
LASER INTERFEROMETER GRAVITATION WAVE OBSERVATORY
-LIGO-

CALIFORNIA INSTITUTE OF TECHNOLOGY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Technical Report LIGO-T010033-00-E March 13 2001

Data Compression study with the E2
Data

S.Klimenko, B. Mours, P. Shawhan, A. Sazonov

Distribution of this draft:

This is an internal working note
of the LIGO Project

LIGO Hanford Observatory
P.O. Box 1970;Mail Stop S9-02

Richland, WA 99352
Phone (509) 372-2325
Fax (509) 372-2178

E-mail: info@ligo.caltech.edu

LIGO Livingston Observatory
P.O. Box 1970;Mail Stop S9-02

Livingston, LA 70754
Phone (225)686-3100
Fax (225) 686-7189

E-mail: info@ligo.caltech.edu

California Institute of Technology
LIGO Project – MS 51-33

Pasadena, CA 91125
Phone (626) 395-2129
Fax (626) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology
LIGO Project – MS 20B-145

Cambridge, MA 01239
Phone (617) 253-4824
Fax (617) 253-7014

E-mail: info@ligo.mit.edu

WWW: http://www.ligo.caltech.edu/

LIGO-T010033-00-E

Page 2 of 14

Contents

1 INTRODUCTION ... 3

2 DATA SETS USED ... 3

3 PERFORMANCE OF METHODS AVAILABLE AS PART OF THE FRAME STANDARD... 4

3.1 COMPRESSION PERFORMANCE FOR FLOATING POINT .. 4
3.2 COMPRESSION PERFORMANCE FOR SHORT INTEGER ... 5
3.3 OPTIMIZATION OF THE BLOC SIZE FOR ZERO SUPPRESS ALGORITHM. ... 5
3.4 EFFECTIVE COMPRESSION FACTOR OR SUMMARY .. 5

4 A NEW LOSSLESS COMPRESSION METHOD FOR FLOATING POINT NUMBERS......... 6

4.1 THE ZERO SUPPRESS METHOD ON FLOATING POINT .. 6
4.2 OPTIMIZATION OF THE BLOC SIZE FOR ZERO SUPPRESS APPLIED TO FLOATING POINT. 7

5 NEW LOSSY COMPRESSION METHODS.. 8

5.1 THE FLOATING POINT CONVERSION TO INTEGER METHOD... 8
5.2 THE WAVELET COMPRESSION METHOD... 11

6 COMPRESSION WITH MPEG3 ... 13

7 SUMMARY ... 14

LIGO-T010033-00-E

Page 3 of 14

1 Introduction
In this document we report the results of the data compression study performed for the E2
run. The goal was to study the compression rate which could be achieved on realistic data
sets using standard compression methods or new ones. One of the key points of this study
was to compare lossy and lossless techniques.

Before starting to describe the results, let us recall that in the frame format (Frame
Format Specification LIGO-T970130-D-E and VIRGO-SPE-LAP-5400-102), the
compression is applied only at the vector level (the data for the ADC channel), not for the
header information. This has two important consequences. First, different compression
methods can be used within the same frame for different vectors. This allows us to
optimize the compression. Second, since the header information is not compressed there
is no need to uncompress all the channels when reading a frame. Only the needed
channels need to be uncompressed which saves time during frame handling.

2 Data sets used
The data compression which can be achieved depends on the type of data. For this study
we use the E2 data (http://blue.ligo-wa.caltech.edu/engrun/E2). Two kind of data set
corresponding to different channel lists were used. The reduced data set (RDS) was a
limited set of channels selected to be the most useful ones. The full frames (FF) is a
larger data set containing all the channels which may be of some use. Table 1 gives a
description of the data set contents. The RDS is in fact not very small because it contains
a large number of fast channels stored as floating point. This shows that floating point
channels are important and explains why a large fraction of this study was devoted to this
type of data.

Table 1. Description of the frame file content
Reduce Data Set Full Data Set

Frame size 1 511 840 bytes 3 193 896 bytes
16 Hz channels 0.3% (80 channels) 2.3% (1139 channels)
2 kHz channels 9.8% (18 channels) 6.2% (24 channels)
16 kHz channels 52.0% (12 channels) 22.6% (11 channels)

Data fraction taken by
floating point channels

All channels 62.1% 31.1%
256 Hz channels 3.0 % (89 channels) 1.9%(119 channels)
2 kHz channels 14.1% (52 channels) 23.1% (180 channels)
16 kHz channels 17.3% (8 channels) 35.9% (35 channels)

Data fraction taken by
short integer channels

All channels 34.4% 60.9%
Data fraction of header, names, ... 3.5% 8.0%
Total number of channels 259 1508
Mean overhead per channel 201 bytes 171 bytes
Remarks:

� Data fraction taken by one channel does not include the overhead of each channel
which is quoted separately (line: Data fraction of header, names, ...).

� Since there is some header information valid for a full file (the dictionary or the
table of contents) the frame size depends slightly on the number of frames per
file. The quoted size has been computed for files of 30 frames.

LIGO-T010033-00-E

Page 4 of 14

But data compression depends also on the data values. A quiet channel compresses much
better than a channel with large noise. In order to study this effect we define three data
stretches corresponding to three different conditions of the interferometer state:

� Stretch A: From H-657904501.F to H-657904530.F. This stretch corresponds to a
full lock section.

� Stretch B: From H-657904221.F to H-657904250.F. During this stretch, the IFO
lost lock at time = 657904227.

� Stretch C: From H-657904281.F to H-657904310.F. During this stretch, the IFO
acquired lock at time = 657904304.

3 Performance of methods available as part of the frame standard
Only lossless compression methods are part of the current frame standard.

3.1 Compression performance for floating point
Only one method (gzip) is available for floating point. The result is presented in the first
two lines of table 2 for the three data sets used. The compression is presented as the
number of bits needed to store one data point. If compression is not used, this number of
bits is 32 for floating point and 16 for short integer. There is no 32-bit integer in LIGO
data right now.

The table 2 shows the following results for the floating points:
� The compression factor does not change so much from one data stretch to an other.
� The floating points in the full frames need 2 bits less than the RDS mainly because

most of the slow channels (7.4% of the floating point data) are in fact 1 Hz channels
with the same value repeated 16 times. This kind of pattern compresses well.

� The gzip compression speed is very slow, slower than the LIGO data rate production.
This is a very strong limitation for the use of this technique.

Table 2: Data compression for different data set using standard compression methods
Number of bits per word

Data
stretch A

Data
stretch B

Data
stretch C

Compression
Speed

(Mbytes/s)

Uncompression
speed

(Mbytes/s)

Gzip on float (FF) 21.4 21.1 20.3 0.9 3.3
Gzip on float (RDS) 23.7 23.9 23.2 1.8 10.8
Gzip on short (FF) 6.8 6.6 6.7 2.5 9.5
Gzip on short (RDS) 9.2 9.2 9.2 1.7 7.3
Zero suppress on short (FF) 6.1 6.1 6.1 13.2 22.3
Zero suppress on short (RDS) 7.6 7.5 7.5 12.4 19.9
Remarks:

� The number of bits is the average on 30 frames weighted by the number of data points. It does not
include the channel overhead.

� The compression speed does not include the frame IO.
� 1 Mbytes = 1024 Kbytes = 1024*1024 bytes.
� All speeds quoted in this report have been measured on the same computer (a Sun ultra 10 running

at 450 MHz)

LIGO-T010033-00-E

Page 5 of 14

3.2 Compression performance for short integer
Two methods are available for short (16 bits) integers:

� the gzip compression. In this case the data are first differentiated to improve the
compression rate.

� the zero suppress method. In this case differentiated date are stored with the
minimal number of bits needed. This number of bits is computed for a bloc of
data with a typical size of 6 data values. This method is available only for
integers.

From the results given in the last four lines of table 2 we can make the following
comments:
� Like for floating point, the compression factor does not change so much from one

data stretch to an other.
� The zero suppress method gives slightly better results for the compression rate than

gzip and is much faster. Therefore the zero suppress method should be used as the
reference method. There is no reason to use gzip for short integer.

3.3 Optimization of the bloc size for zero suppress algorithm.
In the zero suppress method, the number of bits used to store the data word is defined for
a given number of words (bloc size). If the bloc size is small, we can easily adjust the
number of bits to the need of each data point but we have to pay some overhead to store
the number of bits (4 bits per bloc). If the bloc size is too long, a spike in one data word
will increase the whole bloc size. We used the full frame and RDS data set (stretch A) to
optimize this bloc size. Table 3 presents the results. One can see that the optimum value
for both kind of data set is a bloc size of 12 instead of 6 as currently used. This
optimization will reduce the data size by nearly 1% and increase the
compression/uncompression speed by about 6%.

Table 3. Compression rate and speed as function of the bloc size for the zero suppress
method

Bloc size
(# of words)

Number of bit per
word (RDS)

Number of bit per
word (FF)

Compression
speed Mbytes/s

Uncompression
speed Mbytes/s

4 7.763 6.292 12.0 19.8
6 7.633 6.172 12.5 20.7
8 7.587 6.127 12.9 21.7

10 7.573 6.109 13.2 21.6
12 7.569 6.104 13.2 22.0
14 7.574 6.106 13.5 22.5
16 7.577 6.110 13.4 22.7
18 7.591 6.118 13.6 22.3
20 7.600 6.125 13.6 22.4

3.4 Effective compression factor or Summary
Table 4 summarizes the overall performances of the existing compression methods. The
compression factor is the effective one which takes into account the frame overhead. The
frame writing/reading speed is also an effective one (including the frame overhead) but
without the disk IO (the test was done writing/reading in the computer memory).

LIGO-T010033-00-E

Page 6 of 14

For applications where speed is an issue, the best method to use right now is only the zero
suppress for integer. If more CPU resources are available the combination of the zero
suppress and gzip gives the best results.

Table 4. Overall compression factor and speed (Stretch A)
Method and data set Compression factor

(compress./original size)
Writing Speed

(MB/s)
Reading Speed

(MB/s)
Gzip for all channels (FF) 1.83 1.9 7.4
Gzip for all channels (RDS) 1.44 1.9 8.6
Zero suppress + gzip for float (FF) 1.91 2.8 8.3
Zero suppress + gzip for float (RDS) 1.52 2.6 11.8
Zero suppress only (FF) 1.60 16.0 20.4
Zero suppress only (RDS) 1.22 27.6 35.5

4 A new lossless compression method for floating point numbers
Given the complexity of a floating point number which is in fact composed of two
numbers (the exponent and the mantissa) it seems difficult to increase the compression
factor. However it is possible to increase the compression speed using the technique
described below.

4.1 The Zero suppress method on floating point
Most of the LIGO data are time series. This means that the values change slowly from
one value to the next value. Therefore the sign and the exponent may stay constant for
several values. Since these quantities are stored in bits 31 to 23 (the most significant bits
for an integer) it is possible to deal with floating points like if they were integers and use
the simple zero suppress method. The first line of table 5 gives the result of this method
with the gzip method put as reference (second line of the table). It turns out that this
method give the same compression factor as gzip but is much faster. It is therefore an
excellent candidate to replace gzip and to provide a reasonable solution for lossless
compression.

Table 5: Lossless data compression result on floating point for the RDS
Number of bits per word

(averaged over 30 frames)
Sample A Sample B Sample C

Compression
Speed
(MB/s)

Uncompression
speed

(MB/s)

Zero suppress on float 23.7 22.9 22.6 29.4 60.2
Gzip on float 23.7 23.9 23.2 1.8 10.8

Table 6 compares channel by channel the compression achieved on floating points for
channels sampled at least at 2kHz. Both methods give different results. For a few
channels like the H2:ASC-WFS1 channels, gzip gives a much better result because these
are not real floating points numbers but just integer cast to floating point. If we remove
this kind of ‘false’ floating point channels, then the zero suppress method provides a
slightly better compression factor. One can also try to optimize the compression factor
regardless of the CPU time spent and take for each channel the best compression method.
In this case the mean number of bits for this data set drops from 23.8 (zero suppress) or
23.9 (gzip) to 21.3.

LIGO-T010033-00-E

Page 7 of 14

Table 6. Comparison of the lossless compression methods for floating points
Number of bitChannel name Frequency

Zero sup. gzip
First vector values

H2:LSC-PRC_CTRL 16384 16.9 24.9 1.23507e-16 1.23310e-16 1.23386e-16
H2:ASC-ITMY_OPLEV_YERROR 2048 17.2 17.7 -.529022 -.528788 -.528020
H2:ASC-QPDX_DC 2048 17.3 11.6 -14518.0 -14463.0 -14491.0
H2:ASC-ITMY_OPLEV_PERROR 2048 17.4 19.4 -.647098 -.646149 -.646955
H2:ASC-QPDX_P 2048 17.9 19.6 -.526519 -.528867 -.528397
H2:ASC-ITMX_OPLEV_YERROR 2048 18.0 17.6 -.574053 -.577454 -.575421
H2:ASC-QPDX_Y 2048 18.4 20.2 -.155807 -.156053 -.155476
H2:ASC-ITMX_OPLEV_PERROR 2048 18.9 19.1 -.476847 -.478528 -.476646
H2:LSC-AS_I 16384 19.6 27.2 1309.83 1321.26 1311.17
H2:LSC-LA_NPTRR 16384 20.2 25.6 .854375 .854651 .845615
H2:LSC-POB_I 16384 20.6 15.9 400.787 398.977 401.051
H2:LSC-LA_NPTRT 16384 20.7 26.5 .917682 .926559 .920355
H2:LSC-POB_Q 16384 20.7 15.9 472.866 453.895 465.121
H2:ASC-ITMY_OPLEV_PITCH 2048 21.5 29.6 -12.1990 -12.2639 -12.2881
H2:ASC-WFS1_IY 2048 21.6 13.1 -1140.00 -1170.00 -1100.00
H2:ASC-ITMX_OPLEV_PITCH 2048 21.8 29.6 -1.62026 -1.78887 -1.91720
H2:ASC-ITMY_OPLEV_YAW 2048 22.3 29.7 1.30952 1.51880 1.76044
H2:ASC-ITMX_OPLEV_YAW 2048 22.7 29.8 .841868 .678134 .529719
H2:ASC-WFS1_QP 2048 22.9 14.3 1600.00 1600.00 1555.00
H2:ASC-WFS1_QY 2048 23.0 14.2 -985.000 -945.000 -930.000
H2:ASC-WFS1_IP 2048 23.4 11.1 -365.000 -335.000 -380.000
H2:ASC-QPDY_DC 2048 24.1 12.7 115.000 152.000 131.000
H2:LSC-AS_Q 16384 24.1 29.4 135.413 130.482 139.485
H2:ASC-QPDY_P 2048 24.5 20.5 -.391304 -.223684 -.404580
H2:LSC-REFL_I 16384 24.8 20.9 24.0333 19.1395 22.8253
H2:ASC-QPDY_Y 2048 26.7 20.9 -.286957 -.131579 -.145038
H2:LSC-REFL_Q 16384 27.4 21.2 7.78312 7.22269 -1.00833
H2:LSC-CARM_CTRL 16384 32.0 29.8 243.576 -486.139 -769.151
H2:LSC-MICH_CTRL 16384 32.0 29.8 -1416.71 -770.770 -612.202
H2:LSC-DARM_CTRL 16384 32.0 29.7 23.0314 99.0709 160.043

4.2 Optimization of the bloc size for zero suppress applied to floating point.
Like for the zero suppress method applied on short integer we can optimize the bloc size
for floating point. Table 7 presents the results. The optimal bloc size is 8 words.

Table 7. Compression rate as function of the bloc size
for zero suppress method apply to float.

Bloc size (# of
words)

Number of bit per
word (RDS)

4 23.804
6 23.744
8 23.741

10 23.761
12 23.794
14 23.837
16 23.871

LIGO-T010033-00-E

Page 8 of 14

5 New Lossy Compression methods
Lossless compression methods have limited performances on floating points due to the
complexity of the numbers. If we want to improve the compression factor we have to
apply lossy compression methods which drop a ‘small’ fraction of the information. In
many cases it is reasonable to do it since the data come from measurement and have some
intrinsic instrumental noise. Therefore the typical constraint would be that the numerical
noise introduced by the compression algorithm is smaller than the instrumental noise.
However this numerical noise may have a complex structure and the effect of the
compression noise may not be the same for different kind of analysis. Therefore it is
almost impossible to give a general answer.

We will present the two methods which have been studied, a simple one (the float to
integer conversion) and a more powerful one (the wavelet).

5.1 The floating point conversion to integer method
Since integers compress much better than floating points, the principle of this method is
to convert floating points to integer numbers after storing a scaling factor. To improve the
compression, the data are first differentiated before being converted to integers, which
requires also to save the first data value in addition to the scaling factor. The only
parameter of the method is the number of bits used for the integer.

frequency[Hz]1 10 10
2

10
3

<C
o

u
n

ts
>

10
-4

10
-3

10
-2

10
-1

1

10

10
2

5.4 bits needed

Original spectrum

Compression noise if using 8 bits

Compression noise if using 12 bits

Compression noise if using 16 bits

FFT <amplitude>(H2:ASC-WFS1_IY)

frequency[Hz]1 10 10
2

10
3

<C
o

u
n

ts
>

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

6.6 bits neededFFT <amplitude>(H2:LSC-LA_NPTRT)

frequency[Hz]1 10 10
2

10
3

<C
o

u
n

ts
>

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1

15.8 bits neededFFT <amplitude>(H2:ASC-ITMY_OPLEV_PITCH)

frequency[Hz]1 10 10
2

10
3

<C
o

u
n

ts
>

10
-8

10
-7

10
-6

10
-5

10
-4

5.4 bits needed
FFT <amplitude>(H2:ASC-ITMY_OPLEV_YERROR)

Figure 1. Typical amplitude spectrum and noise level introduced by the float to integer
compression method

LIGO-T010033-00-E

Page 9 of 14

frequency[Hz]1 10 10
2

10
3

<C
o

u
n

ts
>

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1

10

12.4 bits needed

Original spectrum

Compression noise if using 8 bits

Compression noise if using 12 bits

Compression noise if using 16 bits

FFT <amplitude>(H2:LSC-CARM_CTRL)

frequency[Hz]1 10 10
2

10
3

<C
o

u
n

ts
>

10
-25

10
-24

10
-23

10
-22

10
-21

10
-20

10
-19

10
-18

6.1 bits neededFFT <amplitude>(H2:LSC-PRC_CTRL)

frequency[Hz]1 10 10
2

10
3

<C
o

u
n

ts
>

10
-5

10
-4

10
-3

10
-2

10
-1

5.6 bits neededFFT <amplitude>(H2:LSC-POB_I)

frequency[Hz]1 10 10
2

10
3

<C
o

u
n

ts
>

10
-5

10
-4

10
-3

10
-2

10
-1

1

10

6.1 bits neededFFT <amplitude>(H2:LSC-AS_Q)

Figure 2. Typical amplitude spectrum and noise level introduced by the float to integer
compression method

This is a very simple method which introduces white noise like for a real analog to digital
convertor. However to really get white noise the round off of the integer conversion
should not be done just on the differentiated data (which would introduce a 1/f noise) but
should be done after checking that the rebuilt data do not diverge from the original data
set.

Figures 1 and 2 present the typical data spectrum observed and the noise level introduced
by an 8 bits, 12 bits and 16 bits storage. For most of the cases, an 8 bits storage seems
adequate for this data set.

To quantify the number of bits needed we use the rule that the numerical noise introduce
should be one order of magnitude lower than the signal for a given fraction of the
frequency band. The reason why we are not using the full frequency band is because
some of the channels have anti-aliasing filter killing the spectrum at high frequency. This
introduces a dip in the right hand side of the spectrum which requires great numerical
precision to be properly reproduced. This is especially true for control signals like
H2:ASC-ITMY_OPLEV_PITCH or H2:LSC-CARM_CTRL which do not come directly
from an ADC but which have been passed through digital filters. But this ‘feature’ is

LIGO-T010033-00-E

Page 10 of 14

present because the data have little interest in this corner. Therefore it seems reasonable
to relax the noise constraint in this area.

Table 8 gives channel by channel the numbers of bits needed. The numbers of bits are
given for two definitions of the band: 90 and 95% of the frequency band. Since many
channels have very similar behavior, table 8 gives also the figure number which represent
best the spectrum.

Table 8. Compression achieved for each channel using the float to integer conversion.
Number of bit

Channel name Spectrum
type

Float to int
(B=90 %)

Float to int
(B=95%)

zero
suppress

gzip

H2:ASC-WFS1_IY 1a 5.4 5.4 21.6 13.1
H2:ASC-WFS1_QP 1a 5.7 5.7 22.9 14.3
H2:ASC-WFS1_QY 1a 5.2 5.2 23.0 14.2
H2:ASC-WFS1_IP 1a 5.2 5.2 23.4 11.1
H2:LSC-LA_NPTRR 1b 6.7 6.7 20.2 25.6
H2:LSC-LA_NPTRT 1b 6.6 6.6 20.7 26.5
H2:ASC-ITMY_OPLEV_PITCH 1c 13.8 15.8 21.5 29.6
H2:ASC-ITMX_OPLEV_PITCH 1c 13.3 15.1 21.8 29.6
H2:ASC-ITMY_OPLEV_YAW 1c 13.3 15.0 22.3 29.7
H2:ASC-ITMX_OPLEV_YAW 1c 13.1 15.0 22.7 29.8
H2:ASC-ITMY_OPLEV_YERROR 1d 5.4 5.4 17.2 17.7
H2:ASC-ITMY_OPLEV_PERROR 1d 5.4 5.4 17.4 19.4
H2:ASC-ITMX_OPLEV_YERROR 1d 5.3 5.3 18.0 17.6
H2:ASC-ITMX_OPLEV_PERROR 1d 5.6 5.6 18.9 19.1
H2:ASC-QPDX_DC 1d 5.4 5.4 17.3 11.6
H2:ASC-QPDX_P 1d 5.4 5.4 17.9 19.6
H2:ASC-QPDX_Y 1d 5.4 5.4 18.4 20.2
H2:ASC-QPDY_DC 1d 5.3 5.3 24.1 12.7
H2:ASC-QPDY_P 1d 5.7 5.7 24.5 20.5
H2:ASC-QPDY_Y 1d 5.5 5.5 26.7 20.9
H2:LSC-CARM_CTRL 2a 10.4 12.4 32.0 29.8
H2:LSC-MICH_CTRL 2a 13.7 16.7 32.0 29.8
H2:LSC-DARM_CTRL 2a 10.8 12.9 32.0 29.7
H2:LSC-REFL_Q 2b 6.2 6.2 27.4 21.2
H2:LSC-PRC_CTRL 2b 6.1 6.1 16.9 24.9
H2:LSC-AS_I 2c 6.3 6.3 19.6 27.2
H2:LSC-AS_Q 2c 6.1 6.1 24.1 29.4
H2:LSC-REFL_I 2c 5.8 5.8 24.8 20.9
H2:LSC-POB_I 2d 5.6 5.6 20.6 15.9
H2:LSC-POB_Q 2d 5.9 5.9 20.7 15.9

Remark: the gray lines correspond to the channel for which the number of bits needed to store the data
changes when going from a 90% band coverage to a 95% coverage.

Finally, table 9 gives the mean number of bits obtained and the processing speeds. If we
want to reduce (or increase) by a factor 2 the factor 10 of margin between the spectrum
and the noise introduced, then the number of bit is decreased (increased) by one. The
compression speed is given without including the FFT speed which may be needed to
determine the number of required bits. A priori, such a mechanism could divide the
compression speed by a factor 2 given the usual speed of the FFT. But this was not
checked.

LIGO-T010033-00-E

Page 11 of 14

This method gives a factor 3 improvement in the compression factor. It is simple to apply
especially for the uncompression but it requires some care in the definition of the number
of bits used. It is worth noticing that once the data set has been compressed/
uncompressed one time, the next time the compression does not introduce additional
noise if we use the same number of bits to encode the data.

Table 9. Overall compression performances for floating point (data stretch A)
Number of

bits per word
Compression
Speed (MB/s)

Uncompression
speed (MB/s)

Float to integer conversion (B=90%) 7.5 11.1* 24.*
Float to integer conversion (B=95%) 8.0 11.1* 24.*
Zero suppress on float 23.7 29.4 60.2
Gzip on float (RDS) 23.7 1.8 10.8

* The compression/uncompression speeds have been computed by summing the time needed for a float to
16 bits conversion plus the zero suppress algorithm applied on 16 bits integers. A direct conversion to the
right number of bits should give the same or a slightly faster speed.

5.2 The Wavelet compression method
Data compression with wavelets has been studied in LIGO for a while (for details see
http://www.phys.ufl.edu/ligo/wavelet/compress.html). It is a powerful method which
could give a very high compression factors. The basic idea of the method is to reduce the
dynamic range of the data in the wavelet domain. If scale factors are the same for all
wavelet layers, it is equivalent to the method described above (data dunamic range
reduction in time domain with float to integer conversion). If scale factors are
proportional to the data rms in the layers, it introduces a colored noise, which follows the
noise curve of the signal. For example, one can decide to have a good representation of

Figure 3 Various compression types and noise levels introduced by the wavelet
compression

data (black) and compression noise

--- data (32.0 bps)
--- lossless (17.2 bps)
--- lossy 1 (3.6 bps)
--- lossy 2 (1.9 bps)
--- lossy 3 (0.7 bps)

H2:LSC-AS_Q

“Losses”= 100%

“Losses”= 1%

LIGO-T010033-00-E

Page 12 of 14

the low frequency part with only a crude representation of the high frequency part in
order to be only sensitive to glitches. This is well illustrated by figure 3 for the
asymmetric port channel compressed with different choices of losses. In this case it is
possible to go as low as 0.7 bits per sample if we only want to keep the detail information
below 1 kHz.

Table 10 presents the performances of the wavelet compression, compared to the
previously studied methods. The data sample used was the usual RDS stretch A. The
parameters used for the wavelet were the typical ones (see table 10).

Table 10. Wavelet compression performances compared to other methods
(using the RDS stretch A data set)

Type of data Method
Number of bits

per word
(sample A)

Compression
Speed

(Mbytes/s)

Uncompression
speed

(Mbytes/s)

Wavelet compression 4.4 2.3 2.3
Float to int conversion (B=90%) 7.5 11.1 24.
Zero suppress 23.7 29. 60.

Float

Gzip 23.7 1.8 11.
Wavelet compression 4.9 0.9 0.9
Zero suppress 7.6 12. 20.Short
Gzip 9.2 1.7 7.3

Remarks
� Wavelet parameters used:

� number of Wavelet layers = 3
� number of Wavelet binary tree layers = 4
� wavelet tree loss value 1 and 2 = 1
� lifting wavelet order = 10
� Daubechies wavelet order = 10

� The wavelet compression factor is given only for the 2 kHz and 16 kHz channels because time
series with lower rate are too short to performed the wavelet transform. The slower channels, data
header have not been compressed (about 7% of the data) in this case.

For most of the LIGO channels (~90%) the wavelet compression introduces noise, which
is at least one order of magnitude below the signal amplitude, and preserves the low
frequency part of the spectrum (see Figure 4). By following more closely the high
frequency part of the spectrum it gives a better result (4.2 bits per words) than the float to
integer conversion (6 bits).

However aggressive wavelet compression can’t be used blindly for all data channels. It
may introduce artifacts for signal with strong narrow lines (like power monitoring
channels). Figure 5 illustrates the problem. In this case, the wavelet compression
introduces significant noise between the lines (it is also true for other lossy compression
methods with comparable compression factor). There are several ways to solve this
problem. One of them is to remove strong lines before applying wavelet compression, the
residual signal will be well behaved, so wavelet compression can be safely applied.

LIGO-T010033-00-E

Page 13 of 14

frequency[Hz]1 10 10
2

10
3

<C
o

u
n

ts
>

10
-2

10
-1

1

10

10
2

Original spectrum

Wavelet noise using 4.2 bits

Float to int noise using 6 bits

FFT <amplitude>(H2:LSC-AS_Q)

Figure 4. Noise introduced by the wavelet compression on a typical channel.

frequency[Hz]
200 400 600 800 1000

<C
o

u
n

ts
>

10
-1

1

10

10
2

10
3 Original spectrum (needs 10.4 bits)

Wavelet noise using 5.6 bits

FFT <amplitude>(H0:PEM-EX_V2)

Figure 5. Noise introduced by the wavelet compression on a channel with strong lines

6 Compression with MPEG3
The figure 6 presents the result obtained (S. Klimenko, LSC meeting Aug 16, 2000)
using the MPEG3 compression method. The compression factor achieved is not better
than the one obtained using the wavelet method but it may introduce more bias. This is
because the MPEG3 compression algorithm has been adapted to the human ear

LIGO-T010033-00-E

Page 14 of 14

perception model which is not the best to represent LIGO sensors. The MPEG3 is also
quite slow and difficult to adapt to LIGO needs. Therefore we do not recommend to use
this method as a compression technique.

Figure 6 Comparison of the noise introduced by the wavelet compression and the
MPEG3 compression

7 Summary
The compression methods currently included in the frame standard work well for short
integer but are too slow and not very efficient on floating points. By adopting a new
simple compression scheme for floating point (zero suppress method) it is possible to fix
the speed problem and to provide a fast (~20MB/s) lossless compression scheme. The
overall compression factor is around 1.5 (RDS) to 1.9 (full frame), depending on the
fraction of data stored as floating point.

Further increase of the compression factor requires the use of lossy methods. The float to
integer conversion is a simple and fast method which can provide on overall compression
factor of 2.9/2.6 (RDS/FF). This method can be used for quasi-lossless compression
when losses are well bellow 1%. A more advanced technique would be to use wavelet
compression which allows the user to control the trade-off between compression factor
and losses as a function of frequency. But all these lossy compression techniques require
a careful cross check, channel by channel of the introduced noise. They may be used on
the environmental and some control channels where a detail structure of signals may not
be important. The lossy methods also can be used to generate reduced data sets for data
analysis and investigation tasks.

It should also be noticed that when the compression factor becomes large (4 or higher)
the frame header information could be as large as 20% of the total amount of data.
Increasing the frame length by a factor 4, for instance, would be therefore useful.

 Wavelet MPEG3
losses 1.2% 0.8%
compression 5.0 5.0

frequency,

LSC-AS_I_TEMP

