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1 WHAT IS THIS DOCUMENT

This document contains the complete and most up-to-date list of primitive modules of the End to
End LIGO simulation program. The physics implemented in each module is described briefly in
this document, and the details of the physics and formulations are given in separate documents
(2], 2], [3], [4]). The common process is to use alfi, a GUI front end of e2e, to combine these
primitives to define a configuration to be simulated using the physics simulation program, save the
configuration in a file (.box is an extension of the file name), and the simulation program reads
this file when it runs. In Ch.10, the syntax of this description file is provided in case you need to
deal with the content of the file directly.

2 USING THE PROGRAM - STEP BY STEP

2.1. A quick overview for E2E-user:

For using the end to end simulation programme, it is not necessary to know about the structure of
source codes. However, knowledge of a few basic features may turn out to be useful. The
following discussion assumes that you have already gone through our other document “Getting
Started with E2E”).

The End-to-End (popularly called E2E) simulation codes have been written with the object-
oriented approach of C++ language. The code is modular. Each component is almost independent
of others.

In order to set up your own experiment, the first step is to properly place your individual
instruments and components. EZ2E provides these: e.g., field _gen (alias laser source),
sideband_gen or phase_adder (alias phase-modulator), pd_demod (the detector), mirror2 (2 inputs
and 2 outputs) or mirror4 (4 inputs and 4 outputs), lens, power_meter etc. You need to do this job
of assembling by creating what we calbox file using our graphical interface, Alfi, or writing

your description file (see document “Getting Started with E2E”). The next obvious step is to
connect all these components meaningfully together and bring them to life. In an optical
experiment, this is done by laser. However, we intellectuals, prefer to call it “field”.

Our field is a class which, at its heart, contains important information about laser light in the form
of a vector of a vector: Each element of the parent vector represents a frequency of light (carrier
or sideband), whereas each element of the offspring vector represents the complex coefficient of
the amplitude of laser in a particular mode of Hermite-Gaussian basis. The basis of these modes is
also carried by the field class itself in the form of its two important private members: waist-size of
beam and distance to waist. As will be explained in sec. 2.1 below, this class also carries some
important information about how you wish to perform your experiments.

The basic task of each module is to accept some input field and/or data and provide some output
field and/or data. These can interact with each other directly or with the help of another important
module,“prop” , the propagator (if these are exchanging fields and there is a distance between
them).

We also developed some modules which represent composite representations of some primitive
modules, e.g., “cav_sum”, a Fabry-Perot cavity or “rec_sum”, a recycled Michelson cavity. Of
course, one can form a FP cavity or Michelson cavity using primitive modules of mirrors and
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props. However, inside these composite modules which are just like black-boxes, calculations of
many round-trips are performed with the help of ready-made formulas and thus, if we need, we
may use them for fast computation.

In next two subsections we describe all modules, their inputs, outputs, other parameters and also
various data types that these modules use.

2.2. modeler and modeler_freq

modeleris an application to simulate the specified system in the time domain.

modeler_freds an application which calculate the transfer function of the specified system in the
following way.

‘ANALYZE_FLAG”

FUNC_1X1 - Data_out

Figure 1: modeler_freq

The system to be analyzed has one input source and multiple output ports. A sinusoidal signal is
suplied to the input port, A sin(wt ). The program runs until the outputs become stable, i.e., the
amplitudes of the frequency become constantsii( w t + @ ), for each output. Then the
amplitude of the transfer function is calculated as Ay, and the phase shift to lge

If the system is complex, it may take a long time or an unpredictable amount of time until the
outputs become stable. To analyze these systems, connect a “data_out” module to some
appropriate port and rename the “data_out” module ASALYZE FLAG”. The program
modeler_freq starts analyzing the system only wAeMXLYZE FLAG” is not zero

E.g., if one wants to calculate transfer functions of the LIGO system, the analysis needs to be
done after the field in the cavity is fully built up and is stationary. To calculate these transfer
functions, create an outpuNALYZE FLAG” which is 0 during the lock acquisition process,

and set it to non zero when the power at some port is larger than some threshold value (e.g., 95%
of the full power). Better yet is to wait a little bit to let the field build up fully before the flag is
turned on. So, for example, with LIGO 1 parameters for the Hanford 4Km interferometer the
pick-off power from beam-spilitter (for the field going from beam-splitter to in-line input mirror)
reaches approximately 27W at steady-state. So, you may connect a “power-meter” module at this
port and then connect a FUNC_1X1 module at the output port of the power-meter. Write the
following equation in the setting of the FUNC module: outO=if(in0>25,1,0). Finally connect a
“data_out” module at the output port of the FUNC module and rename the “data out” as
“ANALYZE_FLAG".
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2.3. Data types and existing modules
Table 1: "Data types" summarizes data types used in the multi-mode version of Adlib,

Table 1: Data types

type name description example data type
complex zeros and poles of dig|- adlib_complex
tal filter
vector_complex arrayld<adlib_complex>
integer number of sidebands gf int
field
vector_integer arrayld<int>
real reflectance of mirrors adlib_real
vector_real power or phase of arrayld<adlib_real>
field_gen
field input and output of field
optics objects
string type specification of string
data_in
boolean freq_flag of bool

power_meter

clamp data representing position, rotation, force and | mirror position and clamp
torque. Explicit form is defined in adlib_types.h.| rotation, connection
Nth bit of clamp.flag is true if Nth data is meaning-between mechanical
ful, i.e., if (flag&(1<<N) != 0) meaningful. modules.

bundle collection of data with names. DNToBundle is | multiple data passed adlib_bundle
used to merge data with name to a bundle, and| together between boxes
DNFromBundle is used to extract data from a bun-
dle by identifying by name

unknown data type assigned to a port whose data type ig output of data_in N/A
determined by other conditions, like the output
port of data_in which is determined by the “type/’
setting.

definingsettings for modules and passing data between modules. “type name” is the name used for
the documentation purpose, while “data type” is the name used in the C++ code. The real
variables are refered to using “adlib_real” as the data type as much as possible, so that it would be
easy to switch to different byte sizes. “adlib_complex” and “field” also use adlib_real for the real
variable. The default is double type.

Table 3: "Primitive Modules" is a table of all primitive modules. The details of modules are given
later. The units of quantities used in these modules are as follows.

For many modules, the main input and output are named as “0”. When appropriate, the meaning is
placed in () following the “0”.
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Table 2: Units
Quantity Unit
length m
time second
Power watts
Frequency either Hz or rad/sec. (see module description)
Field Jwatts
angle radian
k=21/A mL
boolean (in setting )| yes/no or true/false
boolean ( logic unit) | real value is used to represent true or false status. A value rep-
resent true if it is larger than “threshold”, false otherwise.

Table 3: Primitive Modules (default values shown in [])

Name Function in out setting
I/0
data_in used to get data into the | none “0” variable type "type" string ("real”), "init" output type
simulation (??7?)
data_out used to get data out of the "0" variable type none none

simulation (a "probe")

data_reader | read data from a file and | none “output” vector_real “fileName” string, numData integer [0]
(Sec. 4.15.) | generates interpolated or skipLines[0] integer, useFilter [true]
extrapolated data series. boolean
data_viewer | Interavively view data "0" variable type none none
(Sec.4.16.)
psd_out accumulate the input, “0” real disk file whose name is| f_from [0.1], f_to [10 ]real
(Sec. 4.30.) calculate psd of the input | “activate” [1] real the full path of this logSpacing [true] boolean
R and write to a file primitive N_fregs [100], Lowpass_Order [6],

Highpass_Order [6], SlopePower,
N_TffT [1], N_delT [4], maxCounter
[100] integer

page 5 of 59



LIGO--T000047-01

Name Function in out setting
Real Function
madder implements z = a*x + b*y "a"[1.0] "x"[0.0] "0" real none
"b"[1.0] "y"[0.0] real
sine the sine function "0" (time)[0] "0" real none
_ . . "amplitude"[1]
Suqt)) amplitude x sin(2rt “frequency’[1]
"phase"[0] real
square_root the square root function | "0" [0] real "0" real none
out = sqgrt(in)
inverse the inverse function "0" [1] real "0" real none
out=1/in
digital_filter a digital filter "0" [0] real "0" real "zero" "pole” (in rad/sec.) "gain" real
(Sec.4.19.) out = digiatl filter (in) “resetOn” "zeropair" "polepair" complex
“forceQuad” [false] boolean
“sampelTime” [0] real
ADC Discritize the input with “0" [0] real “0” real “gain” [1], “sampleTime” [0],
(Sec. 4.22.) | the specified sampleTIme. “integrationTime” [0] real, “numBits”[0]
integer, “signedint” [true] boolean
DAC digitize the input value “0" [0] real “0” real “gain” real [1], “numBits” [0] integer,
(Sec. 4.23.) | using finite number of bits. “signedInt” [true] boolean, “flipTime” [0]
A noise model based on bi real
flipping is included.
limiter models a circuit with rails | "0" [0] "upper" [1e30] | "0" real none
s _ "lower" [-1e30]
< =
if in < lower, out = lower “slewRateLimit" [0]
if in > upper, out = upper | real
delay add one delay explicily. “0” [0] real “0" real “delay” [0] real, “option” [0] integer

Input "val" is evaluated to be true if val > threshold, otherwise false.

Logic functions

Output is true_val if the

result is logical true, faés val otherwise.

and logical AND "a" [false_val],"b" "0" real "threshold" [0.9], "true_val" [5],
[false_val] real "false_val" [0.0] real

or logical OR "a" [false_val],"b" "0" real same as above
[false_val] real

xor exclusive OR “a” [false_val],"b” “0” real same as above
[false_val] real

a>b comparison "a" [false_val],"b" "0" real same as above
[false_val] real

not negation "0" [false_val] real "0" real same as above

flipflop flipflop “set” [false_vall, “0” real same as above

if (reset) state = false; else
{ if(set) state=true;}

“reset” [false_val] real

initial state is false
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Name Function in out setting
switch if the input value “bool” is | "bool" [false_val] "0" real same as above
true, the input value “high” | "low" [0] "high" [0]
is returned as the output, | real
else the input value “low”
is returned.
hardSwitch Connect one of the inputs | “ONinput”, “out” unknonwn switch [1] real
(Sec. 4.28.) | to the output based on the| “OFFinput” unknown
switch (ON if non-zero)
Data Generation
rnd_flat generates random numbers'range” [1] real "0" real none
with a flat distribution
rnd_norm generates random numbgrswidth" [1] real "0" real none
with a normal distribution
clock generates the time none "0" real none
Unit Conversion
lam2k converts wavelength to "0" [1] real "0" real none
wavenumber
out = 21t/ in
f2k converts frequency to "0" [0] real "0" real none
wavenumber
out=2min/c
Type Conversion
field2complex | converts a field to a "0" field, "dk" [O]real, | "0" complex none

(Sec. 4.13.) | complex number “m” [0], “n” [O]integer
field2info gives info about the field “0” field “spot_size” real “axis_choice” [2] real
complex2reim | converts a complex number'0" [(0,0)] complex, "real" "imag" real none
to real and imaginary "phi" [0] real
real = Re( in * exp(i phi))
imag = Im(in * exp(i phi) )
complex2aphi | converts a complex numbger'0" [(0,0)] complex "amp" "phi" real none
to amplitude and phase
amp = abs(in * exp(i phi))
phi = Arg( in * exp(i phi) )
clamp2xyz convert clamp to indiviual| “0” [all O with empty “X")Y" 2" "thetaX”, none

components and flag

flag] clamp

“thetaY”, “thetaZ”,
“FX7,. “FY”, “FZ7,
“torqueX”, “torqueY”,
“torqueZ” real

“flag” integer

page 7 of 59




LIGO--T000047-01

Name Function in out setting
Xyz2clamp Combine individual data tg “X",...,"thetaX”,... real | “0” clamp none
malke atgla“wp d?tal' f:ag IS [all 0, and the clamp
Zu on;a :]C?hy I(i:r?kcu ate flag is set for connected
ased on the link. value]
real2vec Convert a real value to a | “real_input” [0] real “0" vector_real none
vector of real with one data “vector_input” [null]
out = in,just type changes| vector_real
ClampToBun- | Convert clamp data into a| “in” clamp “out” bundle “nameNN” where NN=00~12 (string)
S dli 29 bundle default values are the same as the outg
(Sec.4.29.) names of clamp2xyz.
Field Operation
field_gen generates a field "power" [(1)] "0" field "lambda" real [1.064e-6],
(Sec. 4.1) vector_real, "phase" [0] “waist_size_X", waist_size_Y real [0.01,
real “distance_waist_X", “distance_waist_Y’
[0] real, “max_mode_order” [1] integer,
“polarization” integer, “compute_option”
[1] integer, “angle_resolution” [1e-8] rea
, “compute_mismatch_curvature” [no]
bool , “KeepGuoyOffset” [no] bool
sideband_gen| phase and amplitude "0" field, “k_mod”[0], | "O" field “order” [1] integer
(Sec. 4.17.) | modulates a field (uses “del_phi"[0], "gamma"
sideband approximation) | [0], “del_gamma” [O]
“gammaAmp” [0],
“del_gammaAmp”[0]
real
sideband_filter| passes only sidebands witi0” field "0" field “dk_max” (+inf), “dk_min” (-inf),
dk value between dk_min “amp_min” (1/inf) real
and l(.jtk—dm?x and tthhe “SBList” [empty] VectorComplex (real
amplitude farger than part = dk, imaginary part = modulation
amp_min. If SBList is :
- ) index)
provided, figure out
smartly.
fld_modulator | modulate phase&amplitude "0" field, "0" field none
(Sec.4.21.) | of afield directly "ohi* [0], “del_amp”
out =in * (1+del_amp) * | [0] real
exp(i*phi)
freq_shifter | shift frequencies of all “0” field “0” field none
(Sec. 4.20.) | subfields by del_k “del_K’ [0] real
power_meter | outputs the power of a field  "0" field, "0" real “freq_flag” [false] boolean; “meter_flag’
(Sec. 4.2)) “dk_for_power” [0] [0], “m” [0], “n” [0], “order_min” [0],
real, “order_max” [0] <integer ,
beam_wiggler | deviation of the beam at | "0" field, “thetaX” [0], | “0” field none
(Sec. 4.8.) small angles “thetaY” [O] real,
beam_shifter | small transversal shift of | “0” field, “dx” [0], “0” field none
(Sec.4.9)) the beam “dy” [0] real
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Name Function in out setting
pd_demod photo diode with shot noisg "0" field, "k_demod" | "demod" complex, “shape” [0], “shotnoise” integer [0],
(Sec. 4.18.) | and demodulator. [O] real "power" real “efficiency” [1] real
rad_press Force and torque on a “Ain”, “Aout”, “Bin”, “pressure” clamp “angle” [0] real
(Sec. 4.6.) mirror due to radiation “Bout” field

pressure

“mech_data” clamp

“noiseOn” [false] bool

“gain” [1] real
beam_center | location of the center of “beam” field “X”, “Y" real “accuracy” [0.001], “delz” [0] real
(Sec.4.7.) beam where the power is “dk” [0] real
maximal
Optics
prop propagates a field over a | "0" field "0" field "length” real [1.0]
(Sec. 4.3 macroscopic distance "dphi real [0.0]
“dphiGuoy” real [0.0];
“have_delay” bool [yes]
mirror2 a 2-input 2-output mirror | "mech_data” clamp; "Aout" "Bout" field "r Ut "R T "L real [2.0 : used to
(Sec.4.4)) (cavity end mirror) "Ain" "Bin" field mark them undefined],
"angle"real [0.0], “radius_front”,
“radius_back” real [1e20],
“refractive_index [1.0] real
telescope Simulate a collection of “in” field “out” field “waist_X", “waist_Y”, “dist2waist_X",
(Sec. 4.14.) | lenses ul h | “dist2waist_Y”,“guoy00_X",
ength” [0] rea “guoy00_Y" real [used only when
defined]
“lensinfo” vector_complex (real part
keeps the location and the imaginary p3
keeps the focal length of one mirror).
“thicknessinfo” vector_real (thickness o
each lens)
“calc_sb_phase” bool [true]
Summation Optics:
cav_sum [b] | represents a FP cavity “mech_dataA”, "Aout" "Bout" "Apick" | "length" real [1.0], "dphi" real [0.0]
mech_dataB’, clamp; field "dirA" real [1.0], "dirB" real [1.0]
(Sec. 4.10.) Ain" "Bin" field, “dphiGuoy” real [0.0];

"rA" "tA" "RA" "TA" "LA" real [2.0],
"rB" "tB" "RB" "TB" "LB" real [2.0],

"rC" "tC" "RC" "TC" "LC" real [2.0],
“refractive_indexA”, “refractive_indexB”
real [1.0], “radius_frontA”,
“radius_frontB”,real [1e15],
“radius_backA”, “radius_backB”, real
[1e15].
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Name

Function

in

out

setting

tricav_sum
(Sec. 4.12.)

represents an isosceles t

angular cavity

-“mech_dataA”,
“mech_dataB”,
“mech_dataC” clamp;
“Ain” field,

“Aout”, “Bout”, “Cout”

field

“length_large” real [1.0], “length_small”
real [0.01], “dphiAB”, “dphiBC”,
“dphiCA” real [0.0];

“dphiGuoyAB”, “dphiGuoyBC”,
“dphiGuoyCA” real [0.0];

“rA” “tA” “RA” “TA” “LA” real [2.0],
urBH HtBH MRBH HTBH HLBH real [2.0],

“rC” “tC" “RC” “TC” “LC" real [2.0],
“radius_frontC” , real [1e15],
“refractive_indexA”,
“refractive_indexB”, “refractive_indexC”
real [1.0],

rec_sum [c]

(Sec.4.11)

represents a recycled
MIFO

“mech_dataA”,
“mech_dataB”,
“mech_dataC”,
“mech_dataD”
clamp;

"Ain" "Bin" "Cin"
"Din" field

"Aout" "Bout" "Cout”

"Dout"

"Bpick" "Cpick"
"Dpick"

field

"lengthA","lengthB","lengthC" real [1.0],
"dphiA","dphiB","dphiC" real [0.0]

“dphiGuoyA”, “dphiGuoyB”,
“dphiGuoyC” real [0.0];

"dirA","dirB","dirC","dirD" real [1.0],
"TA" A" "RA" "TA" "LA" real [2.0],
“rB" "tB" "RB" "TB" "LB" real [2.0],
“rC" "tC" "RC" "TC" "LC" real [2.0],

"rD" "tD" "RD" "TD" "LD" real [2.0],
“refractive_indexA”,
“refractive_indexB”,
“refractive_indexC”, “refractive_indexD”
real[1.0], “radius_frontA”,
“radius_frontB”, “radius_frontC”,
“radius_frontD”, real [1e15],
“radius_backA”, “radius_backB”,
“radius_backC”, “radius_backD”,
real[1el5].

mechanics

susp3Dmass
(Sec. 4.24.)

Simple suspended 3D
mass.

“suspPt”, “force”
clamp

“massPos” clamp

Data type of all settings are real.

“Thickness” [0.10],
“d_yaw" [0.0333],
“d_attach” [0.25506],
“d_pendulum” [0.450],
“d_CM” [0.0014],
“d_pitch” [0.0082],
“Mass” [10.30],
“Qvallnvz” [1e-4],
“QvallnvPITCH" [1e-4],
“QvallnvYAW” [1e-4],
“InitPosZ” [0],
“InitPosPITCH” [0],
“InitPosYAW" [0],
“InitVelZ” [0],
“InitVelPITCH” [0],
“InitVel YAW" [0]
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Name Function in out setting
Vector operations (Sec. 4.23.)
VecLen the size of vector “Vin" vector_real "length” real none
VecScaMerge | Append (up to 16) scalars “Vin” vector_real, “Vout” vector_real “scalarDataSize” integer (-1)
to the input vector to makg “scalar00” ~“scalar15”
a larger vector real
VecVecMerge | Merge 2 vectors into one "V0in", “V1in” "Vout" vector_real none
vector_real
VecSegment Extract part of the input | "Vin" vector_real, "Vout" vector_real none
vector. Vout[0...length-1] =| “base” [0], “length” [1]
Vin[base ... base+length-1] integer
VecElem Return one element of a | “Vin” vector_real, “val” real none
vector, val = Vin[index] “index” [0] integer
VecManyElems | Extracts up to 16 elementsg “Vin” vector_real “scalar00” ~ “scalarl5”| none
of the input vector to scalar real
outputs,
s00=Vin[0]...s15=Vin[15]
VecSubs Substitute a value into ong “Vin” vector_real, “Vout” vector_real none
element of the input vectorl “index” [0] integer,
Vout=Vin, Vout[index]=val val” [0] real
VecAdd a*Voin + b*V1in “V0in”, “V1in” “Vout” none
vector_real, “a” [1],
“b” [1], real
ClampAdd a*clampO0 + b*clampl “clamp0”, “clampl” | “clampOut” none
clamp, “a” [1], “b” [1]
real
Matinv Mout = 1/ Min, if fails, “Min” vector_real “Mout” vector_real, none
;tatus is seF to 0 M.[I,J] is “status” real
(i*column size+j)th in
vector M.
MatVecProd Vout = Min * Vin. size of | “Vin", “Min” “Vout” vector_real none
Min should be size of Vout| vector_real

x size of Vin. Min[i,j] is
(i*Vin size + j)th in vector
Min.

AxisRotation
(Sec. 4.26.)

Rotate the coordiante axis
and calculate the vector in
the new axis.

“inClamp” clamp

“outClamp” clamp

Three Eularian angles, “phi” [0], “thetg
[0] and “psi” [O]real

If other combination of inputs and

Generic Functions (Sec. 4.27.)

outputs are necessary, please let the developer know (e.g., 2 vectors and 2 scalars).

FUNC_1x1
FUNC_2x2
FUNC_4x4
FUNC_8x8
FUNC_16x16

n real input to n real outpu

t

“in0”, “in1”, .
inputs are initialized to

be 0]

..real[al

“out0”, “outl”,... real

“Equations” string
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Name Function in out setting
FUNC_VxV n vector_real input to n “inVecO” ... vector_real| “outVecO” ... “Equations” string
FUNC_2VxV vector_real output vector_real “outputVectorSize_0" integer
bundle (Sec. 4.29.)
mergeBundles| merge two bundles to ong “in0”, “in1” bundle “out” bundle
D4ToBundle | merge up to 4 (8)data to a| “inBundle” bundle “out” bundle name00, name01, name02, name03 ..
D8ToBundle bundle “in00”, “in01”, “in02”, (these should be set to name the input
“in03” unknown data, otherwise triggered as error)
D4FromBundle| extract up to 4 (8) data “in” bundle “out00”, “out01”, name00, name01, name02, name03 ...
D8FromBundle from a bundle out02”, “out03 (these should be set to specify the datg to
unknown . .
extract, otherwise triggered as error)
VecToBundle | Add vector to another “inBundle” bundle, “out” bundle “offset” [0] integer
bundle inVector” vector “nameNN" NN=00~15 [empty string]
string (see Sec. 4.27. for edetails)
BundleToVec | Add or replace the input | “inVlector” vector, “out” vector “offset” [0] integer
\t;e(r:]té)lréc:or;poonneen;tby a inBundle” bundle “nameNN” NN=00~15 [empty string]
u P string (see Sec. 4.27. for edetails)

3 CONVENTION

The curvature of a optics surface is positive (negative) if the surface looks concave (convex) from
outside the optics element. Focal length is positive (negative) for converging (diverging) lenses.

Throughout this document X and Y represent horizontal, and vertical axis respectively. Z is the
direction of beam-propagation in an unperturbed state of the optical set-up. The mechanical data
(longitudinal position z, transverse shifts dx and dy, pitch and yaw) are attributed to a mirror
(mirror2 or any mirror in a summation cavity) through a port calledeth_datd whose
data_type is€lamp”. The following subsection describes the module which should be used to put
mechanical data to mirror(s).
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3.1. “xyz2clamp” module:

Inputs of this module (available under ite
“type_converters” in the pop-up menu of Alfi) azex,

y, theta_x(pitch),theta_y( yaw), theta_z(roll) and its
output can be connected to “mech_data” port(s)
optics modules. All these quantities are defined i
right-handed coordinate system.

“z" : small longitudinal displacement of mirror. Th
sign is positive if the displacement is in the directi
of normal to the coated surface.

“y* & * X" : displacements in transverse directions
in vertical and x in horizontal direction.

“pitch” or “yaw” : “pitch” is rotation around the
horizontal axis,x, and “yaw” is rotation about th
vertical axis,y. Consider the normal to the fror
(coated) surface of a perfectly aligned mirror. This

pitc

Figure 2: Definion of axis and angle

the z-axis. Now you know the positive x-axis and y-
axis in a right-handed frame. The positive values of “pitch”, “yaw” and “roll” are rotation of
mirror in clockwise (right-handed convention) directions around positive x, y and z axes

respectively.

The shift of a mirror long x and y axis is implemeted as a tilt operation, without taking the change
of position along the z axis into account. When a mirror with a radius of curvature R is shifted by
A in a place perpendicular to the z axis, this approximation introduce an error of the mirror
position of the order oA?/R. For a shift of 1mm of a mirror with R=10km, this is O( 0.1 nm ).
This is not a serious problem when simulating a lock with a length control. But, some error signal
sensitive to the cavity length may show false result due to this error.
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3.2. Definition of length between optics

3.2.1. General arguments

The lengths between mirrors are very
important for the simulation of optics sys-
tems.

As is shown in Figure 3, the distance
between the two mirrors, m1 and m2, are
functions of 6 quantities, length, dphi,(®),
thetal, 3(t) and theta2. The meanings of
each parameter and an explicit formula a
given in the following subsections. For eac 22
mirror, there is a reference plane, shown |
dashed lines in Figure 3, which is time
independent. The length between mirrors is
calculated using a time independent length between reference planes of mjir¢ealdulated
using “length” and “dphi” defined in primitive “propagator” and in various summation cavity
primitives, like “rec_sum?”) and time dependent mirror position&),avhich are inputs to various

optics primitives.

Figure 3: Definition of length

E.g., a Fabry-Peroit cavity is constructed t mirror 1 mirror 2
two mirrors with two progapators connec tor 12
ing these two mirrors, as is shown in Figui propagator
4,

Lis
=12

The static distance, b, is defined in the propagator 21
two propagators, and the mirror displace: |
ment, z(t), with respect to the reference —t |
plane, is given as a dynamic input to eac - 210 2(t) -
mirror as the mirror motion. The distance Figure 4: Fabry-Peroit cavity'
between two mirrors at time t is calculate..
by
L(t) = Lyp—24(t) —25(1) (1)

The mirror displacements are subtracted because of the z axis convention, i.e., z axis of each
mirror is pointing outward from the coated surface. When mirrors are displaced with respect to
their respective reference plane as is shown in Figure;4and z are both positive in this
convention, and the length between the two mirrors are shorter {hay i+2z,.

The choice of the static distance,dand the reference planes of the mirrors, is not unique. Only
the summation of the static distance and mirror displacements, i.e., Eg. (1), is physically
meaningful. Proper choice of a static distance makes the simulation setup easyisibet to be

the cavity resonance length, the mirror displacements can be set to O to setup a resonant cavity.
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3.2.2. Time independent length between reference frames - scalar field

When a scalar field propagates through a distance L, the phase changes by the following amount:

L
@Pscalar = _ZT[Xz — 21N + 06 (2)

50 = —ZHBI\; ~NH (3)

where) is the wavelength of the field and N is an integer closeshto L/ . A field is resonant in a
FP cavity wherd@ = 0 ortt, and is anti resonant whép = 172.

In e2e, the wavelength of a field,is defined using a reference wavelenggand the offset dk
as follows:

— = —+dk (4)

Ao is defined infield_genprimitive which is the source of a field. Usually, dk = O for the carrier,
but a nonzero value can be assigned by usiag_shifter. For a sideband with the modulation
wavelengti\yop=C/fmop, dk = 2VApop-

In e2e, the inter-optics length is specified by a pair of vallezggthanddphi. lengthis used to
give the macroscopic length, auighhi is used to specifdd . In other worddphi defines the
deviation of the cavity length from the resonant stapdSonance 2 NTU

If the numerical value ofengthis used literally to calculate the phase change of the field by
2rtdength/ A, the numerical value déngthneeds to be specified with more than 13 digits to
specify a 4km cavity to be resonant, after identifying the exact numerical number of the wave
length used in the simulation. With the e2e convention, the cavity is resonantdghén O or is

anti resonant whedphi= T/ 2, for any value ofength

All physics quantities can be calculated with enough accuracy using the macroscopic quantity
lengthand the microscopic adjustmetiihi. E.g., the phase change of the sideband relative to the
carrier field is calculated dgngth”wave length of RF modulation” (~10m) and the Guoy phase
by length/ “Raleigh range” (~1km).

3.2.3. Time independent length between reference frames - multi mode field

In order to present this topic first in a simpler way, let us first discuss this topic for the case when
the effect of mismatch between beam wavefront and the mirror curvature is not taken into account
(in actual simulation one may do that by settoggnpute_mismatch_curvatutbe boolean flag in
thefield genmodule to false).

The (m,n) component of a Gaussian beam acquires the following phase when propagating through
a distance of L (Ref.[3]),
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= oMt 4 (m+ n+1 = Dot 4 Ot (m+ 1 5
= - T[)\ ( Moo = T T[)\ Noor ( )Noo (5)

Wherer]OO is the Guoy phase acquired by the TEMOO mode through this propagation. For a field

which is the TEMOO eigenstate of a FP cavity of length L with mirror curvatures efifd R, the
Guoy phase change propagating through the cavity is given by the following equation.

FP

The phase change of the (0,0) mode can be rewritten in the following way.

L
) E—Zn%\;—NEH]_m (8)
8N =Nngo=Ngo ©)

which is a generalization of Eq.(2) and (3). Herg, is the Guoy phase change dependent on the
field quantity andng,, is a constant setting namgghiGuoy in the propagator and other
summation cavity modules. When the boolean #agepGuoyOffsein the field_genmodule is

false (which is the defaultphiGuoysettings are neglected amg,, is setrig, , SO that the
offsetdn becomes zero.

Just in the same way as we discussed for the scalar field, the cavity distance is sped#fiegdiby
anddphi (Eq.(8)), and the phase of the (m,n) mode with dk offset (see Eq.(4)) is calculated by

®(m, n dh = —21N + (m+ n)ny,+0n +dkUength+ dphi (10)

WhenKeepGuoyOffsas false,dn =0, and, it is easy to setup a cavity where TEMOO carrier
(m=n=dk=0) component of the incoming field is a well defined state. But, with this convention,
the length of the cavity implied kphi = 0 changes as the mode Haskthe field changes. The

size of the change of the length is very small, but this change can be important when discussing
locking.

Now we discuss what happens when the mismatch between the beam wavefront and mirror curva-
ture is also taken into account in simulation.

So, ifcompute_mismatch_curvatutee boolean flag in thigeld_genmodule is set to true, the
perturbation calculation is performed for the mismatch between the wavefront curvature and the

1. A Hermite-Gauusian field is characterizewd by two independent parameters (see [3]). In e2e, the waist sise
and position are chosen to define the base of the mode, as can be found when specifying thigsfieldjem
primitive. In the following discussions, “change of the mode base” means the change of these parameters.
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mirror radius of curvature on reflection from the mirror. This changes the resonant condition for
the length of the cavity. In that case the TEM0OO component of a Gaussian beam acquires the fol-
lowing phase in a round-trip of the cavity of length, L

L
9o = —2My +Ngg+ X1+ Xp *X1p= —2MN+30 +3n +X1 +Xp +X1p  (11)

where X, ,X, are phases induced on the beam due to mismatch in mirror 1 and mirror2 respec-
tively and depend on parameters represented py o, , (which describe the perturbative effect
of mismatch) (for details see Ref.[3]). The dependencgpf X, , aena, , respectively is of
first order, whereas the same dependencgfor is of 2nd order and involve coupled terms
betweena, and,

WhenKeepGuoyOffsas false, the mirror does not induce the corresponding phase to the

beam, so the above discussion regarding the resonant length for TEMOO remain approximately
valid if the effect of mismatch is not much and the phase is negligible. However, if there is
too much mismatch, one may not automatically get the resonant condition just by setting
KeepGuoyOffsdb false. In that case we recommend the followingk&epGuoyOffsdb true.

In that case the phaseg are imparted to the beam on reflection from mismatched mirrors and

the user needs to calculgtg,  separately and set that vadge to , the longitudinal phase offset
to make the length resonant.

A good example is the thermal lensing effect of the input test amagine a case that a TEM0O

field with a given mode base is going into a FP cavity. The field in the cavity has a different mode
base than the input field due to the input test mass. Another way to say is that the curvature of the
field changes when the field goes through a lens. This change of base is automatically calculated
by e2e using the refractive index of the mirror. As the input test mass is heated up, this lens effect

changes, and accordingly the mode base of the field into the cavity changes.

This effect can change the mode base in the cavity large enough that the vgeaof change

to cause measurable effect. If the cavity length is defined MapGuoyOffsdalse anddphi= 0

(or any constant), this effect is not simulated, because the change of the Guoy phase of the carrier
is automatically compensated by the change of length.

In order to simulate this kind of effedeepGuoyOffsateeds to be set to true, and some value is
to be assigned tphiGuoy and the same setting should be used to simulate different states of
interest, like cold and hot states of the input test mass. For a FP cavity, using the Guoy phase
change determined by a cavity geometry, Eq.(6), for a cold state, will be a good choice.

Since the choice alphiGuoyis arbitrary, the use of this setting leaves the chore of finding the res-
onance point of a cavity to the user. This is usually acomplished with a control loop and, and the

2. Only the lensing effect due to the radius dependent refractive index change of the substrate is discussed here.
3. The thermal lensing effect can be simulated in a crude way by changing the refractive index of the input test
mass.
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ability to observe the action of these loops is likely the motivation for sétiagGuoyOffsdb
true.
3.2.4. Time dependent mirror displacements

The mirror position, which can be time
dependent, is defined to be the relative

Z
distance between the mirror surface an = o
the mirror reference plane, using the pe

= d1 tos26

pendicular direction pointing outward
from the coated side (shown by a gray
box in Figure 3) of the substrate as the
axis. So in Figure 3,;2s negative while
zZ, is positive. The effect of the mirror dis
placement, zand 2, are taken into
account by the change of the phase. As
shown in Figure 5, the net change of th
path length iz [tosB , and the phase
change due to this difference is added to the reflected field.

Figure 5: Phase change due to displacement

4  PRIMITIVE MODULES

In summation modulescav_sum, rec_sum, tricav_sur)) there are some restrictions which
should be noted carefully. We decided to keep these restrictions in order to avoid unnecessary
options which are not really utilized in LIGO-related applications that we know of. It should be
noted that any or all of these restrictions can be lifted by a quick modification of our source
programme; In case you need such modifications, please contact us.

4.1. field_gen:

This is basically our laser source but it also carries some important additional information about
how you wish your simulation to be done. Optical simulation without light means nothing. A
mirror or a cavity is alive only when it receives light. That's why we decided to put these
additional information inside this module. The field carries these additional information (or the
user-specified instructions) everywhere it goes and simulation is performed accordingly
everywhere in a consistent way. So we explain below the parameters of this module in two
categories:

4.1.1. simulation information:

“max_mode_order”: represents the maximum order (m+n of TEM) up to which the user wishes

to perform the computation. As explained above, once specified, this remains to be a static
constant throughout the simulation. If you set “max_mode_order = -1” or any other negative
integer, all modules perform operations assuming light as plane wave (no transverse dimensions).
Setting “max_mode_order” to zero or other positive integer (up to 3) makes all the modules
perform Gaussian beam calculations using multi-mode computational environment; The zero
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setting corresponds to just TEMOO mode. Note that the current implementation can study modes
up to order m+n = 3, which is sufficient for most of our application purposes.

“compute_option” : allows the user to select one of the computational methods for the multi-
mode calculations. Currently, only one option, 1, the standard modal-model computation, is
available. NOTE: if you set “max_mode_order” to any negative integer, which effectively means
that you wish to perform ordinary single-mode operations, obviously, the setting of
“‘compute_option” will not have any significance and will be ignored.

“angle_resolution” : Matrices that are used to study higher order modes generated due to pitch
and yaw are updated only if these quantities (in radian) get changed by at least the set-value of
this parameter. Thus, this avoids expensive matrix re-calculations even for negligible changes in
alignment angles. Choice of a higher value leads to relatively less (not necessarily unacceptable)
accuracy but faster simulation, and vice versa.

“‘compute_mismatch_curvature”: This is a boolean flag. If you wish to compute for the
generation of higher order spatial modes due to mismatch in radii of curvature of mirrors and the
corresponding phase-fronts, you need to set it to either true or yes. If you set it to false or no, the
simulation assumes that the phase-front at any mirror exactly matches with the radius of curvature
of the corresponding mirror. This has many advantages. For example, when you are at the first
stage of designing some configuration, you may not be interested in detailed mismatch
calculations. Caution: before setting it to no or false, be sure that mismatches are really small.

“KeepGuoyOffset” : See Section 3.2.3.

4.1.2. field information:

“lambda” : laser wave-length.

“polarization” : At present E2E supports field in only one polarization state and does not allow
their simultaneous presence (This status will be changed shortly). Set this parameter to either “0”
(zero) if the field has p-polarization (in the plane of incidence - XZ plane in E2E’s convention) or
to “1” if the field has s-polarization (perpendicular to the plane of incidence - YZ plane).

“waist_size X", “waist_size Y”: laser beam waist radii : Radial distance in X or Y direction at
which the electric field drops to 1/e times the maximum value (at the center).

“distance_waist_X”, “distance_waist_Y” : Distance in z-direction to beam’s waist: To be set
negative (positive) for a converging (diverging) beam.

“power” and“phase”: These in various modes need to be specified as an array of real numbers in
the following order of TEM_xy basis: 00, 10, 01, 20, 11, 02, 30, 21, 12, 03. Note that the current
implementation can study modes up to order m+n = 3, which is sufficient for most of our

application purposes. If it is really necessary, we'll incorporate m+n > 3 modes in future.

Some examples: if you set max_mode_order = -1 or O (single-mode simulation) and power = 1.0,
0.2, 0.1, only TEMOO power will be set to 1.0; the last two values in the array are ignored. If you

set max_mode_order = 1 and power = 1.0, 0.2, 0.1, 0.01, the last value in the array is ignored. If
you set max_mode_order =1 and power = 1.0, 0.2, the TEMO1 power is automatically set to zero.
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4.2. power_meter:

“dk_for_power”: Difference between the frequency for which you intend to measure power and
the carrier frequency. If you set it to zero, that means you intend to measure carrier power. NOTE:
you must setfreq_flag” to yes in order to use this parameter.

“freq_flag” : if you set it to “yes”, the “power_meter” module calculates power in frequency
corresponding to the set value“ok_for_power” . If you set the same to “no”, it sums up power

in all frequencies. In both cases, it sums up power in only those modes selected by you by setting
“meter_flag”.

“meter_flag” : Setting “meter_flag” to zero, you get summed-up power in all modes. Ifitis set to

1, power_meter sums up power in all modes in between m+forder_min” to m+n =
“order_max”; The settings of‘m” and “n”, if you make any, will be neglected. When
“meter_flag” is set to 2, the power_meter gives the power only in mode TEM_mn; In this case,
the settings oforder_min” or “order_max” , if any, are neglected. If you are doing something
inconsistent (e.g., “order_min” is greater than “order_max”, etc.), you'll receive warning
messages right at the start of your run of modeler or modeler_freq. So, watch out for those and, if
needed, stop running and change the settings.

An easy question: How to get total power in all frequencies and in all modes? Answer: Set
“freq_flag” to no and “meter_flag” to O.

4.3. prop (the propagator):

“length” and “dphi” : In the plane wave case (when you select “max_mode_order” = -1 in
“field_gen” module of your .box file) , the total length of any propagation path is calculated as
follows:

_ lengt dphig
o = Fenaty. o

In the equation, N[x] means the closest integer to x, angd the carrier wavelength. When
longitudinal phase offset, dphi = 0, the propagation path length is an integer times the wave
length.

“dphiGuoy” : See Section 3.2.3.

“have_delay” : When “have_delay” is true, prop behaves as a module with delay, i.e., at least one
time step delay is introduced, even if the length is 0. So, maximum time-step of simulation is
determined by maximum value of “length” parameters of all the props involved. However, When
“have_delay” is false, prop calculates the output by multiplying proper phases without any time
delay. This is intended to simulate a very short cavity and field paths outside of a resonator. Use of
this latter modus-operandi may speed up the simulation speed without introducing any extra
inaccuracy.

4.4. mirror2:

Side A (B) referes to the side which is coated (uncoated). E;g.m&ans an input field coming
into the coated side.
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Any two of theR, T, L (power reflectance, transmittance and loss}, | (amplitude) can be
specified for a mirror.

“radius_front”, “radius_back”: Radius of curvature of the coated surface. To be set positive (
negative) if the coated surface looks concave (convex) from outside the mirror

“refractive_index”: refractive index of substrate

“angle” : The angle between the incident or reflected beam and the normal to the mirror surface.
When “angle” = 0, the mode-matching between the input beams and the mirror surface is
assumed; Any small difference between “radius_front” and the radius of wavefront of the beam
is then computed in a perturbative way (provided you Kegpnpute _mismatch_curvature” to

yes or true inffield_gen”). However, when “angle” is not zero, the mirror is treated as a turning
one. Incoming and reflected beams are related by ABCD transformation which uses the value
assigned to “radius_front”. Effects of mirror rotation (pitch, yaw) are calculated in a perturbative
way.

“mech_data”: see section 3 "Convention"

45. lens:

Module removed. Use telescope instead.

This module may be used to effect the change of basis of beam TEM modes by a lens or by a
mirror with lensing action. To use it for studying the lensing effect of a mirror, please refer to the
first paragraph of section 2.4 on mirror2.

“radius_front” and “radius_back” : T o be set positive ( negative) if the lens surface looks
concave (convex) from outside the lens. “radius_front” is on the side of “in” field and
“radius_back” is on the side of “out” field.
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4.6. rad_press

IT™M

ETM
ol

Al Bin
Aout Bout

Figure 6: Radiation pressure on ETM

The “rad_press” primitive module calculates the force and torque acting on a mirror. Incoming
fields and outgoing fields on both side of a mirror need to be connected to the 4 “input” ports, Ain,
Aout, Bin and Bout. The positive z direction is the side of A fields. E.g., in Figure 6, it is pointing
from ETM to ITM, and the sign of Fz in this example is negative, i.e., ETM is pushed backward to
expand the cavity length.

One input, “mech_data”, provides the position of the center of gravity of the mass with respect to
the geometrical center of the mass. Only quantity important will be the offset due to the wedge
angle. Another input is “gain” which is a real value multiplied to the output. This is implemented

to turn on and off the radiation pressure effect, but can be used continuously increase the effect.

The setting “angle” is the incident angle of the field, so use 0 for ETM and ITM and PI/4 for BS.

The boolean setting “noiseOn” is the switch to turn on and off the fluctuation of the radiation
preessure. For now, only the fluctuation of the longitudinal force is calculated and the torque does
not have fluctuation.

4.7. beam_center

This primitive finds the X-Y value where the power of the field is maximal. If the input “dk” is
provided, then the peak of the sideband with dk is found. The setting delZ defines the distance of
the plane of interest from the point where the input field is provided. One can use two primitives
with the same input field but with different delZ to find the beam direction.
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4.8. beam-wiggler:

This can rotate the beam around horizontal “x” axis (“thetaX”) or vertical “y” axis (“thetaY”) by
small angles (as compared to the divergence angle of the beam). For example, as shown in figure,

-
— -
i
-— =
—
— -
— -
— -

——— S Propagation ——

wiggler

if the ‘beam-wiggler’ module is put on a beam path and appropriate values of “thetaX” and/or
“thetaY” are set to it, the beam direction will rotate by the specified angles. If the beam
propagates some finite distance after that, we can see that its maximum power position in
transverse direction moves some finite distance from the center. One should note that in this
particular case, while propagating, the effect of the addition of gouy phase is the only important
one for the angular deviation of the beam to happen. The time-delay of propagation is not
important. So, if one is using this set-up with some other cavity, one may like to set the time-step
appropriate for the cavity without bothering about the time-delay for this propagation. One may
do this by using either the “prop” module with “have_delay” off or using “telescope”.

4.9. beam-shifter:

This can shift the beam in transverse “x” (horizontal) or “y” (vertical) directions by small amount
(as compared to beam waist size).

X
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4.10. cav_sum:

This is used for fast simulation of a Fabry-Perot cavityere is one |
restriction in this moduleThe first light should enter the cavit
through mirror A. |

The coated sides of mirrors, by default, are inside the cavity. In.= 5 [ | B
you need to orient one or both of them otherwise,'dgA” and/or |
“dirB” to (-1).

Lensing effects of the component mirrors have been include virtuallpickoff (C,Apick)
calculations. So, do not forget to '
set“refractive_index” , “radius_front” and“radius_back” of mirrors A and B.

Give mechanical data of the mirrors througméch_data”R and “mech_dataB ports (see
section 3 "Convention").

“dphi” is longitudinal phase offset. One may use another phase tfigbiGuoy” after setting

the boolean flagkeepGuoyOffset” in “field_gen” module to true or yes. The offset “dphiGuoy”

is useful for comparing, say, simulation runs with various levels of mode matching in a cavity to
find out absolute values of changes in mirror positions in these runs by setting “dphiGuoy” to a
reference value (See Section 3.2. and Section 4.3. for detailed explanation).

4.11. rec_sum:

This represents the recycling cavity of LIGO interferometet
just a power-recycled Michelson interferometérhere is one
restriction in this moduleThe first light should enter the cavit
through mirror A.

This has been developed in order to perform fast simulatio
the whole LIGO interferometer. In a LIGO configuration ma A / B
D

C

with primitive mirrors and propagators, the maximum value

time-step of simulation is limited by the smallest value of one

the lengths (in this case, one of the lengths inside the recy

cavity). This module enables one to make a LIGO configuration

where “rec_cav” sits in the middle and gets joined by the props to the primitive end mirrors and
allows a time-step whose maximum value is limited by the lengths of arm cavities. Of course, it
can, on its own, produce simulation results for a Michelson interferometer in a fast way. It can
also be used to study dual-recycled michelson interferometer by having non-delay props and
primitive signal recycling mirror at its dark port.

By default, the coated sides of all the mirrors are inside the power-recycled Michelson Cavity. To
simulate with one or more than one coated sides turned to outside this configuration, set
corresponding “dir_" variable to (-1). For example, in order to study a power-recycled Michelson
cavity, most probably what you would like to simulate is just the default orientation of mirrors in
“rec_sum”. However, if you wish to study full LIGO configuration using “rec_sum” for the
recycling cavity, you need to s@itB anddirC to (-1).

Lensing effects of the component mirrors have been included in calculations. So, donot forget to

set‘refractive_index” , “radius_front” and“radius_back” of each mirror.
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Give mechanical data of the mirrors througméch_dataA, “mech_dataB, .... ports (see
section 3 "Convention"). Remember: the longitudinal position, z, of the beam-splitter refers to
shift along the normal to its coated surface, just like in any other mirror (and/the factor is
taken care of by the code).

The output fieldsApick, Bpick, Cpick refer to internal fields at corresponding mirrors and are
directed at the beam-splitter. The fidlpick is the field at the beam-splitter and is directed to
mirror B.

“dphi”’s are longitudinal phase offsets. One may also use a set of other phase offsets
“dphiGuoyA”,“dphiGuoyA”, “dphiGuoyA”  after setting the boolean fldgeepGuoyOffset”

in “field_gen” module to true or yes. The offsets “dphiGuoy’s are useful for comparing, say,
simulation runs with various levels of mode matching in a recycling cavity to find out absolute
values of changes in mirror positions in these runs by setting “dphiGuoy’s to a reference set of
values (See Section 3.2. and Section 4.3.for detailed explanation).

4.12. tricav_sum (isosceles triangular cavity):

This is a summation module representing a triangular cavity like
mode-cleaner or mode-cleandrour restrictions on this moduidi) the A B
triangle should be an isosceles one, (ii) light should enter only one \
(referred to as A port), (iii) the input (A) and output (B) mirrors should

flat., (iv) the coated sides of all mirrors are always inside the cavity.

“length_large”: Either of lengths BC or CA. u
“length_small”: length AB c

“radius_frontC” : radius of curvature of mirror.C
“refractive_indexA”, “refractive_indexB”, “refractive_indexC” : refractive indices of mirrors
“dphiAB”, “dphiBC”, “"dphiCA”:  small phase offsets in various lengths.

If all dphi_ are zero, the triangular cavity would be resonant with TEMOO of its natural modal
basis in p-polarization. So, if you have set “polarization” to “0” in field-gen module of your .box
file and if all dphi_ are zero, the cavity will automatically be resonant. However, you need to set
one of the dphi_ s to Pi to make it resonant if you have set “polarization” to “1” (i.e. s-
polarization) in field-gen module.

One may also use a set of other phase offskiBiGuoyAB”, “dphiGuoyBC”, “dphiGuoyCA”

after setting the boolean flatikeepGuoyOffset” in “field_gen” module to true or yes. The
offsets “dphiGuoy”s are useful for comparing, say, simulation runs with various levels of mode
matching in a cavity to find out absolute values of changes in mirror positions in these runs by
setting “dphiGuoy”s to a reference set of values (See Section 3.2. and Section 4.3. for detailed
explanation).

Give mechanical data of the mirrors througméch_dataA, “mech_dataB, .... ports (see
section 3 "Convention").
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4.13. field2complex:

This module allows one to get the complex amplitude of a field (which, by E2E construction, is a
class containing various field information and associated functions) in frequency specified by
“dk” (as usual, the difference between the specified frequency and the carrier frequency) and in a
particular TEM_mn mode specified by integérs and“n”

4.14. telescope

Telescope module simulates a set of thin len g

to change the waist size and position, and | length

phase of the field. The lens setting is defined 2

its location | and the focal length;,foptionally |

with its thickness @ where the focal length i |

related to the lens surace curvatureg.aRd R, :
I

and its refractive index g, by the following U
I

equation. output fleld

1 Il 10 calculated her

= ~(n R RO 0 (1) (a1 (In)

f

The “lensinfo” setup should be defined in the following way to define the lens configuration.

lensinfo= (h, f1), (I, f5) .o (I, T 1)
If you want to include the thickness effect, you provittecknessinfa’ in the following format
thicknessinfo= ¢, d,, ...,d

When there is a thicknesses assigned, the lens posit®tine center between two surfaces. If the
thickness information is not specified for the j'th lens, zero thickness is assumed. The thickness is
used only to correct for the calculation of the waist position, and no thick lens effect is included.

In order to use this module to simulate one lens, &=tsinfo” to (1,f), where “I” is the distance
between the source of the field and the lens, and “f” is the focal length.

The “length” of the telescope can be defined through the input port, and it can vary during the
simulation. If “length” is not provided neither as an input to this port, nor by a default value, the
last lens location is used as the length of the telescope. If neither of them are provided, the length
is set to be zero. The output of the telescope module is the field at the lokatgih™

The field is propagated between lenses in the same way as the propagator module does, i.e., Guoy
phases and sideband phases,(-(I,,.1)*dk; ) are applied and the distance to the waist position is
advanced accordingly. When the field goes through a lens, the waist size and the distance to the
waust position is changed. If the focal length is larger tha®} it@epresents a flat lens.
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When the sideband phases are included, the definition of the demodulation of the field after the
telescope, in-phase and quad-phase, depends on the length of the telescope. In order to make it
easy to define the in-phase and quad-phase demodulation, the sideband phases can be excluded
from the telescope calculation. In order to do that, s@t" sb_phaskéto false.

The telescope effect can be specified by the setting parameteasst”X’, “waist_Y”,
“dist2waist_X’, “ dist2waist_Y”, “guoy00_X, “guoy00_Y’ in stead of specifying the details of

the lens setting. If these parameters are specified, the base of the outgoing field is changed to these
values and, each mode is multiplied by a phase based on guoy00. In this case, no sideband fields
are multiplied.

If “lensinfo” is specified and one or more of these three parameters are specified, these parameter
settings override the calculation based on the lensinfo specification, i.e., after the calculation of
the telescope is finished using therisinfo” data, the final waist size, the distance to waist and
total gouy phase changes are replaced by the explicit specification, if there were any.

4.15. data_reader

Read data from a file “fileName” and interpolate or extrapolate to generate time series of data.
The input file should have the time in the first column and arbitrary number of columns of data, all
separated by white spaces. A data series in each column is interpolated or extrapolated using a
2nd order polynomial. This output is filtered by a lowpass filter (Chebyshev 2, 10th order, 40dB,
Nyquist frequency determined by the first two input times), if “useFilter” is true. All outputs are
stored in a vector output.

If “numData” is positive, first “numData” data series are processed. First “skipLines” lines are
skipped and all lines are skipped which do not start with a number (starts with a character which is
not a digit nor period).

4.16. Data_Viewer

This is a module to dump out the data. This is equivalent to the following c++ statement.
for (i =0; i< counter*step; i++)
if ( mod(i,step) ==0)
cout << data;

You are prompted for the values of counter and step, and you can stop dumping if you want. This
data will not go to the standard output file.

4.17. sideband_gen (this one is not quite up-to-date)

This modules amplitude and phase modulates the input field by the following formula.
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sin(Qt))

amp

Eout = Ein CEXN il'q)sin(Qt)) CEXp(I

(13)

S i O
0y O (=)™ 'DJi(Fq))DN_i(Famp)EDExp(iNQt)
= —00 | = —00

where J(x) is the Bessel function an¢(k) is the modified Bessel function. For the given value of
“order” setting parameter n, the following approximation is used:

0
0 Z DZ &k El]i(rq))DN_i(Famp)EEExp(iNQt) (14)

N:—nl—

4.18. pd_demod

The details of the implementation of the demodulation and shotnoise are given in [1]. Setting
“efficiency’ is the quantum efficiency, which is multiplied to the input power to get the net power
converted to the photo current.

There are three options for the shot noise simulation. Wkénthoisé is 0, the shot noise is not
simulated. Whenshotnoisé€ is 1, a fast method is used to generate the shot noise. This generates
the shot noise using a gaussian distribution which gives correct values for the average and the
variance, when only one pair of sidebands (one upper and one lower) exists. This method
generates the shot noise of the three signals, the inphase demodulated, quadphase demodulated
and the power, independently. Wheshttnoisé is 2, a full simulation is used to generate, and

the simulated fluctuation is no more a simple poission distribution and the correlations among the
three signals are properly generated. But this method is order of magnitude slower than the fast
method.

The “shapé€ setting defines the shape of the detector. For the “shape” values 0 to 8, no additional
inputs are needed, and each value corresponds to the shape shown in Figure 5 with infinite radius.

@m RN
@ g9

Figure 7: “shape” number of detectors

Several box files are providedgcifcular_det.box”, “xhalf det.box’, “yhalf det.boX and
“quad_det.box. They contains one to four pd_demod modules with proper weights to combine
them. complex2reim is included to convert the demodulated output to inphase and quadphase
demodulated signals. In Figure 6, “+” and “-” signs indicate that they are added together with
weights of 1 and -1 respectively.

When you need to simulate any detectors with different shapes, a detecotor map needs to be
generated using a program “detmap”. [ Contact Hiro Yamamoto of LIGO Lab about the details of
this program ] This program generates a table of values to be used by pd_demod for this detector.
Then paste this table of numbers, array of real values, into the map_data field of pd_demod.
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circular_det.box xhalf_det.box yhalf det.box quad_det.box
Figure 8: detector boxes

Using “detmap”, you can define a detector by specitying the following quantities (see Figure 7).

* r_min, r_max : minimum and maximal radius
* phi_begin, phi_end : minimum and maximal angle
» gap : distance between the detector boundary to the geometrical bound defined by
phi_begin adn phi_end
* dx0, dyO : the offset of the detector center to the beam center
All quantities with length dimention are to be normalized by the spot size.

Ay axis

N\

N\

N
/ -~
r—?‘a}\ _ =\ phi_begin
Fr_mindQ 798P Yy

L L@odyo)
/ P
N - _ X axIs

—

_—

Figure 9: Specification of a detector

For example, if you want to define a Bullseye photodiode designed for IOO, you make detector
maps of the following 4 detectors with the parameter sets (r_min,r_max,phi_min,phi_max) =

(0,1,0,360), (1.15,2.748, -30,90), (1.15,2.748, 90,210). (1.15,2.748,210,330). The radius values
are arbitrary chosen.

4.19. digital_filter

The digital filter implementation in e2e is based on the same algorithm used in pziirm by
p.fritschel, i.e., (1) use bilinear transformation from s to z, ( s = 2/T (z-1)/(z+1) ), followed by
zp2sos group-ordering implemented in matlab (DIR_FLAG = 'UP’). The filter code is based on
iir_filter in ascFilter.c by R. Bork.

The specification of the digital filter is as follow:
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£1(%) Of ,(zp)

DF(s) = gain[d — (15)
f1(B) Of ,(pp)
(%) = [](s—x%)
1% |_| X B )
fo(xp) = |'|(s— xp) ds— xR)

The numerator and the denominator are represented by two forms of polynomials. zeros and poles
in the form f1 in Eq.(5), complex zero pairs and poles pairs in the form f2. Each one is specified
by a real vector (zeros and poles) or by a complex vector. The coefficients a’s and b’s are
calculated for a given time step using 128 bit precision. When the new output value is calculated
internally in the module, either 64 bit or 128 bit precisions are used depending on the values of
zeros, poles and the time step. This criteria is not perfect. If you prefer to use 128 bit calculation
for a given module, sefdrceQuad’ to true.

ossp I AT source df out
0.1 ?’ % ’~. \“ :. 1‘ 00: St:O—
/| . . /| .
/| | —
L .
0.05 %‘ " ; N H b ADC
T .y
| Sl | L1 |
of “ S
a S
-0.05F R L N ﬁ 4
] Bl — | st=0—
o1l DIt S
-0.15| N J“‘

1 1 1 1 1
10.4 10.6 10.8 11 112 114 11.6

Figure 10: Digital Filter

“sampleTime’ larger than the simulation time step (tick time), this module uses this value as the
digitization time step. In Figure 8, the dotted line is the output with “sampleTime” = 0. The solid
line is produced by placing a A2D_sampler between the source and the digital filter module,
which has the same finite value of sampleTime as the digitial filter. The dot-dashed line is the the
output of the same arrangement, source -> A2D_sampler -> digital_filter, but the sampleTime of
the digital filter is set to 0.

“resetOn” switch is used to clear the internal buffer. When the resetOn values changes to a non

zero value, the internal buffer is cleared and output value is also set to 0. When resetOn is positive,
the output is 0 and the internal state is zero. When resetOn is zero or negative, the evolution goes
on as usual. The normal use is to set “resetOn” to 0. If the resetOn is set to 1, then the internal

buffer is cleared and the output is O until the resetOn is set to O.
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4.20. freq_shifter

All subfield frequencies are shifted by the same amount. The magnitude of this shift can be
several 100 MHz, it should not be time dependent.

4.21. fld_modulator

One can do the modulation using this function and demodulate by multiplying a sine function
without using the sideband approximation. But, in order to do that, the time step should be at least
10 times smaller than the modulation field cycle, and usually, this method takes several 10-100
times slower than the side-band approximation. It is recomended that one tries this method
occationally to validate something. When you set the number of sidebands for the sideband_gen,
this is automatically done both in sideband_gen and pd_demod.

4.22. ADC

For a given discritization time period “sampleTime”’and an integration timé, the output
between mto (n+1X is calculated as

nt
out(rm) :i [ input(yat a7
nt—-A

WhenA is 0, the inpuit value at timemis used as the output value between nt to (n+1)t. When
digital controllers are implemented, this module should be used together with the digital filter
with the same “sampleTime”. There is no restriction of the sampleTime, except that it should be
larger than the simulation time step.

After this output is multiplied by “gain”, the value is digitized using values betweBBtS-1tg
2numBits-11 for signedint = true or between 0 {§'PB1 for signedint=false, i.e.,

ADC(mt) = floor(gainout ) + 0.5) (18)

and the value is bounded by the upper and lower limit of values available by an integer with
numBits bits.

analog input

out(n-1) T~ A

\ / I

N /

N

/
simulation points N S(n'l) /éut(n):S(n-l)A

\IIIIIIIIWIIIIIII

(n-Dt A nt (nt1)t

Figure 11: Digitization in Time
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4.23. DAC

First the input value is digitized using values betweelTBitS-1tg 2NUMBIts-11 for signedint =
true or between 0 td"¥MB%1 for signedint=false. Then the value is multiplied by gain.

A noise model based on the bit flipping is implemened. When the digital value is changed from
the previou value to the new value, some bits are flipped. The model assumes that each bit flips
with an avarage time of flipTime, dN/dt = exp(-t/ flipTime ). The analog value is calculated as the
weighted average of intermediate digital values.

For a 4 bit system, the process to changes from -1 (1111) to 0(0000) goes as follows. For each bit,
a flip time is calculated, and in that order, the digital value is changed. It can be (1111)->(0111)-
>(0101)->(0100)->(0000). Then the analog value is calculated as (-1)xT(-
1)+7*T(7)+5*T(5)+4*T(4)+0*T(0), where T(l) is the fraction of period the digital value is I.
When the flipTime is negligibly small, only the last one, 0*T(0), dominates, but with finite value

of “flipTime”, this can induce observable size of noise, especially when the sign bit changes.

i L | | | | IE:|,

o
5

o

. . . . . .
05 0 5 0 5 0 5 0 00

(a) step function input (b) sinusoidal input
Figure 12: DAC bit flip noise

If numBits is 0 or flipTime is 0, the noise is not calculated.

4.24. susp3Dmass

This module simulates the motion of a single suspended mass based on the formulation given in
Ref.[5]. The naming of settings of this module follows the one in Ref.[6] as much as possible.

page 32 of 59



LIGO--T000047-01

5o

Thickness

Diameter

S oy

mirror position

j coated surface

End view Side view

Figure 13: Single Suspended Mass

The coordinate system is defined in Fig. 2. The inputs are the suspension point (“suspPt”) location
and the orientation and the force and torque acting on the mirror (“force”). The output is the
location and the orientation of the mass (“massPos”). The force and position are passed using
clamp data type.

The origine of the coordinate systems of the suspension point and the mirror position are
different. The origine of suspPt is the filled squared box in Fig. 10, while that of the mass is at the
filled circle in the same figure, which is located at the center of the cylinder on the coated surface.
The suspPt is located at (0, d_pendulum, -Thickness/2) in the mirror position coordinate.

This module does not include the wedge angle.

4.25. Vector operations

These modules are provided to manipulate vectors. Using these operators, one can build a vector
by combining scalars or vectors or extract components of a vector.
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4.26. AxisRotation

Figure 14: Euler angles

The input to this module is a clamp data (vectors) represented using one coordinate axis, X-Y-Z in
Fig. 11. This module calculates the components of this clamp using another axis, x-y’-z’. The
two coordinate systems are related by three anglesdphti{eta @) and psi (). First, the axis
system is rotated around the z axis¢pythen byB around the new x axis, then hly around the

new z axis. The inverse of a transformation specifieddhyd( ) is a transformation specified by

('LIJ’ _e! _q))

The ground motion is best represented in the detector coordinate system, x axis along the x arm, y
axis along the y arm and the z axis normal to the ground. The z direction of e2e coordinate system
is the direction of the coated side of the mirror, and the y axis is pointing upward. Samples of
AxisRotation parameters are shown in Fig. 12.

Y arm A
f"\ ETMr (0, /2 11, 0)

MC3 MC2 ITMr (11, /2 11, 0)

(Vam12m0) ((vV2m12mo) TMt ETMt

/ ‘\ [' f- (V2 /2, 0) -\ (-V2m 121 0)
MCl\ j R\M /./BS \ j X;n

(3/41, /21, 0) (V2 /2, 0) (-3/41, /21, 0)

Figure 15: Detector to e2e coordinate transformation
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4.27. Generic function modulesFUNC_ xxx.

4.27.1. What are FUNC_xxx modules ?

These primitive modules can be used to implement mathematical calculations by using formulas
with a syntax similar to the C language. E.g., by specifying the setting “Equations” of a
FUNC_1x1 module to

out0 = sqrt(in0);

this module calculates the sqgrt of the input value. These modules make it easier to construct
mathematical calculations which are very tedious to build using primitive math modules. Some
examples are given in Section 4.25.5.

4.27.2. Basic syntax

The module definition is consisted of multiple equations given in the “Equations” setting string.
Each equation is of the form

variable name = expression using inputs, outputs (if defined), global and local
variables;

An identifier, name of a variable, function or macro, can be consisted of any number of alphabets,
digits and underlines, except that the first character should not be a digit. Identifiers are case
sensitive. Global variable, discussed in Section 5, can be used in the equation. All variables and
functions are of type real.

Each equation is terminated by’ ‘as is the syntax of C language, except for declaration lines

which start with #". “#define” declaration can be used to assign a string to an identifier, like
#define in3inVecO[3]

All occurrence of in3 in the rest of the code is replaced by inVecO[3].

The names of the inputs and outputs are referred to by the names of the ports. If a port is a vector,
a pair of square brackets is used to reference an element, like inVecO[1] and outVec0[2], and like.
The inputs and outputs can be referenced by meaningful names by using the following
declarations.

#inputs  initial_position velocity
#output  position_now
position_now = initial_position + velocity*time_now();

Comments can be inserted by surrounding the text gnd+ .

4.27.3. Constants
In FUNC modules, the following constants are defined:

 TIME_STEP: simulation time step

4.27.4. Build-in functins and digital filter

The following operators are supported. The functionality and the precedence are the same as those
defined in C.

e unary operators+ -, !
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e binary operator* /, +, -, <=, >, >=, ==, 1=, &&, ==
All the standard functions defined in C and several special functions are available.

e unary functions sqrt, sin, cos, tan, acos, asin, atan, log, 1og10, exp, sinh,
cosh, tanh, fabs, ceil, floor

» binary functions pow, atan2, fmod, max, min

» special functions riermite( n, z ), jbessel( n, z ), time_now()

» optics functions tp_rayleigh_range(L,R1,R2), fp_dist2waist(L,R1,R2),
fp_guoyphase(L,R1,R2), ext_rayleigh_range(z0,z,nind), ext_dist2waist(z0,z,nind)
: Red solid lines are for the resonant field in this FP cavity, while dashed blue
lines are for the field coming in from the left mirror whose refractive index is
nind. This incoming field is to match with the FP resonant field after passing
the left mirror. The blue dashed lines in the FP shows the extraplation of the
incoming field when there is no left mirror.
z is the distance between the left mirror to the waist position of the cavity
resonant field, while z’ is that to the waist position of the out side field. For
the configuration (i.e., concave seen from inside), R1 and R2 are positive, and z
and z’ are negative. fp_guoyphase is the total phase change of the field due to
the Guoy phase propagating from one mirror to another.

R1 R2

Y — == — /=
_ waist positions
nind

Figure 16: optics functions

e random numberhdflat(), rndnorm(), poisson( mean ), white_noise( amplitude )
Function ‘if” can be used for a conditional calculation. It takes 3 arguments :
val = if( condition, value_for_true, value_for_false)

This function returnsvalue_for_true if condition is true or non-zero and returns
value_for_false if conditon is false or O.

The digital_filter can be used in the module in the following way.
df(x, reset) = digital_filter ( gain, {zeros}, {poles}, {zeroPairs}, {polePairs},
time_step);
out = df(in, resetVal);

The first line is the declaration that “df” represents a digital filter which is specified by the same
parameters as the digital_filter primitive (see Section 4.17.). If the last parameter, time_step, is
specified, this is used as the digitization time step, otherwise, the simulation time step is used.
This parameter is to be set when this FUNC is used between ADC and DAC modules. The second
dummy argumenteset , is optional. If no values are to be assigned for some of the zeros or poles
vector, leave them empty, either like “, {},” or “, ,”. There can be multiple digital filters declared in
one FUNC module. When there are several digital filters used with the same specifications of
gains, zeros and poles, one declaration is needed for each use.
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4.27.5. Local variables and local functions

Local variables can be used without any special declaration, except that one can be used in the
calculation after it's value is assigned.

lambda = 1.064e-6;

phi = 2*PI*input/lambda;
Two local variables are used here (input is the name the input and Pl is a global variable name).
The first declaration is parsed only once, and there is no speed penalty using these declarations.
So it is a good idea to write the following kind of codes for the ease of readability.

gainXXX = 100; /* this is the gain by xxx */

gainYYY = 0.345; /* this is the gain by yyy */

totalGain = gainXXX * gainYYY * ..;
A local function, which is recognized only in this module, can be defined in the following way:

funcName( varl, var2, ..., var N ) = expression using varl, var2, ... varN and all
other local and global variables;

The names of function (funcName) and dummy varibales (varl, var2, ..., varN) can be any legal
identifier expressions, which have not been defined for any other use. The function may have any
numbder of arguments, and those arguments can be used in the definition body on the right hand
side. Any example will be

length(x,y) = sqrt( x*x + y*y );
Once defined, the local function can be used in the following equation codes just as the same way
as the built-in function.

4.27.6. Examples

4.27.6.1 Fiddle
/* the inputs and outputs are accessed using the following names *
#inputs  speed offset amp freq noiseAmp reset

#outputs  out linear rotation random

/* definition of digital filters *

/* there are no complex poles or zeros, and they can be omitted completely *
velocity_integrator(v,r) = digital_filter (1, {{0});

angule_integrator(v,r) = digital_filter (2*PI, {3, {0} );

lowPass(v,r) = digital_filter (2*PI, {3, {-2*P1});

/* various motions */

/* first port, out, is the total motion, while 2nd to 4th port, are the individ-

ual mototions *

linear = offset + velocity_integrator( speed, reset ); /* linear motion *
rotation = amp * sin (‘angule_integrator( freq, reset) ); /* rotation *
random = lowPass( white_noise (. noiseAmp ), reset ); /* noise ¥

out = linear + rotation + random; /* total motion */
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4.28. hardSwitch

This module has two inputs of type unknown, and one output of type unknown. If the value of

switch is non-zero, then the source to “ONinput” is connected to the sinks connected from the
“out” port, and the connection to “OFFinput” is disconnected (see below). If switch is zero, the

input to “OFFinput” is connected to the output sinks.

(a) connection view (b) connection when (c) connection when
switch is non-zero switch is zero

Figure 17: hardSwitch in action

Important thing to know is that the unused input connection is disconnected. In Figure 17, (a) is
how the connection is setup, and (b) is how it behaves when switch is non-zero. l.e., the source to
the unnecessary input port may not be executed if the output of that source is not used by other
modules. If a primitive “switch” is used instead, both connections exist, both sources are
executed, and one of the value is used.

There are several cases primitive “hardSwitch” is useful. One is the case that you prepare a seup
in which some of the connections are connected or unconnected corresponding to different
hardware operation state. Anoter is a case that the source is a time consuming module, and want
to disable if not needed.

Because the data type of ports are not specified, any ports can be connected to inputs and from
output of this module. But the type of the selected input and the output should match, and the type
micmatch is detected as error.

hardSwitch can be used to serve as a poorman’s junktion, which will be useful unitl the junktion is
supported in alfi.

4.29. bundle

When multiple related data are passed around between modules to modules, it is cleaner if those
data are combined to one, and, when necessary, one can extract necessary data from that
combined data stream. E.g., a box representing the core optics can have multiple fields going out.
If one wants to have more going out, by adding pickoff or by adding signal recycling mirror, the
box interface needs to be changed. If “bundle” data is used to interface to outside, it is only
necessary to merge the new field to the out going bundle data stream.

A bundle can be thought of as an array of data with a name tag for each data. There are several
kinds of primitives are provided to construct bundles and extract data from bundles.

A bundle cannot have data with same name. When merging bundles and data, a name collision is
tested and, an error message is issued when detected. When extracting a data stream from a
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bundle by specifying the name tag, if a data with that name does not exist in the input bundle or
the input is not connected to any source, the connections from the output with the name tag are
disconnected, and an warning is issued.

A bundle can contain other bundles as its components. To clarify the discussion, a word
“primitive” data is used to represent data other than the bundle data stream. When data stream is
extracted from a bundle, the stream can be specified lyndlel.bundle2.dataNaifeor

“* bundleN.bundleM.dataNarme??? Put description here. ???

RO o
= =D4ToBU RO
m BO F1
B3 _ﬁ
F1 a a
. —=a Jmergens.
Ci EDiToR2 | B DAFrEO
EEEE m . B2 FO ﬁ
FO =D4TOBI R1
o - —id
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Figure 18: data flow using bundle

In this example, D4ToBO is used to create a bundle BO which contains one real data, whose name
is assigned like “name00” = “R0O”. D4ToB2 is used to create a bundle which has one field data.
D4ToB1 is used to merge a field and a real value to bundle B1, to create a bundle B2. mergeBs is
used to merge two bundles BO and B2 to create a new bundle B3. B3 has 2 real data and two fields
whose names, say “R0”, “R1”, “FO” and “F1”, are assigned when they first merge to a bundle, i.e.,
D4ToBO, D4ToB1 and D4ToB2. D4FrBO is used to extract data from a bundle. In the example
above, the settings to specify the data for each output are : “name00” = “R0”, “name01” = “F1”,
“name02” = “R1”, “name03"="F0".

4.29.1. mergeBundles

This primitive merges two bundles into one, like mergeBs in Figure 15. The name conflict is
tested to avoid to create a bundle containing two same names.

4.29.2. [NToBundle

There are a set of primitives namedNDoBundle, where N is an integer number, like
D4ToBundle. This is a primitive to merge data to a bundle with 1 input for an incoming bundle
and N inputs of any kind (type unknown) of data other than bundle type.

To create a new bundle, this module can be used without a source to the input bundle. The names
of data are defined using settings, “name00”, ..., “hameN-1". The name is tested against causing
name conflict, and when detected, an error message is issued.
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4.29.3. [INFromBundle

There are a set of primitives named\NBromBundle, where N is an integer number, like
D4FromBundle. This is a primitive to extract data from a bundle. There are one input for an
incoming bundle and N outputs of any kind of data other than bundle type. The output data for a
specific port is defined by the name in the setting, “name00”, ..., “hameN-1". The type is also
checked if the sink of an output is not of type unknown, and if the type in the bundle does not
match with the outgoing data type, an error is issued.

If data with the specified name does not exist in the incoming bundle, the link from the output of
with that name to all sinks are removed after issuing a warning.

4.29.4. BundleToVec

Real data in the input bundle are added or substituted to the input vector, or a new vector is
created from an input bundle.

input vector VIO Vll \|/2 ?/3
¢ ¢ ¢ ¢ (1) first, input vector copied

output vector | yo [y1 |v2 | bO| 0 | bl
- ? Ti(Z) then bundle data copied
offset | i
“nboj “wn “nbzn
nameNN

Figure 19: BundleToVec

First, the input vcector is copied to the output vector. If no input vector is specified, an empty
vetor is created as the output. Then, if “nameNN” is not an emoty string, then the value of the
datum in the bundle with that name is copied to the NN+offset'th element of the output vector. If
necessary, the output vector is expanded by filling O in those elements which are not specified.

In the above example, a vector with 4 elements is created and the input vector is copied. name00
is “nb0” and name02 is “nb2” and all others are empty. The value of offset is 3. First, the value for
“nb0” in the bundle is copied to the 4th element of the output data overriding the input vector,
then the value for “nb2” in the bundle is placed in the 6th component of the output vector after
expanding the output vector size to 6.

4.29.5. VecToBundle

Elements in a vector is merged into a bundle. If the setting of nameNN is not an empty string, then
NN+offset'th element in the vector is inserted to the input bundle with the name given in
nameNN. NN+offset should be less than the size of the input vector.
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4.29.6. ClampToBundle

The input clamp data are placed in the output bundle. The 12 settings nameNNs are used as the
names of data in the bundle. If any of the strings are empty, those elements are not copied into the
output bundle. E.g., in order to build a bundle with only position information, then keep only the
first 3 names, and make the rest of the 9 settings to be empty strings.

4.29.7. How it works

After all links are established, data types are checked. This is initiated by “resolve” routines of
output modules. During this process, bundles are bundle related primitives modules are removed,
and all links are replaced by links between normal (non bundle data) sources (inputs to
DNToBundle) to normal sinks (sinks from outputs dfiBromBundle).

4.30. psd_out

4.30.1. outline

This primitive module calculates a single sided power spectral density (psd) of the in coming real
data. Based on the frequency range and resolution defined in the setting, an optimal tite(step
AT = integral multiple of the simulation time stap) and a duration of simulation ( duration =
NFFT xAT, NFFT = power of 2 ) for one FFT is calculated. (See below for details).

whiten  save in memory psd dewhiten book keeping

AT FET w/ Average
2AT Hann psds .
data st — > indow ™ > —file
NFFTAT mtfer;pqo'ate
T
AT
NFFTAT

Figure 20: process of psd calculation

The incoming data are stored at evé&V after applying a bandpass filter to reduce the aliasing
and leak from the outside of the frequency window of interest and to whiten the data. After total
time of NFFT XAT has elapsed, the power spectral density for this cycle is calculated using Hann
window to reduce the leak. This is identical to matlab's psd function with the following setting,

psd(val(NFFT data), NFFT, AT, hanning(NFFT), NFFT/2 ) * 2 AT (19)
After the first psd is calculated using NFFT data, the following incoming data are used to

calculate successive pdf with NFFT/2 data overlapping. The new psd calculated is dewhitened and
writen to the output file.

The first row is a list of frequency values, followerd by psds, i.e., dat(1,ifrg) is the frequency of
ifrg’th column, and dat(n+1, ifrg) is a psd value at frequency of dat(1,ifrq) based on the n’'th data
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set. In order to get a psd using the entire data set, the mean of all psd needs to be calculated. The
variation of psds can be used to obtain the statistical variation of the result. In matlab, “mean” and
“std” can be used to calculate these quantities.

4.30.2. time stepAT and duration of simulation NFFT

NFFT andAT are calculated internally to optimize the memory and CPU usage. The frequency

range is set by f from and f_to, and power spectral densities at N_freqs frequency points are
calculated. If logSpacing is true, frequency points as placed evenly in log scale, and if false,
frequencies are placed evenly in linear scale.

The leakage expected for Hanning window i \N is calculated as (fod/Af, where f is the
frequency of interest,gfis the source of signal, andif is the frequency spacing of the FFT
calculation.

Chebyshev bandpass filter is applied to reduce the alias effect from both sides, and
Lowpass_Order is the order for lowpass filter and Highpass_Order is the one for high pass.

N_Tfft is the minimum number of oscillation of the lowest frequency component, while N_delT is
that of the highest frequency component.

The result is stored in a file whose name is the module name with full path prepended. The first
row is the list of frequency, and the following lines are averaged psd values. l.e., the first psd line
is the result using 1 FFT, second line is the average of 2 FFTs etc. maxCounter is the maximal
number of repeats.

This module uses data when the activate port value is non-zero. If one wants to calculate the psd
of some output when the system is locked, then set the input “avtive” to 0 until the system is fully
locked, and then set the value to 1 after that. Then all data during the lock acquisition process is
discarded, and the psd of the in-lock state can be calculated.

real f_ from=0.1

f from (0.1),f to (10) real

logSpacing (true) boolean

N_fregs ( 100 ), Lowpass_Order ( 6 ), Hghpass_Order ( 6 ), N_TffT ( 1), N_delT ( 4 ),
maxCounter ( 100 ) integer

5 MACROS AND SETTINGS BY EXPRESSION

5.1. Macro definition file : e2eDB.mcr

The End to End simulation code supports macros, and one can specify almost all data entries
using these macros in stead of typing numerical literals, e.g., “ArmLength/LIGHT_SPEED” or
“sin(P1/3)”.
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The macros are defined in the following way. When a simulation program starts, it reads in macro
definition files named &2eDB.mct in the directories specified in thE2E_PATHenvironment
variable. E.g., when E2E_PATH isthyLibDir:e2eSysDit, then the program reads in e2eDB.mcr

in “e2eSysDit, in “myLibDir’ then in the current directory “.”, if there is one. When a macro with

the same name is defined in multiple files, the one in the file loaded last is used. With this example
E2E_PATH, the definition in the current directory has the highest precedence and the one in
e2eSysDihas the lowest.

The format of the macro specification file is as follows. A macro is defined by a line of the
following format:

name = value [unit] “comment”

value is a number which will be substituted whenever this macro name is used in the simulation.
name can be composed of any number of alphabets or digits or “_”, but the first character cannot

be a digit.unit andcomment are optional strings. Symbol$*; “]” and “*” are mandatory if
unit or comment is to be defined.

The definition ofvalue can include macros already defined, and can include mathematical
expressions discussed in Section 4.25. A few examples will be in order.

elcom= 12.7 [m] “average of the two lengths”
eldif = 0.3 [m] “difference of the two lengths”
elln = elcom + eldif/2 [m] “inline length”

elOff = elcom - dleif/2 [m] “offline length”

Lines which starts with%” are treated as comment lines and discarded when reading. In order to
printout information about a macro file, like an announcement of a new version, place a line
which starts with'<” before the message lines and a line which starts Wwithafter the message
lines. The message lines can be anything. E.g., if you place a line with “<” at the top of the file
and a line with “>” at the bottom of the file, the entire content of the file, except for the two lines,
are printed to the console window where the simulation program is started. There can be any
number of message groups surrounded kY dnd “>". It will be a good idea to place the
following lines at the top of each macro file to clarify what is loaded.

<

% database defining H2K IFO parameters

% Updated on September 1 by Hiro Yamamoto

% change : TEMPERATURE is now defined

>

<
TEMPERATURE = 5/9*72 + 255.37 [K] “global temperature at 72F”

>

In addition to these macros defined in external files, there is one set of macros defined internally
giving the definitions of various constants, like Pl or LIGHT_SPEED.

When you want to see the current macro definition, defined internally and externally, in a given
directory, typez2emacroAs of Sep. 1, 2000, the following macros are defined internally.
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AVOGADRO_NUMBER = 6.0221367e23 "avogadro number"
BOLTZMANN_CONST = 1.38065812e-23 ['m"2 s"-2 kg K*-1"] "Boltzman constant"
LIGHT_SPEED = 2.99792458e8 [m s"-1] "speed of light"
GRAV_ACCEL =9.80665 [m s”-2] "standard grav. accel. at sea level"
Pl = 3.141592653589793
Short messages and macro values can be printed#mimgdirection.
#print “This is a messge”
#print LIGHT_SPEED PI
This line generates the following output.
This is a message
“LIGHT_SPEED" = 2.99792e8
“PI” = 3.14159
A macro file can include another macro filetycludedirective. An example is
#include anotherMacro.mcr
IF THEN ELSE conditional controls are supported usttig #elseif, #elsend#endif All string
after these directions (except for #endif) are evaluated as boolean, i.e., false if numerically 0 and
true otherwise. The controls can be nexted.
LHO2k =1 % use name instead of numbers
LHO4k = 2
LLO4k = 3
IFO = LHO2k % choose an IFO
#if IFO == LHO2k
CavLength = 2000
#elseif IFO == LHO4Kk || IFO == LLO4k
CavLength = 4000
#else %something unknown
#print “This IFO is not known” IFO
#endif

5.2. Runtime macro specification as a option to the programglb
and -param

You can define extra macros when you run the simulation program.
modeler -db myDB.mcr -param mcrname=mctrval -param ‘another=somel*some2’

By the run-time option -db, you can force to load a macro definition file. This is loaded all other
default files are loaded, so the definitions in this file override all others.

The second option, -param, can be used to define one macro to assigned a value to it. In the above
example, a new macracrname is defined and a valuecrval is assigned to it. If a macro of the

given name already exists, this definition overrides it. If the right hand size of the assignment has
any operators, surround the definition by a pair of single quotes.
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These two optioncs can appear multiple times, and the precedence is from right to left of those
options.

5.3. Combination of -param and -db

e2eDB.mcr
RayleighRange = 1000
z0 = 2000
dz=0
#include postproc.mcr
postproc.mcr
z=2z0+dz

modeler -param ‘dz=RayleighRange*0.01’ -db postproc.mcr

5.4. Direct macro definition for settings

A macro can be used to define real value settings and / or inputs without touching the primitive
itself. The convention is

pathl.path2...pathN.instanceName.settingName = value or
pathl.path2...pathN.instanceName.inputPortName = value

Path names are optional, but the instanceName is mandatory. This macro capability allows one to
set and change settings of primitives without modifying the box files.

A (bOX) B (bOX)
hiah high -
gn - SW | SW
low _— item =T ow (primitive switch)
boo! = (primitive switch) bool =

Figure 21: Macro defintion for settings

For example, in Fig. 18, A and B are boxes which contain one instance of switch module named
SW. If a macro is defined as

SW.bool =1

then it is equivalent that the value of bool input of SW in box A and box B are explicitly set to 1.
If the definition is

A.SW.bool =1
then only the bool of SW in box A is set to be 1, and that in box B is not affected.
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5.5. Local macro definition

Those macros defined in macro files apply to all box files. Local macros can be defined which
apply only to those primitives and boxes contained in a box where these macro are defined. For
example, a macro named TEMPERATURE is defined as a global variable. If you want to assign a
different tempretature to a subsystem, keep the subsystem in a box, say susSys.box, and define
macro TEMPERATURE with the subsystem temperature in the box susSys.box. Local macros
can be define in a box using alfi GUI program.

Another example is a Fabry Peroit cavity box. The two propagators should use the same length for
the propagation length. In order to do that, you define a macro FPlength in the box and you use the
this name in the settings of the two propagators.

5.6. Examples

E2E_PATH = .:.e2eSysDir | €2eSysDir:e2eDB.mcr ..e2eDB.mcr
TEMPERATURE 300 ARM_LENG 2009.11
ARM_LENG 2000

ResSBFreq 29.5e6
-param del=0.1

Main.box offlineETM.box The lengths of all 4 propagators shown
by arrows are defined to be “Larm”, a
macro name, and all temperatufe
dependent quantities are expressed
using “TEMPERATURE”, another
macro name.

-
I
offlineProp.box |
| I
| | r— - - - — — — — 1
|Larm=ARM_LENG + del | TEMPERATURE = 270
il . |
Michelson.box e gy ! / |
I ] [ I
> L H / H || -—— |
T I | I Larm=ARM_LENGI| |
L — - — - — — JLb - — — — — — JL - - — — — — - o
2*PI(LIGHT SPEED/ResSBFreq) " erToP-Pox inlineETM.box

Figure 22: macro definition example

In Fig. 19, there are two e2eDB.mcr files. When you run modeler as
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modeler -param del=0.1

there are four macro names defined, TEMPERATURE, ARM_LENG, ResSBFreq and del, whose
values are 300, 2009.11, 29.5e6 and 0.1 respectively. The definition of ARM_LENG in the
current directory overrides the definition in the e2eDB.mcr file in e2eSysDir directory.

In inlineETM.box, the macro TEMPERATURE is defined as 270. Any settings using
TEMPERATURE in inlineETM.box use 270 for the TEMPERATURE, while all others use 300.
The arm length of the inline cavity is 2009.11, while that of the offline cavity is 2009.21.

The phase modulation is specified by k, the wave number. This setting can be expressed using the
modulation frequency ResSBFreq and predefined constants Pl and LIGHT_SPEED.

6 RUN TIME OPTIONS OF THE SIMUALTION PRO-
GRAM

6.1. -bin

The simulation program stores the output in a binary file, in stead of an ascii file, which is the
default. In matlab, a binary file can be loaded by using e2ebin.m. The format is
[vals, titles] = e2ebin(‘binary file name’);

The binary file can be converted to an ascii file with an associated header file by using
e2ebinLoader (see Sec. 7.4.).

6.2. -di, -d2, -d3, -d4

The simulation program prints auxiliary information. -d4 provides most comprehensive
information while -d1 the least.

6.3. -db [dababase file], -param name=vale (see Section 6)

With -db, you can specify a macro file to be loaded after all the default macro dabatase are loaded.
One specific macro can be specified by -param option. If some operators are in the right hand size
of the parameter definition, surround the definition by a pair of single quotes. The format for these
parameters are

modeler -db myDB.mcr -param del=0.1 -param ‘val=vall*val2’

6.4. -help

Explains these runtime options.

6.5. -prof [output file name] [number of modules reported]

The time spend used in each module are analyzed. The output file can be specified where the
profiling information is stored. In the profiler output, top 50 modules are reported. If a number is
passed as a part of -prof option, you can change the number of modules reprted.
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6.6. -seed seedVal

The seed for the random number generator can be specified. If this is not specified, data/time is
used to generate a seed.

6.7. -v,-V

Print version number.

6.8. -maxiter=number (for modeler_freq)

The maximal number of iteration tried in modeler_freq to calculate the transfer function. The
default is 500. If modeler_freq generates messages that “convergence failed”, try to give a larger
value, like 5000.

7/ E2E AUXILIARY PROGRAMS

7.1. detmap

The pd_demod (Section 4.16.) module simulating the photo detector and demodulation process
uses a data file to calculate the response of a detector with an arbitrary shape. detmap generates
this data file for a wide range of detector shapes. The detector shape can be defined interactively
in this program, and the nonuniformity of the detector surface can be specified as well.

7.2. e2emacro

Prints the current macro settings.

7.3. e2ecalc

e2e calculator

7.4. e2ebinLoader

Converts the binary format output file to an ascii file. The format is
e2ebinLoader [-d] [binaryFileName] [-help]

With -d option provided, this program prints auxiliary information during decoding. The ascii
data file created has a file extension .asc, while the data header file (see Sec. 8.5.) has .dhr.
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8 FILE TYPES

8.1. Overview

GUI simulation helper
\ . Y |
X <%
emacs e2eDB.mcr  *.par *.in e2emacro
2,
e2ecalc
= 3
detmap

(mirror2.prm) \l/

* prm (mirror2) D- @

*
Xbm * oC matlab * map

Figure 23: Files in the e2e simulation

There are several files involved when using the e2e frame work. Figure 23 shows the relationship
of various kind of files. Lines with arrow heads show the relationship. An arrow indicates that the
file pointed at is created or modified by the source of the line. E.g., box files are editted by
program alfi. An arrow also indicates that the program pointed at reads the source of the line. So,
program alfi reads in box files to edit, and program modeler reads box files to find what to
simulate.

8.2. .box ( edited by alfi, input to simulation program)

The box is created by alfi and contains the definition of the setup to be simulated. The syntax of
this file is defined in Section 10.

8.3. .par (edited by text editor, input to simulation program)

In a parameter file, values can be assigned to input ports of the outmost box or to data_in modules
anywhere contained in the simulation definition. You specify which .par file to use when you run
the simulation program.

The difference between macro and parameter is that values of parameters can be changed during a
run, while macro values cannot be. When you run a time domain simulation, you specify how
long the simulation should run. After that amount of data have been simulated, you are prompted

if you want to continue. If you request to keep simulating, the program reads the .par file again
and keep running for another amount of time you specified. If you modify the .par file before you
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main.box
| e S T e ——— — — - -
: mode cleaner mirror :
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] |
I ETM IT™M I
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Figure 24: .par file settings

resume the simulation, that new value is used in the second part of the simulation. E.g., you can
change a gain value.

In a .par file, a line which starts with % is a comment line.
In Fig. 20, there are 5 boxes, main, the out most one, ETM, ITM and susp contained in ETM and
ITM. The circle named pitch is an input port name of the main box, while two boxes named pitch
are data_in modules. In the .par file, the following specifications are possible.

% next applies to all 3

pitch = 1e-6

% next applies to 2 data_ins

susp.pitch = 1e-6

% next applies to only the pitch in ETM

ETM.susp.pitch = 1e-6

% next applies to only the pitch in ITM

ITM.susp.pitch = 1e-6
When you specify only the name, all input ports of the main box and all data_in modules with that
name are assigned this specification. If the specification of a data_in name contains box names

containing that module, this specification applies to only those data_ins which satisfy that box
hierarchy.

The is a token# TIME, to automate the change of parameter settings. The syntax is
linesO
#TIME t1 [N1]
linesl
#TIME t2 [N2]

lines2

#TIME tM [NM]

linesM
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where linesN are legal lines of .par files, like pitch = 0, and tN is the time since the start of the
simulation run. When a simulation job runs for a period of T with this .par file, the simulation uses
definitions by linesO for the first time period t1, then uses definitions linesO and linesl for the
following period of (t2-t1), and so on. If the optional second integer value is specified, data are
stored in the output file every Ni'th event.

A simple example will clarify the point.

pitch =0

lock =0

#TIME 0.5

lock =1

#TIME 1 10

picth = 1e-8
When you run a job for 5 seconds, the simulation uses pitch=0, lock=0 for the first 0.5 seconds,
and data are stored in the output file every certain number of events which is specified in the
modeler inquiry, “ Write one data point every N steps”. Then the simualation sets lock=1 and runs
for another 0.5 seconds. After running total of 1 second, the pitch value is changed to 1e-8. Also,
from now on, events are stored in the file every 10th event. This can be easily understood when
you remember the rule that the definition given later has a higher precedence than the one given
before.

The run time does not need to be longer than the time specified for the last #TIME token. In the
above example, if you run only for 0.7 seconds, simply the pitch value will remain O for the entire
run.

Second toker¥MONITOR, allows yo to specify one output port. The syntax is
#MONITOR portName

The value of this output port is displaied in the terminal running the simulation, together with the
time update. An example is the following.

Data monitored is "Detector.DigitallSC.LSC.InputMatrix.Ptrx"
Running...
0.7020 1696.

The second value, 1696 is the value of the output port Ptrx. This way, you can watch how that
output is chaning. Only one value can be specified, but you can include multiple #MONITOR,
one at each #TIME token, so you can monitor different output at different period of simulation.

The portName can include wildcard, “*”, e.g., SusITMx.*.z. The match is found assuming it
specifies the last part of the full name, i.e., prepending “*.” to the name specified. So, the full
name does not need to be specified. If there are multiple output ports which match to the
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specification, the first one is chosen. The full name of the chosen port is printed as is shown in the
this example.

8.4. .in (input to simulation program)

When you run the simulation program, the key strokes can be stored in a file so that you can easily
run the program again. The name can be anything, but .in is a popular extension used. At any
prompt, when you type

@(filename
a file named “filename” is created and all prompts and your key entries are stored in the file, until
you type

@)
or until the end of the run.
When you modify the box files, and want to rerun again, you run the program and type

@filename
then, all the recorded key strokes are replayed. You can use this file as an input stream to the
program, like

cat filename - | modeler
or

modeler < filename
The input sequence file is a text file and you can edit it, e.g., change the simulation time or time
step. A line which starts with “%” is a comment line and you can add your own.
If you add a line

@PROMPTOFF
then, at the replay time, the prompts and replies will not be printed on the console window until
the line

@PROMPTON

8.5. .dat (output of simulation program)

The output file. The first column is the time or frequency, and the rest columns are data specified
by the output ports of the out most boxes or data_out modules. The arrangements of those
columns are given in the associated .dhr file (see Sec. 8.5.).

8.6. .dhr (input to and output of simulation program)

The data header file contains the titles of data in the associated .dat file. E.g., lock.dat has 4
columns of data series, time, power, inDemod, outDemod. Then lock.dhr is like the following.

time

power

inDemod

outDemod
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When the simulation program runs and tries to create the output data file, it looks for the
associated .dhr file. If there is one, then the order of the columns follows the order specified in the
dhr file. E.g., if there were lock.dhr file whose content is

time

outDemod

inDemod

power

then, the data column in lock.dat is arranged following this order, i.e., second column is
outDemod and power is placed in the 4th column.

Time and frequency should be always the first one. If there is no .dhr file, the order of data are
decided following an internal rule.

8.7. .set (output of simulation program)

A setting file is created when a simulation program runs. It contains a list of all settings of all
modules used in that simulation, along with other data, like the random number seed and the full
macro definition.

8.8. .prm, .xbm (input to alfi)

This file contains all the interface information, what are the names and types of inputs and outputs
etc, of a primitive with the same nane, i.e., LocAcg.prm is for a primitive module LocAcq. These
.prm files are used by alfi. Alfi reads these files and finds how to display each primitive (number of
ports and name, etc). .xbm is a bitmap file which contains an icon for a primitive represented by a
prm file.

9 FREQUENTLY ASKED QUESTIONS

9.1. How to use a beam-splitter?

Use a combination of two “mirror2” to represent a beam-splitter. We supply such a ready-made
BS.box file which has four inputs and four outputs.

9.2. What is the order of data in the output file?

When an output file named xxx.dat is created, another file named xxx.dhr (xxx matches to the
data file name, not literally xxx) is automatically created. This file contains names of the outputs,
one name per line, in the order they are placed in the data file. E.g., if the xxx.dhr contains the
following lines, the first column in the xxx.dat file is time, second column comes from data_out
module named amp in box CR_00 in box FP.

time

FP.box.CR_00.amp

FP.box.FF_0_InDemod
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9.3. How can | define the order of the output?

When the program creates an output file named xxx.dat, it looks for a file named xxx.dhr. If there
is a file named xxx.dhr, it uses the order in that file to arrange the order of the data whose names
match with the names in the given xxx.dhr file. E.g., the content of the existing xxx.dhr is as
follows.

time

FP.box.CR_00.amp

FP.box.SB_00.amp

FP.box.FF_0_InDemod

FP.box.FF_0_QuDemod
And the names of your data are

time

FP.box.FF_0_QuDemod

FP.box.FF_0_InDemod

FP.box.SB_00.amp

FP.box.CR_00.amp

FP.box.SB_10.amp

FP.box.CR_10.amp
Then, the order of the columns in the data file is

time

FP.box.CR_00.amp

FP.box.SB_00.amp

FP.box.FF_0_InDemod

FP.box.FF_0_QuDemod

FP.box.SB_10.amp

FP.box.CR_10.amp
The order of the first 5 data are determined by the original xxx.dhr, and the rest of the data are
placed in the order they appear in box files involved in the simulation run, which is hard to
predict. When a new data file is created, the original xxx.dhr file is updated to reflect the the new
order. One can change only the order of data coming from data_out, i.e., you cannot change the
placement of time or frequency.

9.4. How can | save my key strokes when | run modeler or
modeler_freq, so that | don’t need to retype again ?
When you start running modeler or modeler_freq, there are three special commands for that
purpose.
@(filename : open a file and start saving key strokes in that file.
@) : stop recordring key strokes. If you reached the end, you don’t need to worry.
@filename : play back the key strokes stored in the file.

Once stored, you can use it also as the source of the pipe input to modeler / modeler_freq as
modeler < filename
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9.5. How can | use this feature in my program?

Use functions implemented in e2ecli.cc and e2ecli.h. Flve top level functions are
doublee2ecli_getDb{ “prompt”, “help”, default_val, min_val, max_val );
int e2ecli_getin{ “prompt”, “help”, default_val, min_val, max_val );
bool e2ecli_getBodq] “prompt”, “help”); no default value
bool e2ecli_getBod] “prompt”, “help”, default_val );

void e2ecli_getStf “prompt”, “help”, &str ), str may have the default value on entry, on
return it has the new value.

modval andinquire are functions to let the user change related values together.

When the user types “?” mark, the “help” text is displayed, and when the user simply types
“return” key, the default value is returned if a default value is given.

9.6. How can | implement a phase noise?

All frequencies of subfields, the carrier and sidebands, are constant during the simulation, and
they cannot be fluctuated. The frequency noise should be implemented as a phase noise in the
following way:

t t
@(t) = [w(t)dt = wy 1 + [dw(t) (20)
! !

The first term is the constant frequency part, and the second part is the noise. In stead of changing
the frequency, the phase of the subfield is incremented by this amount.

10 DESCRIPTION FILE SYNTAX

10.1. Outline

The syntax of the description file to be supplied for the simulation program is as follows. Bold
faced strings are keywords and should be typed as it is. Italic strings are primitive names and
setting names thereof. The name of the instances of primitives can contain alphabets, numbers and
underscore line. “box” is a kind of primitive, but it behaves differently from the rest of the
primitives. Because of that, it is displayed as a keyword for the sake of clarity. When you create a
box, it can be saved with a name following the rule for the naming of primitives. The box file can

be included in other box files. In that case, the exisiting (included) box file behaves the same way
other primitives. In the following, nhame “module” is used to represent “primitive” and “box”
together.

10.2. Syntax

Blank lines can be inserted.
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% all the rest after % is treated as comments.

Add_Macros
{

namel = vall

nameN = valN

Add_Submodules
{

primitiveluserDefinedPrimitivel

box userDefinedBox1 finclude box1}

SettingsuserDefinedPrimitiveN

{
setting1= valueOfSettingl

#include filenamel

}

SettingsuserDefinedBoxN

{

SettingsuserDefinedPrimitiveInThisBox

{
setting1l= valueOfSetting1

}

SettingsuserDefinedBoxInThisBox

{
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Add_Connections

{
this inPortl -> usedDefineModulethPort1
usedDefineModuleMutPort1-> usedDefineModuleNhPort1
usedDefineModuleloutPort1-> this outPortl
}
10.3. Example
input o .
I§2h
“moutl O 'm 0
DF2box DFprim
. test10.Df2hox
In - -
DFINDF2
Add_Macros
{
gainVal = 2*PI
}

Add_Submodules

{
box DF2box { #include DF2.box }

digital_filter DFprim
}
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Settings DFprim
{
pole = -1
}
Settings DF2box

{
Settings DFiNDF2

{
gain = gainVal
}
}

Add_Connections

{
this input -> DF2box in
DF2box outl -> DFprim O
DFprim 0 -> this output

}
10.4. Explanation of the syntax

10.4.1. Add_Macros
Add_Macros section surrounded by { and } defines macros effective in this box.

10.4.2. Add_Submodule

Add_Submodulesection surrounded by { and } defines modules, primitives and boxs, included
in this description or box file, and assign names to each of the included modules. E.g., in the
exmple above, one box, whose file name is DF2.box, is included and is named as DF2box. Also
included in a digital_filter primitive and is named as DFprim.

10.4.3. Settings

Settingssection defines variuos settings of primitives and boxes included. In the example above,
DFprim’'s pole is set to be -1. The setting is primitived in a box included can be defined in a
similar way. In the example, gain of the digital_filter DFinDF2 in DF2box is set to be 1. You can
create a separate text file and include it in the definition of the setting.

10.4.4.  Add_Connections

Add_Connectionssection defines the data connection. A data connection is defined by a pair of
ports, an output port of a module connected to an input port of another module. Two exceptions
are ‘this input” and ‘this output”. The current box is calletthis so that renaming does not affect

the definition of the connection. They are the input and output ports of the current boxhand “
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input” is connected to an iput port of an included module and an output port of an included
module is connected taHis output”.

When the time domain simulation goes, the input data are prepared first, then it is passed to the
input port of other modules, and when a module has all input data set, that module is executed to
generate the output.

In the example, the input to this box is passed to the input of the box DF2box, and one of the
output of DF2box, outl, is passed to a primitive DFprim, whose input port name is “0”, and the
output of this primitive, output port name “0”, is passed to the output of this box, named “output”.

10.5. alfi output

alfi output files contain extra information for its use. Those information are stored in a line which
starts with “%*”. Because the simulation program neglects text after %, all information for alfi are
just for alfi use. These informations are the sizes of the window, the locations of links on a line
linking two ports, etc. If you create a description file, or box file, and later open it using alfi,
primitives and boxes will be located at the top left orner of the window, and all links will be
arranged using a default (the way the smart link option would generate) rule.
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