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Chapter 1

Introduction

The purpose of the GWCLASS package is to facilitate the analysis of data taken from gravita-
tional wave interferometers, such as those being constructed in the United States by the LIGO
project. The two primary components of this package are a preprocessing function intended
to reduce the signal to noise ratio in the primary ADC channel and a search function geared
specifically to seek for evidence of periodic gravitational waves emitted by known pulsars. In
addition, several auxiliary functions that the author found useful while analyzing gravitational
wave data have been included in the distribution. A full listing of the GWCLASS functions is
presented in table 1.1. Also included with the distribution are utility scripts, written primarily
in Perl, to aid in data analysis, and sample files needed by some of the data processing functions.
These will be discussed when needed.

The remainder of this chapter discusses software requirements and the installation procedure.
Following this, chapter 2 describes the GWCLASS binaries and how they are used. In addition,
the procedures used by clean_signal to estimate and remove correlations and gwsearch to
search for evidence of periodic gravitational waves are described in detail. Finally, a brief
description of some of the utility scripts provided with the GWCLASS distribution is contained
within chapter 3.

Finally, the GWCLASS source code may be obtained at either the GWCLASS homepage or
the mirror site, whose addresses are listed below.

GWCLASS Homepage http://www.fas.harvard.edu/~marsano/GWCLASS
Mirror Site http://www-mhp.physics.lsa.umich.edu/~keithr/GWCLASS

1.1 Hardware and Software Requirements

GWCLASS was developed primarily on a PC with an Intel Pentium IV Processor running
RedHat Linux version 7.0. It has been successfully compiled on a number of other architectures,
though, including SGI Irix, HPUX, and SPARC. Since nothing in the code is architecture-
specific, it is not anticipated that any hardware incompatibilities exist provided the proper
compiler flags are issued.

On the other hand, there are a number of software components that are needed by GW-
CLASS. Software which is required for the compilation of GWCLASS binaries, as well as the
corresponding websites at which the software may be obtained, are listed in table 1.2. Addi-
tional software that must be used in conjunction with GWCLASS in order to enable some of
its features, along with corresponding websites websites, are listed in table 1.3.



Function

Description

clean_signal

dump_frame

gps2gmst

gps2mjd

gwsearch

lockcat

plot_frame

print_freq

read_data

utc2mjd

Table 1.1:

Estimates and removes correlations between the signal ADC and
environmental ADC’s
Outputs new Frames containing a “cleaned” signal ADC

Dumps all data for a given channel from a specified Frame to an
ASCII text file

Converts a specified time in GPS seconds to GMST (Greenwich
Mean Sideral Time)

Converts a specified time in GPS seconds to MJD (Modified Julian
Date)

Performs a search algorithm to detect periodic gravitational waves
from a known pulsar

If a detection occurs, the magnitude, h, and its uncertainty are
printed

Produces a catalog of locked sections within a user-provided list
of frames

Interface to xmgrace which plots the fourier transform of Frame
data

Prints frequency of a pulsar during a specified time interval to an
ASCII text file

Prints a specified amount of data from a given channel and prints
it to an ASCII file

Similar to dump_frame except it may print data obtained from a
series of Frames or from only a fraction of a Frame

Converts a specified UTC time to MJD (Modified Julian Date)

Functions included in GWCLASS distribution



In addition to using the software listed in table 1.2, GWCLASS also makes use of code
from the GRASP analysis package written by Bruce Allen and others[1] 1. In particular, three
source files from the GRASP package, frameinterface.c, utctime.c, and GR_error.c, have
been integrated into GWCLASS and are included in the GWCLASS distribution. The first,
frameinterface.c, contains functions for reading data from Frame files and has been edited
in order to permit GWCLASS functions to use FTP or HSI (an interface to High Performance
Storage Systems or HPSS) to read a continuous stream of data stored on a remote server. The
second, utctime.c, is used to incorporate leap seconds into the conversion from calendar time
to UTC (and GPS) seconds. Finally, GR_error.c is included to print status and error messages
produced by frameinterface.c and utctime.t in the GRASP format as a recognition that
GRASP code is being used. Due to the fact that at least one of the GRASP source files have
been edited for inclusion into GWCLASS, all three are included in the GWCLASS distribution.
To be sure, a pre-existing GRASP installation is not necessary, and if present is not referenced.

1.2 Installation

After the necessary software has been installed, the GWCLASS binaries may be compiled by first
editing GWCLASS dir/src/Makefile, where GWCLASS dir is the top directory of the GWCLASS
installation, and running make from GWCLASS dir/src. Individual binaries may be compiled
by issuing make <name>, where <name> is the name of the desired binary. The instructions for
editing Makefile are contained therein.

IThe latest version of GRASP may be obtained at http://www.lsc-group.phys.uwm.edu/ ballen/grasp-distribution.
Note, however, that GWCLASS will not be compatible with any distribution of GRASP. To be sure, GWCLASS
must be compiled with the copy of frameinterface.c provided with the GWCLASS distribution.
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Software Package

Location/Description

CLAPACK

FFTW

Frame Library

Grace?

Table 1.2:

Software Package

http://www.netlib.org/clapack
Linear algebra package required to solve matrix equations and find
eigenvalues/vectors

http://wuw.fftw.org
Package for compute FFT’s (Fast Fourier Transforms)

http://wwwlapp.in2p3.fr/virgo/Framel

Required to read interferometer data from Frames
WARNING: GWCLASS has only been tested with Frame li-
brary version 3.85. It may not be compatible with future versions
at the present time

Graphics package and successor to Xmgr

Required software for GWCLASS installation

Location/Description

hsi

ncftp version > 3.0

tempo

gzip

http://wuw.sdsc.edu/Storage/hsi

Interface to High Performance Storage System (HPSS)

If present, GWCLASS may use hsi to obtain and/or store Frame
files on a remote HPSS server

http://wuw.ncftp.com

File Transfer Protocol (FTP) function

GWCLASS needs the functions ncftpput and ncftpget, which
are included in the ncftp distribution versions 3.0 and greater, in
order to use FTP to obtain and/or store Frame files on remote
servers

http://pulsar.princeton.edu/tempo

Pulsar timing code used for many pulsar searches in the astro-
nomical community

GWCLASS uses output from tempo to determine the frequency
modulation of known pulsars. In order to use the search func-
tion, gwsearch, or signal injection feature of the cleaning function,
clean signal, the user must provide the proper tempo output
files.

http://www.gzip.org

Required for storing Frames produced by clean_signal on a re-
mote server. The Frames are automatically compressed with gzip
before being transferred

Table 1.3: Software required to use certain GWCLASS features



Chapter 2

GWCLASS binaries

The crux of GWCLASS are the cleaning and search binaries, clean_signal and gusearch. Asa
result of this, the bulk of this section describes their usage. The other utility functions included
with GWCLASS will then discussed briefly.

2.1 Function: clean signal

The clean_signal binary reads data from Frame files, estimates correlations between the pri-
mary signal channel and environmental monitor channels, hereafter referred to simply as en-
vironmental channels, and removes them in order to improve the signal to noise ratio. The
procedure by which this is accomplished is a very slight modification of that described in a pa-
per by Allen, Hua, and Ottewill[2] For completeness, the method is described in full in section
2.1.3. Following the removal of correlations, clean signal creates new frames containing the
initial signal channel, the signal channel following removal of environmental correlations, and
the environmental channels whose correlations were removed. The details concerning input and
output are described below.

2.1.1 Command Line Usage

The user interacts with clean_signal in two ways, namely by using command line options and
by setting environment variables. The command line options control virtually all of the func-
tioning of clean _signal, with the environment variables serving only to configure the method
by which Frame files are obtained and stored. The command line usage for clean_signal reads
as follows:

Usage: clean_signal [options] [configuration file]

Configuration file should contain, in columns, the names of the channels
to be sent to the correlation algorithm, with the signal channel first.

Options:

-b<integer> Number of frequency points in each frequency band
used by correlate_chans function
(DEFAULT = 128)

-c<real> Pairwise covariance coefficient threshold below which
correlation is assumed to be statistically
insignificant
(DEFAULT = 10/band_length, band_length given by
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-b option

-e<real> Threshold used to determine when an eigenvalue of the
correlation matrix is sufficiently near zero that
the correlation matrix must be reduced
(DEFAULT = 1e-b)

-f<integer> Sets number of times to apply notch filter to remove
line harmonics to <integer>
(DEFAULT = 0)

-F<real> Sets critical frequency (in Hz) whose harmonics are to be
removed by the notch filter to <real>
(DEFAULT = 60)

-h Help (prints this list)

-H Prints help information which details the environment varaibles
that must be set when using clean_signal

-i<string> Inject false signals into the data using the configuration

file indicated by <string>. That file has one line for
each pulsar for which a false signal is injected, which
has the following format:

PLUS <plus amplitude> <plus phase> CROSS <cross amplitude> <cross phase>
Frequency information will be obtained from the file
<pulsar name>_polyco.dat, which is a polyco file produced
by tempo with the -z switch. Right ascension and declination
will be obtained from the file <pulsar name>.param, which
should contain these items, in order, on the first line
expressed in RADIANS

-n<integer> Sets number of data points to obtain from the signal
channel and clean at once to 27<integer>
(DEFAULT = 17)

-s<integer> Sets preferred length of cleaned segments of data points
printed to FRAMES to 27<integer>

-v Verbose

-w<string> Sets window function to be used when computing FFT to
<string>. Supported window functions are:
NONE

HANNING (This is the default window if none is indicated)

We now embark upon a more detailed description of these options.

Correlation Parameters

The -b, -c, and -e options configure parameters used when estimating correlations and will be
explained when the procedure by which this is accomplished is discussed below. Generally, the
defaults for these options work fine.

Notch Filters

The -f and -F options toggle the use of notch filters prior to correlation estimation. The
inclusion of this feature was motivated by the desire to remove the 60 Hz harmonics from the
data prior to processing. When the -f option is set, notch filters are applied to remove lines at
the frequency indicated by the -F option (the default is 60 Hz) as well as all of the harmonics
of that frequency contained within the FFT’s frequency range. Note that it is NOT currently
possible to remove a single line without removing its harmonics. The integer accompanying the
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-f option determines the number of times each filter is applied and may be used to increase
the effectiveness of line removal if one application doesn’t do the trick. Note that an integer
MUST be given with the —f option, even if the filter is only to be applied once (in that case,
the option given should be -£1).

Injection of false signals

clean_signal has the ability to inject artificial signals, corresponding to periodic gravitational
waves from given pulsars, that exhibit both the appropriate frequency and amplitude modula-
tion. To do this, clean_signal requires a number of input files. The file indicated with the
-i option should contain names of the pulsars for which signals are to be injected and the
amplitudes and phases of the plus and cross polarization comopnents of those signals. The
format of this file is described in the usage above. The phases are relative to the first time
stamp appearing in the first “cleaned” Frame output by clean signal. The plus and cross
polarizations are defined in section 2.2.3.

For each pulsar, clean signal requires two additional files, one for the frequency modula-
tion, and the other for the amplitude modulation. Both filenames are determined by the pulsar’s
name as indicated in the -1i file. For the determination of frequency modulation, GWCLASS
relies on an output file from the TEMPO timing code, used for many pulsar searches in the
astronomical community. When called with the -z switch, TEMPO produces a file, generally
called “polyco.dat”, which contains polynomial coefficients that may be used to approximate
a pulsar’s frequency modulation. clean_signal looks for this file under the name <pulsar
name>_polyco.dat, where <pulsar name> is the name provided in the -i file. Thus, in order
to use this feature of clean signal, the user must first run TEMPO in order to generate the
appropriate polynomial coefficient file and change its name appropriately. This process is de-
scribed in greater detail in section 2.2.3, where frequency modulation is discussed in relation to
the gwsearch algorithm.

In addition to frequency modulation, clean signal also determines the amplitude modula-
tion due to the continuously changing relative orientation of the pulsar and detector. For this
determination, clean signal uses the right ascension and declination of the pulsar, which are
provided in the file <pulsar name>.param. This is a user-created file which contains two entries,
the pulsar right ascension and declination (in that order), on the first line. As a reminder, both
the right ascension and declination MUST be in RADIANS. The process by which amplitude
modulation is determined is described in greater detail in section 2.2.3, where it is discussed in
relation to the gwsearch algorithm.

Setting the Amount of Data

The data to be processed is stored in Frames either in a local directory or on a remote server, with
the details indicated by environment variables. This is discussed below. While clean_signal
will always continue running until it exhausts all of this data, the size of the data chunks which
are read and processed is set with the -n and -s parameters. To understand exactly what these
parameters do, it is necessary to digress slightly and describe briefly some of the workings of
clean_signal.

When called, clean_signal will attempt to obtain 2% data points, where z is the integer
provided by the -n switch, from the signal channel and a number of data points corresponding
to an equivalent amount of time from each environmental channel. This data is then printed to
a series of buffer files, at which point clean_signal reads another chunk. Eventually, however,
either two successive chunks are read which are not adjacent in time (because the interferometer
fell out of lock sometime between the end of the first and beginning of the second), or it is
determined that a critical number of data points, namely 2¥ where y is the integer provided by
the -s switch, have already been written to the buffers. At that time, clean_signal proceeds
to process the data already contained in the buffers before dealing with the most recent chunk.
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The result is that clean_signal will produce Frame files of length corresponding to the -s
switch whenever possible (ie when breaks in lock don’t interfere) and will produce Frame files
of smaller length but no smaller than that corresponding to the -n switch otherwise. More
importantly, though, clean_signal will never attempt to read more than 2% data points at a
time. This is critical since it is often desirable to simultaneously process a length of data that
is so large that there is not enough data to read all of it at once. So, -n can be set sufficiently
small that memory problems are avoided while -s can be set larger since memory problems are
avoided in the processing phase through the use of buffers. It may still be possible to choose a
value of -s and a number of data channels that exhausts the memory on a given system. When
this happens, a malloc error will be printed.

Help and Verbose

There are two help options, -h and -H. The former prints the command line usage above to
screen, while the latter prints a help file that describes the environment variables that must
be set in order to control the input and output of clean_signal. These environment variables
will be discussed below. The use of -v toggles verbose mode, in which additional messages
describing the activities and progress of clean signal are printed to screen.

Miscellaneous

Two miscellaneous options remain, namely -m and -w. The -m option specifies the maximum
frequency, in Hertz, at which cleaning occurs. The default is set to 1024 Hz since most astro-
physical sources will be found at frequencies less than this. The reason for the inclusion and
use of this option is to save memory and computation time. Perhaps another digression will
be useful here. When clean signal begins processing data that has been written to buffers,
data from the buffers is read one channel at a time, with the signal channel read last, in order
to save memory space. After being read, each channel is FFT’ed, at which point only those
FFT coefficients corresponding to frequencies less than or equal to that indicated with the -m
option are kept. Since the signal channel is read last, though, its entire FFT is kept to enable
later reconstruction of the signal (the FFT is stored in the array used previously to read from
buffers). When all channels are read, the correlation algorithm described below in section 2.1.3
is applied, and the FFT coefficients of the signal channel in the working frequency range are
modified. Finally, an inverse FF'T is applied to obtain the “cleaned” signal. From this discus-
sion, it is clear that the value given by the -m option determines the number of FFT coefficients
that must be stored at once for the correlation algorithm to proceed. If the system’s memory
becomes exhausted, this parameter may be decreased in order to help alleviate the problem.

The -w option indicates the window function that is to be applied to channel data prior
to being Fourier transformed. The only supported options at this time are NONE, which
is equivalent to a rectangular window, and HANNING. All windowing is done through the
window() function located in window.c so, to add additional windows, only this file need be
edited.

2.1.2 Environment Variables

While command line arguments control most of the operation of clean signal, input and
output are controlled through the use of a number of environment variables. These variables
retain the prefix “GRASP_” in deference to the fact that the functions used to obtain data
from Frames were originally part of the GRASP distribution. Only the GRASP_FRAMEPATH
variable was used by GRASP, though. The rest have been added in order to permit input from
and output to remote servers via FTP and HSI. What follows is the -H help for environment
variables.



*x* Environment Variables **x*

The function clean_signal utilizes a frame interface that uses
several environment variables documented below:

* Input Frames:

There are two methods of providing input frames for clean_signal
One method is to indicate a local directory in which

input frames are located. The other is to indicate a

remote host on which tar archives containing input frames

are located, the remote directory in which they are located,

a list of tar archives to obtain, and a local directory to

which clean_signal transfers them before reading

This latter method requires either an hsi interface to tar
archives stored on an hpss server or a local installation of
ncftp version 3.0 or greater (so that ncftpget may be used)

The method used, either standard (local files) or ftp (remote files)
depends on the following environment variables:

GRASP_FRAMEPATH If using standard method, the directory in which
(Always required) input frames are located.
In the current implementation, ALL files contained
in this directory MUST be frame files.
If using ftp method, the local directory to which

remote tar archives are transferred for unpacking.
In the current implementation, this directory must
be initially empty.

GRASP_FTPCFG This variable controls the method used by clean_signal
(Required for ftp method) for obtaining frames.
If unset, then the standard method is used
If set to "hsi", as in
setenv GRASP_FTPCFG hsi
for instance, then the ftp method is used but,
instead of calling ncftpget to do the file transfer,
a local installation of hsi is used.

Otherwise, it should be set to the configuration file
needed by ncftpget for host, username, and password
information. The format of this file is
HOST hostname
USER username
PASS password

For more information, see the ncftpget manpage.

GRASP_FTPFILE If using ftp method, set to a file containing a list
(Required for ftp method) of tar archives to be obtained from the remote host
The format of the file is one filename per line.

GRASP_FTPDIR If using ftp method, set to directory on remote host
(Required for ftp method) in which tar archives indicated in GRASP_FTPFILE are
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located.
* Output Frames:

There are two methods of printing output frames for clean_signal

One is to print the output frames to a local file. The other is

to indicate a remote host on which output frames are to be stored.

Use of the latter method requires a local installation of either ncftp
version 3.0 or greater (so that ncftpput may be used) or hsi (in which
case the remote server must be the HPSS storage system to which your
version of hsi connects by default). As in the input case, the method
used depends on a few environment variables:

GRASP_CLEANPATH If using standard method, the local directory
(Always required) to which output frames are to be stored.
If using ftp method, the remote directory to
which output frames are to be ftp’ed.

GRASP_FTPDESTCFG If set, then ftp method is used for frame output
(Required for ftp method) If using ftp method, then it should be set to

either "hsi", in which case hsi is used to
perform the file transfer, or the configuration
file needed by ncftpput for host, username, and
password information. See above (under
GRASP_FTPCFG) or the ncftpput manpage for more
information

2.1.3 Method

The method used by clean signal to estimate and remove correlations from the signal chan-
nel is, as mentioned above, due to Allen, Hua, and Ottewill [2] Though the basic method is
summarized briefly here, the paper in which it was originally proposed presents a much more
thorough analysis.

To estimate the contamination of the signal due to environmental effects, three key as-
sumptions are made. First, it is assumed that any such contamination is governed by a linear
transfer function. What this assumption implies is that if y; is the ith bin of the FFT of an
environmental channel, then there exists a vector 7 of the same dimension as ¥ such that the
contamination in the ith bin of the signal channel FFT due to ¢ is given by r;y;. Hence, if the
transfer function 7 may be determined, then it may be used to remove the contamination due to
the corresponding environmental channel from the signal. As a result of this first assumption,
nonlinear contamination is not addressed.

Second, it is assumed that the linear transfer function, 7, is sufficiently smooth that the
frequency range of the signal channel’s Fourier transform may be divided into bands over which
it is nearly constant. The length of the frequency bands used by clean_signal is an adjustable
parameter which is indicated with the -b command-line switch. For a data sample of 256
seconds, the default band length, 128 bins, corresponds to 0.5 Hz. As a result of this assumption,
sharp contaminations which result from ”spikes” in the transfer function are not addressed.
To be sure, only contaminations resulting from smooth (in frequency space) correlations are
removed by the algorithm.

Finally, the third assumption is that the values of the transfer functions connecting the
environmental channels to the signal channel in a given frequency band are such that, following
the application of certain thresholding techniques, the power in the signal channel in that
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band is minimized when the environmental contaminations are removed. Without the reference
to thresholding techniques, the implication of this assumption would be that any correlation,
whether due to a real physical correlation or merely a random similarity between channels,
is removed. Since it is undesirable to remove correlations of the latter type, a thresholding
procedure designed to prevent the removal of so-called ”false correlations” is applied prior
to transfer function estimation. The problem of potentially removing ”false correlations” is
discussed in greater detail below.

With these assumptions, it is now possible to estimate the transfer functions connecting N
environmental channels to the signal channel. Consider an arbitrary frequency band of length
B, and represent, the Fast Fourier Transform of each channel in that band by a B-dimensional
vector. Let 20 denote the FFT of the signal channel and %, 1 < i < n, denote the FFTs of the
environmental channels. By assumption, disregarding thresholding for the moment, the transfer
function of the ith environmental channel, r?, is a constant determined by the condition that
the total power in the signal is minimized upon the removal of environmental contaminations.
This is equivalent to choosing r? to minimize the norm of #° — Zfil ri#. The variation in this
norm with respect to r’ may be computed as the following, where (,) is the standard Euclidean
inner product:

N

N
—2R | ot | #,80 - D
i=1 j=1

Since this must vanish for arbitrary variations ér%, the inner product in the above expression
must vanish for all 5 > 0. This condition is rewritten below for emphasis:

N
FE-Y PP =0 i=1,..N
Jj=1

This is simply a statement that each environmental FFT, %, must be orthogonal to the
signal FFT following removal of environmental contaminations. An equivalent condition to
that above is:

N
(@,2°) =D o/ (7', @)
j=1

Defining the correlation matrix, C;; by C;; = (%, #7), this is equivalent to:

N
Cio = E Ci;r’
=

This is simply a matrix equation which may be solved for r* using standard linear alge-
bra techniques. clean signal computes the correlation matrix from the FFTs and uses the
CLAPACK routine zhesv_() to solve this equation, obtaining estimates for the environmental
transfer functions. Before solving, though, it is necessary to make certain that the NV x N matrix
appearing on the right hand side is not singular, otherwise no solution will exist. Singularity
is checked by determining those eigenvalues that are nearly zero with the CLAPACK routine
zheevx_(). Whether or not an eigenvalue is “near zero” is determined by a threshold provided
through the -e command-line switch. In order to remedy a singularity that may exist, the col-
umn whose projection onto the eigenvector corresponding to the “near-zero” eigenvalue is the
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greatest is removed, along with the row of the same index. This removes all of the correlations
with one particular environmental channel, and hence has the effect of removing that channel
from consideration. The eigenvalues are then checked again, and the process continues until the
matrix on the right hand side is non-singular, at which point the solution is found. Once this is
accomplished, the transfer function estimates are used to remove environmental contaminations
and produce a “cleaned” signal channel.

In order for the above procedure to increase the signal to noise ratio within the signal
channel, it is critical, as mentioned above, that nonexistent correlations are not removed. For
instance, it was found by Allen, Hua, and Ottewill that if this scheme were applied blindly to
a signal channel containing only Gaussian white noise, the norm of the signal channel FFT in
each frequency band would be decreased by a factor of 1 — 1/B despite the fact that there are
no correlations to remove. Allen, et al discuss several methods of preventing this, most of which
involve setting the correlation matrix element between relatively uncorrelated channels to zero.
The determination of whether two channels are relatively uncorrelated is made on the basis of
their covariance, p;;, which is defined to be:

I (Gt ]
P\ @ @)
This is simply the cosine of the angle between # and #7. The initial procedure utilized
by clean_signal involved establishing a minimum threshold for the covariance between two
correlated channels and setting cross-correlations to zero when the corresponding covariances fell
below this threshold. This presents a problem, though, since a determination of the appropriate
covariance threshold is difficult in practice. If the covariance threshold is set too small, then
the probabiliy of removing false correlations increases. More problematically, though, if the
covariance threshold is set too large, then genuine cross-correlations in the correlation matrix
are set to zero. When this occurs, r* is no longer guaranteed to be such that a significant
decrease in power occurs when used to remove the correlations. Worse yet, if the correlation
matrix is sufficiently unstable, the arbitrary setting to zero of some of its elements may disrupt
the determination of r? to the point that noise is actually introduced into the signal channel.
During the testing phase of clean_signal, this behavior was observed and it is for this reason
that a more conservative thresholding procedure is presently used.

In order to avoid the removal of false correlations, clean_signal computes the covariance
between the signal channel and each environmental channel in a given frequency band. If the
covariance falls below a threshold, provided by the user with the -c switch, then the corre-
sponding environmental channel is no longer considered in that band and the corresponding
rows and columns are removed from the correlation matrix. The procedure then continues nor-
mally in that band as though the uncorrelated environmental channel were never present. The
default value of the covariance threshold is 10/ B, where B is the length of each frequency band.
This choice was motivated by the fact that Allen, et al determined the covariance between two
statistically uncorrelated channels to be 1/B.

Despite the thresholding procedure above, it is still likely that a strong, prominent signal
will suffer at least a small reduction in power as a result of this procedure. The best means
of estimating this reduction is through Monte Carlo techniques, and it is for this reason that
clean_signal was outfitted with a signal injection feature.

2.2 Function: gwsearch

The gwsearch binary searches for evidence of periodic gravitational waves within data read
from Frames and, if such evidence is found to exist, estimates the magnitude (in the source
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frame) of the plus and cross polarizations detected. Uncertainties are also estimated and, in
addition, a number of files containing data for plotting are produced as well.

2.2.1 Command Line Usage

The user interacts with gwsearch through command line parameters and the setting of envi-
ronment variables. The environment variables control Frame input, while the command line
parameters control all other aspects of the function. The command line for gwsearch reads as
follows:

Usage: gwsearch [options]

Optiomns:

-c<string> Sets name of channel to be obtained from frames to <string>

-f Toggle FFT mode in which channel is assumed to contain an
FFT rather than raw data

-h Help (prints this list)

-H Help with environmental variables that must be set

-p<string> Search for pulsar <string>. Will look for polyco files of
the form <string>_polyco.dat produced by tempo.
Will look for right ascension and declination on the first
line of the file <string>.param. These must be given in
order and MUST be expressed in RADIANS.

-V Verbose

-w<string> Tells gwsearch that the data being read from FRAME has been

windowed with the window function <string>. It is CRUCIAL
that this is set properly
(DEFAULT = NONE)
Only other currently supported option is "HANNING"
-W<real> Sets width of region in neighborhood of signal for which
data will be stored and printed to <real> Hz.

config_file is the name of the file containing names of frame files to be
read and used by the gwsearch program

The -c, -h, -v, and -w are self-explanatory. The need for the —w option will become clear
when the algorithm used by gwsearch is described in detail below. The other options will now
be addressed.

FFT Mode

Use of the -f option toggles FFT mode, in which it is assumed that the channel indicated
by the -c option contains an FFT rather than a raw signal. The FFT must be stored in the
indicated channel as an array with the FFTW half-complex format. Denoting the array by A
and its length by N, this format is to store the DC component in A[0] (the assumption that we
are dealing with an FFT of Real data is implicit), the real part of the jth component in A[j],
and the imaginary part of the j’th component in A[N — j]. In addition, the FFT coefficients
are also assumed to be stored as doubles, a requirement that reflects the need to retain high
precision when dealing with FFT’s. This is not the case when not operating in FFT mode, as
raw signal data may be stored in any of the standard data types. This is permitted since signal
data is generally digitized, so storage in int’s and short’s is acceptable.
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Pulsar Parameters

In order to effectively search for evidence of periodic gravitational waves, gwsearch needs suffi-
cient information regarding the target pulsar to determine the expected frequency and amplitude
modulation of the corresponding interferometer signal. This information is obtained from aux-
iliary files whose names are based on the pulsar name provided by the -p switch. To determine
frequency modulation, gwsearch depends on the same output files from the TEMPO timing
code needed by clean_signal for its signal injection feature (see section 2.1.1 above). The
TEMPO output file corresponding to the pulsar indicated with the -p command-line switch
must be named <pulsar name>_polyco.dat.

To determine the amplitude modulation, gwsearch needs the righta ascension and decli-
nation of the target pulsar. These should be contained within the user-created file <pulsar
name>.param. The format of this file is identical to that needed by clean_signal (see section
2.1.1 above), with the right ascension and declination being given, in radians and in that order,
on the file’s first line.

Neighboring Frequency Bins

In order to determine whether or not a signal detection has taken place, the frequency bin in
which the sought-after signal is expected to be found, hereafter referred to as the “signal bin”,
must be compared to adjacent bins, which may be used to estimate channel noise. For this
reason, gwsearch applies its algorithm not only to the signal bin, but also to neighboring bins
within a distance, in Hz, from the signal bin indicated by the -W command-line switch. As a
result, this interval is ALWAYS symmetric. If the interval extends beyond the range of validity
of the FFT (either greater than the Nyquist frequency or less than 0), then an error message is
printed warning that the effectiveness of the algorithm may be affected. The manner in which
the neighboring bins are used by gwsearch is described in more detail below.

2.2.2 Environment Variables

The input to gwsearch is controlled by the same environment variables which control the input
to clean_signal, as described in section 2.1.2. Note that only the portion of this section
pertaining to input applies to gwsearch, since gwsearch does not produce any frame files for
output.

2.2.3 Method

Signals within interferometer data that correspond to periodic gravitational wave sources exhibit
both frequency modulation, due to the relative motion of the earth and source, and amplitude
modulation, due to the varying sensitivity of the interferometer to the two different gravitational
wave polarizations as the earth rotates. The presence of these effects complicates data analysis,
which must take the into account. Failure to properly treat frequency modulation may lead
to decreased sensitivity due to the possibility that the signal frequency may migrate from one
bin to another, while failure to properly account for amplitude modulation could lead to a
similar decrease over long time intervals due to the potential flip in the detector sensitivity’s
sign during its oscillation period. In order to prevent these effects from decreasing the sensitivity
of the search, possibly to levels at which potential signal detections are completely washed out,
gwsearch uses a method which is based upon the source’s frequency and amplitude modulation.
The side effect to this is that gwsearch looks for gravitational radiation from a fixed, target
pulsar and, hence, it is not well adapted to an all-sky search.

In order to address frequency and amplitude modulation, gwsearch must first estimate
the time evolution of these quantities for the pulsar in question. The method by which these
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estimations are accomplished will thus be addressed first, followed by a detailed description of
the search algorithm.

Frequency Modulation

As mentioned several times above, the determination of a given pulsar’s frequency at the time
of observation is done by the TEMPO timing code. The GWCLASS binaries merely read these
output files and use the information contained therein. What TEMPO produces when the
-z switch is used is a file, usually called “polyco.dat”, which contains a series of polynomial
approximations to the pulsar frequency modulation as a function of time. For each polynomial
approximation, there is a corresponding series of lines in this file. The first two lines of each such
series contain a number of parameters, including the length of the time interval during which
the polynomial approximation is valid, and the median time of that interval. The following lines
contain the polynomial coefficients, with three listed per line, in scientific notation. GWCLASS
binaries read these polynomial coefficients and use them to determine the pulsar frequency at
any given point in time. In order to use these polynomial coefficients, though, GWCLASS
binaries must first convert the GPS times at which frequencies are to be computed to Modified
Julian Date, or MJD, as the Tempo polynomial approximation requires the time to be expressed
in the latter units.

Before continuing, it is CRUCIAL to note that GWCLASS expects the format of the
polynomial coefficients to be nDp where n is a floating point number and p is an integer
exponent. Contrast this to the usual scientific notation format, nEp. GWCLASS was written
to look for a D rather than an E because the Tempo binary first used by the author, which had
been compiled with a relatively old fortran compiler, wrote scientific notation in this manner.
In addition, use of the D’s was found to be advantageous because it permits the argument and
exponent to be read separately (the C default is to automatically read 1E10 as 10, etc). For
convenience, the GWCLASS distribution includes a perl utility script entitled e2d which reads
the Tempo output files and converts E’s to D’s when necessary.

Amplitude Modulation

In addition to the characteristic frequency modulation which impacts a number of astrophysical
observations, gravitational wave detection through interferometric techniques must also cope
with amplitude modulation in the form of varying sensitivities to the two different polarization
states. The reason for this is that the interferometer acts as a polarization filter, detecting only
that component of the incident radiation aligned with the interferometer arms, whose relative
orientation to the source is constantly changing. Thus, the interferometer response to a steady
signal emitted from an astrophysical source will be a function of time which must be determined
for effective detection. A general discussion of this problem may be found in a Maple worksheet
by Anderson, et al[3] A simplified treatment, which differs somewhat from that of Anderson, et
al, is presented here.

The response of the interferometer is most easily expressed in a reference frame, termed the
“detector frame,” with & and y axes pointing along the arms and z axis pointing toward the
zenith. For a gravitational wave tensor, h,(f,?), expressed in this frame, the response takes the
simple form %(hﬁ)) - hgg)). On the other hand, since the detector frame is in motion relative to
the source, the incident gravitational wave is most easily expressed in a “source frame,” having
origin at the source, z axis pointing toward the earth’s center, and y axis pointing due north
along a line of constant right ascension. In addition, it is convenient to define the “plus” and
“cross” polarizations in this frame by choosing to identify them with the usual TT gauge basis
tensors there:
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The (éf))O. and (é;({g)) o components, which are all vanishing, have been omitted since
j J
only spatial rotations shall be considered. Given an incident gravitational wave of the form

hS = hf)éf) + h)((s)é)((s) in the source frame, it is necessary to express it in the detector
frame to determine the detector response. This may be accomplished by a translation, whose
impact on h is trivial, followed by a series of rotations. Let R denote the passive rotation which
transforms the coordinate representation of a fixed vector in the translated source frame to
its coordinate representation in the detector frame and note that its rows express the detector
frame basis unit vectors in terms of the source frame basis unit vectors. Once R is determined,
the matrix representation of h in the detector frame, h({”), may be expressed in terms of its
matrix represention in the source frame, h(%), as Rh()RT  or h&f)Riers. The determination
of R may be fairly complicated, though, depending upon the sophistication of the earth model
used. In addition, since the two frames are in motion relative to one another, R will be time-
dependent. For these reasons, it is often easier to consider an intermediate frame, the “Earth
fixed frame,” with origin at the earth’s center, x axis in the equatorial plane pointing toward
the Prime Meridian, and y axis in the equatorial plane pointing toward 90° East longitude. The
reason for this is that the transformation from source frame to Earth fixed frame may be easily
expressed in terms of Euler angles, while the possibly complicated transformation from Earth
fixed frame to the detector frame is time-independent. What’s more, the latter need only be
determined once for each detector and, once determined, may be used in the computation of
sensitivities for any periodic source in the sky!

Now, let A denote the matrix of a passive transformation from the source to Earth fixed
frame, and let B denote the matrix of a passive transformation from the Earth fixed to the
detector frame. In terms of A and B, h{) may now be expressed in the detector frame as
hP) = (BALS)(BA)T, or b} = ByA-hts AsBje. In terms of A and B, the sensitivity is
given by the following:

5 (M7 -np) =

= 5 (BuBix — BuBag) Aiphls) Ags

(BllAlrhg-f)AksBlk - leAlrhg)AksBZk)

— DN =

Now, define the response tensor, d*, as:

1
d" = 3 (BuBir — BaBag,)

Since A, h&g)Aks is simply the matrix representation of h in the Earth fixed frame, denoted
h(E) the sensitivity in the detector may be expressed as the contraction hgf)dij. All of the
necessary information concerning a given detector’s location, including the earth model used for
its determination, are contained within the response tensor, which need only be determined once
per detector. The response tensors for many of the active gravitational wave interferometers
obtained with the WGS-84 Elliptical Earth model, as well as methods for computing them, are
listed in the previously cited Maple worksheet. At present, gwsearch uses only the response
tensor for the 40 meter prototype interferometer at the California Institute of Technology. To
use gwsearch to analyze data taken from other instruments will require additional response
tensors, which are not present in the code at this time.
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Once the response tensor is known, the sensitivity in the detector may be computed after h(¥)
is determined. This will eventually be accomplished through the use of Euler angle rotations,
but first the expression for h(P) is further analyzed. Let zy, s, 25 denote the axes in the source
frame and let z¢, y., z. denote the axes in the Earth fixed frame. Recalling the above definition
of A, the unit polarization tensors éf) and é)((s) take the following forms in the Earth fixed
frame:

@), - o,
= A, (éf))mAjs
= Apdj — ApAjp

(7)) = (ae®am)

ij ij
() A
= Ajdjp+ ApAj

This expression may be understood further by noting that the 1st column of A, A;;, consists
of those coeflicients which express the source frame unit vectors in the Earth fixed frame basis.
Thus, letting {Zs, §s, 25} denote the source frame basis unit vectors and {Z., g., 2.} denote the
Earth fixed frame unit basis unit vectors, the plus polarized unit tensor in the Earth fixed frame
becomes the outer product of &, with itself less the outer product of g, with itself, expressed in
the {Z¢, Je, Z¢ } basis. Similarly, the cross polarized unit tensor in the Earth fixed frame becomes
the sum of the outer product of 5 with §s and the outer product of §s with &, again expressed
in the Earth fixed frame basis. Since a general h may be written as a linear combination of these
basis tensors, the sensitivity may be determined once expressions for Z; and §s in the Earth
fixed frame basis are found. This is accomplished by constructing the passive rotation A defined
above. To do this, the Euler angles © and @, illustrated in figure 2.1, are used. Generally, there
is a third Euler angle ¥ involved in this transformation as well, but the source frame has been
chosen in such a manner that this angle is 0. Anderson et al give a more general treatment
which includes the possibility that ¥ is nonzero. The angle © is defined as the smallest angle
between 2z and z., while the angle ® is the smallest angle between z; and ., both of which lie
in the z.y. plane. The required composite rotation is given by the following product of Euler
rotation matrices:

1 0 0 cos® sind® 0
A = 0 cos® sin® —sin® cos® 0
0 —sin® cos® 0 0 1
cos ¢ sin ¢ 0
= —sin®cos® cosPcos® sin®
sin®sin® —cos®sin® cos®

The components of the &, and ¢, unit vectors expressed in the Earth fixed frame basis are
now easily read off as the first and second rows of the above matrix. gwsearch uses this result!,
computes the appropriate outer products to determine h{¥), and contracts with the response

IIMPORTANT NOTE: the code for amplitude determination by gwsearch, contained in the file
amplitude.c, uses the variables phi and theta to refer to the azimuth, ¢, and altitude, 8, respectively, rather
than the Euler angles ® and ©. The relation between these two sets of angles is given by ® = « — § and
® = ¢ — /2. See the Maple worksheet of Anderson, et al for more information.
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Figure 2.1: Euler rotation angles

tensor to obtain the sensitivity to the plus and cross polarizations. The only remaining task
is the determination of the relation between the Euler angles, ® and O, and the source’s right
ascension, «, its declination, &, and the time of observation, ¢, expressed in Greenwich Mean
Sidereal Time. In what follows, it is assumed that «, 6, t, ©, and ® are all expressed in radians.
It is clear from figure 2.1 that © + (% - 6) =7 50 © = § + 7. The relation between a, ¢, and ®
is less clear. To obtain it, first note that since z, lies in the x.y. plane, the y;z, plane must be
perpendicular to the z.y. plane. This implies that the projection of —z,, which points toward
the source, onto the z.y. plane is along the line of intersection between the z.y. plane and y,zs
plane and hence, lying in the y;zs plane, is perpendicular to zs. Now, o —1 is the angle between
this projection and the z. axis,soa—t=® + §, or ® = a —t — 7. Plugging these relations
into previous results yields the method by which gwsearch computes amplitude sensitivities.

Search Algorithm

As previously mentioned, an effective search for periodic gravitational wave signals must account
for the frequency and amplitude modulation caused by the relative motion and subsequent
changes in relative orientation of the source and detector. The method presented here is based

18



upon the assumptions that both forms of modulation are sufficiently slow that there exist
time intervals over which the amplitude and frequency of a gravitational wave signal may be
taken as constant. This permits a time-frequency analysis, in which the time evolution of the
power within a particular frequency bin may be studied by constructing a time series for the
time evolution of the power within that bin. At this point, one method of approach involves
constructing a similar time series, with one coefficient taken from each DFT but, rather than
using the same frequency bin each time, the index of the bin that is taken from a given DFT is
shifted to account for the shift in frequency of the source. At this point, the time series follows
the power within the bin in which the source frequency may be found and hence, to some
extent, the evolution of the signal power itself, provided that it is not completely obscured by
noise. In fact, a number of such time series, each utilizing the same fixed shift in bin index for
each DFT, may be constructed, from which a mean may be computed. The mean in the series
corresponding to the signal frequency bin may then be compared to the rms of the means within
the series from neighboring bins to determine whether or not a signal is present. This approach
would be effective when searching for a relatively strong frequency modulated signal, but fails
to account for amplitude modulation and, in addition, makes use only of the magnitude of the
DFT coefficients, neglecting their phase. When searching for weak signals, using the phase
information encoded within the DFT may lead to an increase in the search’s sensitivity. It is
for this reason that a slightly more complicated procedure, which also incorporates amplitude
modulation, is used by gwsearch.

In order to incorporate phase information into a gravitational wave search, one means of
modifying the technique described above is the following. Rather than determining the average
magnitude of the Fourier coefficients in a “time series” of appropriately shifted frequency bins,
what is computed instead is the sum of the Fourier coefficients themselves which, owing to the
fact that they are complex and may hence be viewed as vectors in R?, gives rise to cancellation
if they are not properly aligned. In order to prevent Fourier coefficients due to a physical
signal from suffering destructive interference during such a procedure, though, they must first
be phase shifted to account for the difference in phase between the coefficients within the signal
bins of successive time intervals. This problematic phase difference, which must be accounted
for, is caused by the fact that Fourier transforms from two different time intervals are computed
with respect to two different reference, or “starting” times. For instance, a signal of the form
Acos(w(t)t + ¢) has phase ¢ relative to ¢ = 0 while having phase w(tg)to + ¢ relative to some
other time ¢t = ty. Unfortunately, due to accumulated phase caused by frequency modulation,
the phase shift between DFT’s from successive time intervals does not take the simple form
w(to)to despite the fact that this expression correctly identifies the phase difference between the
actual signals.

The manner in which gwsearch avoids these problems is as follows. Within each time
interval, the DFT of an artificially constructed pure signal of unit amplitude which exhibits the
expected frequency modulation is computed. The phase shift, ¥, of the DFT coefficient within
the signal bin relative to that of the first time interval is then determined and the DFT of the
data channel within a neighborhood of the signal bin is multiplied by e~*¥. This effectively
cancels the shift in phase between the signal DFT in the current interval and that in the first
interval. The result is that the DFT coefficients corresponding to an astrophysical signal will be
aligned with one another throughout all time intervals under consideration with phase equivalent
to that relative to the beginning of the first interval. So, a signal whose DFT is purely real in
the first interval will have its DFT coefficients rotated in subsequent time intervals such that
they are purely real as well, and so on. On the other hand, nonastrophysical noise will not in
general be aligned in the same manner, as such noise generally fails to follow the same frequency
modulation as an astrophysical source, and hence fails to exhibit the same DFT coefficient phase
shifts. This will lead to destructive interference when they are added, giving rise to an increase
in signal-to-noise ratio.

In addition to phase shift problems, though, we must also deal with leakage from the signal
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bin caused by the discrete nature of the DFT. In order to effectively estimate the strength of
a detected gravitational wave signal, the data channel DFT is normalized through division by
the magnitude of the signal bin coefficient of the articially constructed unit amplitude signal
described above. This action has no effect on the signal-to-noise ratio since it is merely a global
rescaling of the DFT.

If the interferometer response to an incident gravitational wave signal displayed no ampli-
tude modulation, then the above procedure could be applied without difficulty. The phase
shifts would ensure that the signal bin DFT coefficients corresponding to the target pulsar add
constructively while destructive interference decreases the noise in neighboring bins. With the
rescaling, the average of the signal bin would yield a good estimate of the gravitational wave
strength, and the rms in the neighboring bins a good estimate of the associated uncertainty.
Unfortunately, the situation is not this simple, so the above method must be modified even
further. The first steps, though, namely the phase shifting and rescaling, remain unchanged. It
is merely necessary to replace the process of adding DFT coeflicients from successive intervals
with something more sophisticated that takes amplitude modulation into account.

Consider the vector &, whose ith component is the DF'T coefficient of the signal bin within the
ith time interval. Now, let F't and F* denote the N-dimensional vectors whose ith components
contain the true sensitivities of the interferometer to a unit plus polarized gravitational wave
and a unit cross polarized gravitational wave, respectively, at the median time of the ith time
interval. Since the sensitivity is assumed to be relatively constant within any given time interval,
a gravitational wave of the form hyé™t) + h,ei?é®) where hy and hy are real and ¢ denotes
the phase difference between the plus and cross polarization components, gives rise to the DFT
coefficient z; = hy F;' + hyF¥e'®, within the ith time interval, following application of the
above procedure?. The reason for this is that the rescaling maintains the amplitudes s, and
hx, while the phase shifting assures that there is no phase difference between DFT coefficients
from different time intervals, z; and z;. Equivalently, this rescaling and phase shifting assures
that the the plus and cross polarized components of x; have the same amplitude and phase
as the respective components of ;. This only holds in the ideal case, though, in the absence
of noise. To treat the actual case, let § denote an N-dimensional complex vector whose ith
component, written as g; exp(it;) with g; and 1); both real, represents the FFT of the data
channel less that of a pure signal. It is assumed that the noise represented by §, and hence g;
and v, is random in nature. Including the effects of this noise, the vector & properly takes the
following form:

zj = hy Fj' + hyFye' + gje'Vi

To estimate hy given &, ﬁ*, and ﬁx, first look at the weighted sum, a;jf’;r, where values
of z; originating in time intervals of relatively high sensitivity to plus polarized gravitational
waves are given greater emphasis. The result of this weighted sum is the following;:

@ FF =hy (FfFY) + hy (FFF}) €' + g€ Fi

The norm of F(+) is much greater than its projection onto F® so, provided hy F't is larger
than g;, which is required for a signal detection, z; is dominated by the h (F]-JFF]-JF) term. For
this reason, the estimated value of h., termed hi, is taken to be the magnitude of the complex
number xjﬁ+ / |}_7"+|2. In terms of the actual values, this implies that the estimate, (hi)z, is
given by:

2 Actually, this expression is correct only up to an arbitrary phase, determined by the starting time of the
first interval, which is fixed for all subsequent intervals. Since this constant phase simply multiplies the entire
response vector, it may be neglected.
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Since 1; is a random phase and FjJr is a smoothly varying function of time, one might
expect the fluctuations of cost); and cos (¢ — 1;) to cause F;Lg]- cos®; and Fg, cos (¢ — )
to become negligibly small if sufficiently many intervals are considered. One must be careful,
though, because these terms are only first order in the noise factors, g,, while the only other
noise-dependent term is of second order in the g,. For this reason, all terms are kept to yield a
conservative estimate of the error.

The above expression may be rewritten as follows, where (,) is the standard Euclidean inner
product:

@) |, (F) ()
(h:r)2 2+ ("+)F’+)2 + h2 <ﬁ+,F+)2 +2 (ﬁ"+,ﬁ+) hyhx cos ¢
gy e

Thus, in the limit in which many time intervals are considered, the estimated value of (h1)2

differs from the actual h2 by an amount & [(hjr)z] , given by the following:

. 2 P 2 -
[(h1)2] _ ((;‘JFf)f +h2 ((fj vfi+))2 +2 ((i ];)) Y
P+ P+ P+ :

hy cos (¢ — ;)

The terms involving the overlap of F+ and F~ would be zero if the sensitivity functions due
to the two independent polarizations were orthogonal, but this is not the case in general. This
is a manifestation of the fact that while the two independent polarization states are orthogonal
to one another, the components which are detected by the interferometer, which acts as a
polarization filter, generally are not.

It is possible to determine F* and F* with the algorithm of Anderson, et al [3], while
an estimation of the noise is obtained by performing the same procedure as that applied to
the signal bin, namely phase shifting, rescaling, projecting onto F +, and dividing by the norm
squared of F_"Jr, on the neighboring frequency bins. Very near the signal bin, the neighboring bins
will contain signal leakage, but if a sufficiently large neighborhood is used, then the rms value of

- L \2
(:E’, F+) / (F+, F+) within that neighborhood will provide a good estimate for the noise term
of & [(hl)z] Unfortunately, the true values of hy and hy, as well as the phase difference, ¢,

between the plus and cross polarized components, are generally unknown. Thus, the following
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procedure is used for determining the error in (h} ) by gwsearch. Presumably the A2 estimate
will be largely due to the existence of a plus polarized gravitational wave, but in add1t10n it
will be artifically increased by the presence of a cross polarized wave. Similarly, the h2 estimate
will be inflated if a plus polarized component exists. Because of this, the estimated values of

hZ and hZ are used in the expression for § [(hl)z] since, being larger than the actual values,

they will produce an overestimate, rather than an underestimate, of the error. In addition, the
trigonometric factors are all set to one to obtain a conservative estimate. Once the expression

for & [(h1)2] is obtained, standard error propagation techniques are used to estimate dh’,. The

preceding algorithm may also be applied for hy. The resulting expressions for both Ay and hy
are summarized below for clarity:

(5:', B

]

Fx F +)

>'< (Fx’[?’x)2 +h3 (ﬁx’ﬁx)2 +2 (ﬁx’ﬁx) x
+2 (_1‘7"‘,:(?') hy costpj + 2 (F+’ F") <F:,§) hy cos (¢ — ;)
(FX Fx) (ﬁx ﬁx)

When run, gwsearch determines whether the estimates of h4 and hy are greater than 5 times
the noise terms (those that depend on the g,), and flags a potential detection if this is the case.
Then, the estimated values of h4 and hy, along with their associated uncertainties, are printed to
screen. In addition, gwsearch produces two files, <pulsar name>.in and <pulsar name>.quad,
which contain data for plotting. The former contains triples of the form “t f A”, where ¢ is
the median time of a given interval in MJD, f is the deviation from the signal frequency, and
A is the in-phase component of the appropriately phase-shifted and rescaled DFT coefficient,
which is defined as the DFT coefficient’s projection onto the line in R? defined by the reference
DFT coefficient. The latter contains similar triples, with A denoting the quadrature-phase
component defined as the projection of the DFT coefficient onto the orthogonal compliment of
the line defined by the reference DFT coefficient. These files may be plotted easily with Matlab
or Maple in order to visualize the DFT coefficients of the data channel after being properly
phase shifted and rescaled. If a strong signal is present, then a steady peak at f = 0, which
exhibits gradual amplitude modulation, should be evident.

2.3 Function: dump frame

The dump_frame utility reads data from a user-indicated channel from a user-provided frame
and dumps the results into an ASCII text file. This utility is useful for obtaining channels which
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store data FFT’s, at which point the printed ASCII text file contains a power spectrum of the
indicated FFT channel. If FFT mode is not toggled, the output ASCII files bear names of
the form <channel name>_<GPS start time>.txt. The output file contains a list of ordered
pairs of the form (¢, ), where ¢ is the number of seconds into the Frame, and x is the value of
the indicated channel at that time. On the other hand, if FFT mode is toggled, then the output
file is named <channel name>_pow_<GPS start time>.txt and contains ordered pairs (f,y)
with f being a frequency, in Hertz, and y the power within the channel at that frequency.

2.3.1 Command Line Usage
The usage for dump_frame reads as follows:
Usage: dump_frame [options] [frame file]

[frame file] should be the name of a frame whose data is to be
dumped

Optiomns:
-c<string> Dumps data for channel <string> to ascii files
(DEFAULT = >IFO0_DMRO’)
-f Turns on ’fft’ switch, in which indicated channel is

assumed to contain the fft of a real array stored
in the fftw half-complex format (see fftw user’s guide
(DEFAULT is OFF)

As a final note, the half-complex format of FFT’s is discussed not only in the FFTW user’s
guide, but also in section 2.2.1 under the 'FFT Mode” heading above.

2.4 Function: gps2gmst

The function gps2gmst converts a user-provided time in GPS seconds to Greenwich Mean
Standard Time, with the result expressed in radians.

2.4.1 Command Line Usage

The gps2gmst command line usage reads as follows:

Usage: gps2gmst <gps seconds>

2.4.2 Method

The algorithm used by gps2gmst, begins with a conversion from GPS seconds to MJD (Modified
Julian Date) whose method is described in section 2.5. Then, it applies an expression from page
S15 of the 1984 Astronomical Almanac, yielding the difference between GMST and the UT1
time, which is equivalent to the angle, in arcseconds, between the Greenwich zenith and the line
of 0 right ascension, and midnight (0 hours). Once this is determined, and converted to radians,
the product of 27 and the fraction of a day which has passed at the indicated time need only
be added to obtain the GMST.

The Astronomical Almanac expression is a third degree polynomial, 4 + BT + CT? + DT?,
with T' = (M — 51544.5)/36525 and M defined as the date in MJD. The coefficients have the
following values:
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A = 24110.54841

B = 8640184.812866
C = 0.093104

D = —-0.0000062

2.5 Function: gps2mjd

The function gps2mjd converts a time given in GPS seconds to its equivalent MJD (Modified
Julian Date).

2.5.1 Command Line Usage

The command line usage for gps2mjd reads:

Usage: gps2mjd <gps_seconds>
Returns equivalent MJD (Modified Julian Date)

2.5.2 Method

The input GPS time is first converted to UTC calendar time with the aid of the GRASP function
gtime (). At this point, the number of days since Midnight, December 31, 1995 is determined
and added to the MJD of that date, 50083. The appropriate fraction of a day is then computed
and added.

2.6 Function: lockcat

The function lockcat reads data from an input stream of Frame files and compiles a catalog
of locked sections. The results are printed to an output file, lock.txt by default, with each
line containing the starting GPS time, ending GPS time, and length, in seconds, of a locked
section. This function is useful for streamlining the list of Frame files sent to clean_signal to
avoid wasted computing time. A number of the utility scripts, including process_listing and
make_tar_list aid in this task as well. These will be described further in chapter 3.

2.6.1 Command Line Usage

The command line usage for lockcat reads:

Usage : lockcat [options]

Optiomns:

-c<string> Sets name of channel to read while searching for locked
sections to <string>
(DEFAULT = IFO_DMRO)

-f<string> Sets name of file to which lock info is printed to <string>
(DEFAULT = lock.txt)

-h Prints this screen

-n<integer> Sets number of points to be read at a time to <integer>
Note: Locked sections of length smaller than <integer>
may be missed.
(DEFAULT = 16384)

-V Verbose
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Input is handled through the same environment variables utilized by clean signal and
gwsearch. Their usage may be found in section 2.1.2.

2.6.2 Method

This routine depends upon the GRASP function fget _ch() to read Frame data, and makes use
of the returned values fgetoutput.lostlock gps and fgetoutput.lastlock gps which, after
reading some data, contain the GPS times corresponding to the most recent lock loss and the
most recent reacquisition of lock, respectively. These values are merely printed to the output
file at the proper times.

It is critical to note the method by which the modified version of fget_ch() determines
whether or not the interferometer is in lock. This is accomplished by looking at the lock channel,
IF0_Lock. When the value in this channel lies between two constants, locklow and lockhi,
the interferometer is said to be in lock. Some Frames have a locklow/lockhi structure which
indicates the appropriate values. However, the 1999.oct data taken by the Caltech 40 meter
interferometer did not have such a structure. When this occurs, default values of locklow=-
4000 and lockhi=4000 are used. To change these default values, which, for clarity, are only
used in the absence of a 1locklow/lockhi structure, the file frameinterface.c must be edited.
The applicable portion of the code looks like:

if (staticdatal==NULL) {

GR_start_error ("fget_ch()",rcsid,__FILE LINE__);

GR_report_error("Unable to locate \"locklo/lockhi\" history structure in FRAME\n");
GR_report_error("It appears that there is no lock range information in these frames!\n");
GR_report_error("Defaulting to locklo=-4,000 lockhi=4,000\n");

GR_end_error();

fgetoutput->locklow=locklow=-4000;

fgetoutput->lockhi=lockhi=4000;

}

else {

/* pointer to the array containing the low/high values */

frvectlohi = (struct FrVect*) staticdatal->data;

—_ —

/* record the low/high values internally, and return them to the user also */
fgetoutput->locklow=locklow=frvectlohi->dataS[0];
fgetoutput->lockhi=lockhi=frvectlohi->dataS[1];

by

To change the defalut locklow/lockhi values, the user need only change the lines in which
fgetoutput->locklow and fgetoutput->lockhi are set to -4000 and 4000, respectively, above.

2.7 Function: plot frame

The function plot_frame reads channel data and sends it to xmgrace, the successor to the xmgr,
which computes an FFT and plots the FFT magnitude as a function of frequency. FFT’s from
multiple time intervals are plotted in succession, yielding an animated display.

2.7.1 Command Line Usage

The command line usage for plot_frame reads:

Usage: plot_frame [options] [Frame files]
Options:
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-f<string> Sets configuration file name to <string>. This file
must contain a list of the channels to be plotted,
one per line, placed in decreasing order of sample

rates.
-h Prints this list
-n<double> Sets number of seconds to be plotted at a time to <double>
-p Toggles "print files" mode, in which commands are

printed to .agr files that may be piped into xmgrace
with cat *.agr | xmgrace -pipe instead of plotting them.
Name of .agr files is N.agr where N is the starting
GPS time rounded down to an integer.
(DEFAULT = OFF)

-r<double> Sets Frame sample rate to <double>
Used only to relate number of points obtained to value
provdied by -n switch...if indicated sample rate is wrong
it is automatically corrected but not until after number
of points to be obtained is determined...thus, actual
number of seconds of data returned will not be correct
(DEFAULT = 16384)

-s<integer> Sets number of seconds to sleep between plots to <integer>
(DEFAULT = 0)

If multiple channels are indicated in the -f configuration file, they are plotted simultaneously,
arranged in rows, by xmgrace, with the first channel in the top plot, and so on. In addition,
it is important to note that, unlike many other GWCLASS functions, plot_frame does not
use environment variables to control its input. Rather, the Frames to be plotted MUST be
provided on the command line.

2.8 Function: print freq

The function print_freq prints to an ASCII text file a collection of ordered pairs giving the
frequency of a specified pulsar as a function of time. The interval during which the frequency
is computed and the spacing between points are specified by the user on the command line.
Determination of the pulsar frequency is accomplished through use of output from tempo. See
the description in section 2.1.1 for more information.

2.8.1 Command Line Usage

The command line usage for print_freq reads:

Usage: print_freq -[gmu] <tmin> <tstep> <tmax>

-g Times in GPS seconds

-m Times in MJD (Modified Julian Date)

-u Times in UTC (Format MM/DD/YYYY-HH:MM:SS)
(tstep still in seconds)

It is important to note that while most of the GWCLASS functions look for tempo output
in files whose names contain the name of the target pulsar, such as <pulsar name>_polyco.dat,
print_freq looks for the same output in a file with the precise name “polyco.dat”. For this
reason, the pulsar name is not sent to print_freq. The user merely needs to make certain that
“polyco.dat” contains tempo output for the appropriate pulsar.
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2.8.2 Method

Though print_freq takes times in GPS, MJD, and UTC, use of the tempo files requires times
to be expressed in MJD, so the appropriate conversion is made if necessary. GWCLASS uses the
routine get_coeffs() to read the tempo output files, referred to as polyco files in comments
contained within the code. The frequency() routine, which returns the pulsar’s frequency,
initially calls get_coeffs() to obtain a new set of polynomial expansion coefficients and its
corresponding range of validity whenever the input time leaves the range of the previous set.

2.9 Function: read data

The function read _data obtains data from an input stream of Frame files and prints both the
raw data, as well as a power spectrum of that data, to ASCII text files. Raw data is printed
to the file <channel name>.dat as ordered pairs depicting the channel value as a function of
GPS time. The power spectrum of the data is printed to the file <channel name>_pow.dat as
ordered pairs depicting the power as a function of frequency, with the latter expressed in Hertz.
The FFT used when computing this power spectrum may be windowed with a window function,
which is provided with a command line option.

2.9.1 Command Line Usage

The command line usage for read _data reads:

Usage: read_data [options]

-c<string> Sets channel to be read to <string>
(DEFAULT = IFO_DMRO)\n");
-h Prints this help\n");
-H Prints help info for environment variables\n");
-1 Turns on locked section option so that\n");

only data from locked sections is returned\n");
(DEFAULT = OFF)\n");

-n<integer> Sets number of points to be obtained to <integer>\n");
(DEFAULT = 16384)\n");
-w<string> Sets FFT window type to <string>\n");

Presently only HANNING and NONE are supported\n");
(DEFAULT = NONE)\n");

Input is achieved through the same input environment variables used by clean signal and
described in section 2.1.2. Note that only the discussion of input variables is relevant here, since
read data doesn’t produce any output Frames. In addition, unlike clean signal, read data
only reads one chunk of data, so only the first n points within the input stream are read.

2.10 Function: utc2mjd

The function utc2mjd converts an input time in UTC calendar format to MJD (Modified Julian
Date).

2.10.1 Command Line Usage

The command line usage for utc2mjd reads:

Usage: utc2mjd [utctime]
[utctime] has format is MM/DD/YYYY-HH:MM:SS
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2.10.2 Method

First, the input string is parsed to obtain the number of days since a reference date, currently
December 31, 1995, which has MJD 50083. That number of days, and a fraction corresponding
to the fraction of a day equivalent to HH:MM:SS, is then added to 50083. It should be noted
that the routine gps mjd (), which is called by gps2mjd to convert GPS seconds to MJD simply
converts GPS to UTC with the GRASP routine gtime and calls utc_mjd(), the same routine
called by utc2mjd.
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Chapter 3

GWCLASS Utility Scripts and
Auxiliary Files

A few utility scripts and auxiliary files are included with the GWCLASS distribution to aid in
its use. Their usage and purpose are described below.

3.1 Utility Scripts

The GWCLASS utility scripts are contained within the GWCLASS dir/utility_scripts direc-
tory. The first line of each script must be edited to point to the location of the local perl or
bash installation before use.

Many of these scripts are specific to certain types of file names. For this reason, the user
may find it necessary to edit these scripts, or even write new ones. This is a reflection of the
fact that the scripts contained within the GWCLASS package are not necessary for general
GWCLASS usage, rather they are included primarily as an example of the sort of utilities that
may prove useful.

3.2 Script: e2d

The script e2d is a simple script which reads, as input, an output file produced by the Tempo
timing code in which scientific notation is written with an “E” and produces a new file, named
<input file>.out, which is identical except each such “E” is changed to a “D.” The neces-
sity of this script relates to the manner in which the GWCLASS binaries clean_signal and
gwsearch read the Tempo files. For more information, see section 2.2.3 above.

The usage for e24 is:

Usage: e2d <input file>

3.3 Script: make tar_list

The script make_tar_list was written to aid in the processing of data from a remote server.
Much of the data stored on CACR’s HPSS archive consists of one-second Frame files collected
into tar archives. Since clean signal only processes data from locked sections, though, it
is advantageous to avoid obtaining and unpacking tar files whose Frame files do not contain
sufficiently long locked sections. As a result, it is desirable to compare a catalog of locked
sections with a listing of those tar archives stored on HPSS to obtain a list of those archives
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that must be obtained for optimal processing. The script mak_tar_1ist accomplishes this for
tar archives of a particular format.
The usage of make _tar_list is as follows:

Usage: make_tar_list <locked catalog file> <listing file>

The locked catalog file should contain a list of locked sections, having the same format as
the output files produced by the binary lockcat, which are to be analyzed. The listing should
contain a list of tar archives stored on a remote server. Each tar archive is assumed to contain
600 seconds of data and have name with the format C1-<Start GPS Time>.F.n600.tar. The
output file produced by make tar _list, bearing the name tarlist.txt, contains those tar files
corresponding to the locked sections listed in <locked catalog file>.

3.4 Script: run_cleaning

The script run_cleaning sets the appropriate environment variables and calls clean_signal
with a number of command line options. It is suggested that any user of clean_signal either
modify run_cleaning or write another script which sets appropriate environment variables prior
to calling clean signal.

3.5 Script: process_listing

The script process_listing was written during the course of obtaining lists of remotely stored
tar archives of the type needed by the GRASP FTPFILE environment variable (see section 2.1.2
above). It takes as input the output of a call to 1s -1 and produces, as output, a file named
<input file>.out, which contains the names of the files listed in the input directory, with
one per line. This utility was needed because, during the author’s work, calls to 1s within
hsi produced three columns of output, with files arranged in order such that the first file of
the second column followed the last file of the first column. These files would be read in the
wrong order by GWCLASS binaries, causing serious problems. Thus, 1s -1 was called to
ensure that file names appeared in one column, and thus would be read in the proper order, and
process_listing was called to remove all extraneous information contained within the listing,
leaving only the names of the tar archives to be obtained.
The usage for process_listing is:

Usage: process_listing <list>

As a final note, it is important to note that process listing assumes that the names of
files within the listing are of the form C1*.
3.6 Auxiliary Files

Auxiliary files contained within the GWCLASS distribution are contained in the directory
GWCLASS dir/aux files. These files are examples of the sort of input files required by GW-
CLASS binaries, and are listed in table 3.1.
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File

Description

1937+21.param

1937+21_polyco.dat

catalog 256.txt

corr.config
listing.sample
ncftp.config

pulsars.txt

Sample parameter file, needed by gwsearch, as well as
clean signal if the signal injection feature is used, containing
right ascension and declination of PSR1937+21

Sample output file from the Tempo timing code which was pro-
duced for PSR1937+21 using a parameter file included with the
Tempo distribution. The data within this file corresponds to ob-
servations made at a Princeton University site, rather than any of
the currently operating gravitational wave interferometers.
Sample catalog of locked sections from a portion of the 1999.oct
run of the Caltech 40 meter interferometer from which all locked
sections of length < 256 seconds have been removed.

Sample configuration file for clean signal, containing a list of
channels to be removed.

Sample file for GRASP_FTPFILE environment variable, containing a
list of tar archives to be obtained.

Sample ncftp configuration file required for using ncftp for re-
mote input or output

Sample -i input file for clean _signal which contains information
for signal injection

Table 3.1: Auxiliary Files included with GWCLASS

31



Bibliography

[1] B Allen. GRASP Analysis Code. http://www.lsc-group.phys.uwm.edu/~ballen/grasp-distribution.

[2] B Allen, W Hua, and A Ottewill. Automatic cross-talk removal from multi-channel data.
LIGO Internal Document, 1999. LIGO-P99000.

[3] W Anderson, J Whelan, P Brady, J Creighton, D Chin, and K Riles. Beam pattern re-
sponse functions and times of arrival for earthbound interferometers. Maple Worksheet,
2001. http://phys.utb.edu/UTBRG/activities/papers/#UTBRG-2001-01.

32



