)

 generates a field "power" vector_real,
"phase" real (0.0)

"0" field "lambda" real (1.064e-6),
“waist_size_X”, waist_size_Y real
“distance_waist_X”, “distance_wa
real(0.0), “max_mode_order” integ
“polarization” integer(1),
“compute_option” integer(1) ,
“angle_resolution” real(1e-8) ,
“compute_mismatch_curvature” b

band_gen
c. 4.15.)

phase and amplitude
modulates a field (uses
sideband approximation)

"0" field,

"k_mod", "gamma",
“gammaAmp” real

"0" field “order” integer

and_filter passes only sidebands with
dk value less than or equal
to dk_max

"0" field,

"dk_max" real

"0" field

odulator
c. 4.19.)

modulatephase&litude
of a field directly

out = in * (1+del_amp) *
exp(i*phi)

 "0" field,

"phi" , “del_amp” real

"0" field none

_shifter
c. 4.18.)

shift frequencies of all
subfields by del_k

“0” field

“del_k” real

“0” field none

er_meter
c. 4.2.)

outputs the power of a field "0" field,
“dk_for_power” real,

 "0" real “freq_flag” boolean; “meter_flag”
“n”, “order_min”, “order_max” inte

_wiggler
c. 4.6.)

deviation of the beam at
small angles

"0" field, “thetaX”,
“thetaY” real,

“0” field none

m-shifter
c. 4.7.)

small transversal shift of
the beam

“0” field, “dx”, “dy”
real

“0” field none

_demod
c. 4.16.)

photo diode with shot noise
and demodulator.

 "0" field, "k_demod"
real

"demod" complex,
"power" real

“shape” integer (0), “shotnoise” in
(0), “efficiency” (1.0)

Optics

prop

c. 4.3.)

propagates a field over a
macroscopic distance

"0" field "0" field "length" real (1.0)

"dphi" real (0.0)

“KeepGuoyOffset” bool (no),
“dphiGuoy” real(0.0);

“have_delay” bool (yes)

irror2
c. 4.4.)

a 2-input 2-output mirror
(cavity end mirror)

"mech_data” clamp;

"Ain" "Bin" field

"Aout" "Bout" field "r" "t" "R" "T" "L" real (2.0),

"angle"real(0.0), “radius_front”,
“radius_back” real (1e20) ,
“refractive_index(1.0) real

ame Function in out setting
page 8 of 55

LIGO--T000047-01

tel
(Se

X”,

rt
ary part
or).

ess of

cav

(Se

)

,

,

),
exB”

tric
(s

mall”

,

,

exC”

N

LI
G

O
-D

R
AF

T

escope
c. 4.12.)

Simulate a collection of
lenses

“in” field

“length” real

“out” field “waist_X”, “waist_Y”, “dist2waist_
“dist2waist_Y”,“guoy00_X”,
“guoy00_Y” real

“lensInfo” vector_complex (real pa
keeps the location and the imagin
keeps the focal length of one mirr

“thicknessInfo” vector_real (thickn
each lens)

“calc_sb_phase” bool (true)

Summation Optics:

_sum [b]

c. 4.8.)

represents a FP cavity “mech_dataA”,
“mech_dataB”, clamp;

"Ain" "Bin" field,

"Aout" "Bout" "Apick"
field

"length" real (1.0), "dphi" real (0.0

"dirA" real (1.0), "dirB" real (1.0)

“KeepGuoyOffset” bool (no),
“dphiGuoy” real(0.0);

"rA" "tA" "RA" "TA" "LA" real (2.0)

"rB" "tB" "RB" "TB" "LB" real (2.0)

"rC" "tC" "RC" "TC" "LC" real (2.0
“refractive_indexA”, “refractive_ind
real (1.0), “radius_frontA”,
“radius_frontB”,real(1e15),
“radius_backA”, “radius_backB”,
real(1e15).

av_sum
ec.2.9)

represents an isosceles tri-
angular cavity

“mech_dataA”,
“mech_dataB”,
“mech_dataC” clamp;
“Ain” field,

“Aout”, “Bout”, “Cout”
 field

“length_large” real(1.0), “length_s
real (0.01), “dphiAB”, “dphiBC”,
“dphiCA” real (0.0);

“KeepGuoyOffset” bool (no),
“dphiGuoyAB”, “dphiGuoyBC”,
“dphiGuoyCA” real(0.0);

“rA” “tA” “RA” “TA” “LA” real (2.0),

“rB” “tB” “RB” “TB” “LB” real (2.0)

“rC” “tC” “RC” “TC” “LC” real (2.0)
“radius_frontC” , real(1e15),
“refractive_indexA”,
“refractive_indexB”, “refractive_ind
real (1.0),

ame Function in out setting
page 9 of 55

LIGO--T000047-01

rec

(Se

l (1.0),

),

,

,

),

),

dexD”

sus

(Se

.

V

VecS

VecV

Vec

N

LI
G

O
-D

R
AF

T

_sum [c]

c. 4.9.)

represents a recycled
MIFO

“mech_dataA”,
“mech_dataB”,
“mech_dataC”,
“mech_dataD”
clamp;

"Ain" "Bin" "Cin"
"Din" field

"Aout" "Bout" "Cout"
"Dout"
"Bpick" "Cpick"
"Dpick"
 field

"lengthA","lengthB","lengthC" rea

"dphiA","dphiB","dphiC" real (0.0)

“KeepGuoyOffset” bool (no),
“dphiGuoyA”, “dphiGuoyB”,
“dphiGuoyC” real(0.0);

"dirA","dirB","dirC","dirD" real (1.0

"rA" "tA" "RA" "TA" "LA" real (2.0)

"rB" "tB" "RB" "TB" "LB" real (2.0)

"rC" "tC" "RC" "TC" "LC" real (2.0

"rD" "tD" "RD" "TD" "LD" real (2.0
“refractive_indexA”,
“refractive_indexB”,
“refractive_indexC”, “refractive_in
real(1.0), “radius_frontA”,
“radius_frontB”, “radius_frontC”,
“radius_frontD”, real(1e15),
“radius_backA”, “radius_backB”,
“radius_backC”, “radius_backD”,
real(1e15).

mechanics

p3Dmass

c. 4.22.)

Simple suspended 3D
mass.

“suspPt”, “force”
clamp

“massPos” clamp Data type of all settings are real

“Thickness” (0.10),
“d_yaw” (0.0333),
“d_attach” (0.25506),
“d_pendulum” (0.450),
“d_CM” (0.0014),
“d_pitch” (0.0082),
“Mass” (10.30),
“QvalInvZ” (1e-4),
“QvalInvPITCH” (1e-4),
“QvalInvYAW” (1e-4),
“InitPosZ” (0),
“InitPosPITCH” (0),
“InitPosYAW” (0),
“InitVelZ” (0),
“InitVelPITCH” (0),
“InitVelYAW” (0)

Vector operations (Sec. 4.23.)

ecLen the size of vector “Vin” vector_real "length" real none

caMerge Append (up to 16) scalars
to the input vector to make
a larger vector

“Vin” vector_real,
“scalar00” ~ “scalar15”
real

“Vout” vector_real “scalarDataSize” integer (-1)

ecMerge Merge 2 vectors into one "V0in", “V1in”
vector_real

"Vout" vector_real none

Segment Extract part of the input
vector. Vout[0...length-1] =
Vin[base ... base+length-1]

"Vin" vector_real,
“base”, “length”
integer

"Vout" vector_real none

ame Function in out setting
page 10 of 55

LIGO--T000047-01

Ve

VecM

Ve

Ve

Cla

M

Mat

Axis

(Se

 “theta”

.

FU
FU
FU
FU

FUN

FUN

FUN

merg

D4T

D8T

e03 ...

 input
)

N

LI
G

O
-D

R
AF

T

cElem Return one element of a
vector, val = Vin[index]

“Vin” vector_real,
“index” integer

“val” real none

anyElems Extracts up to 16 elements
of the input vector to scalar
outputs,
s00=Vin[0]...s15=Vin[15]

“Vin” vector_real “scalar00” ~ “scalar15”
real

none

cSubs Substitute a value into one
element of the input vector

Vout=Vin, Vout[index]=val

“Vin” vector_real,
“index” integer, “val”
real

“Vout” vector_real none

cAdd a*V0in + b*V1in “V0in”, “V1in”
vector_real, “a”, “b”,
real

“Vout” none

mpAdd a*clamp0 + b*clamp1 “clamp0”, “clamp1”
clamp, “a”, “b” real

“clampOut” none

atInv Mout = 1 / Min, if fails,
status is set to 0. M[i,j] is
(i*column size+j)th in
vector M.

“Min” vector_real “Mout” vector_real,

“status” real

none

VecProd Vout = Min * Vin. size of
Min should be size of Vout
x size of Vin. Min[i,j] is
(i*Vin size + j)th in vector
Min.

“Vin”, “Min”
vector_real

“Vout” vector_real none

Rotation

c. 4.24.)

Rotate the coordiante axis
and calculate the vector in
the new axis.

“inClamp” clamp “outClamp” clamp Three Eularian angles, “phi” (0),
(0) and “psi” (0)real

Generic Functions (Sec. 4.23.)
If other combination of inputs and outputs are necessary, please let the developer know (e.g., 2 vectors and 2 scalars)

NC_1x1
NC_2x2
NC_4x4
NC_8x8
C_16x16

n real input to n real output “in0”, “in1”, ... real “out0”, “out1”,... real “Equations” string

C_VxV

C_2VxV

n vector_real input to n
vector_real output

“inVec0” ... vector_real “outVec0” ...
vector_real

“Equations” string

“outputVectorSize_0” integer

bundle (Sec. 4.27.)

eBundles merge two bundles to one “in0”, “in1” bundle “out” bundle

oBundle

oBundle

merge up to 4 (8)data to a
bundle

“inBundle” bundle

“in00”, “in01”, “in02”,
“in03” unknown

“out” bundle name00, name01, name02, nam

(these should be set to name the
data, otherwise triggered as error

ame Function in out setting
page 11 of 55

LIGO--T000047-01

) from
ses.

is the
al data
irror

put

D4Fr

D8Fr

03 ...

e data to
ror)

VecT

ng)
)

Bun

ng)
)

N

LI
G

O
-D

R
AF

T

3 CONVENTION
The curvature of a optics surface is positive (negative) if the surface looks concave (convex
outside the optics element. Focal length is positive (negative) for converging (diverging) len

Throughout this document X and Y represent horizontal, and vertical axis respectively. Z
direction of beam-propagation in an unperturbed state of the optical set-up. The mechanic
(longitudinal position z, transverse shifts dx and dy, pitch and yaw) are attributed to a m
(mirror2 or any mirror in a summation cavity) through a port called “mech_data” whose
data_type is “clamp”. The following subsection describes the module which should be used to
mechanical data to mirror(s).

3.1. “xyz2clamp” module:

Inputs of this module (available under item
“type_converters” in the pop-up menu of Alfi) arez, x,
y, theta_x(pitch), theta_y(yaw), theta_z(roll) and its
output can be connected to “mech_data” port(s) of
optics modules. All these quantities are defined in a
right-handed coordinate system.

“z” : small longitudinal displacement of mirror. The
sign is positive if the displacement is in the direction
of normal to the coated surface.

“y” & “ x” : displacements in transverse directions, y
in vertical and x in horizontal direction.

“pitch” or “yaw” : “pitch” is rotation around the
horizontal axis,x, and “yaw” is rotation about the
vertical axis, y. Consider the normal to the front
(coated) surface of a perfectly aligned mirror. This is

omBundle

omBundle

extract up to 4 (8) data
from a bundle

“in” bundle “out00”, “out01”,
“out02”, “out03”
unknown

name00, name01, name02, name

(these should be set to specify th
extract, otherwise triggered as er

oBundle Add vector to another
bundle

“inBundle” bundle,
“inVector” vector

“out” bundle “offset” (0) integer

“nameNN” NN=00~15 (empty stri
string (see Sec. 4.27. for edetails

dleToVec Add or replace the input
vector component by a
bundle component

“inVector” vector,
“inBundle” bundle

“out” vector “offset” (0) integer

“nameNN” NN=00~15 (empty stri
string (see Sec. 4.27. for edetails

ame Function in out setting

z
x

y

pitch

yaw

Figure 2: Definion of axis and angle

roll
page 12 of 55

LIGO--T000047-01

itive
n)

f each
ct to
LI
G

O
-D

R
AF

T

the z-axis. Now you know the positive x-axis and y-axis in a right-handed frame. The pos
values of “pitch”, “yaw” and “roll” are rotation of mirror in clockwise (right-handed conventio
directions around positive x, y and z axes respectively.

3.2. Definition of length between optics

3.2.1. General arguments

The lengths between mirrors are very
important for the simulation of optics sys-
tems.

As is shown in Figure 3, the distance
between the two mirrors, m1 and m2, are
functions of 6 quantities, length, dphi, z1(t),
theta1, z2(t) and theta2. The meanings of
each parameter and an explicit formula are
given in the following subsections. For each
mirror, there is a reference plane, shown by
dashed lines in Figure 3, which is time
independent. The length between mirrors is
calculated using a time independent length between reference planes of mirrors, L12 (calculated
using “length” and “dphi” defined in primitive “propagator” and in various summation cavity
primitives, like “rec_sum”) and time dependent mirror positions, zi(t), which are inputs to various
optics primitives.

E.g., a Fabry-Peroit cavity is constructed by
two mirrors with two progapators connect-
ing these two mirrors, as is shown in Figure
4.

The static distance, L12, is defined in the
two propagators, and the mirror displace-
ment, zi(t), with respect to the reference
plane, is given as a dynamic input to each
mirror as the mirror motion. The distance
between two mirrors at time t is calculated
by

(1)

The mirror displacements are subtracted because of the z axis convention, i.e., z axis o
mirror is pointing outward from the coated surface. When mirrors are displaced with respe
their respective reference plane as is shown in Figure 4, z1 and z2 are both positive in this
convention, and the length between the two mirrors are shorter than L12 by z1+z2.

z1(t)

m1 m2

z2(t)

Figure 3: Definition of length

z axis

theta1

(length,dphi)

theta2

mirror 2

Figure 4: Fabry-Peroit cavity

z1(t) z2(t)

propagator 12

propagator 21

L12

mirror 1

L t() L12 z1 t()– z2 t()–=
page 13 of 55

LIGO--T000047-01

nly
ically

avity.

mount:

t in a

r,

by
to
wave

tity
the
e

rough
LI
G

O
-D

R
AF

T

The choice of the static distance, L12 and the reference planes of the mirrors, is not unique. O
the summation of the static distance and mirror displacements, i.e., Eq. (1), is phys
meaningful. Proper choice of a static distance makes the simulation setup easy. If L12 is set to be
the cavity resonance length, the mirror displacements can be set to 0 to setup a resonant c

3.2.2. Time independent length between reference frames - scalar field

When a scalar field propagates through a distance L, the phase changes by the following a

(2)

(3)

where is the wavelength of the field and N is an integer closest to L/ . A field is resonan
FP cavity whenδφ = 0 orπ, and is anti resonant whenδφ = π/2.

In e2e, the wavelength of a field,λ, is defined using a reference wavelength,λ0, and the offset dk
as follows:

(4)

λ0 is defined infield_genprimitive which is the source of a field. Usually, dk = 0 for the carrie
but a nonzero value can be assigned by usingfreq_shifter. For a sideband with the modulation
wavelengthλMOD=c/fMOD, dk = 2π/λMOD.

In e2e, the inter-optics length is specified by a pair of values,lengthanddphi. length is used to
give the macroscopic length, anddphi is used to specify . In other words,dphi defines the
deviation of the cavity length from the resonant status,φresonance = 2 Nπ.

If the numerical value oflength is used literally to calculate the phase change of the field
, the numerical value oflengthneeds to be specified with more than 13 digits

specify a 4km cavity to be resonant, after identifying the exact numerical number of the
length used in the simulation. With the e2e convention, the cavity is resonant whendphi = 0 or is
anti resonant whendphi = , for any value oflength.

All physics quantities can be calculated with enough accuracy using the macroscopic quan
lengthand the microscopic adjustmentdphi. E.g., the phase change of the sideband relative to
carrier field is calculated bylength/”wave length of RF modulation” (~10m) and the Guoy phas
by length / “Raleigh range” (~1km).

3.2.3. Time independent length between reference frames - multi mode field

The (m,n) component of a Gaussian beam acquires the following phase when propagating th
a distance of L (Ref.[3]),

φscalar 2πL
λ
---– 2πN– δϕ+==

δϕ 2π L
λ
--- N–

 –≡

λ λ

2π
λ

------ 2π
λ0
------ dk+=

δϕ

2π length λ⁄⋅

π 2⁄
page 14 of 55

LIGO--T000047-01

field

on the
r

on,

ssing

ode
of the
ulated

t sise

ters.
ed here.
LI

G
O

-D
R

AF
T

(5)

where is the Guoy phase acquired by the TEM00 mode through this propagation. For a

which is the TEM00 eigenstate of a FP cavity of length L with mirror curvatures of R1 and R2, the
Guoy phase change propagating through the cavity is given by the following equation.

(6)

The phase change of the (0,0) mode can be rewritten in the following way.

(7)

(8)

(9)

which is a generalization of Eq.(2) and (3). Here, is the Guoy phase change dependent
field quantity and is a constant setting nameddphiGuoy, in the propagator and othe
summation cavity modules. When a boolean flagKeepGuoyOffsetis false, which is the default,
dphiGuoy setting is neglected and is set to be .

Just in the same way discussed for the scalar field, the cavity distance are specified bylength and
dphi (Eq.(8)), and the phase of the (m,n) mode with dk offset (see Eq.(4)) is calculate by

(10)

WhenKeepGuoyOffsetis false, =0, and, it is easy to setup a cavity where TEM00 carrier
(m=n=dk=0) component of the incoming field is a well defined state. But, with this conventi

the length of the cavity implied bydphi = 0 changes as the mode base1 of the field changes. The
size of the change of the length is very small, but this change can be important when discu
locking.

A good example is the thermal lensing effect of the input test mass.2 Imagine a case that a TEM00
field with a given mode base is going into a FP cavity. The field in the cavity has a different m
base than the input field due to the input test mass. Another way to say is that the curvature
field changes when the field goes through a lens. This change of base is automatically calc

1. A Hermite-Gauusian field is characterizewd by two independent parameters (see [3]). In e2e, the wais
and position are chosen to define the base of the mode, as can be found when specifying the field infield_gen
primitive. In the following discussions, “change of the mode base” means the change of these parame

2. Only the lensing effect due to the radius dependent refractive index change of the substrate is discuss

φ 2πL
λ
---– m n 1+ +()η00+ 2πL

λ
---– η00+

 m n+()η00+= =

η00

η00
FP

1 L
R1
------–

 1 L
R2
------–

 acos=

φ00 2πL
λ
---– η00 2πN– δϕ δη+ +=+=

δϕ 2π L
λ
--- N–

 – η00+≡

δη η00 η00–≡

η00
η00

η00 η00

φ m n dk, ,() 2πN– m n+()η00 δη dk length dphi+⋅+ + +=

δη
page 15 of 55

LIGO--T000047-01

effect

carrier

ue
s of
se

res-
d the

h
essary

be
urce

ut test
LI
G

O
-D

R
AF

T

by e2e using the refractive index of the mirror. As the input test mass is heated up, this lens

changes, and accordingly the mode base of the field into the cavity changes.3

This effect can change the mode base in the cavity large enough that the value ofη00 can change
to cause measurable effect. If the cavity length is defined withKeepGuoyOffsetfalse anddphi= 0
(or any constant), this effect is not simulated, because the change of the Guoy phase of the
is automatically compensated by the change of length.

In order to simulation this kind of effect,KeepGuoyOffset needs to be set to true, and some val
is to be assigned todphiGuoy, and the same setting should be used to simulate different state
interest, like cold and hot states of the input test mass. For a FP cavity, using the Guoy pha
change determined by a cavity geometry, Eq.(6), for a cold state, will be a good choice.

Since the choice ofdphiGuoyis arbitrary, the use of this setting leaves the chore of finding the
onance point of a cavity to the user. This is usually acomplished with a control loop and, an
ability to observe of the action of this loops is likely the motivation for settingKeepGuoyOffsetto
true.

3.2.4. Time dependent mirror displacements

The mirror position, which can be time
dependent, is defined to be the relative
distance between the mirror surface and
the mirror reference plane, using the per-
pendicular direction pointing outward
from the coated side (shown by a gray
box in Figure 3) of the substrate as the
axis. So in Figure 3, z1 is negative while
z2 is positive. The effect of the mirror dis-
placement, z1 and z2, are taken into
account by the change of the phase. As is
shown in Figure 5, the net change of the
path length is , and the phase
change due to this difference is added to the reflected field.

4 PRIMITIVE MODULES
In summation modules (cav_sum, rec_sum, tricav_sum), there are some restrictions whic
should be noted carefully. We decided to keep these restrictions in order to avoid unnec
options which are not really utilized in LIGO-related applications that we know of. It should
noted that any or all of these restrictions can be lifted by a quick modification of our so
programme; In case you need such modifications, please contact us.

3. The thermal lensing effect can be simulated in a crude way by changing the refractive index of the inp
mass.

z
d1 d2

θ

Figure 5: Phase change due to displacement

d1 z
θcos

------------=

d2 d1 2θcos⋅=

2z θcos⋅
page 16 of 55

LIGO--T000047-01

bout
. A
ese
r the
ingly

two

es
static
ative
sions).
ules
zero
odes

i-
n, is
ans
of

pitch
lue of

ges in
ptable)

e
d the
o, the
vature
e first
atch

all.

llow
er “0”
) or
LI
G

O
-D

R
AF

T

4.1. field_gen:

This is basically our laser source but it also carries some important additional information a
how you wish your simulation to be done. Optical simulation without light means nothing
mirror or a cavity is alive only when it receives light. That’s why we decided to put th
additional information inside this module. The field carries these additional information (o
user-specified instructions) everywhere it goes and simulation is performed accord
everywhere in a consistent way. So we explain below the parameters of this module in
categories:

4.1.1. simulation information:

“max_mode_order”: represents the maximum order (m+n of TEM) up to which the user wish
to perform the computation. As explained above, once specified, this remains to be a
constant throughout the simulation. If you set “max_mode_order = -1” or any other neg
integer, all modules perform operations assuming light as plane wave (no transverse dimen
Setting “max_mode_order” to zero or other positive integer (up to 3) makes all the mod
perform Gaussian beam calculations using multi-mode computational environment; The
setting corresponds to just TEM00 mode. Note that the current implementation can study m
up to order m+n = 3, which is sufficient for most of our application purposes.

“compute_option” : allows the user to select one of the computational methods for the mult
mode calculations. Currently, only one option, 1, the standard modal-model computatio
available. NOTE: if you set “max_mode_order” to any negative integer, which effectively me
that you wish to perform ordinary single-mode operations, obviously, the setting
“compute_option” will not have any significance and will be ignored.

“angle_resolution” : Matrices that are used to study higher order modes generated due to
and yaw are updated only if these quantities (in radian) get changed by at least the set-va
this parameter. Thus, this avoids expensive matrix re-calculations even for negligible chan
alignment angles. Choice of a higher value leads to relatively less (not necessarily unacce
accuracy but faster simulation, and vice versa.

“compute_mismatch_curvature”: This is a boolean flag. If you wish to compute for th
generation of higher order spatial modes due to mismatch in radii of curvature of mirrors an
corresponding phase-fronts, you need to set it to either true or yes. If you set it to false or n
simulation assumes that the phase-front at any mirror exactly matches with the radius of cur
of the corresponding mirror. This has many advantages. For example, when you are at th
stage of designing some configuration, you may not be interested in detailed mism
calculations. Caution: before setting it to no or false, be sure that mismatches are really sm

4.1.2. field information:

“lambda” : laser wave-length.

“polarization” : At present E2E supports field in only one polarization state and does not a
their simultaneous presence (This status will be changed shortly). Set this parameter to eith
(zero) if the field has p-polarization (in the plane of incidence - XZ plane in E2E’s convention
to “1” if the field has s-polarization (perpendicular to the plane of incidence - YZ plane).
page 17 of 55

LIGO--T000047-01

at

et

ers in
rrent
our

= 1.0,
you
red. If
zero.

and
OTE:

cy
r
etting

t to

ase,
g
ing

and, if

Set

in
d as

wave
LI
G

O
-D

R
AF

T

“waist_size_X”, “waist_size_Y” : laser beam waist radii : Radial distance in X or Y direction
which the electric field drops to 1/e times the maximum value (at the center).

“distance_waist_X”, “distance_waist_Y” : Distance in z-direction to beam’s waist: To be s
negative (positive) for a converging (diverging) beam.

“power” and“phase”: These in various modes need to be specified as an array of real numb
the following order of TEM_xy basis: 00, 10, 01, 20, 11, 02, 30, 21, 12, 03. Note that the cu
implementation can study modes up to order m+n = 3, which is sufficient for most of
application purposes. If it is really necessary, we’ll incorporate m+n > 3 modes in future.

Some examples: if you set max_mode_order = -1 or 0 (single-mode simulation) and power
0.2, 0.1, only TEM00 power will be set to 1.0; the last two values in the array are ignored. If
set max_mode_order = 1 and power = 1.0, 0.2, 0.1, 0.01, the last value in the array is igno
you set max_mode_order = 1 and power = 1.0, 0.2, the TEM01 power is automatically set to

4.2. power_meter:

“dk_for_power”: Difference between the frequency for which you intend to measure power
the carrier frequency. If you set it to zero, that means you intend to measure carrier power. N
you must set“freq_flag” to yes in order to use this parameter.

“freq_flag” : if you set it to “yes”, the “power_meter” module calculates power in frequen
corresponding to the set value of“dk_for_power” . If you set the same to “no”, it sums up powe
in all frequencies. In both cases, it sums up power in only those modes selected by you by s
“meter_flag”.

“meter_flag” : Setting “meter_flag” to zero, you get summed-up power in all modes. If it is se
1, power_meter sums up power in all modes in between m+n =“order_min” to m+n =
“order_max” ; The settings of“m” and “n” , if you make any, will be neglected. When
“meter_flag” is set to 2, the power_meter gives the power only in mode TEM_mn; In this c
the settings of“order_min” or “order_max” , if any, are neglected. If you are doing somethin
inconsistent (e.g., “order_min” is greater than “order_max”, etc.), you’ll receive warn
messages right at the start of your run of modeler or modeler_freq. So, watch out for those
needed, stop running and change the settings.

An easy question: How to get total power in all frequencies and in all modes? Answer:
“freq_flag” to no and “meter_flag” to 0.

4.3. prop (the propagator):

“length” and “dphi” : In the plane wave case (when you select “max_mode_order” = -1
“field_gen” module of your .box file) , the total length of any propagation path is calculate
follows:

(11)

In the equation, N[x] means the closest integer to x, andλ is the carrier wavelength. When
longitudinal phase offset, dphi = 0, the propagation path length is an integer times the
length.

L0 N
length

λ
---------------- dphi

2π
-----------+

 λ⋅=
page 18 of 55

LIGO--T000047-01

t one
on is
hen
time
se of
extra

e (

rface.
ce is
eam

ing
value
tive

r by a
the

ks
nd
LI
G

O
-D

R
AF

T

“KeepGuoyOffset” and “dphiGuoy” : See Section 3.2.3.

“have_delay” : When “have_delay” is true, prop behaves as a module with delay, i.e., at leas
time step delay is introduced, even if the length is 0. So, maximum time-step of simulati
determined by maximum value of “length” parameters of all the props involved. However, W
“have_delay” is false, prop calculates the output by multiplying proper phases without any
delay. This is intended to simulate a very short cavity and field paths outside of a resonator. U
this latter modus-operandi may speed up the simulation speed without introducing any
inaccuracy.

4.4. mirror2:

Side A (B) referes to the side which is coated (uncoated). E.g., Ain means an input field coming
into the coated side.

Any two of the R, T, L (power reflectance, transmittance and loss),r, t, l (amplitude) can be
specified for a mirror.

“radius_front”, “radius_back”: Radius of curvature of the coated surface. To be set positiv
negative) if the coated surface looks concave (convex) from outside the mirror.
“refractive_index”: refractive index of substrate

“angle” : The angle between the incident or reflected beam and the normal to the mirror su
When “angle” = 0, the mode-matching between the input beams and the mirror surfa
assumed; Any small difference between “radius_front” and the radius of wavefront of the b
is then computed in a perturbative way (provided you keep“compute_mismatch_curvature” to
yes or true in“field_gen”). However, when “angle” is not zero, the mirror is treated as a turn
one. Incoming and reflected beams are related by ABCD transformation which uses the
assigned to “radius_front”. Effects of mirror rotation (pitch, yaw) are calculated in a perturba
way.

“mech_data”: see section 3 "Convention"

4.5. lens:

Module removed. Use telescope instead.

This module may be used to effect the change of basis of beam TEM modes by a lens o
mirror with lensing action. To use it for studying the lensing effect of a mirror, please refer to
first paragraph of section 2.4 on mirror2.

“radius_front” and “radius_back” : T o be set positive (negative) if the lens surface loo
concave (convex) from outside the lens. “radius_front” is on the side of “in” field a
“radius_back” is on the side of “out” field.
page 19 of 55

LIGO--T000047-01

by
n figure,

d/or
eam
ion in
in this
rtant

s not
-step
may

unt
LI
G

O
-D

R
AF

T

4.6. beam-wiggler:

This can rotate the beam around horizontal “x” axis (“thetaX”) or vertical “y” axis (“thetaY”)
small angles (as compared to the divergence angle of the beam). For example, as shown i

if the ‘beam-wiggler’ module is put on a beam path and appropriate values of “thetaX” an
“thetaY” are set to it, the beam direction will rotate by the specified angles. If the b
propagates some finite distance after that, we can see that its maximum power posit
transverse direction moves some finite distance from the center. One should note that
particular case, while propagating, the effect of the addition of gouy phase is the only impo
one for the angular deviation of the beam to happen. The time-delay of propagation i
important. So, if one is using this set-up with some other cavity, one may like to set the time
appropriate for the cavity without bothering about the time-delay for this propagation. One
do this by using either the “prop” module with “have_delay” off or using “telescope”.

4.7. beam-shifter:

This can shift the beam in transverse “x” (horizontal) or “y” (vertical) directions by small amo
(as compared to beam waist size).

Beam
wiggler

Laser

Propagation

Z

X

∆ x
page 20 of 55

LIGO--T000047-01

r
out

rence

and
e, it

t can
s and

ty. To
, set

lson
s in
e

get to
LI
G

O
-D

R
AF

T

4.8. cav_sum:

This is used for fast simulation of a Fabry-Perot cavity.There is one
restriction in this module:The first light should enter the cavity
through mirror A.

The coated sides of mirrors, by default, are inside the cavity. In case
you need to orient one or both of them otherwise, set“dirA” and/or
“dirB” to (-1).

Lensing effects of the component mirrors have been included in
calculations. So, do not forget to
set“refractive_index” , “radius_front” and“radius_back” of mirrors A and B.

Give mechanical data of the mirrors through “mech_dataA” and “mech_dataB” ports (see
section 3 "Convention").

“dphi” is longitudinal phase offset. One may use another phase offset“dphiGuoy” after setting
the boolean flag“KeepGuoyOffset” to true or yes. The offset “dphiGuoy” is useful fo
comparing, say, simulation runs with various levels of mode matching in a cavity to find
absolute values of changes in mirror positions in these runs by setting “dphiGuoy” to a refe
value (See Section 3.2. and Section 4.3. for detailed explanation).

4.9. rec_sum:

This represents the recycling cavity of LIGO interferometer or
just a power-recycled Michelson interferometer.There is one
restriction in this module:The first light should enter the cavity
through mirror A.

This has been developed in order to perform fast simulation of
the whole LIGO interferometer. In a LIGO configuration made
with primitive mirrors and propagators, the maximum value of
time-step of simulation is limited by the smallest value of one of
the lengths (in this case, one of the lengths inside the recycling
cavity). This module enables one to make a LIGO configuration
where “rec_cav” sits in the middle and gets joined by the props to the primitive end mirrors
allows a time-step whose maximum value is limited by the lengths of arm cavities. Of cours
can, on its own, produce simulation results for a Michelson interferometer in a fast way. I
also be used to study dual-recycled michelson interferometer by having non-delay prop
primitive signal recycling mirror at its dark port.

By default, the coated sides of all the mirrors are inside the power-recycled Michelson Cavi
simulate with one or more than one coated sides turned to outside this configuration
corresponding “dir_” variable to (-1). For example, in order to study a power-recycled Miche
cavity, most probably what you would like to simulate is just the default orientation of mirror
“rec_sum”. However, if you wish to study full LIGO configuration using “rec_sum” for th
recycling cavity, you need to setdirB anddirC to (-1).

Lensing effects of the component mirrors have been included in calculations. So, donot for
set“refractive_index” , “radius_front” and“radius_back” of each mirror.

BA

virtual pickoff (C,Apick)

BA

D

C

page 21 of 55

LIGO--T000047-01

rs to
or is

re
to

ffsets

with
es in
n 3.2.

dal
ox
o set
s-

e
find
to a

, is a
d by
LI

G
O

-D
R

AF
T

Give mechanical data of the mirrors through “mech_dataA”, “ mech_dataB”, ports (see
section 3 "Convention"). Remember: the longitudinal position, z, of the beam-splitter refe
shift along the normal to its coated surface, just like in any other mirror (and the fact
taken care of by the code).

The output fieldsApick , Bpick, Cpick refer to internal fields at corresponding mirrors and a
directed at the beam-splitter. The fieldDpick is the field at the beam-splitter and is directed
mirror B.

“dphi”s are longitudinal phase offsets. One may also use a set of other phase o
“dphiGuoyA”,“dphiGuoyA”, “dphiGuoyA” after setting the boolean flag“KeepGuoyOffset”
to true or yes. The offsets “dphiGuoy”s are useful for comparing, say, simulation runs
various levels of mode matching in a recycling cavity to find out absolute values of chang
mirror positions in these runs by setting “dphiGuoy”s to a reference set of values (See Sectio
and Section 4.3.for detailed explanation).

4.10. tricav_sum (isosceles triangular cavity):

This is a summation module representing a triangular cavity like pre-
mode-cleaner or mode-cleaner.Four restrictions on this module: (i) the
triangle should be an isosceles one, (ii) light should enter only one port
(referred to as A port), (iii) the input (A) and output (B) mirrors should be
flat., (iv) the coated sides of all mirrors are always inside the cavity.

“length_large”: Either of lengths BC or CA.

“length_small”: length AB.
“radius_frontC” : radius of curvature of mirror C.
“refractive_indexA”, “refractive_indexB”, “refractive_indexC” : refractive indices of mirrors

“dphiAB”, “dphiBC”, “dphiCA”: small phase offsets in various lengths.

If all dphi_ are zero, the triangular cavity would be resonant with TEM00 of its natural mo
basis in p-polarization. So, if you have set “polarization” to “0” in field-gen module of your .b
file and if all dphi_ are zero, the cavity will automatically be resonant. However, you need t
one of the dphi_ s to Pi to make it resonant if you have set “polarization” to “1” (i.e.
polarization) in field-gen module.

One may also use a set of other phase offsets“dphiGuoyAB”, “dphiGuoyBC”, “dphiGuoyCA”
after setting the boolean flag“KeepGuoyOffset” to true or yes. The offsets “dphiGuoy”s ar
useful for comparing, say, simulation runs with various levels of mode matching in a cavity to
out absolute values of changes in mirror positions in these runs by setting “dphiGuoy”s
reference set of values (See Section 3.2. and Section 4.3. for detailed explanation).

Give mechanical data of the mirrors through “mech_dataA”, “ mech_dataB”, ports (see
section 3 "Convention").

4.11. field2complex:

This module allows one to get the complex amplitude of a field (which, by E2E construction
class containing various field information and associated functions) in frequency specifie

2

A B

C

page 22 of 55

LIGO--T000047-01

nd in a

e
ess is
ded.

the
the
length

., Guoy
is
to the

er the
make it
LI
G

O
-D

R
AF

T

“dk” (as usual, the difference between the specified frequency and the carrier frequency) a
particular TEM_mn mode specified by integers“m” and“n” .

4.12. telescope

Telescope module simulates a set of thin lenses
to change the waist size and position, and the
phase of the field. The lens setting is defined by
its location li and the focal length fi, optionally
with its thickness di, where the focal length is
related to the lens surace curvatures, R1 and R2,
and its refractive index nref, by the following
equation.

The “lensInfo” setup should be defined in the following way to define the lens configuration.

If you want to include the thickness effect, you provide “thicknessInfo” in the following format

When there is a thicknesses assigned, the lens position li is the center between two surfaces. If th
thickness information is not specified for the j’th lens, zero thickness is assumed. The thickn
used only to correct for the calculation of the waist position, and no thick lens effect is inclu

In order to use this module to simulate one lens, set “lensInfo” to (l,f), where “l” is the distance
between the source of the field and the lens, and “f” is the focal length.

The “length” of the telescope can be defined through the input port, and it can vary during
simulation. If “length” is not provided neither as an input to this port, nor by a default value,
last lens location is used as the length of the telescope. If neither of them are provided, the
is set to be zero. The output of the telescope module is the field at the location “length”.

The field is propagated between lenses in the same way as the propagator module does, i.e
phases and sideband phases ((lm - lm-1)*dki) are applied and the distance to the waist position
advanced accordingly. When the field goes through a lens, the waist size and the distance
waust position is changed. If the focal length is larger than 1010, it represents a flat lens.

When the sideband phases are included, the definition of the demodulation of the field aft
telescope, in-phase and quad-phase, depends on the length of the telescope. In order to

0 (l1,f1) (l2,f2) (ln,fn)

d2

l2
length

output field
calculated here1

f
--- nref 1–() 1

R1
------ 1

R2
------+

 –=

lensInfo l1 f 1,() l2 f 2,() … ln f n,(), , ,=

thicknessInfo d1 d2 … dm, , ,=
page 23 of 55

LIGO--T000047-01

excluded

to these
d fields

ameter
ion of
nd

data.
a, all
using a
0dB,
are

are
ich is

. This
LI
G

O
-D

R
AF

T

easy to define the in-phase and quad-phase demodulation, the sideband phases can be
from the telescope calculation. In order to do that, set “calc_sb_phase” to false.

The telescope effect can be specified by the setting parameters “waist_X”, “ waist_Y”,
“dist2waist_X”, “ dist2waist_Y”, “ guoy00_X”, “ guoy00_Y” in stead of specifying the details of
the lens setting. If these parameters are specified, the base of the outgoing field is changed
values and, each mode is multiplied by a phase based on guoy00. In this case, no sideban
are multiplied.

If “ lensInfo” is specified and one or more of these three parameters are specified, these par
settings override the calculation based on the lensInfo specification, i.e., after the calculat
the telescope is finished using the “lensInfo” data, the final waist size, the distance to waist a
total gouy phase changes are replaced by the explicit specification, if there were any.

4.13. data_reader

Read data from a file “fileName” and interpolate or extrapolate to generate time series of
The input file should have the time in the first column and arbitrary number of columns of dat
separated by white spaces. A data series in each column is interpolated or extrapolated
2nd order polynomial. This output is filtered by a lowpass filter (Chebyshev 2, 10th order, 4
Nyquist frequency determined by the first two input times), if “useFilter” is true. All outputs
stored in a vector output.

If “numData” is positive, first “numData” data series are processed. First “skipLines” lines
skipped and all lines are skipped which do not start with a number (starts with a character wh
not a digit nor period).

4.14. Data_Viewer

This is a module to dump out the data. This is equivalent to the following c++ statement.

for (i = 0; i < counter*step; i++)

 if (mod(i,step) == 0)

 cout << data;

You are prompted for the values of counter and step, and you can stop dumping if you want
data will not go to the standard output file.

4.15. sideband_gen (this one is not quite up-to-date)

This modules amplitude and phase modulates the input field by the following formula.

(12)

Eout Ein Exp iΓϕ Ωt()sin() Exp Γamp Ωt()sin()⋅⋅=

Ein i–()N i–
J⋅ i Γϕ() I N i– Γamp()⋅

i ∞–=

∞

∑

Exp iNΩt()⋅
N ∞–=

∞

∑⋅=
page 24 of 55

LIGO--T000047-01

of

tting
wer

rates
nd the
ethod
odulated
d
g the
e fast

tional
radius.

bine
phase
with
LI
G

O
-D

R
AF

T

where Jn(x) is the Bessel function and In(x) is the modified Bessel function. For the given value
“order” setting parameter n, the following approximation is used:

(13)

4.16. pd_demod

The details of the implementation of the demodulation and shotnoise are given in [1]. Se
“efficiency” is the quantum efficiency, which is multiplied to the input power to get the net po
converted to the photo current.

There are three options for the shot noise simulation. When “shotnoise” is 0, the shot noise is not
simulated. When “shotnoise” is 1, a fast method is used to generate the shot noise. This gene
the shot noise using a gaussian distribution which gives correct values for the average a
variance, when only one pair of sidebands (one upper and one lower) exists. This m
generates the shot noise of the three signals, the inphase demodulated, quadphase dem
and the power, independently. When “shotnoise” is 2, a full simulation is used to generate, an
the simulated fluctuation is no more a simple poission distribution and the correlations amon
three signals are properly generated. But this method is order of magnitude slower than th
method.

The “shape” setting defines the shape of the detector. For the “shape” values 0 to 8, no addi
inputs are needed, and each value corresponds to the shape shown in Figure 5 with infinite

Several box files are provided, “circular_det.box”, “ xhalf_det.box”, “ yhalf_det.box” and
“quad_det.box”. They contains one to four pd_demod modules with proper weights to com
them. complex2reim is included to convert the demodulated output to inphase and quad
demodulated signals. In Figure 6, “+” and “-” signs indicate that they are added together

weights of 1 and -1 respectively.

Eout Ein i–()N i–
J⋅ i Γϕ() I N i– Γamp()⋅

i n–=

n

∑

Exp iNΩt()⋅
N n–=

n

∑⋅≈

[0]
[2] [1]

[3]

[4]

[6] [5]

[7] [8]x

y

Figure 6: “shape” number of detectors

+
- +

+

-

- +

+ -x

y

Figure 7: detector boxes

circular_det.box yhalf_det.boxxhalf_det.box quad_det.box
page 25 of 55

LIGO--T000047-01

to be
ils of
tector.

d.

e 7).

ector
=

values

by
by
d on
LI
G

O
-D

R
AF

T

When you need to simulate any detectors with different shapes, a detecotor map needs
generated using a program “detmap”. [Contact Hiro Yamamoto of LIGO Lab about the deta
this program] This program generates a table of values to be used by pd_demod for this de
Then paste this table of numbers, array of real values, into the map_data field of pd_demo

Using “detmap”, you can define a detector by specifying the following quantities (see Figur

• r_min, r_max : minimum and maximal radius
• phi_begin, phi_end : minimum and maximal angle
• gap : distance between the detector boundary to the geometrical bound defined by

phi_begin adn phi_end
• dx0, dy0 : the offset of the detector center to the beam center

All quantities with length dimention are to be normalized by the spot size.

For example, if you want to define a Bullseye photodiode designed for IOO, you make det
maps of the following 4 detectors with the parameter sets (r_min,r_max,phi_min,phi_max)

(0,1,0,360), (1.15,2.748, -30,90), (1.15,2.748, 90,210). (1.15,2.748,210,330). The radius
are arbitrary chosen.

4.17. digital_filter

The digital filter implementation in e2e is based on the same algorithm used in pziir.m
p.fritschel, i.e., (1) use bilinear transformation from s to z, (s = 2/T (z-1)/(z+1)), followed
zp2sos group-ordering implemented in matlab (DIR_FLAG = 'UP'). The filter code is base
iir_filter in ascFilter.c by R. Bork.

The specification of the digital filter is as follow:

(14)

Figure 8: Specification of a detector

(dx0,dy0)

phi_begin

phi_end

r_max

r_min gap

y axis

x axis

DF s() gain
f 1 z() f 2 zp()⋅

f 1 p() f 2 pp()⋅
-------------------------------------⋅=
page 26 of 55

LIGO--T000047-01

d poles
cified
’s are
lated
es of
lation

the
olid
dule,
e the

me of

a non
tOn is
rmal
d the

n be
LI
G

O
-D

R
AF

T

(15)

The numerator and the denominator are represented by two forms of polynomials. zeros an
in the form f1 in Eq.(5), complex zero pairs and poles pairs in the form f2. Each one is spe
by a real vector (zeros and poles) or by a complex vector. The coefficients a’s and b
calculated for a given time step using 128 bit precision. When the new output value is calcu
internally in the module, either 64 bit or 128 bit precisions are used depending on the valu
zeros, poles and the time step. This criteria is not perfect. If you prefer to use 128 bit calcu
for a given module, set “forceQuad” to true.

I
f

y
o
u

s
p
e
c
i
f
y

a

“sampleTime” larger than the simulation time step (tick time), this module uses this value as
digitization time step. In Figure 8, the dotted line is the output with “sampleTime” = 0. The s
line is produced by placing a A2D_sampler between the source and the digital filter mo
which has the same finite value of sampleTime as the digitial filter. The dot-dashed line is th
output of the same arrangement, source -> A2D_sampler -> digital_filter, but the sampleTi
the digital filter is set to 0.

“resetOn” switch is used to clear the internal buffer. When the resetOn values changes to
zsero value, the internal buffer is cleared and output value is also set to 0. When rese
positive, the output is 0, while the evolution goes on if the resetOn is 0 or negative. The no
use is to set “resetOn” to 0. If the resetOn is set to 1, then the internal buffer is cleared an
output is 0 until the resetOn is set to 0.

4.18. freq_shifter

All subfield frequencies are shifted by the same amount. The magnitude of this shift ca
several 100 MHz, it should not be time dependent.

f 1 x() s xi–()∏=

f 2 xp() s xpi–() s xpi–()⋅∏=

10.4 10.6 10.8 11 11.2 11.4 11.6

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Figure 9: Digital Filter

source df out

ADC

st=0

st=0
page 27 of 55

LIGO--T000047-01

ction
t least
0-100
ethod
_gen,

en
filter
ld be

with
LI
G

O
-D

R
AF

T

4.19. fld_modulator

One can do the modulation using this function and demodulate by multiplying a sine fun
without using the sideband approximation. But, in order to do that, the time step should be a
10 times smaller than the modulation field cycle, and usually, this method takes several 1
times slower than the side-band approximation. It is recomended that one tries this m
occationally to validate something. When you set the number of sidebands for the sideband
this is automatically done both in sideband_gen and pd_demod.

4.20. ADC

For a given discritization time period “sampleTime”τ and an integration time∆, the output
between nτ to (n+1)τ is calculated as

(16)

When∆ is 0, the inpuit value at time nτ is used as the output value between nt to (n+1)t. Wh
digital controllers are implemented, this module should be used together with the digital
with the same “sampleTime”. There is no restriction of the sampleTime, except that it shou
larger than the simulation time step.

After this output is multiplied by “gain”, the value is digitized using values between -2numBits-1to
2numBits-1-1 for signedInt = true or between 0 to 2numBits-1 for signedInt=false, i.e.,

(17)

and the value is bounded by the upper and lower limit of values available by an integer
numBits bits.

4.21. DAC

First the input value is digitized using values between -2numBits-1to 2numBits-1-1 for signedInt =
true or between 0 to 2numBits-1 for signedInt=false. Then the value is multiplied by gain.

out nτ() 1
∆
--- input t() td

nτ ∆–

nτ

∫=

ADC nτ() floor gain out nτ() 0.5+⋅()=

nτ (n+1)τ(n−1)τ ∆

S(n-1)

Figure 10: Digitization in Time

out(n-1)
analog input

simulation points out(n)=S(n-1)/∆
page 28 of 55

LIGO--T000047-01

from
it flips
the

ch bit,
111)-
T(-

I.
lue
.

iven in
le.
LI
G

O
-D

R
AF

T

A noise model based on the bit flipping is implemened. When the digital value is changed
the previou value to the new value, some bits are flipped. The model assumes that each b
with an avarage time of flipTime, dN/dt = exp(-t / flipTime). The analog value is calculated as
weighted average of intermediate digital values.

For a 4 bit system, the process to changes from -1 (1111) to 0(0000) goes as follows. For ea
a flip time is calculated, and in that order, the digital value is changed. It can be (1111)->(0
>(0101)->(0100)->(0000). Then the analog value is calculated as (-1)x
1)+7*T(7)+5*T(5)+4*T(4)+0*T(0), where T(I) is the fraction of period the digital value is
When the flipTime is negligibly small, only the last one, 0*T(0), dominates, but with finite va
of “flipTime”, this can induce observable size of noise, especially when the sign bit changes

If numBits is 0 or flipTime is 0, the noise is not calculated.

4.22. susp3Dmass

This module simulates the motion of a single suspended mass based on the formulation g
Ref.[5]. The naming of settings of this module follows the one in Ref.[6] as much as possib

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

x 10
 -5

 2

 1

0

1

2

3

4

time (second)

out
put

Input
noise x 1e-4, tau=1e-6
noise x 0.02, tau=1e-9
noise x 0.1, tau=1e-10

0 1 2 3 4 5 6

x 10
 4

 100

 80

 60

 40

 20

0

20

40

60

80

100
 digigal input
output noise

Figure 11: DAC bit flip noise

(a) step function input (b) sinusoidal input
page 29 of 55

LIGO--T000047-01

cation
the
using

n are
t the

rface.

vector
LI
G

O
-D

R
AF

T

The coordinate system is defined in Fig. 2. The inputs are the suspension point (“suspPt”) lo
and the orientation and the force and torque acting on the mirror (“force”). The output is
location and the orientation of the mass (“massPos”). The force and position are passed
clamp data type.

The origine of the coordinate systems of the suspension point and the mirror positio
different. The origine of suspPt is the filled squared box in Fig. 10, while that of the mass is a
filled circle in the same figure, which is located at the center of the cylinder on the coated su
The suspPt is located at (0, d_pendulum, -Thickness/2) in the mirror position coordinate.

This module does not include the wedge angle.

4.23. Vector operations

These modules are provided to manipulate vectors. Using these operators, one can build a
by combining scalars or vectors or extract components of a vector.

Figure 12: Single Suspended Mass

center of cylinder

d_attach

d_yaw

d_
pe

nd
ul

um

d_pitch

center of Mass d_CM

coated surface

D
ia

m
et

er

Thickness

suspPt

force

mirror position

End view Side view

x

y

z

y

page 30 of 55

LIGO--T000047-01

Y-Z in
The

arm, y
ystem
es of
LI
G

O
-D

R
AF

T

4.24. AxisRotation

The input to this module is a clamp data (vectors) represented using one coordinate axis, X-
Fig. 11. This module calculates the components of this clamp using another axis, x’-y’-z’.
two coordinate systems are related by three angles, phi (ϕ), theta (θ) and psi (ψ). First, the axis
system is rotated around the z axis byϕ, then byθ around the new x axis, then byψ around the
new z axis. The inverse of a transformation specified by (ϕ, θ, ψ) is a transformation specified by
(-ψ, −θ, −ϕ).

The ground motion is best represented in the detector coordinate system, x axis along the x
axis along the y arm and the z axis normal to the ground. The z direction of e2e coordinate s
is the direction of the coated side of the mirror, and the y axis is pointing upward. Sampl
AxisRotation parameters are shown in Fig. 12.

Figure 13: Euler angles

X

Y

Z

z’

x’

y’

θ

ϕ ψ

Figure 14: Detector to e2e coordinate transformation

X arm

Y arm

RM BS

MC2MC3

MC1

ITMt ETMt

ETMr

ITMr
(1/4 π, 1/2 π, 0)

(3/4 π, 1/2 π, 0)

(-1/2 π, 1/2 π, 0)

(1/2 π, 1/2 π, 0)

(1/2 π, 1/2 π, 0) (-1/2 π, 1/2 π, 0)

(-3/4 π, 1/2 π, 0)

(π, 1/2 π, 0)

(0, 1/2 π, 0)
page 31 of 55

LIGO--T000047-01

mulas
f a

struct
ome

ring.

bets,
case

s and

es

vector,
d like.
wing

s those
LI
G

O
-D

R
AF

T

4.25. Generic function modules,FUNC_xxx.

4.25.1. What are FUNC_xxx modules ?

These primitive modules can be used to implement mathematical calculations by using for
with a syntax similar to the C language. E.g., by specifying the setting “Equations” o
FUNC_1x1 module to

out0 = sqrt(in0);

this module calculates the sqrt of the input value. These modules make it easier to con
mathematical calculations which are very tedious to build using primitive math modules. S
examples are given in Section 4.25.5.

4.25.2. Basic syntax

The module definition is consisted of multiple equations given in the “Equations” setting st
Each equation is of the form

variable name = expression using inputs, outputs (if defined), global and local
variables;

An identifier, name of a variable, function or macro, can be consisted of any number of alpha
digits and underlines, except that the first character should not be a digit. Identifiers are
sensitive. Global variable, discussed in Section 5, can be used in the equation. All variable
functions are of type real.

Each equation is terminated by “;” as is the syntax of C language, except for declaration lin
which start with “#”. “#define” declaration can be used to assign a string to an identifier, like

#define in3 inVec0[3]

All occurrence of in3 in the rest of the code is replaced by inVec0[3].

The names of the inputs and outputs are referred to by the names of the ports. If a port is a
a pair of square brackets is used to reference an element, like inVec0[1] and outVec0[2], an
The inputs and outputs can be referenced by meaningful names by using the follo
declarations.

#inputs initial_position velocity

#output position_now

position_now = initial_position + velocity*time_now();

Comments can be inserted by surrounding the text by/* and*/ .

4.25.3. Constants

In FUNC modules, the following constants are defined:

• TIME_STEP : simulation time step

4.25.4. Build-in functins and digital filter

The following operators are supported. The functionality and the precedence are the same a
defined in C.

• unary operators :+, -, !
page 32 of 55

LIGO--T000047-01

ame
tep, is
used.
econd
oles
in
ns of
LI
G

O
-D

R
AF

T

• binary operator :*, /, +, -, <=, >, >=, ==, !=, &&, ==

All the standard functions defined in C and several special functions are available.

• unary functions :sqrt, sin, cos, tan, acos, asin, atan, log, log10, exp, sinh,

cosh, tanh, fabs, ceil, floor

• binary functions :pow, atan2, fmod, max, min

• special functions :hermite(n, z), jbessel(n, z), time_now()

• optics functions :fp_rayleigh_range(L,R1,R2), fp_dist2waist(L,R1,R2),

fp_guoyphase(L,R1,R2), ext_rayleigh_range(z0,z,nind), ext_dist2waist(z0,z,nind)
: Red solid lines are for the resonant field in this FP cavity, while dashed blue
lines are for the field coming in from the left mirror whose refractive index is
nind. This incoming field is to match with the FP resonant field after passing
the left mirror. The blue dashed lines in the FP shows the extraplation of the
incoming field when there is no left mirror.
z is the distance between the left mirror to the waist position of the cavity
resonant field, while z’ is that to the waist position of the out side field. For
the configuration (i.e., concave seen from inside), R1 and R2 are positive, and z
and z’ are negative. fp_guoyphase is the total phase change of the field due to
the Guoy phase propagating from one mirror to another.

• random number :rndflat(), rndnorm(), poisson(mean), white_noise(amplitude)

Function “if ” can be used for a conditional calculation. It takes 3 arguments :
val = if(condition, value_for_true, value_for_false)

This function returns value_for_true if condition is true or non-zero and returns
value_for_false if condition is false or 0.

The digital_filter can be used in the module in the following way.
df(x, reset) = digital_filter (gain, {zeros}, {poles}, {zeroPairs}, {polePairs},
time_step);

out = df(in, resetVal);

The first line is the declaration that “df” represents a digital filter which is specified by the s
parameters as the digital_filter primitive (see Section 4.17.). If the last parameter, time_s
specified, this is used as the digitization time step, otherwise, the simulation time step is
This parameter is to be set when this FUNC is used between ADC and DAC modules. The s
dummy argument,reset , is optional. If no values are to be assigned for some of the zeros or p
vector, leave them empty, either like “, {},” or “, ,”. There can be multiple digital filters declared
one FUNC module. When there are several digital filters used with the same specificatio
gains, zeros and poles, one declaration is needed for each use.

R2

Figure 15: optics functions

R1

L

nind
waist positions

z

z’

NEED BETTER DESCRIPTION
page 33 of 55

LIGO--T000047-01

in the

ame).
rations.

y:

legal
ve any
t hand

e way
LI
G

O
-D

R
AF

T

4.25.5. Local variables and local functions

Local variables can be used without any special declaration, except that one can be used
calculation after it’s value is assigned.

lambda = 1.064e-6;

phi = 2*PI*input/lambda;

Two local variables are used here (input is the name the input and PI is a global variable n
The first declaration is parsed only once, and there is no speed penalty using these decla
So it is a good idea to write the following kind of codes for the ease of readability.

gainXXX = 100; /* this is the gain by xxx */

gainYYY = 0.345; /* this is the gain by yyy */

...

totalGain = gainXXX * gainYYY * ...;

A local function, which is recognized only in this module, can be defined in the following wa
funcName(var1, var2, ..., var N) = expression using var1, var2, ... varN and all
other local and global variables;

The names of function (funcName) and dummy varibales (var1, var2, ..., varN) can be any
identifier expressions, which have not been defined for any other use. The function may ha
numbder of arguments, and those arguments can be used in the definition body on the righ
side. Any example will be

length(x,y) = sqrt(x*x + y*y);

Once defined, the local function can be used in the following equation codes just as the sam
as the built-in function.

4.25.6. Examples

4.25.6.1 Fiddle
/* the inputs and outputs are accessed using the following names */

#inputs speed offset amp freq noiseAmp reset

#outputs out linear rotation random

/* definition of digital filters */

/* there are no complex poles or zeros, and they can be omitted completely */

velocity_integrator(v,r) = digital_filter (1, {}, {0});

angule_integrator(v,r) = digital_filter (2*PI, {}, {0});

lowPass(v,r) = digital_filter (2*PI, {}, {-2*PI});

/* various motions */

/* first port, out, is the total motion, while 2nd to 4th port, are the individ-
ual mototions */

linear = offset + velocity_integrator(speed, reset); /* linear motion */

rotation = amp * sin (angule_integrator(freq, reset)); /* rotation */

random = lowPass(white_noise (noiseAmp), reset); /* noise */

out = linear + rotation + random; /* total motion */
page 34 of 55

LIGO--T000047-01

e of
the

, the

(a) is
rce to
other
are

a seup
ferent
d want

d from
e type

ion is

if those
m that

ng out.
the
only

several

ision is
from a
LI

G
O

-D
R

AF
T

4.26. hardSwitch

This module has two inputs of type unknown, and one output of type unknown. If the valu
switch is non-zero, then the source to “ONinput” is connected to the sinks connected from
“out” port, and the connection to “OFFinput” is disconnected (see below). If switch is zero
input to “OFFinput” is connected to the output sinks.

Important thing to know is that the unused input connection is disconnected. In Figure 16,
how the connection is setup, and (b) is how it behaves when switch is non-zero. I.e., the sou
the unnecessary input port may not be executed if the output of that source is not used by
modules. If a primitive “switch” is used instead, both connections exist, both sources
executed, and one of the value is used.

There are several cases primitive “hardSwitch” is useful. One is the case that you prepare
in which some of the connections are connected or unconnected corresponding to dif
hardware operation state. Anoter is a case that the source is a time consuming module, an
to disable if not needed.

Because the data type of ports are not specified, any ports can be connected to inputs an
output of this module. But the type of the selected input and the output should match, and th
micmatch is detected as error.

hardSwitch can be used to serve as a poorman’s junktion, which will be useful unitl the junkt
supported in alfi.

4.27. bundle

When multiple related data are passed around between modules to modules, it is cleaner
data are combined to one, and, when necessary, one can extract necessary data fro
combined data stream. E.g., a box representing the core optics can have multiple fields goi
If one wants to have more going out, by adding pickoff or by adding signal recycling mirror,
box interface needs to be changed. If “bundle” data is used to interface to outside, it is
necessary to merge the new field to the out going bundle data stream.

A bundle can be thought of as an array of data with a name tag for each data. There are
kinds of primitives are provided to construct bundles and extract data from bundles.

A bundle cannot have data with same name. When merging bundles and data, a name coll
tested and, an error message is issued when detected. When extracting a data stream

Figure 16: hardSwitch in action

(a) connection view (b) connection when
switch is non-zero

(c) connection when
switch is zero
page 35 of 55

LIGO--T000047-01

dle or
ag are

word
eam is

name
data.
eBs is
o fields
, i.e.,
mple
F1”,

ct is

e
ndle

names
ausing
LI
G

O
-D

R
AF

T

bundle by specifying the name tag, if a data with that name does not exist in the input bun
the input is not connected to any source, the connections from the output with the name t
disconnected, and an warning is issued.

A bundle can contain other bundles as its components. To clarify the discussion, a
“primitive” data is used to represent data other than the bundle data stream. When data str
extracted from a bundle, the stream can be specified by “bundle1.bundle2.dataName”, or
“*.bundleN.bundleM.dataName”. ??? Put description here. ???

In this example, D4ToB0 is used to create a bundle B0 which contains one real data, whose
is assigned like “name00” = “R0”. D4ToB2 is used to create a bundle which has one field
D4ToB1 is used to merge a field and a real value to bundle B1, to create a bundle B2. merg
used to merge two bundles B0 and B2 to create a new bundle B3. B3 has 2 real data and tw
whose names, say “R0”, “R1”, “F0” and “F1”, are assigned when they first merge to a bundle
D4ToB0, D4ToB1 and D4ToB2. D4FrB0 is used to extract data from a bundle. In the exa
above, the settings to specify the data for each output are : “name00” = “R0”, “name01” = “
“name02” = “R1”, “name03”=”F0”.

4.27.1. mergeBundles

This primitive merges two bundles into one, like mergeBs in Figure 15. The name confli
tested to avoid to create a bundle containing two same names.

4.27.2. DNToBundle

There are a set of primitives named DNToBundle, where N is an integer number, lik
D4ToBundle. This is a primitive to merge data to a bundle with 1 input for an incoming bu
and N inputs of any kind (type unknown) of data other than bundle type.

To create a new bundle, this module can be used without a source to the input bundle. The
of data are defined using settings, “name00”, ..., “nameN-1”. The name is tested against c
name conflict, and when detected, an error message is issued.

Figure 17: data flow using bundle

R0

F1

F0

B0

B1
B2

B3

R1

R0

R1

F1

F0
page 36 of 55

LIGO--T000047-01

e
r an
for a
also

s not

ut of

tor is

mpty
f the
or. If
fied.

ame00
e for
ctor,
after

, then
n in
LI
G

O
-D

R
AF

T

4.27.3. DNFromBundle

There are a set of primitives named DNFromBundle, where N is an integer number, lik
D4FromBundle. This is a primitive to extract data from a bundle. There are one input fo
incoming bundle and N outputs of any kind of data other than bundle type. The output data
specific port is defined by the name in the setting, “name00”, ..., “nameN-1”. The type is
checked if the sink of an output is not of type unknown, and if the type in the bundle doe
match with the outgoing data type, an error is issued.

If data with the specified name does not exist in the incoming bundle, the link from the outp
with that name to all sinks are removed after issuing a warning.

4.27.4. BundleToVec

Real data in the input bundle are added or substituted to the input vector, or a new vec
created from an input bundle.

First, the input vcector is copied to the output vector. If no input vector is specified, an e
vetor is created as the output. Then, if “nameNN” is not an emoty string, then the value o
datum in the bundle with that name is copied to the NN+offset’th element of the output vect
necessary, the output vector is expanded by filling 0 in those elements which are not speci

In the above example, a vector with 4 elements is created and the input vector is copied. n
is “nb0” and name02 is “nb2” and all others are empty. The value of offset is 3. First, the valu
“nb0” in the bundle is copied to the 4th element of the output data overriding the input ve
then the value for “nb2” in the bundle is placed in the 6th component of the output vector
expanding the output vector size to 6.

4.27.5. VecToBundle

Elements in a vector is merged into a bundle. If the setting of nameNN is not an empty string
NN+offset’th element in the vector is inserted to the input bundle with the name give
nameNN. NN+offset should be less than the size of the input vector.

Figure 18: BundleToVec

input vector

output vector

nameNN

offset
(2) then bundle data copied

(1) first, input vector copied

“nb0” “” “nb2”

0b0 b1

v0 v1 v2 v3

v0 v1 v2
page 37 of 55

LIGO--T000047-01

as the
nto the
the

es of
oved,

ts to

g real
p

ng
total
ann
g,

d to
ed and
LI
G

O
-D

R
AF

T

4.27.6. ClampToBundle

The input clamp data are placed in the output bundle. The 12 settings nameNNs are used
names of data in the bundle. If any of the strings are empty, those elements are not copied i
output bundle. E.g., in order to build a bundle with only position information, then keep only
first 3 names, and make the rest of the 9 settings to be empty strings.

4.27.7. How it works

After all links are established, data types are checked. This is initiated by “resolve” routin
output modules. During this process, bundles are bundle related primitives modules are rem
and all links are replaced by links between normal (non bundle data) sources (inpu
DNToBundle) to normal sinks (sinks from outputs of DNFromBundle).

4.28. psd_out

4.28.1. outline

This primitive module calculates a single sided power spectral density (psd) of the in comin
data. Based on the frequency range and resolution defined in the setting, an optimal time ste∆T (
∆T = integral multiple of the simulation time stepτ) and a duration of simulation (duration =
NFFT x∆T, NFFT = power of 2) for one FFT is calculated. (See below for details).

The incoming data are stored at every∆T after applying a bandpass filter to reduce the aliasi
and leak from the outside of the frequency window of interest and to whiten the data. After
time of NFFT x∆T has elapsed, the power spectral density for this cycle is calculated using H
window to reduce the leak. This is identical to matlab's psd function with the following settin

psd(val(NFFT data), NFFT, 1/∆T, hanning(NFFT), NFFT/2) * 2 *∆T (18)

After the first psd is calculated using NFFT data, the following incoming data are use
calculate successive pdf with NFFT/2 data overlapping. The new psd calculated is dewhiten
the average of psd’s so far calculated is written to the output file.

∆T
2∆T
...
NFFT ∆T

FFT w/
Hann
window

τ

data

whiten save in memory psd

file

∆T

NFFT ∆T

Average
psds

interpolate
in freq

dewhiten book keeping

Figure 19: process of psd calculation
page 38 of 55

LIGO--T000047-01

ency
ts are
false,

and
.

T is

e first
d line
ximal

he psd
fully
ess is

),

entries
” or

acro

r
th
ample
LI

G
O

-D
R

AF
T

4.28.2. time step∆T and duration of simulation NFFT

NFFT and∆T are calculated internally to optimize the memory and CPU usage. The frequ
range is set by f_from and f_to, and power spectral densities at N_freqs frequency poin
calculated. If logSpacing is true, frequency points as placed evenly in log scale, and if
frequencies are placed evenly in linear scale.

The leakage expected for Hanning window is N-3. N is calculated as (f-f0)/∆f, where f is the
frequency of interest, f0 is the source of signal, and∆f is the frequency spacing of the FFT
calculation.

Chebyshev bandpass filter is applied to reduce the alias effect from both sides,
Lowpass_Order is the order for lowpass filter and Highpass_Order is the one for high pass

N_Tfft is the minimum number of oscillation of the lowest frequency component, while N_del
that of the highest frequency component.

The result is stored in a file whose name is the module name with full path prepended. Th
row is the list of frequency, and the following lines are averaged psd values. I.e., the first ps
is the result using 1 FFT, second line is the average of 2 FFTs etc. maxCounter is the ma
number of repeats.

This module uses data when the activate port value is non-zero. If one wants to calculate t
of some output when the system is locked, then set the input “avtive” to 0 until the system is
locked, and then set the value to 1 after that. Then all data during the lock acquisition proc
discarded, and the psd of the in-lock state can be calculated.

real f_from = 0.1

f_from (0.1), f_to (10) real

logSpacing (true) boolean

N_freqs (100), Lowpass_Order (6), Hghpass_Order (6), N_TffT (1), N_delT (4
maxCounter (100) integer

5 MACROS AND SETTINGS BY EXPRESSION

5.1. Macro definition file : e2eDB.mcr

The End to End simulation code supports macros, and one can specify almost all data
using these macros in stead of typing numerical literals, e.g., “ArmLength/LIGHT_SPEED
“sin(PI/3)”.

The macros are defined in the following way. When a simulation program starts, it reads in m
definition files named “e2eDB.mcr” in the directories specified in theE2E_PATHenvironment
variable. E.g., when E2E_PATH is“.:myLibDir:e2eSysDir”, then the program reads in e2eDB.mc
in “e2eSysDir”, in “ myLibDir” then in the current directory “.”, if there is one. When a macro wi
the same name is defined in multiple files, the one in the file loaded last is used. With this ex
page 39 of 55

LIGO--T000047-01

ne in

the

tion.
annot

tical

er to
line

e file
es,
e any

rnally

given
LI
G

O
-D

R
AF

T

E2E_PATH, the definition in the current directory has the highest precedence and the o
e2eSysDir has the lowest.

The format of the macro specification file is as follows. A macro is defined by a line of
following format:

name = value [unit] “comment”

value is a number which will be substituted whenever this macro name is used in the simula
name can be composed of any number of alphabets or digits or “_”, but the first character c
be a digit.unit andcomment are optional strings. Symbols “[“, “]” and ““ ” are mandatory if
unit or comment is to be defined.

The definition ofvalue can include macros already defined, and can include mathema
expressions discussed in Section 4.25. A few examples will be in order.

elcom = 12.7 [m] “average of the two lengths”

eldif = 0.3 [m] “difference of the two lengths”

elIn = elcom + eldif/2 [m] “inline length”

elOff = elcom - dleif/2 [m] “offline length”

Lines which starts with “%” are treated as comment lines and discarded when reading. In ord
printout information about a macro file, like an announcement of a new version, place a
which starts with“<” before the message lines and a line which starts with“>” after the message
lines. The message lines can be anything. E.g., if you place a line with “<” at the top of th
and a line with “>” at the bottom of the file, the entire content of the file, except for the two lin
are printed to the console window where the simulation program is started. There can b
number of message groups surrounded by “<” and “>”. It will be a good idea to place the
following lines at the top of each macro file to clarify what is loaded.

<

% database defining H2K IFO parameters

% Updated on September 1 by Hiro Yamamoto

% change : TEMPERATURE is now defined

>

...

...

<

TEMPERATURE = 5/9*72 + 255.37 [K] “global temperature at 72F”

>

In addition to these macros defined in external files, there is one set of macros defined inte
giving the definitions of various constants, like PI or LIGHT_SPEED.

When you want to see the current macro definition, defined internally and externally, in a
directory, typee2emacro. As of Sep. 1, 2000, the following macros are defined internally.

AVOGADRO_NUMBER = 6.0221367e23 "avogadro number"

BOLTZMANN_CONST = 1.38065812e-23 ["m^2 s^-2 kg K^-1"] "Boltzman constant"

LIGHT_SPEED = 2.99792458e8 [m s^-1] "speed of light"

GRAV_ACCEL = 9.80665 [m s^-2] "standard grav. accel. at sea level"

PI = 3.141592653589793
page 40 of 55

LIGO--T000047-01

0 and

ther

above

nt has

those
LI
G

O
-D

R
AF

T

Short messages and macro values can be printed using#print direction.
#print “This is a messge”

#print LIGHT_SPEED PI

This line generates the following output.
This is a message

“LIGHT_SPEED” = 2.99792e8

“PI” = 3.14159

A macro file can include another macro file by#include directive. An example is
#include anotherMacro.mcr

IF THEN ELSE conditional controls are supported using#if, #elseif, #elseand#endif. All string
after these directions (except for #endif) are evaluated as boolean, i.e., false if numerically
true otherwise. The controls can be nexted.

LHO2k = 1 % use name instead of numbers

LHO4k = 2

LLO4k = 3

IFO = LHO2k % choose an IFO

#if IFO == LHO2k

CavLength = 2000

#elseif IFO == LHO4k || IFO == LLO4k

CavLength = 4000

#else %something unknown

#print “This IFO is not known” IFO

#endif

5.2. Runtime macro specification as a option to the program,-db
and -param

You can define extra macros when you run the simulation program.
modeler -db myDB.mcr -param mcrname=mcrval -param ‘another=some1*some2’

By the run-time option -db, you can force to load a macro definition file. This is loaded all o
default files are loaded, so the definitions in this file override all others.

The second option, -param, can be used to define one macro to assigned a value to it. In the
example, a new macromcrname is defined and a valuemcrval is assigned to it. If a macro of the
given name already exists, this definition overrides it. If the right hand size of the assignme
any operators, surround the definition by a pair of single quotes.

These two optioncs can appear multiple times, and the precedence is from right to left of
options.

5.3. Combination of -param and -db

e2eDB.mcr

RayleighRange = 1000
page 41 of 55

LIGO--T000047-01

itive

one to

amed

o 1.

hich
d. For
sign a

define
acros
LI
G

O
-D

R
AF

T

z0 = 2000

dz = 0

#include postproc.mcr

postproc.mcr
z = z0 + dz

modeler -param ‘dz=RayleighRange*0.01’ -db postproc.mcr

5.4. Direct macro definition for settings

A macro can be used to define real value settings and / or inputs without touching the prim
itself. The convention is

path1.path2...pathN.instanceName.settingName = value or

path1.path2...pathN.instanceName.inputPortName = value

Path names are optional, but the instanceName is mandatory. This macro capability allows
set and change settings of primitives without modifying the box files.

For example, in Fig. 18, A and B are boxes which contain one instance of switch module n
SW. If a macro is defined as

SW.bool = 1

then it is equivalent that the value of bool input of SW in box A and box B are explicitly set t
If the definition is

A.SW.bool = 1

then only the bool of SW in box A is set to be 1, and that in box B is not affected.

5.5. Local macro definition

Those macros defined in macro files apply to all box files. Local macros can be defined w
apply only to those primitives and boxes contained in a box where these macro are define
example, a macro named TEMPERATURE is defined as a global variable. If you want to as
different tempretature to a subsystem, keep the subsystem in a box, say susSys.box, and
macro TEMPERATURE with the subsystem temperature in the box susSys.box. Local m
can be define in a box using alfi GUI program.

Figure 20: Macro defintion for settings

A (box) B (box)

SW
high

low
bool

(primitive switch)

SW
high

low
bool

(primitive switch)
page 42 of 55

LIGO--T000047-01

gth for
se the

hose
the

ing
00.
LI
G

O
-D

R
AF

T

Another example is a Fabry Peroit cavity box. The two propagators should use the same len
the propagation length. In order to do that, you define a macro FPlength in the box and you u
this name in the settings of the two propagators.

5.6. Examples

In Fig. 19, there are two e2eDB.mcr files. When you run modeler as
modeler -param del=0.1

there are four macro names defined, TEMPERATURE, ARM_LENG, ResSBFreq and del, w
values are 300, 2009.11, 29.5e6 and 0.1 respectively. The definition of ARM_LENG in
current directory overrides the definition in the e2eDB.mcr file in e2eSysDir directory.

In inlineETM.box, the macro TEMPERATURE is defined as 270. Any settings us
TEMPERATURE in inlineETM.box use 270 for the TEMPERATURE, while all others use 3
The arm length of the inline cavity is 2009.11, while that of the offline cavity is 2009.21.

e2eSysDir:e2eDB.mcr

TEMPERATURE 300

ARM_LENG 2000

ResSBFreq 29.5e6

.:e2eDB.mcr

ARM_LENG 2009.11

Main.box

-param del=0.1

inlineETM.box

offlineETM.box

inlineProp.box

offlineProp.box

Michelson.box

Larm=ARM_LENG + del TEMPERATURE = 270

The lengths of all 4 propagators shown
by arrows are defined to be “Larm”, a
macro name, and all temperature
dependent quantities are expressed
using “TEMPERATURE”, another
macro name.

Larm=ARM_LENG

Figure 21: macro definition example

2*PI/(LIGHT_SPEED/ResSBFreq)

E2E_PATH = .:e2eSysDir
page 43 of 55

LIGO--T000047-01

ing the

the

sing

sive

aded.
d size

these

re the
er is

time is
LI
G

O
-D

R
AF

T

The phase modulation is specified by k, the wave number. This setting can be expressed us
modulation frequency ResSBFreq and predefined constants PI and LIGHT_SPEED.

6 RUN TIME OPTIONS OF THE SIMUALTION PRO-
GRAM

6.1. -bin

The simulation program stores the output in a binary file, in stead of an ascii file, which is
default. In matlab, a binary file can be loaded by using e2ebin.m. The format is

[vals, titles] = e2ebin(‘binary file name’);

The binary file can be converted to an ascii file with an associated header file by u
e2ebinLoader (see Sec. 7.4.).

6.2. -d1, -d2, -d3, -d4

The simulation program prints auxiliary information. -d4 provides most comprehen
information while -d1 the least.

6.3. -db [dababase file], -param name=vale (see Section 6)

With -db, you can specify a macro file to be loaded after all the default macro dabatase are lo
One specific macro can be specified by -param option. If some operators are in the right han
of the parameter definition, surround the definition by a pair of single quotes. The format for
parameters are

modeler -db myDB.mcr -param del=0.1 -param ‘val=val1*val2’

6.4. -help

Explains these runtime options.

6.5. -prof [output file name] [number of modules reported]

The time spend used in each module are analyzed. The output file can be specified whe
profiling information is stored. In the profiler output, top 50 modules are reported. If a numb
passed as a part of -prof option, you can change the number of modules reprted.

6.6. -seed seedVal

The seed for the random number generator can be specified. If this is not specified, data/
used to generate a seed.
page 44 of 55

LIGO--T000047-01

The
larger

rocess
nerates
ctively

scii
r.

tax of
LI
G

O
-D

R
AF

T

6.7. -v, -V

Print version number.

6.8. -maxiter=number (for modeler_freq)

The maximal number of iteration tried in modeler_freq to calculate the transfer function.
default is 500. If modeler_freq generates messages that “convergence failed”, try to give a
value, like 5000.

7 E2E AUXILIARY PROGRAMS

7.1. detmap

The pd_demod (Section 4.16.) module simulating the photo detector and demodulation p
uses a data file to calculate the response of a detector with an arbitrary shape. detmap ge
this data file for a wide range of detector shapes. The detector shape can be defined intera
in this program, and the nonuniformity of the detector surface can be specified as well.

7.2. e2emacro

Prints the current macro settings.

7.3. e2ecalc

e2e calculator

7.4. e2ebinLoader

Converts the binary format output file to an ascii file. The format is
e2ebinLoader [-d] [binaryFileName] [-help]

With -d option provided, this program prints auxiliary information during decoding. The a
data file created has a file extension .asc, while the data header file (see Sec. 8.5.) has .dh

8 FILE TYPES

8.1. .box (edited by alfi, input to simulation program)

The box is created by alfi and contains the definition of the setup to be simulated. The syn
this file is defined in Section 10.
page 45 of 55

LIGO--T000047-01

odules
run

during a
how
pted

again
you
u can

and
pitch

that
names
LI
G

O
-D

R
AF

T

8.2. .par (edited by text editor, input to simulation program)

In a parameter file, values can be assigned to input ports of the outmost box or to data_in m
anywhere contained in the simulation definition. You specify which .par file to use when you
the simulation program.

The difference between macro and parameter is that values of parameters can be changed
run, while macro values cannot be. When you run a time domain simulation, you specify
long the simulation should run. After that amount of data have been simulated, you are prom
if you want to continue. If you request to keep simulating, the program reads the .par file
and keep running for another amount of time you specified. If you modify the .par file before
resume the simulation, that new value is used in the second part of the simulation. E.g., yo
change a gain value.

In a .par file, a line which starts with % is a comment line.

In Fig. 20, there are 5 boxes, main, the out most one, ETM, ITM and susp contained in ETM
ITM. The circle named pitch is an input port name of the main box, while two boxes named
are data_in modules. In the .par file, the following specifications are possible.

% next applies to all 3

pitch = 1e-6

% next applies to 2 data_ins

susp.pitch = 1e-6

% next applies to only the pitch in ETM

ETM.susp.pitch = 1e-6

% next applies to only the pitch in ITM

ITM.susp.pitch = 1e-6

When you specify only the name, all input ports of the main box and all data_in modules with
name are assigned this specification. If the specification of a data_in name contains box

Figure 22: .par file settings

pitch mirror

pitch

ETM

mode cleaner mirror
main.box

susp

pitch mirror

ITM

susp
page 46 of 55

LIGO--T000047-01

t box

f the
ses

r the

onds,
value

finition

In the
ntire

easily
t any

, until
LI
G

O
-D

R
AF

T

containing that module, this specification applies to only those data_ins which satisfy tha
hierarchy.

The is a token,#TIME, to automate the change of parameter settings. The syntax is
lines0

#TIME t1

lines1

#TIME t2

lines2

...

#TIME tM

linesM

where linesN are legal lines of .par files, like pitch = 0, and tN is the time since the start o
simulation run. When a simulation job runs for a period of T with this .par file, the simulation u
definitions by lines0 for the first time period t1, then uses definitions lines0 and lines1 fo
following period of (t2-t1), and so on.

A simple example will clarify the point.
pitch = 0

lock = 0

#TIME 0.5

lock = 1

#TIME 1

picth = 1e-8

When you run a job for 5 seconds, the simulation uses pitch=0, lock=0 for the first 0.5 sec
then sets lock=1 and runs for another 0.5 seconds. After running total of 1 second, the pitch
is changed to 1e-8. This can be easily understood when you remember the rule that the de
given later has a higher precedence than the one given before.

The run time does not need to be longer than the time specified for the last #TIME token.
above example, if you run only for 0.7 seconds, simply the pitch value will remain 0 for the e
run.

8.3. .in (input to simulation program)

When you run the simulation program, the key strokes can be stored in a file so that you can
run the program again. The name can be anything, but .in is a popular extension used. A
prompt, when you type

@(filename

a file named “filename” is created and all prompts and your key entries are stored in the file
you type

@)

or until the end of the run.

When you modify the box files, and want to rerun again, you run the program and type
@filename
page 47 of 55

LIGO--T000047-01

to the

r time

until

cified
those

has 4
g.

r the
in the

n is

a are
LI
G

O
-D

R
AF

T

then, all the recorded key strokes are replayed. You can use this file as an input stream
program, like

cat filename - | modeler

or
modeler < filename

The input sequence file is a text file and you can edit it, e.g., change the simulation time o
step. A line which starts with “%” is a comment line and you can add your own.

If you add a line
@PROMPTOFF

then, at the replay time, the prompts and replies will not be printed on the console window
the line

@PROMPTON

8.4. .dat (output of simulation program)

The output file. The first column is the time or frequency, and the rest columns are data spe
by the output ports of the out most boxes or data_out modules. The arrangements of
columns are given in the associated .dhr file (see Sec. 8.5.).

8.5. .dhr (input to and output of simulation program)

The data header file contains the titles of data in the associated .dat file. E.g., lock.dat
columns of data series, time, power, inDemod, outDemod. Then lock.dhr is like the followin

time

power

inDemod

outDemod

When the simulation program runs and tries to create the output data file, it looks fo
associated .dhr file. If there is one, then the order of the columns follows the order specified
.dhr file. E.g., if there were lock.dhr file whose content is

time

outDemod

inDemod

power

then, the data column in lock.dat is arranged following this order, i.e., second colum
outDemod and power is placed in the 4th column.

Time and frequency should be always the first one. If there is no .dhr file, the order of dat
decided following an internal rule.
page 48 of 55

LIGO--T000047-01

f all
he full

utputs
ese
er of
by a

made

to the
puts,
s the

_out

there
ames

is as
LI
G

O
-D

R
AF

T

8.6. .set (output of simulation program)

A setting file is created when a simulation program runs. It contains a list of all settings o
modules used in that simulation, along with other data, like the random number seed and t
macro definition.

8.7. .prm, .xbm (input to alfi)

This file contains all the interface information, what are the names and types of inputs and o
etc, of a primitive with the same nane, i.e., LocAcq.prm is for a primitive module LocAcq. Th
.prm files are used by alfi. Alfi reads these files and finds how to display each primitive (numb
ports and name, etc). .xbm is a bitmap file which contains an icon for a primitive represented
.prm file.

9 FREQUENTLY ASKED QUESTIONS

9.1. How to use a beam-splitter?

Use a combination of two “mirror2” to represent a beam-splitter. We supply such a ready-
BS.box file which has four inputs and four outputs.

9.2. What is the order of data in the output file?

When an output file named xxx.dat is created, another file named xxx.dhr (xxx matches
data file name, not literally xxx) is automatically created. This file contains names of the out
one name per line, in the order they are placed in the data file. E.g., if the xxx.dhr contain
following lines, the first column in the xxx.dat file is time, second column comes from data
module named amp in box CR_00 in box FP.

time

FP.box.CR_00.amp

FP.box.FF_0_InDemod

9.3. How can I define the order of the output?

When the program creates an output file named xxx.dat, it looks for a file named xxx.dhr. If
is a file named xxx.dhr, it uses the order in that file to arrange the order of the data whose n
match with the names in the given xxx.dhr file. E.g., the content of the existing xxx.dhr
follows.

time

FP.box.CR_00.amp

FP.box.SB_00.amp

FP.box.FF_0_InDemod

FP.box.FF_0_QuDemod

And the names of your data are
page 49 of 55

LIGO--T000047-01

ta are
d to
new

ge the

r that

ry.

as

n

ypes
LI
G

O
-D

R
AF

T

time

FP.box.FF_0_QuDemod

FP.box.FF_0_InDemod

FP.box.SB_00.amp

FP.box.CR_00.amp

FP.box.SB_10.amp

FP.box.CR_10.amp

Then, the order of the columns in the data file is
time

FP.box.CR_00.amp

FP.box.SB_00.amp

FP.box.FF_0_InDemod

FP.box.FF_0_QuDemod

FP.box.SB_10.amp

FP.box.CR_10.amp

The order of the first 5 data are determined by the original xxx.dhr, and the rest of the da
placed in the order they appear in box files involved in the simulation run, which is har
predict. When a new data file is created, the original xxx.dhr file is updated to reflect the the
order. One can change only the order of data coming from data_out, i.e., you cannot chan
placement of time or frequency.

9.4. How can I save my key strokes when I run modeler or
modeler_freq, so that I don’t need to retype again ?

When you start running modeler or modeler_freq, there are three special commands fo
purpose.

@(filename : open a file and start saving key strokes in that file.

@) : stop recordring key strokes. If you reached the end, you don’t need to wor

@filename : play back the key strokes stored in the file.

Once stored, you can use it also as the source of the pipe input to modeler / modeler_freq

modeler < filename

9.5. How can I use this feature in my program?

Use functions implemented in e2ecli.cc and e2ecli.h. FIve top level functions are

doublee2ecli_getDbl(“prompt”, “help”, default_val, min_val, max_val);

int e2ecli_getInt(“prompt”, “help”, default_val, min_val, max_val);

boole2ecli_getBool(“prompt”, “help”); no default value

boole2ecli_getBool(“prompt”, “help”, default_val);

void e2ecli_getStr(“prompt”, “help”, &str), str may have the default value on entry, o
return it has the new value.

modval andinquire are functions to let the user change related values together.

When the user types “?” mark, the “help” text is displayed, and when the user simply t
“return” key, the default value is returned if a default value is given.
page 50 of 55

LIGO--T000047-01

, and
in the

anging

Bold
s and
ers and
the
ate a
can
e way
x”
LI
G

O
-D

R
AF

T

9.6. How can I implement a phase noise?

All frequencies of subfields, the carrier and sidebands, are constant during the simulation
they cannot be fluctuated. The frequency noise should be implemented as a phase noise
following way:

(19)

The first term is the constant frequency part, and the second part is the noise. In stead of ch
the frequency, the phase of the subfield is incremented by this amount.

10 DESCRIPTION FILE SYNTAX

10.1. Outline

The syntax of the description file to be supplied for the simulation program is as follows.
faced strings are keywords and should be typed as it is. Italic strings are primitive name
setting names thereof. The name of the instances of primitives can contain alphabets, numb
underscore line. “box” is a kind of primitive, but it behaves differently from the rest of
primitives. Because of that, it is displayed as a keyword for the sake of clarity. When you cre
box, it can be saved with a name following the rule for the naming of primitives. The box file
be included in other box files. In that case, the exisiting (included) box file behaves the sam
other primitives. In the following, name “module” is used to represent “primitive” and “bo
together.

10.2. Syntax

Blank lines can be inserted.

% all the rest after % is treated as comments.

Add_Macros
{

name1 = val1

...

nameN = valN

}

Add_Submodules

φ t() ω t() td

0

t

∫ ω0 t⋅ δω t()
0

t

∫+= =
page 51 of 55

LIGO--T000047-01
LI
G

O
-D

R
AF

T

{
primitive1userDefinedPrimitive1

...

box userDefinedBox1 {#includebox1 }

...
}

Settings userDefinedPrimitiveN

{
setting1 = valueOfSetting1

...

#include filename1

...

}
...

Settings userDefinedBoxN

{
SettingsuserDefinedPrimitiveInThisBox

{
setting1= valueOfSetting1

...

}
SettingsuserDefinedBoxInThisBox

{
...

}
}
...

Add_Connections
{

this inPort1 -> usedDefineModule1inPort1

...
usedDefineModuleNoutPort1 -> usedDefineModuleMinPort1

...

usedDefineModuleLoutPort1 -> this outPort1

...

}

page 52 of 55

LIGO--T000047-01
LI
G

O
-D

R
AF

T

10.3. Example

Add_Macros

{

gainVal = 2*PI

}

Add_Submodules

{

 box DF2box { #include DF2.box }

 digital_filter DFprim

}

Settings DFprim

{

 pole = -1

}

Settings DF2box

{

 Settings DFinDF2

 {

 gain = gainVal

 }

}

DFprimDF2box

input output

in out1
out2DFinDF2

00in out1
page 53 of 55

LIGO--T000047-01

ded
in the
. Also

bove,
in a
can

air of
tions
t
“
ded

to the
ted to

f the
the
ut”.

hich
are
line
LI

G
O

-D
R

AF
T

Add_Connections

{

 this input -> DF2box in

 DF2box out1 -> DFprim 0

 DFprim 0 -> this output

}

10.4. Explanation of the syntax

10.4.1. Add_Macros

Add_Macros section surrounded by { and } defines macros effective in this box.

10.4.2. Add_Submodule

Add_Submodulesection surrounded by { and } defines modules, primitives and boxs, inclu
in this description or box file, and assign names to each of the included modules. E.g.,
exmple above, one box, whose file name is DF2.box, is included and is named as DF2box
included in a digital_filter primitive and is named as DFprim.

10.4.3. Settings

Settingssection defines variuos settings of primitives and boxes included. In the example a
DFprim’s pole is set to be -1. The setting is primitived in a box included can be defined
similar way. In the example, gain of the digital_filter DFinDF2 in DF2box is set to be 1. You
create a separate text file and include it in the definition of the setting.

10.4.4. Add_Connections

Add_Connectionssection defines the data connection. A data connection is defined by a p
ports, an output port of a module connected to an input port of another module. Two excep
are “this input” and “this output”. The current box is calledthis so that renaming does not affec
the definition of the connection. They are the input and output ports of the current box, andthis
input” is connected to an iput port of an included module and an output port of an inclu
module is connected to “this output”.

When the time domain simulation goes, the input data are prepared first, then it is passed
input port of other modules, and when a module has all input data set, that module is execu
generate the output.

In the example, the input to this box is passed to the input of the box DF2box, and one o
output of DF2box, out1, is passed to a primitive DFprim, whose input port name is “0”, and
output of this primitive, output port name “0”, is passed to the output of this box, named “outp

10.5. alfi output

alfi output files contain extra information for its use. Those information are stored in a line w
starts with “%*”. Because the simulation program neglects text after %, all information for alfi
just for alfi use. These informations are the sizes of the window, the locations of links on a
page 54 of 55

LIGO--T000047-01

alfi,
be

l

LI
G

O
-D

R
AF

T

linking two ports, etc. If you create a description file, or box file, and later open it using
primitives and boxes will be located at the top left orner of the window, and all links will
arranged using a default (the way the smart link option would generate) rule.

APPENDIX 1 REFERENCE
[1] LIGO-T970194 “Organization of End to End Model”

[2] LIGO-T970196 “Physics of End to End model”

[3] LIGO-T990081 “Time Domain Modal Model in e2e simulation package”

[4] LIGO-T990106 “Mechanical Simulation Engine : Physics”

[5] M. Rakhmanov. “Dynamics of Laser Interferometric Gravitational Wave Detectors” PhD
thesis, California Institute of Technology, Pasadena, California, 2000.

[6] S. Kawamura and J. Hazel. LIGO-T970135 “Small Optics Suspension Final Design
(Mechanical System)”
S. Kawamura, J. Hazel and M. Barton. LIGO-T970158 “Large Optics Suspension Fina
Design (Mechanical System)
page 55 of 55

	file /home/e2e/Software/docs/e2e/e2e_manual/T000047_primitiveRef.fm5 - printed November 1, 2002
	1 What is this document
	2 Using the program - step by step
	2.1. A quick overview for E2E-user:
	2.2. modeler and modeler_freq
	Figure 1: modeler_freq

	2.3. Data types and existing modules
	Table 1: Data types
	Table 2: Units
	Table 3: Primitive Modules

	3 Convention
	3.1. “xyz2clamp” module:
	Figure 2: Definion of axis and angle

	3.2. Definition of length between optics
	3.2.1. General arguments
	Figure 3: Definition of length
	Figure 4: Fabry-Peroit cavity

	3.2.2. Time independent length between reference frames - scalar field
	3.2.3. Time independent length between reference frames - multi mode field
	3.2.4. Time dependent mirror displacements
	Figure 5: Phase change due to displacement

	4 primitive modules
	4.1. field_gen:
	4.1.1. simulation information:
	4.1.2. field information:

	4.2. power_meter:
	4.3. prop (the propagator):
	4.4. mirror2:
	4.5. lens:
	4.6. beam-wiggler:
	4.7. beam-shifter:
	4.8. cav_sum:
	4.9. rec_sum:
	4.10. tricav_sum (isosceles triangular cavity):
	4.11. field2complex:
	4.12. telescope
	4.13. data_reader
	4.14. Data_Viewer
	4.15. sideband_gen (this one is not quite up-to-date)
	4.16. pd_demod
	Figure 6: “shape” number of detectors
	Figure 7: detector boxes
	Figure 8: Specification of a detector

	4.17. digital_filter
	Figure 9: Digital Filter

	4.18. freq_shifter
	4.19. fld_modulator
	4.20. ADC
	Figure 10: Digitization in Time

	4.21. DAC
	Figure 11: DAC bit flip noise

	4.22. susp3Dmass
	Figure 12: Single Suspended Mass

	4.23. Vector operations
	4.24. AxisRotation
	Figure 13: Euler angles
	Figure 14: Detector to e2e coordinate transformation

	4.25. Generic function modules, FUNC_xxx.
	4.25.1. What are FUNC_xxx modules ?
	4.25.2. Basic syntax
	4.25.3. Constants
	4.25.4. Build-in functins and digital filter
	Figure 15: optics functions

	4.25.5. Local variables and local functions
	4.25.6. Examples

	4.26. hardSwitch
	Figure 16: hardSwitch in action

	4.27. bundle
	Figure 17: data flow using bundle
	4.27.1. mergeBundles
	4.27.2. DNToBundle
	4.27.3. DNFromBundle
	4.27.4. BundleToVec
	Figure 18: BundleToVec

	4.27.5. VecToBundle
	4.27.6. ClampToBundle
	4.27.7. How it works

	4.28. psd_out
	4.28.1. outline
	Figure 19: process of psd calculation

	4.28.2. time step DT and duration of simulation NFFT

	5 Macros and settings by expression
	5.1. Macro definition file : e2eDB.mcr
	5.2. Runtime macro specification as a option to the program, -db and -param
	5.3. Combination of -param and -db
	5.4. Direct macro definition for settings
	Figure 20: Macro defintion for settings

	5.5. Local macro definition
	5.6. Examples
	Figure 21: macro definition example

	6 run time options of the simualtion program
	6.1. -bin
	6.2. -d1, -d2, -d3, -d4
	6.3. -db [dababase file], -param name=vale ����(see Section 6)
	6.4. -help
	6.5. -prof [output file name] [number of modules reported]
	6.6. -seed seedVal
	6.7. -v, -V
	6.8. -maxiter=number (for modeler_freq)

	7 e2e auxiliary programs
	7.1. detmap
	7.2. e2emacro
	7.3. e2ecalc
	7.4. e2ebinLoader

	8 file types
	8.1. .box (edited by alfi, input to simulation program)
	8.2. .par (edited by text editor, input to simulation program)
	Figure 22: .par file settings

	8.3. .in (input to simulation program)
	8.4. .dat (output of simulation program)
	8.5. .dhr (input to and output of simulation program)
	8.6. .set (output of simulation program)
	8.7. .prm, .xbm (input to alfi)

	9 Frequently Asked Questions
	9.1. How to use a beam-splitter?
	9.2. What is the order of data in the output file?
	9.3. How can I define the order of the output?
	9.4. How can I save my key strokes when I run modeler or modeler_freq, so that I don’t need to re...
	9.5. How can I use this feature in my program?
	9.6. How can I implement a phase noise?

	10 description file syntax
	10.1. Outline
	10.2. Syntax
	10.3. Example
	10.4. Explanation of the syntax
	10.4.1. Add_Macros
	10.4.2. Add_Submodule
	10.4.3. Settings
	10.4.4. Add_Connections

	10.5. alfi output

	Appendix 1 Reference
	[1] LIGO-T970194 “Organization of End to End Model”
	[2] LIGO-T970196 “Physics of End to End model”
	[3] LIGO-T990081 “Time Domain Modal Model in e2e simulation package”
	[4] LIGO-T990106 “Mechanical Simulation Engine : Physics”
	[5] M. Rakhmanov. “Dynamics of Laser Interferometric Gravitational Wave Detectors” PhD thesis, Ca...
	[6] S. Kawamura and J. Hazel. LIGO-T970135 “Small Optics Suspension Final Design (Mechanical Syst...

