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1 Introduction

As the first generation of laser interferometric gravitational wave detectors
near completion, research and development has begun on increasing the
instrument’s sensitivity while utilizing the existing infrastructure. In the
Laser Interferometer Gravitational Wave Observatory (LIGO), incremental
upgrades are being planned to occur within the next five years, improving
strain sensitivity though active seismic isolation systems, lower loss optical
materials, and higher input laser power. Even with the highest quality optics
available today, however, finite absorption of laser power within transmissive
optics, coupled with the tremendous amount of optical power circulating in
various parts of the interferometer, result in critical wavefront deformations
which will cripple the performance of the instrument.

This project seeks to develop an active wavefront compensation scheme
via direct thermal actuation on the affected optics, while not degrading the
instrument’s length sensitivity of δx ∼ 10−21m/

√
Hz at 100Hz. A simple

nichrome heating element suspended off the face of an affected optic will,
through radiative heating, remove the gross axisymmetric part of the orig-
inal thermal distortion. A scanning heating laser (CO2 laser, λ = 10.6µm)
will then be used to remove any remaining non-axisymmetric wavefront dis-

1



r

dl

dA

R

φ a

dA

OPTIC

HEATING
    RING

dl

φ´

dA
a

φ

R

a

h

r dA

z

OPTIC

HEATING
    RING

Figure 1: Diagram of the coordinates used in this paper.

tortion, generated by inhomogeneities in the substrate’s absorption, thermal
conductivity, etc. Careful attention must be paid to the intensity noise in
both schemes, as these intensity fluctuations will couple directly into dis-
placement noise.

2 Thermal effects in LIGO II

Insert general overview of the problem here...
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2.1 Calculating Optical Path Length Changes

Given the temperature field T (r, z) of the heated optic, the optical path
length φt(r) for transmission can be approximated:

φt(r) =

h(r)∫
0

n(r, z) dz (1)

' n0h0 +
dn

dT

h0∫
0

(T (r, z)− T∞) dz + n0(h(r)− h0) (2)

= φt0 + φtl(r) + n0∆h(r) (3)

Where h0 is the nominal distance through the optic, n0 is the nominal index
of refraction of the substrate, h(r) is the displacement of the surface due
to thermal expansion at radius r, φt0 is the nominal undistorted optical
path through the optic, φtl(r) is the optical path distortion attributed to
thermal lensing, and ∆h(r) ≡ h(r)− h0 is the thermoelastic deformation of
the surface. For direct reflections off the affected face, the optical path length
may be written:

φr(r) = φr0 − 2∆h(r) (4)

If we assume that the maximum temperature of the optic is small com-
pared to the ambient temperature:

max(T )− T0

T0
� 1 (5)

which is necessary in order to prevent the generation of additional thermal
noise in the affected optic (T0 = 300◦K), then we may linearize the equations
governing heat transfer in terms of T − T0 (see Appendix A).

Using a finite element model to numerically solve the heat transfer equa-
tion determining T (r, z), the optical path length change due to thermal lens-
ing is calculated. The calculated temperature field may then be loaded into
another finite element model for calculating the vector field of deformations,
u(r, z), to obtain the surface deformation ∆h(r)=uz(r, z = h0) (see Appendix
B).
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In principle, solving the coupled partial differential equations for the ther-
moelastic deformation is computationally intensive compared to the calcula-
tion for the temperature field. A close (within a factor of 2) approximation
for use in minimization can be made as:

∆h(r) ' α

h0∫
0

(T (r, z)− T∞) dz = βφtl(r)

where β ≡ α/ dn
dT

, with α the thermal expansion coefficient.

2.2 Figure of Merit

If an initially pure TEM00 beam is acted on by a distorted optic (under ei-
ther reflection or transmission), the beam suffers a radially dependent phase
distortion, which we discussed in the previous sections in terms of the net op-
tical path φ(r). In a modal representation (due to the cylindrical symmetry,
we use the Laguerre-Gauss representation), the acquired phase distortion is
equivalent to power being scattered out of the TEM00 beam and into higher
order cylindrically symmetric modes. The fractional power lost out of the
TEM00 mode, termed the “distortion parameter”, is calculated as:

G = 1−
∣∣∣< 00|ei 2π

λ
φ(r)|00 >

∣∣∣2
= 1− 16

w4

∣∣∣∣∣∣
∞∫

0

ei
2π
λ
φ(r) e−2 r

2

w2 r dr

∣∣∣∣∣∣
2

To gauge the effectiveness of a given correction, we define the “correction
parameter” C = G0/G, with G0 and G the uncorrected and corrected distor-
tion parameters, respectively, to indicate the degree of wavefront correction.
While not necessarily an acurrate gauge of the effects of wavefront distortions
(or corrections) in an interferometric gravity wave detector, a vanishing value
of G (hence a large value of C) represents an ideal optical element. Thus,
we will gauge the effectiveness of correction (or severity of distortion) by the
value of the correction parameter.

2.3 Calculated Thermal Effects in LIGO II ITM’s

Utilizing the physical parameters listed in Table (1), we may calculate the
effects of absorbing a power Pabs in LIGO II test masses, due to absorption
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of the interferometer’s main beam. Figures 7 and 8 shows the resulting
temperature fields, as well as calculated transmitted and reflected optical
path distortions for both fused silica and sapphire for 1 Watt of absorbed
power.

Material Parameter Value

Fused Silica Thermal Conductivity κ = 0.0138 W/cm/◦K
Index Derivative dn

dT
= 11.8× 10−6/◦K

Expansion/Lensing Ratio β = 0.05
Heat Capacity c = 0.74 J/g◦K
Density ρ = 2.20 g/cm3

Sapphire Thermal Conductivity κ = 0.41 W/cm/◦K
Index Derivative dn

dT
= 12× 10−6/◦K

Expansion/Lensing Ratio β = 0.5
Heat Capacity c = 0.77 J/g◦K
Density ρ = 3.98 g/cm3

Table 1: Material parameters assumed.

Figure (2) shows the calculated G′ vs. Pabs for reflected and transmitted
beams in both sapphire and fused silica ITM’s. It is instructive to note that,
in LIGO I, with an input laser power of 8 Watts, a recycling gain of 30, and
an arm cavity finesse of 200, the power absorbed in the fused silica input
test masses will be ∼ 25mW, corresponding to a distortion parameter of
∼ 5×10−3 in transmission, a level which is compensated for by adjusting the
“cold curvature” of affected mirrors to facilitate the proper curvature under
“hot” operation.

3 Static Thermal Compensation

One can construct a simple geometry of axisymmetric radiative heaters and
reflectors to compensate anticipated axisymmetric thermal distortions. Chang-
ing the temperature of the electric heating elements via control of DC current
allows the strength of the correction to be continuously altered.
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Figure 2: Fractional power scattered out of the TEM00, mode of the inter-
ferometer’s main beam, G0, for singe pass transmission (solid line) and single
reflection (broken line) off of the arm cavity side of LIGO II input test masses
of sapphire (red) and fused silica (blue).

3.1 Theory

The most simple geometry conceivable is a thin heating ring, mounted away
from the face of the optic under actuation, centered on the optical axis (sym-
metry axis) with a radius larger than the optic’s radius (to prevent unneces-
sary scattering out of the main LIGO beam). The radiation pattern of the
simple heating ring of radius R, radiating power P , suspended a height h
above the face of the optic is calculated to be (see figure (14) for a diagram):

Hs(r) =
P h

2π3

∫ π

−π

((R − r cos φ)2 + h2)
1
2

((R2 + r2 + h2)− 2Rr cos φ)2 dφ (6)

Applying this boundary condition in the partial differential equation for
temperature (equation (18) in Appendix A), the corresponding optical path
length change, and hence the distortion parameter G(h, R, P ), can be calcu-
lated and minimized against the predicted LIGO II distortion.

For a given absorbed power out of the main beam, Pabs we choose a fixed
grid of ring positions, (hi, Rj), and minimize G(hi, Rj, P ) over P . For clarity,
we define a “ring power parameter”, P, as required ring power, per unit ring
length, per unit absorbed power,(i.e. P/2πR/Pabs).
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For fused silica, our simulations (see figures (9) and (10)) indicate that it
is possible to achieve a correction which takes C ∼ 102 by placing the heating
ring anywhere in a 1 cm wide band extending from (R = 12.5cm, h = 4cm)
to (R = 16cm, h = 6cm), with a ring power parameter of ∼ 12.5cm−1.
The corresponding maximal temperature increase of the optic, however, is
seen to be ∼ 375◦K per Watt of beam power absorbed. Thus, to keep the
temperature increase at a level required to keep the heat transfer equation
linear, as well as keeping added thermal noise to a minimum (equation (5)),
the maximal absorbed power a single simple ring can compensate in fused
silica is ∼ 0.1 Watt.

For sapphire, due to the larger thermal conductivity, a correspondingly
larger ring power is required to compensate a thermal lens of similar magni-
tude to that in fused silica (ring powers of order 1 kWatt would be required).
Furthermore, sapphire is transmissive at wavelengths shorter than 5 mi-
crons, thus putting stringent limits on heater element temperature (Tcomp <
500◦K). A simple ring heater is thus deemed impractical for compensating
sapphire.

One clear contributor to the inefficiency of the single heating ring is the
fact that heat is deposited in the center of the optic, where heating which
we are attempting to compensate occurs. One method of eliminating this
spurious central heating is to include a cylindrical shield, with a radius equal
to the optic’s (thus smaller than the ring’s), and a height such that the central
portion of the optic is shielded from the ring’s radiation. The calculation of
the radiation pattern is identical for that of a simple ring, except the limits
of integration in equation (6) are now dependent on r. For a ring of radius
R and height h, shielded by a coaxial sheath of height h′ and radius a, the
limits φl(r) are found by numerically solving the equation:

a2 + r2 − 2ar f(φl)

R2 + r2 − 2rR cos(φl)
=

h′

h
(7)

where f(φl) is calculated from:

f(φl) ≡
rR2

aρ2
sin2(φl)

(
1±

(
1− ρ2

R2 sin2(φl)

) 1
2
(

1− a2

r2

ρ2

R2 sin2(φl)

) 1
2

)
with ρ2 ≡ R2 + r2 − 2rR cos(φl).

Yet another contributor to the inefficiency of the single heating ring is
the dissipation of heat out the radial surface of the optic. Suspending an
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aluminum sheath around this surface prevents radiation exchange with the
thermal photon bath, hence reducing radial temperature gradients. The
boundary condition on the edge of the optic (equation (18) in appendix A)
is then ∂T

∂r
= 0.

For fused silica, our simulations (see figures (11) and (12)) of a shielded
ring compensating an insulated optic indicate that it is possible to achieve
corrections of order C ∼ 103 over a broad range of parameter values, while
inducing a maximum temperature increase of 48◦K per Watt of power ab-
sorbed. Furthermore, less ring power is required (the largest ring power
parameter seen for a particular correction in this scheme is ∼ 9cm−1).

Due to the broad parameter space of the shielded ring compensating an
insulated test mass, it is possible to obtain a modest correction in sapphire
(C ∼ 102) with a ring power such that it is possible to maintain the relatively
low temperature limit of 500◦K (ring power parameter of 1.5cm−1). See
figure (13).

3.2 Experiment

The sensing scheme we use to detect thermally induced optical path distor-
tions utilizes a probe beam from a fiber pigtailed diode laser (λ = 633nm),
coupled into a single mode fiber and collimated with a grin lens. The beam
is expanded to the size of the optic under test, which is mounted in a high
vacuum chamber. The reflected beam from transmission through the optic
is sent back through the optical system, where is it picked off with a quarter-
waveplate/polarizing beamsplitter and directed into a commercially available
Shack-Hartmann wavefront sensor. Wavefront slopes relative to the initial
“cold” wavefront are resolved over the sensor’s 44 × 33 lenslet grid, and the
resulting optical path distortion is reconstructed over the clear aperture. See
figure (14) for a diagram of the sensing scheme.

To test the concept of the shielded ring with an insulated optic, a shielded
ring was constructed and installed in vacuum. See figure (15) for a photo-
graph and schematic. At t = 0, a total power of 10 Watts is supplied to
the ring, and the resulting optical path distortion is measured. Linearly
interpolating the measured optical path distortion to a polar grid over the
aperture, and averaging over the angular coordinate, we obtain the optical
path distortion as a function of radius, φtl(r). Figure (16) shows φtl(r) at the
optic’s edge, and at r = 25mm, as well as the results predicted by the finite
element model we have constructed with equations (6) and (7). The thermal
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time constant of the heating element after initial switch-on is included in the
model.

4 Dynamic Thermal Compensation

It is possible to remove non-axisymmetric wavefront distortions through an
optic by utilizing a well absorbed laser beam, modulated and scanned over
a single face of an affected optic. By tailoring the power deposited in over a
discrete, constant scanning pattern, one can generate an arbitrary wavefront
distortion/correction.

4.1 Theory

Given a phase map φ(r, θ), it may be decomposed into a representation of N
nondegenerate functions Zn (Hermite-Gauss, Laguerre-Gauss, Zernike, etc.),
where N is determined by the degree of accuracy we require:

φ(r, θ) =
N∑
1

AnZn(r, θ)

or, in vector form:
φ(r, θ) = ~A · ~Z(r, θ)

If we wish to induce the phase map φ, we must find the required laser power
over the constant scanning pattern. Suppose the scanning pattern shines the
correcting Gaussian laser beam of waist wa:

I(~r) =
2Pm
πw2

a

e
−2 (~r−~rm)2

w2
a

over a discrete grid containing M points, indexed by m. We wish to find
the M-dimensional “power vector” ~P to induce the N dimensional phase
decomposition ~A. To do this, we numerically find the “actuation operator”
O (an M ×N matrix) such that ~P = O · ~A.

Shining the actuation laser of unit power on the mth grid point results in
a steady state phase distortion (either measured or numerically calculated)
φm, which may be decomposed into our set of orthonormal functions, φm =∑N

1 anmZn. Doing this for all M grid points, the coefficients anm compose an
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operator (an N ×M matrix) a which allows us to determine the wavefront

distortion ~A, given a power vector ~P :

~A = a · ~P

Clearly, the actuation operator O is identical to the inverse of the matrix a
So, given a measured wavefront distortion φ(r, θ), in order to restore the

measured wavefront to flat, we need to utilize the scanning laser to induce an
additional wavefront curvature φc(r, θ) = C−φ(r, θ), where C is an arbitrary
constant over (r, θ) chosen to minimize the necessary correcting laser power
(and keep it a positive value for all grid points m). Decomposing φc(r, θ) into

components An, we calculate the desired correcting power vector ~P as

~P = O · ~A.

4.1.1 Using Zernike Polynomials

4.1.2 Using Actuation Functions

We define the actuation function Al(r, θ) as the steady-state wavefront dis-
tortion over the entire aperture generated by the actuating beam shining
on the lth actuation point (rl, θl), in units of length per unit energy. All
correctible wavefront distortions for a given scan pattern may be expressed
as:

φ(r, θ) =
N∑
n=1

PnAn(r, θ)

where N is the total number of actuation points, and Pn is the beam power
deposited on the nth actuation point.

Given wavefront data φl over a set of M discrete points (xl, yl) we con-
struct a merit funtion:

χ2 =
M∑
l=1

(φl + C − φfit(xl, yl))
2

where C is an arbitrary constant with units of length and:

φfit(xl, yl) ≡
N∑
n=1

PnAn(xl, yl)
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as before. Minimizing the merit function gives us the best possible correction
for a measured distortion in a given actuation basis. We may solve this
problem using matrix methods.

Differentiating the merit function with respect to Pn and equating to zero,
we get a set of N equations:

0 =
N∑
m=1

Pm

M∑
l=1

Am(xl, yl)An(xl, yl)−
M∑
l=1

φl(An(xl, yl) + C)

=
N∑
m=1

PmAn,m − dn

where we have defined:

dn ≡
∑M

l=1 φl(An(xl, yl) + C) An,m ≡
∑M

l=1An(xl, yl)Am(xl, yl).

which is equivalent to the matrix equation:

~d = A · ~P

The N dimensional power vector is now found by inverting the N×N matrix
A:

~P = A−1 · ~d (8)

Given wavefront slope data (∂xφl, ∂yφl) over a set of M discrete points
(xl, yl), as is the case of a Shack-Hartmann sensor, we construct the merit
function:

χ2 =
M∑
l=1

[
(∂xφl + Cx − ∂xφfit(xl, yl))

2 + (∂yφl + Cy − ∂yφfit(xl, yl))
2]

where Cx and Cy are arbitrary dimensionless constants, and:

∂xφfit(xl, yl) ≡
N∑
n=1

Pn∂xAn(xl, yl)
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with a similar result for the y-direction terms. Organizing to form the matrix
equation (8), we find the matrix elements to be:

dn ≡
M∑
l=1

[∂xφl(∂xAn(xl, yl) + Cx) + ∂yφl(∂yAn(xl, yl) + Cy)]

An,m ≡
M∑
l=1

[∂xAn(xl, yl)∂xAm(xl, yl) + ∂yAn(xl, yl)∂yAm(xl, yl).]

We are then able to determine ~P via equation (8).

4.2 Experiment

The sensing scheme is identical to that described in Section (3.2) and Fig-
ure (14). Here, however, a scanning laser beam is utilized instead of the
heating ring. The galvanometer scanners are driven over a constant polar
pattern (each galvanometer is driven sinusoidally with a linearly increas-
ing/decreasing amplitude). Wavefront data are periodically read (once per
e-folding time of the optic under actuation) from the Shack-Hartman sensor,
the necessary actuation powers are calculated from the measured wavefront
decomposition, and are then implemented via acousto-optic modulation of
the CO2 beam. Construction and calibration of the apparatus has begun,
with the first full test planned for February, 2001.

5 Noise Considerations

By virtue of the fact that our actuation schemes actively alter the optical
path length through different components of the interferometer, unchecked
intensity fluctuations of the heating source in either actuation scheme will
couple directly into displacement noise.

We may calculate the frequency response of the optical path through an
optic due to an oscillating source of the form: I(r, φ, ωt) = R(r, φ) exp(−iωt).
where we have removed the DC component of the source. Let a be the
characteristic width of the spatial pattern R(r). If 2π

ω
is much smaller than

the local time constant of the optic, τl ' a2ρc
k

, which is ∼ 10s for a = 1cm
on a sapphire optic, then we may neglect radial diffusion of absorbed energy.
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The energy per unit area contained in a column through the optic is then
given by:

E(r, φ, ωt) =
−1

iω
I(r, φ, ωt)

However, if the temperature field is known, the energy per unit area in the
column can be calculated as:

E(r, φ, ωt) = ρc

∫ H

0

T (r, φ, z, t) dz

Equating the previous two equations, we get:∫ H

0

T (r, φ, z, t) dz =
i

ρcω
I(r, φ, ωt)

The surface of the affected optic will then deform by an amount:

δxs(r, φ, ωt) ' αi

ρcω
I(r, φ, ωt)

and the optical path through the optic will change by:

δxt(r, ωt) '
(α + dn

dT
)i

ρcω
I(r, φ, ωt)

Given the target sensitivity of the instrument and the surface of actuation
(recycling cavity vs. arm cavity), this calculation puts an upper limit on the
tolerable intensity noise of thermal actuators, I(r, φ, ω). If the surfaces of the
arm cavity are actuated, then the measured change in arm length is simply:

δxarm(ωt) =
2

πw2

αi

ρcω
exp(iωt)

∞∫
0

2π∫
0

e−2 r
2

w2 I(r, φ, ω)r dr dφ (9)

where w is the waist of the LIGO beam at the optic under actuation. If,
instead, the surfaces within the recycling cavity are actuated, where the
interferometer’s sensitivity to length changes is diminished by the finesse of
the arm cavity F (∼ 200), then intensity noise in the actuator will create a
resulting noise in the measured arm length δxrc = 1

F
δxarm.

For example, consider the so-called “photo-thermal noise”, generated by
shot noise in absorbed (i.e. detected) laser light on the Fabry-Perot surface
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of a test mass. With an arm cavity power of Parm and a surface absorption
of αs, the total intensity fluctuation due to shot noise alone is given by:

∆P =
√

2εαsParm

where ε is the energy of a single arm cavity photon. So, plugging the fluctu-
ation function given by:

I(r, φ, ω) =
2∆P

πw2
e−2 r

2

w2

into equation (9), we get a measured amplitude of length fluctuation:

|δxarm| =
α
√

2εαsParm

πw2ρcω

For Parm = 830 kW, αs = 0.5ppm, w = 3.65cm, and the parameters listed
for sapphire in table (1), this yields a measured arm cavity length fluctuation
(for a single mirror fluctuating) of amplitude:

|δxarm| = 2× 10−21m/
√

Hz

at ω = 100Hz.

5.1 Noise from a Laser Actuator

At a given instant, the actuator beam will be depositing energy at a pattern
point ~r0 = (x0, y0), and we may write the intensity noise of this beam as:

I(x, y, ω) =
2∆P (ω)

πw2
a

e
−2

(x−x0)2+(y−y0)2

w2
a

where wa is the waist of the beam and ∆P is the spectral density of the
beam power at frequency ω. Without loss of generality, we may set y0 = 0,
x0 = r0. We may now use equation (9) to calculate the upper limit required
on ∆P (ω) as a function of the actuation radius r0.

Figure (3) shows the power fluctuations ∆P required in a correcting beam
with wa = 1cm to induce length fluctuations of |δx| = 10−20m/

√
Hz as a

function of actuation radius r0 at a frequency of ω = 100Hz. As before, we
use w = 3.65cm for the main beam size.
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Figure 3: Power fluctuations in an actuating beam of size wa = 1cm, shining
at radius r0 off of the main optical axis, that will induce measured length
fluctuation δx = 10−20m/
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Hz, with a main beam waist of w = 3.65cm.

5.2 Noise From a Blackbody Actuator

It is well known [4] that the root mean square fluctuation in photon number
∆nω0 for a single field mode in an ideal blackbody source is given by:

∆nω0 =
√

n̄2
ω0 + n̄ω0

where n is the mean photon number in the mode, given by the Planck thermal
excitation function n̄ω0 = 1/(e

hc
λkT − 1). Clearly, for n̄ω0 > 1, the fluctuations

are approximately equal to the mean number of photons in the mode, while
for n̄ω0 < 1 the statistics become Poissonian. The wavelength where n̄ω0 = 1
is easily calculated to obey the relation:

λcT = 0.02 m ◦K.

Utilizing Wien’s displacement law, λmaxT = 0.003 m◦K, we get the quite
general relation:

λc
λmax

= 6.67.

Using this result, and integrating the blackbody energy density, it can be eas-
ily shown that 1.6% of the total radiated energy resides in the non-Poissonian
tail.
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In a realistic blackbody source, the effect of spatial extent of the source
must be taken into account to properly calculate the total statistical fluctu-
ation. The coherence length of the emitted light, lc, (approximately equal to
the wavelength of the mode for blackbody light) defines the scale of coherence
between spatially separated radiators. Light emitted from separated “coher-
ence patches” (patches of area l2c) will thus be statistically independent. An
identical argument applies to the “detector” (the face of the optic under ac-
tuation), since radiation from a single coherence patch arriving at spatially
separated positions of the optic will be uncorrelated if the difference in travel
time is longer than the coherence time tc = lc/c. For Nc coherence patches
(detector plus radiator), the mean photon number in a given field mode be-
comes n̄ω = Ncn̄ω0. Similarly, the root mean square is (∆nω)

2 = Nc(∆nω0)
2,

thus yielding:

∆nω
nω

=

√
Nc(n̄2

ω0 + n̄ω0)

Ncn̄ω0

(10)

=

√
1

Nc
+

1

n̄ω
. (11)

Note that for n̄ω < Nc, the fractional photon fluctuation is closely Poissonian,
while it is a constant 1/Nc otherwise. The new λc (where n̄ω = Nc) is
calculated to be:

λc
λmax

= 6.67× log(Nc + 1). (12)

Since Nc = A/l2c depends on the coherence length lc ∼ λc, this equation
becomes transcendental in λc. We are forced to numerically solve for λc
given area emitter/detector area A and emitter temperature T .

For our radiator/detector system, the typical peak wavelength is λmax '
7µm, with a total detector/emitter area of A ' 0.05m2. Solving equation (12)
for λc, we find the number of disjoint (statistically independent) coherence
patches to be Nc ∼ 1 × 105, which results in 0.0013% of the total emitted
power in the non-Poissonian tail. Thus, for the geometry and wavelengths
we are concerned with, the counting statistics on radiated photons may be
considered purely Poissonian.

More to come...
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6 Measuring Material Parameters

In the course of the previous tests, it was realized that material parameters
(e.g. thermal conductivity) could be accurately extracted with little mod-
ification to the existing setup. Assuming the axisymmetric thermal model
to be correct, measuring the step response of the peak-to-valley optical path
to the heating laser beam places tight constraints on the thermal conduc-
tivity, index derivative, and thermal expansion coefficient. Tests have been
performed on both fused silica and sapphire test pieces.

6.1 Calculations

We illuminate the optic under test with a CO2 laser beam (λ = 10.6µm)
of power P and waist w, so that the source terms in equations 17 and 18
become:

Hb(r, z, t) = 0 Hs(r, z = h, t) =

{
0, for t < 0;

2P
πw2 e

−2 r
2

w2 , otherwise.
(13)

The total optical path length through an optical element may be written
as:

φ(r) =

∫ h(r)

0

n(r, z) dz

' n0h0 +
dn

dT

∫ h0

0

(T (r, z)− T∞) dz + n0(h(r)− h0)

= φ0 + φl(r) + φd(r)

where h0 is the nominal distance through the optic, h(r) is the distance
through the optic at radius r under thermoelastic deformation, φ0 is the
nominal undistorted optical path through the optic, φl(r, t) is the optical
path distortion attributed to thermal lensing, and φd(r, t) is the optical path
distortion due to thermoelastic deformation.

One quantity of interest is the peak-to valley optical path distortion gen-
erated by transmission into and the subsequent reflection through the test

17



optic. We may write this as:

φPV (t) = 2P

[
dn

dT

∫ h

0

(T (z, 0)− T (z, R)) dz

]
+ 2Pn [uz(h, 0)− uz(h, R)]

− 2P (n− 1) [uz(0, 0)− uz(0, R)] (14)

where T (z, r) is the temperature field, uz(z, r) is the resulting thermal defor-
mation field in the z direction, n is the index of refraction, and φPV (t) is the
measured peak to valley optical path distortion over the aperture of radius
R.

The model is constructed by numerically solving the differential equations
governing temperature and expansion. It is, however, straightforward to
extract the functional dependence on the material parameters of interest
from the analytic equations, thus minimizing the computation required to
interpret the data.

It can be seen from equations (17) and (18) that:

T (r, z, t) =
1

k
T (r, z, βt) (15)

where β ≡ k
cρ

, and the function T (r, z, t) is independent of k, c, and ρ. Thus,

the first term in equation (14) may be written as:

dn

dT

∫ h

0

[T (z, 0)− T (z, R)] dz = Atlf(βt)

where Atl ≡ dn
dT

/k and the function f(t) is independent of dn
dT

, c, and k.
The equations governing thermoelastic deformations are considerably more

complicated, so we leave the mathematical details to Appendix B. Using
equation (15) in the thermoelastic equations of Appendix B, we see that the
thermal expansion field uz may be written:

uz(r, z, t) =
αz
k
Uzr(r, z, βt) +

αr
k
Uzz(r, z, βt)

where Uzr is the z component of deformation which solves the thermal ex-
pansion equation with αz = 0 (the component of axial expansion generated
by radial thermal expansion coupling into the axial direction via the Poisson

18



ratio), Uzz solves it for αr = 0 (the component of axial expansion due to axial
thermal expansion), and both are independent of k, c, ρ, αz, and αr.

In the end, we write the total measured optical path distortion as:

φPV (t) = Atlf(βt) + Azgz(βt) + Argr(βt) (16)

Atl ≡
dn

dT
/k Az ≡

αz
k

Ar ≡
αr
k

β ≡ k

cρ

where f , gz, and gr are numerically calculated functions, which are inde-
pendent of the material parameters we wish to find. Figure (4) shows the
fitting functions determined for the experiment’s geometry. With the geom-
etry under test, we find that f and gz are nearly degenerate (i.e. we may
find contants A and B such that f(t) ' Agz(Bt)), and the magnitude of
gr is small compared to f and gz. Thus, we can only realistically fit two of
the four parameters to the data (β and one of the A’s), and must assume
knowledge of the other two.

6.2 Measurements

The sensing setup is identical to that of section 3.2, see figure (14) for a
diagram. A shutter is placed in the heating beam, and triggered by the data
acquisition routine, which subsequently triggers the Shack-Hartmann sensor
in 0.5 second increments. The laser is intensity stabilized using a thermopile
sensor, and the power is monitored over each data run.

6.3 Systematic Parameters

The parameters necessary to completely construct the fitting functions f ,
gz, and gr are the boundaries of the partial differential equation (the test
optic’s dimensions), the conditions on those boundaries (pump beam size,
a, and the material’s emissivity, ε), and the aperture sensed. If the pump
beam size is much smaller than the physical dimensions of the test optic, then
the fitting functions approach those for an infinite half space, hence depend
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Figure 4: Numerically determined fitting functions f , gz, and gr for the
geometry of the experiment.

very weakly on the physical dimensions of the optic and the emissivity of
the radial surface. If the aperture sensed is also much larger than the beam
size, then the peak-to-valley optical path distortion also very weakly depends
on the aperture size (temperature gradients, hence optical path distortion
effects, are localized to the region illuminated by the pump beam). We
measure the optic’s dimensions with a set of calipers, and simplify the radial
surface’s boundary conditions by wrapping it in a single layer of aluminum
foil (emissivity ∼ 0.1 at room temperature).

The emissivity of the face under test (at 10.6µm) determines the fraction
of the pump beam which is absorbed on the surface under test. This is
determined by measuring the fractional power of the pump beam which is
reflected off of the face of the optic.

The effective local time constant (the time it takes for steady-state tem-
perature gradients, hence optical path distortions, to form) is given by τl =
ρc
k
a2. Uncertainty in a couples very strongly into the effective rise time of f ,

gz, and gr. From the expression for the local time constant, we see that the
error in our measure of a (δa) propagates into the error for β as 2 δa

a
.
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We determine the size of the CO2 beam by measuring the power trans-
mitted through an aperture of well-known size placed at the position of the
optic’s face when under test. The total pump power transmitted through
the optical system is measured at the position of the optic under test (in
the vacuum chamber at atmosphere) versus the power measured on the on-
table power monitor. An aperture of well-known size is placed in front of the
in-tank meter, the beam centration is adjusted to maximize the power regis-
tered, and the resulting in-tank power is measured versus the on-table power
monitored. This is done for three aperture diameters (1 mm, 2.77 mm, and
6.73 mm), the results for each aperture are averaged, and the model (trans-
mission for a pure Gaussian beam) is fit to the data in a least-squares fashion.

The spatial profile of the beam is measured by using galvanometers to
scan in a grid pattern (100 × 100) over a 150µm pinhole placed in front of
a pyroelectric sensor. The beam is chopped at 400Hz, the signal from the
pyroelectric sensor (after a FET preamp) is sent to a lock-in amplifier, and
the resultant signal is recorded by the computer which is controlling the scan
pattern of the galvos. See figure (5) for an intensity map of the pump beam
as a function of galvanometer voltage.

Figure 5: Measured spatial profile of the pump beam at the test optic.
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Parameter Value Error

Beam Radius 5.01 mm ±0.04 mm
Aperture 3.9 cm ±0.1 cm
Fused Silica Emissivity 0.95 ±0.01
Sapphire Emissivity 0.89 ±0.02

Table 2: Systematic parameters and their errors.

6.4 Data

Figure (17) shows the peak to valley optical path distortion data. The data
are normalized to measured absorbed power (pump power in the vacuum
tank times measured emissivity), and averaged over multiple data runs. In
the sapphire plot, the magenta triangles denote the statistical error on the
average at each time.

7 Conclusions

Material parameters fit for fused silica are listed in table (3). If we assume
standard values[2] for heat capacity (c = 0.74 J/g/◦K) and density (2.2
g/cm3), then this yields:

k = (1.25± 0.07) W/m/◦K

dn

dT
= (8.9± 0.10)× 10−6/◦K

Parameter Value Error

Atl 7.14 µm/W ±0.086 µm/W
β 0.00768 cm2/s ±0.00042 cm2/s

Table 3: Material parameters fit for fused silica.

Assuming known values of dn
dT

= 1.26×10−5/◦K [3], c = 0.775 J/g/◦K [2],
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dT
= 1.26 ×
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and ρ = 3.98 g/cm3 [2] we fit:

k = (33.8± 4.0) W/m/◦K

αz = (3.2± 1.0)× 10−6/◦K

The relatively large error bars on these fits is due to the degeneracy between
f and gz. See figure (6) for the reduced χ2 versus k and α.
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8 Conclusions

C max(Pabs) Notes

Bare Ring 1× 102 100 mW
Steep Parameter
Space

Shielded Ring, Insu-
lated Optic

2× 103 800 mW
Broad, Flat Parame-
ter Space

Scanning Beam
(Antigaussian)

1× 105 1W
More Detailed Model-
ing Required

Table 4: Results of the finite element simulations for thermally compensating
fused silica test masses.

C max(Pabs) Notes

Bare Ring - -
Impractical Due to
Ring Power Required

Shielded Ring, Insu-
lated Optic

1× 102 1 W
Limited By Ring
Power Required

Scanning Beam
(Antigaussian)

- -
Impractical Due to
Laser Intensity Noise
(?)

Table 5: Results of the finite element simulations for thermally compensating
sapphire test masses.

24



A Calculating Temperature

The heat transfer equation for an arbitrary body in 3 dimensions is given by
the Fourier equation:

ρc
∂T (~r, t)

∂t
− ~O · (K~OT (~r, t)) = Hb(~r, t)

Where c is the heat capacity, ρ is the density, K is the thermal conductivity
(a 3 × 3 matrix), T is the local temperature, and Hb is the rate of internal
(bulk) heating due to an external source. If the body interacts only with a
thermal radiation bath of temperature T∞ (i.e. it is suspended in a vacuum
enclosure with walls at termperature T∞), the boundary equations are given
by the Stefan-Boltzmann law:

n̂ · (K~OT ) = −σε(T − T∞)4 + Hs(~r, t)

Where n̂ is the unit normal on the surface, ε is the emissivity, σ is the
Stefan-Boltzmann constant, and Hs is the rate of surface heating due to an
external source. If we assume that T−T∞

T∞
� 1, we may linearize the boundary

conditions so that:

n̂ · (K~OT ) = −4σεT 3
∞(T − T∞) + Hs(~r, t)

Assuming cylindrical symmetry, the Fourier equation (A) may be reduced
to two dimensional parabolic form:

ρrc
∂T (r, z, t)

∂t
− ~O2 · (kr ~O2T (r, z, t)) = rHb(r, z, t) (17)

With boundary conditions:

n̂ · (kr~OT ) = −4σrεT 3
∞(T − T∞) + rHs(~r, t) (18)

Where we have written ~O2 ≡ r̂ ∂
∂r

+ ẑ ∂
∂z

, and k is now a 2× 2 matrix.
Given the heating terms Hb and Hs, these equations may be solved nu-

merically over a given two dimensional region using a parabolic finite element
solver.
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B Calculating Thermal Expansion

Given the stress temperature modulus ~γ = γz ẑ + γrr̂, shear modulus G,
1st Lame’ coefficient µ, and the temperature field T of the object under
test, the thermal deformation of the object can be numerically calculated.
With a sufficient change of variables, the equations determining the thermal
deformations u =

(
ur
uz

)
may be reduced to the form of a two dimensional

elliptic system of partial differential equations, which, given any temperature
field, can be solved over a two dimensional region using an elliptic finite
element solver:

−~O ·
(
c⊗ ~Ou0

)
= f (19)

Where u0 ≡
(
rur
uz

)
, f are volume forces generated by the temperature field

T (r, z, t), given by:

f =

(
γr

∂T
∂r

γzr
∂T
∂z

)
and c is a rank four tensor with elements:

c11 =

(
2G+µ
r

0
0 G

r

)
c12 =

(
0 µ
G 0

)
c21 =

(
0 G
µ 0

)
c22 =

(
Gr 0
0 (2G + µ)r

)
On the boundaries of the optic, stress in the direction of the normal must

vanish. In our two dimensional framework, this is found to be equivalent to
a generalized Neumann condition of the form:

~n ·
(
c⊗ ~Ou0

)
+ qu0 = g (20)

Where we have:

q =

(
−2G

r2 nr 0
0 0

)
g =

(
γrnrT
γznzrT

)
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Figure 7: Calculated temperature field and resulting thermal lens for a fused
silica LIGO II test mass. A total power of 1 Watt is absorbed, 95% on the
Fabry-Perot surface, 5% in the bulk. The reflected optical path distortion is
calculated for beams reflecting off of the Fabry-Perot surface.
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Figure 8: Calculated temperature field and resulting thermal lens for a sap-
phire LIGO II test mass. A total power of 1 Watt is absorbed, 50% on the
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Figure 16: Measured optical path distortion vs. time taken at radii 2.5 cm
and 4 cm for an insulated fused silica optic under actuation by a shielded
heating ring.
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