
LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY
- LIGO -

CALIFORNIA INSTITUTE OF TECHNOLOGY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LIGO-T000089-00Technical Note E- 8/30/00

Plan for the LDAS Database
Mock Data Challenge

Peter Shawhan

Distribution of this draft:

LDAS; LIGO/LSC Software Committee

California Institute of Technology
LIGO Project - MS 51-33

Pasadena CA 91125
Phone (626) 395-2129
Fax (626) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology
LIGO Project - MS 20B-145

Cambridge, MA 01239
Phone (617) 253-4824
Fax (617) 253-7014

E-mail: info@ligo.mit.edu

WWW: http://www.ligo.caltech.edu/

This is an internal working note
of the LIGO Project

Table of Contents

Index

File /home/pshawhan/metadb/mdc/DatabaseMDCPlan.fm — printed August 30, 2000

LIGO-T000089-00

3

4
4

6
 . 6
. . 7

 . 8
. . 8

. 9

0

Contents

1 OVERVIEW .
2 HARDWARE AND SOFTWARE COMPONENTS . 3
3 METHODOLOGY .
4 EXPECTED OUTCOME .
5 VALIDATION OF DATABASE TABLE DESIGN . 5
6 CORE DATABASE SYSTEM FUNCTIONALITY . 5

6.1 Communication with managerAPI .
6.2 Data Insertion. .
6.3 Database Queries .

7 CORE DATABASE SYSTEM PERFORMANCE. 7
7.1 Data Insertion. .
7.2 Database Queries .

8 DMT DATA INSERTION PROCEDURE . 8
9 USER INTERFACES .
10 DATABASE ADMINISTRATION TASKS. 9
11 TASK TABLES. 1
12 ISSUES NOT ADDRESSED BY THIS MDC . 15
page 2 of 16

LIGO-T000089-00

onal
dis-

core

 Tool

 of
ber.
data
se

U
store
t of

 e.g.
nnel
aAPI
ID
50.
tions

een
1 OVERVIEW
This document describes the plan for a “Mock Data Challenge” (MDC) focusing on the relati
database which is part of the LIGO Data Analysis System (LDAS). This MDC has several
tinct goals:

• Validate the database table design

• Test the functionality and performance of the hardware and software components of the
database system

• Test the process of inserting triggers and other data generated by the Data Monitoring
(DMT) system into the database

• Evaluate user interface tools (both graphical and program-based)

• Exercise various database administration tasks

• Ensure that accurate documentation exists for all aspects of the system.

The general plan is to prepare software, procedures and documentation during the months
Sept.-Nov. 2000 and then to schedule an intensive test period (the MDC itself) in late Novem
It is likely that some aspects of the MDC will be performed at the observatories (for example,
insertion performance tests) while others will be performed at Caltech (for example, databa
administration tasks).

2 HARDWARE AND SOFTWARE COMPONENTS
The LDAS database system involves the following software components:

• DB2 database server

• metadataAPI

• ligolwAPI

• LDAS web server

• managerAPI

The performance of the system for data insertion and retrieval will depend in part on the CP
power of the computer(s) on which the first four of these run. The disk technology used to
the database information will probably be even more important, at least after a large amoun
data has been inserted. At present it is unclear what the final system configuration will be,
whether the disk technology will be software RAID using conventional SCSI disks, fibre-cha
RAID, etc. For now, we will take the baseline plan to be to have the DB2 server and metadat
running on a Sun E450, with the database contents stored on SCSI disks with software RA
(0+1), and with the ligolwAPI, LDAS web server, and managerAPI running on a second E4
This may be revised before the MDC is performed, based on further investigation of the op
and/or availability of prototype or production RAID systems.

The DMT system consists of two Sun E450s at Hanford and one at Livingston, all of which
receive data in real time from the data acquisition system. A set of software libraries has b
page 3 of 16

LIGO-T000089-00

time
arac-
y
ess
ed in

nds to
ed time,
s,

n other

ss,
ition, a
on.

ctly
ent to
 the
 user
ow to

AS

 more
tested

tified
h pro-
vented
ncre-
up

as the
ets
ments
, etc.
ssed
written to facilitate the creation of monitoring programs, which generally operate on the real-
data and produce either “triggers” (from transient detection algorithms) or “performance ch
terization” (summary information) which can be stored in the database. This MDC primaril
involves the DMT library code to construct database entries and the “trigger manager” proc
which sends the entries to the LDAS database. Other parts of the DMT libraries may be us
the testing process, but will not themselves be rigorously tested.

3 METHODOLOGY
Testing will be automated as much as possible through the use of scripts which send comma
the database system and check the results (job success/failure, correctness of output, elaps
etc.). This will allow rapid re-verification of the system after bug fixes, configuration change
etc.

Documentation should be checked for completeness and correctness by at least one perso
than the author(s).

An electronic log will be used to keep track of the status of each task. All significant progre
procedures, test results, problems encountered, etc. should be recorded in this form. In add
few documents will be written to summarize this information, as described in the next secti

4 EXPECTED OUTCOME
Upon the successful completion of the MDC, and assuming that the system functions corre
and is stable, the database system shall be certified as operational. This implies a commitm
keep the system available as much as possible and to preserve the information recorded in
database through backups, transfer to new server hardware if ever needed, etc. The LIGO
community is likely to respond by making more active use of the database, e.g. by asking h
start inserting real information into database tables which had previously gone unused; LD
personnel should be prepared to assist users in this effort.

The MDC can be executed “successfully” and yet reveal significant shortcomings in one or
aspects of the system. If this happens, then these issues will need to be addressed and fully
(possibly with a follow-up MDC covering the relevant aspects) before the system can be cer
as operational. On the other hand, minor shortcomings which do not seriously interfere wit
ductive use of the database (such as borderline performance, problems which can be circum
by internal workarounds, etc.) should not necessarily delay certification, and may be fixed i
mentally. Similarly, shortcomings in any of the individual user interface tools should not hold
certification of the core database system.

It is envisioned that the results of this MDC will be reported in three documents:

1. A report on the LDAS hardware and software components.
This should be a formal report, stating what was tested, evaluating whether the system h
required functionality, presenting performance information and evaluating whether it me
LIGO’s needs, and evaluating the robustness of the system. It should refer to other docu
containing more detailed information about system design, requirements, specifications
whenever appropriate. It should clearly point out any shortcomings needing to be addre
page 4 of 16

LIGO-T000089-00

ional-

rface
ting
ppro-
certi-

to
AID
l serve
prac-
here

table
sting

inter-

trator
defini-
uitabil-
e in
 all
e
ay
ere

e cor-
line
e on-
e. If
by LDAS personnel, e.g. bugs or quirky behavior, poor performance, or additional funct
ity needed.

2. A summary of the user interface tools.
This should be a brief, informal report to make LSC members aware of the available inte
tools and their capabilities. It should also discuss file formats or else refer to other exis
documentation. It may, in fact, be largely written in advance of the MDC, but it seems a
priate to collect and distribute this information at the time when the database system is
fied as operational.

3. A Guide to LDAS Database Administration.
This informal document should record the procedures for administration tasks relevant
LIGO, e.g. how to add a column to an existing table, how to create a tablespace on a R
array with appropriate parameters, how to back-up and restore the database, etc. It wil
as a “how-to” guide for LDAS database administrators, and should include discussion of
tical matters (things which don’t seem to work as claimed, things to watch out for, etc.) w
appropriate.

It will not be necessary to produce a document reporting on the validation of the database
design. Any changes found to be necessary will simply go into a revised version of the exi
database table document (LIGO-T990101).

Any issues specific to the insertion of trigger data generated by the DMT system are of little
est to the general user and will be worked out internally. The DMT software documentation
should contain the information needed to maintain this system in the future.

5 VALIDATION OF DATABASE TABLE DESIGN
The database tables are manually instantiated in the DB2 database by a database adminis
running scripts containing SQL statements. DB2 checks the self-consistency of these table
tions, so successful instantiation ensures that the tables are well defined. Of course, their s
ity for LIGO use must be judged by the scientists who wish to use them. Some tables will b
active use by the time of the MDC, but others will not, so the MDC will not attempt to certify
tables from a scientific standpoint. In addition, it is likely that new tables will be added in th
future as new needs arise, e.g. tables to record information about earthquakes or gamma-r
bursts; such tables probably will not have any interaction with the existing tables, and so th
should be no problem with adding them.

6 CORE DATABASE SYSTEM FUNCTIONALITY
Tests of functionality are intended to determine whether the system behaves “correctly”. Th
rect behavior may be defined by “requirements” documents, design documents, and/or on-
documentation. Ideally these would all be consistent, but since implementations evolve, th
line documentation is most likely to describe how the system is currently expected to behav
there is a substantive disagreement, it should be discussed in the final report.
page 5 of 16

LIGO-T000089-00

 all of
ould

ing
ser):

-
n
speci-
c
eat-
nt of
 the

most

from a
eta-

ested
at the

eg-
d. For

on-
ack to
6.1. Communication with managerAPI

Job submission and result reporting should operate as advertised, of course. In particular,
the methods for reporting results (parameter “–returnprotocol” in LDAS user commands) sh
be tested: http, ftp, mailto, file, port. In addition, the managerAPI should handle the follow
error conditions appropriately (normally by returning an informative error message to the u

• Poorly formed command (e.g. missing close-brace)

• Incorrect LDAS username and/or password

• Missing a required parameter

• Invalid –returnprotocol specification

• Mal-formed user command

6.2. Data Insertion

Generally, information to be inserted into the database is first written to a file in “LIGO light
weight” (LIGO_LW) format, which is a specific XML format. An LDAS job is then run to read i
the file, parse it, and do the actual insertion into the DB2 database. Besides the basic XML
fication and the LIGO_LW document type definition, there are some additional LIGO-specifi
formatting requirements, such as the quoting of text items in the STREAM object and the tr
ment of special characters. In addition, there are LDAS conventions regarding the assigme
“unique ID” values in various tables. These requirements must be fully documented before
database can be certified as operational (although user interface software tools should, in
cases, save users from having to know too many of the nitty-gritty details).

The LDAS system also accepts database input in ilwd format, either over a data socket or
file. Transmission over a data socket is actually done within LDAS (from the lwAPI to the m
dataAPI) whenever a user submits a LIGO_LW file for insertion, so this does not have to be t
separately. However, reading from and ilwd file must be tested to ensure that it works and th
formatting rules and conventions are documented correctly.

Even if a LIGO_LW or ilwd file is formatted correctly, there are relationships (“referential int
rity constraints”) between database tables which must be obeyed by the data being inserte
example, each entry in thegds_trigger table must have aprocess_id value corresponding to an
entry in theprocess table. The DB2 database will reject data which does not satisfy these c
straints; this situation must be handled gracefully, with an appropriate error message sent b
the user.

Functionality tests must check for correct handling of various special cases, including:

• Multiple related or unrelated tables in the same input file

• Special characters in input data

• BLOBs (Binary Large OBjects) of various sizes, up to the allowed maximum size

Error handling tests should include the following:

• Input file not found at the expected place
page 6 of 16

LIGO-T000089-00

(for
ple
t

itting

, the
s for

r, but

. This
unt of

.
char-
able to
• Input file is not LIGO_LW

• Input file looks like LIGO_LW, but is ill-formed (e.g. missing a container level)

• Input file is incomplete, i.e. properly formatted up to a point but ends prematurely

• Input file specifies a table which does not exist in the database

• Input table includes a column which does not exist in database table

• Input table is missing a required non-null value

• Input column specified with wrong type

• Input file has special characters which are not properly escaped

• Input file is formatted correctly, but violates a DB2 referential integrity constraint

• Input file contains a BLOB which is larger than the allowed maximum size

6.3. Database Queries

The native language of DB2, as well as several other relational database systems, is SQL
“Structured Query Language”). Most LIGO usage of the database will involve relatively sim
SQL queries, and while SQL allows very complex queries to be constructed, the MDC is no
designed to check DB2’s handling of SQL. We will concentratate on the mechanics of subm
a query and receiving the results.

One specific thing to be tested is the handling of special characters in the SQL query. Also
LDAS getMetaData command supports a few different protocols and a few different format
returning the results, and all of these should be tested.

Error handling tests should include the following:

• Poorly formed SQL

• Well-formed SQL, but does not match any rows in database (shouldn’t produce an erro
just return an empty table)

• Query contains an SQL statement which attempts to modify the database

7 CORE DATABASE SYSTEM PERFORMANCE
The most obvious performance metric is the time taken to complete a database transaction
will depend on the data volume, the nature of the data (e.g. the data types involved), the amo
data stored in the database, whether the input/output is in LIGO_LW or ilwd format (since
LIGO_LW involves an extra translation step within LDAS), and the load on the LDAS system
The MDC should explore various combinations of these conditions. In particular, it should
acterize the effect of multiple concurrent jobs, since data insertion and queries need to be
go on simultaneously.
page 7 of 16

LIGO-T000089-00

, e.g.
on
tions.

 sys-
y
uch

em
s.

e entry
out to

 other
have

may

he
an

n the
mize
LIGO

now
e

on the

e. A
add
erves
A second concern is whether there are practical limits on the volume of input or output data
from the finite memory sizes of the computers on which the LDAS APIs run, or from a limit
the number of data rows which can be handled. The MDC should check for any such limita

Finally, long-term stability is an essential requirement for the database system. Ideally, the
tem should run continuously without human intervention even when heavily used. This ma
involve automatic exception handling, e.g. re-starting APIs which have grown to use up too m
memory, but it is critical that no data be lost in the process. In any case, a notification syst
should be in place to warn LDAS personnel about any failures or significant error condition

Some specific issues are discussed in the sections below.

7.1. Data Insertion

There has been no formal statement of the required sustainable data insertion rate, but on
per second seems like a reasonable goal. (If the average size of an entry is 1 kb, this works
about 30 Gb per year; the average entry size might be larger, if we store a lot of spectra or
large objects.) Of course, there will be queries going on at the same time, so it is desirable to
a large safety margin.

The metadataAPI normally assigns unique-ID values to input records which need them. This
be rather time consuming, so timing tests should be done with and without this step.

If there is a limit on the size of the input file which can be handled, it is probably better for t
system to gracefully refuse to process it and return an informative error message, rather th
crashing.

7.2. Database Queries

The time required for the system to execute a database query will vary widely depending o
complexity of the query and on how well the indexes maintained by DB2 may be used to opti
the processing. Therefore, “realistic” queries should be used to evaluate the speed which
users may expect.

The handling of large output tables is a particular concern, since users do not necessarily k
how much data will be returned from a given query. LDAS provides a mechanism to limit th
number of rows which can be returned, which is fine, but there may also need to be a check
total data volume in bytes, particularly for tables with BLOBs.

8 DMT DATA INSERTION PROCEDURE
The DMT system has a “trigger manager” to facilitate the insertion of data into the databas
DMT monitor program uses C++ calls initially to define the structure of a table and later to
rows. The information for each row is transmitted to the Trigger Manager process, which s
as a gateway and a buffer; it periodically creates a LIGO_LW file from the information it has
received, and submits it to LDAS to be ingested into the database.

The DMT software must permit rows to be created for several different tables:process ,
process_params , filter , filter_params , gds_trigger , sngl_datasource ,
page 8 of 16

LIGO-T000089-00

-
e

This
; other

 stan-

ay the

g

ys.
, e.g.
 two

his is
ent.

ne.
lts,

s
f the
sngl_transdata , summ_value , summ_statistics , summ_spectrum , summ_comment,
segment_definer , andsegment . If the LDAS database is temporarily off-line, the trigger man
ager must be able to accumulate files and then automatically insert them when the databas
becomes available again.

9 USER INTERFACES
While not part of the database system itself, user interfaces are needed to make it useful.
section describes the user interface tools which should be in place by the time of the MDC
tools may come later.

The following should exist in a stable form and be documented:

• putMeta , a command-line utility to submit an arbitrary LIGO_LW file to the LDAS data-
base.

• getMeta , a command-line utility to submit a database query and retrieve the results to
dard output or to a file.

• guild , a graphical user interface to construct and submit a database query and to displ
results. (Also can save the results as LIGO_LW or in various ASCII formats.)

• Xlook , a graphical user interface to display the contents of any LIGO_LW file (includin
data objects other than tables).

• A Matlab interface to submit a database query and retrieve the results into Matlab arra
There should also be some scripts/functions to help manipulate the table data in this form
text comparisons with wildcards (and possibly case-insensitive). A function to correlate
tables based on time is also essential.

• A LAL-compatible C package to submit a database query and to read/write table data
sequentially. (May use an existing XML library.)

• A C++ library to submit a database query and to read/write table data sequentially. T
likely to just use the C package, possibly with a wrapping layer to make it more conveni

All of these interfaces, except possiblyguild andputMeta , will not communicate with LDAS
directly but will go through a “data flow manager” (dfm) process running on the local machi
The dfm will take care of comminicating with the LDAS managerAPI and retrieving the resu
in order to provide a simplified interface for all other programs.

10 DATABASE ADMINISTRATION TASKS
The following tasks should be exercised before and/or during the MDC, and the procedure
should be detailed in the “Guide to LDAS Database Administration” which is one product o
MDC. Other procedures may be included too if deemed appropriate.

• Acquire and apply DB2 fix pack.

• Create tablespace on RAID (?) disk system, with optimal parameters.
page 9 of 16

LIGO-T000089-00

cked

sponsi-
• Add a new table.

• Add a column to an existing table.

• Create a new index on an existing table.

• Remove “erroneous” database entries associated with a given process.

• Perform backup (procedure, time taken)

• Perform restore (procedure, time taken)

• Add a new disk system to an existing database

Furthermore, beginning with the MDC (or sooner), each database installation should be ba
up on a regular basis, preferably with an automated procedure.

11 TASK TABLES
In general, the person who produces a software component or performs a certain test is re
ble for writing the corresponding documentation.

Table 1: MDC Organization and Infrastructure Tasks

Task Who Time estimate Comments

Finalize target date for MDC Peter 1 day Need to coordinate with CDS and DMT
availability, and avoid engineering run

Create test-script parser &
checker

Peter? 5 days Uses putMeta, getMeta

Table 2: Database Table Design Validation Tasks

Task Who Time estimate Comments

Finish revising DB table design
and updating document

Peter 3 days Need feedback from Julien, others?

Instantiate revised table designs,
check for success

1 day

Populate revised tables with fake
data

2 days

Update DB table design docu-
ment, if necessary

Peter 1 day

Check DB table design docu-
ment for completeness, useful-
ness

2 days
page 10 of 16

LIGO-T000089-00
Table 3: Core Functionality Tasks

Task Who Time estimate Comments

Test all return protocols, check
documentation

1 day

Test managerAPI handling of
various error conditions

1 day

Write documentation about
LIGO_LW formatting and con-
ventions for DB insertion

Masha /
Mary?

2 days

Check documentation about
LIGO_LW formatting for accu-
racy, completeness

2 days

Write documentation about ilwd
formatting and conventions for
DB insertion

Masha /
Mary?

2 days

Check documentation about ilwd
formatting

2 days

Test insertion using various input
files (some with multiple related
or unrelated tables, symbolic vs.
explicit unique IDs, LIGO_LW
vs. ilwd, etc.)

7 days

Test handling of special charac-
ters in input data

1 day

Test insertion of BLOBs of vari-
ous sizes

1 day

Check handling of various error
conditions when inserting data

2 days

Check handling of various errors
in SQL queries

1 day

Evaluate functionality, identify
any shortcomings

1 day
page 11 of 16

LIGO-T000089-00

-

h-
Table 4: Performance Tasks

Task Who Time estimate Comments

Measure insertion time for vari-
ous tables, various numbers of
rows, LIGO_LW vs. ilwd, sym-
bolic vs. explicit unique IDs;
graph and summarize

5 days

Measure query time for various
tables, various numbers of rows,
LIGO_LW vs. ilwd; graph and
summarize

2 days

Evaluate effect of concurrent
insertion & querying

2 days

Populate database with a large
amount of fake data

2 days

Check for limits on input file
(number of rows, size in bytes)

2 days Exceeding limit should be handled grace
fully

Check for limits on output file
(number of rows, size in bytes)

2 days

Run long-term stability test 5 days

Cause hard failures (out of mem-
ory, sudden reboot, power loss);
check for data loss, notification,
restarting procedures

2 days

Evaluate performance 1 day Did MDC use target CPUs and disk tec
nology?

Table 5: DMT Data Insertion Tasks

Task Who Time estimate Comments

Add ability to create entries for
all relevant tables

John 4 days

Replace ldas_submit script with
a smart program (probably the
Data Flow Manager) to buffer
data if LDAS is down

Peter 3 days

Write dummy monitor to gener-
ate pseudo-random triggers at a
controlled rate

1 day

Test throughput of Trigger Man-
ager

1 day

Create example trigger monitor 2 days
page 12 of 16

LIGO-T000089-00
Create example performance
monitor

2 days

Set up a DMT computer to be
dedicated to the MDC

John 1 day

Set up several monitors to run
continuously during long-term
test

5 days

Ensure that user documentation
for trigger/table generation API
is up-to-date, including example
code

2 days

Table 6: User Interface Tasks

Task Who Time estimate Comments

Create Data Flow Manager;
write documentation

Peter 6 days

Create putMeta and getMeta
utilities; write documentation

2 days Use Data Flow Manager

Write documentation about guild 1 day

Update Xlook for release?; write
or update documentation?

3 days?

Create Matlab interface to DFM 5 days Probably use C package for table i/o

Create Matlab tools to select
table rows (e.g. text comparison)

5 days

Create Matlab function to corre-
late events in two different tables

3 days

Create Matlab script to display
spectra from database

3 days

Write documentataion about
Matlab interface and tools, with
examples

4 days

Create LAL-compatible C pack-
age for table i/o

6 days May use an existing XML library

Write documentation and sample
programs for C interface

4 days

Table 5: DMT Data Insertion Tasks

Task Who Time estimate Comments
page 13 of 16

LIGO-T000089-00

d

Create C++ i/o library, or wrap
the C library

6 days

Write documentation and sample
programs for C++ interface

4 days

Assemble summary of user
interface tools (with contribu-
tions from tool authors)

3 days

Table 7: Database Administration Tasks

Task Who Time estimate Comments

Document installation/upgrade
procedure

1 day Ed and Peter have notes already

Acquire & apply DB2 fix pack 1 day

Exercise & document proce-
dures for database setup (DB
creation, tablespace creation,
table creation, etc.)

3 days Tablespace parameters should be tweake
if using a RAID system

Exercise & document proce-
dures for database configuration
changes (add column to existing
table, create a new index, etc.)

2 days

Establish script/procedure for
deleting entries associated with a
given process

2 days

Add a new disk system to an
existing database

1 day

Establish DB backup procedure,
and start doing it regularly

4 days Probably should be automated

Exercise & document restore
operation

1 day

Assemble Guide to DB Admin 5 days

Table 6: User Interface Tasks

Task Who Time estimate Comments
page 14 of 16

LIGO-T000089-00
Table 8: Summary and Evaluation Tasks

Task Who Time estimate Comments

Assemble formal report on tests
of LDAS hardware and software
components

8 days Should clearly point out shortcomings,
additional functionality needed, etc.

Evaluate completeness and suc-
cess of MDC

Inform LSC of results of MDC

Arrange follow-up MDCs, if
necessary
page 15 of 16

LIGO-T000089-00

MDC)

ener-
12 ISSUES NOT ADDRESSED BY THIS MDC
Replication of data between sites (should this be added back in???)

Procedure for inserting astrophysics event candidates (will be part of MPI template search

Use of database as catalog of raw data in archive (part of archive MDC, involving metadata g
ated during ingestion process) -- i.e. frameset-related tables.
page 16 of 16

	File /home/pshawhan/metadb/mdc/DatabaseMDCPlan.fm — printed August 30, 2000
	Laser Interferometer Gravitational Wave Observatory
	- LIGO -
	Contents
	1 Overview 3
	2 Hardware and Software Components 3
	3 Methodology 4
	4 Expected Outcome 4
	5 Validation of Database Table Design 5
	6 CORE Database System Functionality 5
	6.1 Communication with managerAPI 6
	6.2 Data Insertion 6
	6.3 Database Queries 7

	7 Core Database System Performance 7
	7.1 Data Insertion 8
	7.2 Database Queries 8

	8 DMT Data Insertion Procedure 8
	9 User Interfaces 9
	10 Database Administration Tasks 9
	11 Task Tables 10
	12 Issues Not Addressed by this MDC 15

	1 Overview
	2 Hardware and Software Components
	3 Methodology
	4 Expected Outcome
	1. A report on the LDAS hardware and software components. This should be a formal report, stating...
	2. A summary of the user interface tools. This should be a brief, informal report to make LSC mem...
	3. A Guide to LDAS Database Administration. This informal document should record the procedures f...

	5 Validation of Database Table Design
	6 Core Database System Functionality
	6.1. Communication with managerAPI
	6.2. Data Insertion
	6.3. Database Queries

	7 Core Database System Performance
	7.1. Data Insertion
	7.2. Database Queries

	8 DMT Data Insertion Procedure
	9 User Interfaces
	10 Database Administration Tasks
	11 Task Tables
	Table 1: MDC Organization and Infrastructure Tasks
	Table 2: Database Table Design Validation Tasks
	Table 3: Core Functionality Tasks
	Table 4: Performance Tasks
	Table 5: DMT Data Insertion Tasks
	Table 6: User Interface Tasks
	Table 7: Database Administration Tasks
	Table 8: Summary and Evaluation Tasks

	12 Issues Not Addressed by this MDC

