Technical Document 9/26/01 LIGO-T010104-00-Z

Defining and Testing Operational State
Conditions in the Data Monitoring Tool

D. Chin (dwchin@umich.edu
K. Riles (kriles@umich.edu

University of Michigan Physics Department, Harrison Randall Laboratory
500 E. University Ave., Ann Arbor, MI 4/8109-1120

Abstract

This document is a user’s guide to defining and testing Operational State
Conditions (OSCs) in the Data Monitor Tool (DMT) background environment.
It is assumed the reader knows the rudiments of creating a background monitor
in the DMT using the DatEnv class.

Features

e Defining and monitoring of flexible conditions on data channels via start-
time configuration files.

o Conditions can be defined w.r.t. thresholds on time series or power series
data, using parameters specified in configuration files.

e Parameter values may also be specified via EPICS channels, giving real-
time control.

¢ Boolean combinations of conditions with arbitrary complexity can also be
defined.

e Optional parameters need not be specified in configuration file: default
values are pre-defined.

e Configuration files allow an include directive to include standard pre-
defined conditions, e.g. one can include the configuration that is cur-
rently used by a running monitor, such as LockLoss[1], and thus use the
same conditions the monitor is using.

e Analysis code has access upon request to the real-time values being com-
pared to thresholds that define conditions.

e The configuration files support inline comments.

Introduction

Before undertaking an analysis, one often needs to specify required interfer-
ometer or environment conditions. For example, before looking for instability
in the Recycling Mirror (RM) servo[2], one would likely require both that servo
and the Beam Splitter (BS) servo to be locked. One might also want Wave
Front Sensing (WFS) to be engaged. In another analysis, one might require the
laser intensity to exceed a threshold or require seismic motion to fall below a
ceiling. To allow for flexible and comprehensive setting of conditions, one would
also like to specify Boolean combinations of conditions. For example

Cond_1 RM servo locked
Cond_2 = BS servo locked
Cond_3 Cond_1 & Cond_2

The OSC tool has been written to support convenient defining and run-time
checking of such conditions. Definitions can be made via a text configuration file
or directly in DMT analysis code. A sampling of “standard” conditions (e.g.,
“Arm_locked” and “LVEA_quiet”) have been provided in sample configuration
files for analysis of engineering run data. It is expected that many more such
standard conditions will be defined and refined as physicists gain more experi-
ence with his and future datasets. Definitions for useful conditions should be
sent to the authors (dwchin@umich. edu, kriles@umich.edu) for incorporation
into a public repository.

Quick Sample of Code

Before detailing how to use the OSC tool, let’s first get a flavor of it with a
stripped-down sample of code. The following code defines conditions and checks
one of them in real time:

// During initialization:
osclist.readConfig("osc_sample.config");

// As each time interval of data (e.g., l-second frame) is read:
if (osclist.satisfied("LVEA_quiet")) {
// Do some analysis....

}

where the LVEA_quiet condition is defined by a line in the configuration file
osc_sample.config (see below). One can also loop through all OSCs defined in
a configuration file using an iterator:

// During initialization:
osclist.readConfig("osc_sample.config");

// As each time interval of data is read:
OperStateCondList::iterator iter = osclist.begin();

for (; iter != osclist.end(); ++iter) {

if ((*iter).second->satisfied() == true)
cout << "’" << (*iter).first << "’\tsatisfied" << endl;
else
cout << "’" << (*iter).first << "’\t\tNOT satisfied"
<< endl;

}

This scrap of code assumes that the monitor class has been written with DatEnv
as a base class, and osclist is a member OperStateCondList object.

The readConfig() call is made in the monitor’s constructor. The satisfied()
call is made from the monitor’s ProcessData method. The configuration file
might look like:

A comment

X_quiet rmsrange "HO:PEM-LVEA_SEISX" lo=0. hi=2000.

y_quiet rmsrange "HO:PEM-LVEA_SEISY" lo=0. hi=2000.

z_quiet rmsrange "HO:PEM-LVEA_SEISZ" lo=0. hi=2000.
LVEA_quiet boolean "x_quiet & y_quiet & z_quiet" # a comment

in general, lines look like
OscName osc_type '"channel_name" paramname=paramvalue

The first three conditions have the names “x_quiet”, “y_quiet” and “z_quiet”.
Each is of type rmsrange which means the data channel with the specified name
must have an RMS value between the minimum and maximum values specified
(0. and 2000. in each case). The fourth condition is Boolean, in this case the
logical AND of the first three conditions.

Fields are separated by spaces or tabs. Valid condition names must begin
with an alphabetic character and contain only alphanumeric characters or “.”
(underscore). For boolean conditions, spaces are not required in the Boolean
expression. The bitmasks can be specified in decimal, octal, and hexadecimal
format: octal numbers are denoted by a leading “0” (zero) and hexadecimal
numbers are denoted by a leading “0x”.

Other Directives

There are other directives that can be specified in the configuration file which
are not directly involved in defining OSCs.
include

e Effect: Similar to “#include” for the C preprocessor, it includes other
configuration files in line. If the file is not found, a warning message is
printed and the directive is ignored: processing continues.

e Syntax: There are two ways of using the include directive:

— include "otherFile.conf"includes a configuration file in the same
directory as the current file

— include <otherFile.conf> includes a configuration file from the
directory given by the environment variable DMTPARS. If the envi-
ronment variable is not set, a warning message is printed and the
directive is ignored: processing continues.

ignore

¢ Effect: Deletes the named OSC from the OperStateCondList.
e Syntax: ignore "previouslyDefined0SCname"
debuglevel

o Effect: Sets the debug level of the OperStateCondList.

e Syntax: debuglevel 2 — the argument must be an integer. Only values
> 0 make sense, though negative values do not cause an error.

Conditions

The following list of OSC types are expected to expand with future releases
of the OSC tool.

There are two types of OSCs: atomic OSCs, and meta-OSCs. The atomic
OSCs specify conditions on the data stream, whereas the meta-OSCs specify
conditions on other OSCs. Each OSC has some number of parameters which
specify the details of the condition, e.g. threshold, frequency band, etc.

The atomic OSCs require a channel name in the configuration file definition,
while the meta-OSCs require another OSC name in the definition. The OSC
upon which a meta-OSC acts must have been defined before the meta-OSC.

Some classes of OSCs have parameters which others do not, e.g. OSCs
which place conditions on each sample in the time-series data have a fraction
parameter which specifies the minimum fraction of data that must satisfy the
condition for the OSC to be satisfied. The fraction parameter would make
sense for something like valueabove but not for something like meanabove.

Some parameters are optional, meaning that they need not be specified ex-
plicitly in the configuration file. If a parameter is optional it always has some
default value.

If a line defining an OSC in the configuration file contains parameters that
are not part of that OSC or meta-OSC, an undefined error may result.

Common Parameters

This is a list of names of parameters which are used for more than on OSC
type. Note that oo is to be interpreted as the limit of the computer representa-
tion of the appropriate data type. A stride corresponds to one Frame of data.
(FIXME)

fraction

e Definition: Specifies the fraction of the time-series data that must satisfy
the condition for the OSC to be satisfied

e OSCs: valueabove, valuebelow, valuerange,bitand, bitnand,bitor,
bitnor

Optional: Yes

Data type: Floating point

Legal values: (—oo, 1] Any negative value means that the OSC is satisfied
if at least one data point satisfies the condition

e Default value: —1
hold

e Definition: Specifies the number of additional strides for which to hold
the 0SC.satisfied() at True.

e OSCs: transitup, transitdown
e Optional: Yes
¢ Data type: Integer

e Legal values: [0,00) The OSC will always be true for at least one (1)
stride, and will be held True for an additional hold stride.

e Default value: 0
dead

¢ Definition: Specifies the number of strides beyond the end of a hold
period for which the OSC cannot be True

OSCs: transitup, transitdown

Optional: Yes

Data type: Integer

Legal values: [0,00) The OSC will be held False for dead strides
e Default value: 0
threshold

e Definition: Specifies an amplitude threshold for *above, and *below,
and a change threshold for *rise, and *fall OSCs

e OSCs: valueabove, valuebelow, meanabove, meanbelow, rmsabove, rmsbelow,
abspowerabove, abspowerbelow, abspowerrise, abspowerfall, abspowergain,
fractpowerabove, fractpowerbelow

e Optional: No

e Data type: Floating point
e Legal values: (—o0,)

e Default value: N/A
nstrides

e Definition: Specifies the number of strides over which an average is to
be computed

e OSCs: abspowerrise, abspowerfall, abspowergain, meanrise, meanfall
e Optional: Yes

e Data type: Integer

e Legal values: [1,0)

e Default value: 1

lo

o Definition: Specifies the lower limit for *range OSCs. OSC will be
satisfied if fraction of data lies between lower and upper limits (see hi)

e OSCs: valuerange, meanrange, rmsrange, fractpowerrange
e Optional: No

e Data type: Floating point

e Legal values: (—o0,0)

e Default value: N/A

hi

e Definition: Specifies the upper limit for *range OSCs. OSC will be
satisfied if fraction of data lies between lower and upper limits (see 1o)

e OSCs: valuerange, meanrange, rmsrange, fractpowerrange

Optional: No

Data type: Floating point

Legal values: (—oo, 00)
e Default value: N/A
freqlo

e Definition: Specifies the lower frequency limit for OSCs which depend
on the power spectrum.

OSCs: abspowerabove, abspowerbelow, abspowerrange, abspowerrise,
abspowerfall, abspowergain, fractpowerabove, fractpowerbelow, fractpowerrange

Optional: No

Data type: Floating point

Legal values: (—oo, 00)
e Default value: N/A
freqhi

e Definition: Specifies the upper frequency limit for OSCs which depend
on the power spectrum.

e OSCs: abspowerabove, abspowerbelow, abspowerrange, abspowerrise,
abspowerfall, abspowergain, fractpowerabove, fractpowerbelow, fractpowerrange

e Optional: No

¢ Data type: Floating point

e Legal values: (—o0,)

e Default value: N/A

mask

e Definition: The bit mask with which to operate on the data.
e OSCs: bitand, bitnand, bitor, bitnor

e Optional: No

e Data type: Integer. (May be specified in octal or hexadecimal format:
octal has a leading “0” (zero) and hexadecimal has a leading “0x” (zero

x).)
Atomic OSCs

These OSCs act on the time-series data in channels, and hence require a
channel name in their definition, e.g.:

X_arm_locked meanabove "H2:LSC-AS_I" threshold=17.3

NOTE: The power in the power* OSCs is really band-limited RMS.
valueabove

e True when: fraction of data samples are greater than threshold

¢ Parameters: fraction, threshold

valuebelow

e True when: fraction of data samples are less than threshold
¢ Parameters: fraction, threshold

valuerange

e True when: fraction of data samples in the interval (lo,hi) and < hi
e Parameters: fraction, lo, hi

meanabove

e True when: mean of data is greater than threshold

¢ Parameters: threshold

meanbelow

e True when: mean of data is less than threshold

¢ Parameters: threshold

meanrange

e True when: mean of data is in the interval (lo, hi)

e Parameters: lo, hi

meanrise

e True when: mean of data has increased by an amount ; threshold over
nstrides strides

e Parameters: threshold, nstrides
meanfall

e True when: mean of data has decreased by an amount ; threshold over
nstrides strides

e Parameters: threshold, nstrides
rmsabove

e True when: RMS (full bandwidth) of data is greater than threshold

e Parameters: threshold

rmsbelow

e True when: RMS (full bandwidth) of data is less than threshold

e Parameters: threshold

rmsrange

e True when: RMS (full bandwidth) of data is in the interval (lo, hi)

e Parameters: lo, hi

bitand

e True when: bitwise AND of fraction of data with mask is equal to mask
e Parameters: mask, fraction

e Note: mask may be specied in octal (leading 0) or hexadecimal (leading
0x), e.g. 0123 is decimal 83, Oxff is decimal 255

bitnand

e True when: bitwise AND of fraction of data with mask not equal to
mask

¢ Parameters: mask, fraction

e Note: mask may be specied in octal (leading 0) or hexadecimal (leading
0x), e.g. 0123 is decimal 83, 0xff is decimal 255

bitor

e True when: bitwise AND of fraction of data with mask is not equal
to 0

e Parameters: mask, fraction

e Note: mask may be specied in octal (leading 0) or hexadecimal (leading
0x), e.9. 0123 is decimal 83, Oxff is decimal 255

bitnor

e True when: bitwise AND of fraction of data with mask is equal to 0
¢ Parameters: mask, fraction

e Note: mask may be specied in octal (leading 0) or hexadecimal (leading
0x), e.9. 0123 is decimal 83, Oxff is decimal 255

abspowerabove

e True when: power in frequency range freqlo and freghi is above
threshold

e Parameters: freqlo, freqhi, threshold

e Note: For this condition and the other “power” conditions that follow,
the computed power is normalized so that its sum from zero to the Nyquist
frequency equals the mean square value of the corresponding time series.
No windowing is performed.

abspowerbelow

e True when: power in frequency range freqlo and freghi is below
threshold

o Parameters: freqlo, freqhi, threshold
abspowerrange

e True when: power in frequency range freqlo and freqghi is between lo
and hi

o Parameters: freqlo, freqhi, lo, hi

abspowerrise

e True when: power (RMS) in frequency range [freqlo, freghi] has risen
by an amount > threshold over nstrides strides

o Parameters: freqlo, freqhi, threshold, nstrides
abspowerfall

e True when: power (RMS) in frequency range [freqlo, freghi] has fallen
by an amount > threshold over nstrides strides

o Parameters: freqlo, freqhi, threshold, nstrides
abspowergain

e True when: Depends on value of threshold. If threshold > 1, True
when power in frequency range [freqlo, freqghi] is changing by a factor
> threshold over nstrides strides. If threshold < 1, True when power
in frequency range is changing by a factor < threshold over nstrides
strides.

o Parameters: freqlo, freqhi, threshold, nstrides

fractpowerabove

e True when: fractional power in frequency range [freqlo,freqhi] is
above threshold

e Parameters: freqlo, freqhi, threshold

10

e Note: fractional power is defined to be the ratio of power in the frequency
range requested to the full-band power

fractpowerbelow

e True when: fractional power in frequency range [freqlo, freqhi] is be-
low threshold

e Parameters: freqlo, freqhi, threshold

e Note: fractional power is defined to be the ratio of power in the frequency
range requested to the full-band power

fractpowerrange

e True when: fractional power in frequency range [freqlo, freqhi] is be-
tween lo and hi

e Parameters: freqlo, freqhi, lo, hi

e Note: fractional power is defined to be the ratio of power in the frequency
range requested to the full-band power

fractpowerrise

e True when: fractional power in frequency range [freqlo, freqhi] has
risen by an amount > threshold over nstrides strides

o Parameters: freqlo, freqhi, threshold, nstrides

e Note: fractional power is defined to be the ratio of power in the frequency
range requested to the full-band power

fractpowerfall

e True when: fractional power in frequency range [freqlo, freqhi] has
fallen by an amount > threshold over nstrides strides

¢ Parameters: freqlo, freqhi, threshold, nstrides

e Note: fractional power is defined to be the ratio of power in the frequency
range requested to the full-band power

Meta-OSCs
boolean

e True when: Boolean expression of OSCs evaluates to True
e Parameters: none

¢ Example:Both arms_locked boolean "X_arm locked & Y_arm locked"

11

e Notes: Boolean expressions use previously defined OSC names as Boolean
variables. Operators supported are: ! (NOT), & (AND), | (OR). Prece-
dence rules follow those of standard logic. Parentheses may be used to
make precedence explicit. (Ignore backslashes above in the HTML ver-
sion of this manual.)

transitup
e True when: given OSC changes from False to True
¢ Parameters: hold, dead

e Example: X_arm lock acquired transitup "X_arm locked" hold=0

e Notes: This meta-OSC is held True for hold + 1 strides
transitdown

e True when: given OSC changes from True to False
e Parameters: hold, dead
e Example: X_arm lock_lost transitdown "X_arm locked" hold=0

e Notes: This meta-OSC is held True for hold + 1 strides
Remarks on usage

The bitwise conditions merit further explanation. The bitand and bitnand
conditions refer to whether every bit in the bitmask matches a bit in the data
channel value. The bitor and bitnor conditions refer to whether at least one
of the bits in the bitmask has a corresponding bit in the data channel value.
Hence for bit masks with only one bit turned on, the and and or conditions are
identical.

transitup and transitdown are conditions on other OSCs. transitup
becomes True and is held True for N + 1 strides whenever the named OSC
changes state from False to True, where NV is the hold duration parameter.
transitdown works in a similar way, except that it becomes True when the
named OSC goes from True to False. The dead parameter prevents transitup
and transitdown conditions from becoming True again for an interval of dead
strides after the end of the hold period.

The various ways of specifying rises and falls in band-limited power are
provided for flexibility during monitor developement. Very stable channels with
nearly constant total power may be well suited to the abspower conditions.
Channels with time-dependent total power but stable spectral shape may be
well suited to fractpower conditions. Channels with large fluctuations in total
power and in spectral shape may be best suited to conditions on powergain
factors.

One cannot yet define OSCs in source code, only via a configuration file.

12

Checking conditions

If an OSC has been defined during initialization, then one can check whether
it is satisfied during a given time interval with a call to the satisfied () method.

e.g.:

if (osclist.satisfied("oscname"))
// send a trigger

The OperStateCondList class inherits from a hash map<const string,
osc: :0perStateCond*, osc::hash<const string> >, so all the methods that
a hash_map has are available. (See SGI's documentation for the Standard Tem-
plate Library at http://www.sgi.com/tech/stl/.) So, for instance, one can
loop through all defined conditions:

// As each time interval of data is read:
OperStateCondList::iterator iter = osclist.begin();

for (; iter != osclist.end(); ++iter) {
if ((*iter).second->satisfied() == true)
cout << "M << (*iter).first << "’\tsatisfied" << endl;
else
cout << "’" << (xiter).first << "’\t\tNOT satisfied"
<< endl;
}

Other Facilities

In addition to the OperStateCondList class, a helper class called TSWindow
is also available. TSWindow represents a time series with at most IV elements.
It is typically used as a “window” on a time series that is to be presented to
the DMT Viewer. For a relatively simple example, see the source code for the
LockLoss monitor: dmt/cvs/dmt/src/monitors/LockLoss. To add a data-
point to a TSWindow object, use the append () method.

13

Hacker’s Guide
Big picture from the end-user standpoint

We want to have various Operational State Conditions, encapsulated by
the class OperStateCond (and abbreviated OSC for the rest of this document),
which specify conditions which may or may not be satisfied by the data stream
in one (1) channel.

Then, for the user, there is a hash map of standard OSCs, e.g. valueabove
and meanbelow, indexed by the user-specified names defined in a configuration
file. This is so that the user can refer to specific OSCs.

Each OSC has none or some parameters associated with it, e.g. valueabove
has two parameters, one of which is its threshold: if the data in the channel
ever goes above that threshold value, the OSC is said to be “satisfied” (the
satisfied() member function).

Each parameter has a name, e.g. threshold, and a datatype, e.g. double.

This code will read a configuration file specifying the various OSCs and the
corresponding parameter values. Each OSC must be given a unique name, a
string of alphanumeric characters beginning with an alphabetic character.

The reason for naming each OSC is so that each OSC maybe referred to later
in a configuration file and used in meta-OSCs. Since each OSC.satisfied()
returns a boolean, one may now define a Boolean OSC to say something like
“True if CHAN1 has valueabove 2.3 AND CHAN2 has meanbelow 4.2”.

Rather than having to manually type in the names of each OSC into the
monitor code, we define the OperStateCondList class, which, despite its name,
is not a linked-list but a hash map, i.e. a dictionary that associates a pointer
to an OperStateCond object with a string (the user-defined name of the OSC,
specified in the configuration file). Making OperStateCondList a hash map
means that we may iterate over all defined OSCs:

OperStateCondList m0SClist;
OperStateCondList::iterator iter = m0SClist.begin();
for (; iter !'= m0SClist.end(); ++iter)
if ((*iter).second->satisfied())
// generate and send a trigger to the MetaDB

Notice that this still does not obviate the need for OperStateCondList::satisfied(const
char *oscname) since the user might want to test for a particular OSC, and
the method was defined in a previous incarnation of this code. Another way
of accessing particular OSCs is to use the fact that it’s a hash map (which is
actually what OperStateCondList: :satisfied() does):

OperStateCondList m0SClist;
m0SClist.readConfig("configfile.conf");

14

if (m0SClist["my_condition"]->satisfied())

cout << "my_condition is satisfied" << endl;
else

cout << "my_condition is NOT satisfied" << endl;

Big picture from the programmer’s standpoint

This is more info for one who wishes to modify the OperStateCondList code.
If you read the above, you will see a very striking resemblance between OSCs and
the basic datatypes of a programming language. In a programming language, we
may define variables of different datatypes; in the OperStateCondList system,
we may define OSCs of different OSC types (like valueabove).

And then, the Boolean OSCs are just a Boolean expression of previously
defined OSCs. So, this really becomes a small language, and hence the scan-
ning, tokenizing and parsing objects associated with the Boolean OSC. (See
osc/boolean/*.hh.)

boolean, transitup, and transitdown OSCs are really meta-OSCs, i.e.
they define conditions on other OSCs. So, to know whether the OSCs they
refer to are satisfied, they need to get a pointer to the OperStateCondList that
contains them.

To make the evaluation of the Boolean expression a little more efficient, we
convert the infix form of the Boolean expression, e.g. Locklost & PSLglitch,
to Reverse Polish Notation (RPN), and in the process verify the correctness
of the expression. RPN is quicker to evaluate since it simplifies putting the
running value in a stack.

To make evaluations for the other conditions a little more efficient, we store
a short history of two satisfied() values: the value for the current stride,
and the value for the previous stride. Some OSCs depend on more than just
the previous stride, so they have their own private data members defined for
storing this data.

Now, for a larger overview. And let’s do this in a top-down way, with a very
large grain.

We’ve already seen that OperStateCondListisa hash map<const string,
OperStateCond*>.

Any new types of OSCs that are to be written will have to inherit from
OperStateCond: it is a base class that provides data and functions that all
OSCs need.

OperStateCondList also contains (‘has a’ relationship) information about
the various basic OSC types. This information is stored in osc: : TypeInfoMap
mTypeInfoMap. (See 0SCListMisc.hh.)

osc::typeInfoMap is a hash map<const string, TypelInfo>, i.e. it’s a
dictionary that relates a TypeInfo object to a const string (which is the
name of that type, e.g. valueabove).

The TypeInfo class contains information about the OSC type. It does this
by containing a sorted map of parameter types: typedef map<const string,
tseriesType_t> ParamTypeMap. tseriesType_t is defined in namespace osc

15

and is an enumeration of the various “atomic” data types that may be contained
in a TSeries. The indexing key for ParamTypeMap is the name of the parameter,
e.g. mParamTypeMap ["threshold"] would be a DOUBLE.

In summary, let “*” mean “has a”, and “>” mean “is a”.

OperStateCondList
> hash_map of OperStateCond*, indexed by user-defined names of 0SCs
* TypeInfoMap, containing information about the basic types

OperStateCond
> a base class from which actual 0SCs will inherit
* a bunch of stuff. See OperStateCond.hh and misc.hh

TypeInfoMap
> hash_map of TypeInfo, indexed by names of types
* ParamInfoMap, containing information about the parameters
associated with this type of 0SC

ParamInfoMap
> hash_map of ParamInfo, indexed by names of parameters

The ParamInfoMap and TypeInfoMap are initialized in OperStateCondList’s
constructor. Since this data should be common to all instances of OperStateCondList,
one would like this to be a static data member, but unfortunately it is almost
impossible to initialize a complex data structure such as this at compile time.

Now, how do the OSCs store the values of their parameters? Since these
parameters may be of different types, and they may be read from an Epics
channel, we can’t just store them as simple values. We use a template class
(just because I don’t know how to do something like the Param class in DMT:
see osc/Param.hh). For now, we only have int and double parameters, so
each OperStateCond object has two hash maps: one for integer parameters
(mIntParams) and one for doubles (mDblParams). These two hash maps are
indexed by the names of the parameters. The value of a parameter may be
retrieved by, e.g.:

mDblParams ["threshold"] .value()
How to Add New OSC Types

Look in the osc subdirectory. You’ll create a new class that inherits from
OperStateCond. Look at the others for examples. You’'ll have to initialize
the object’s ParamInfoMap in the OperStateCondList constructor, and then
enter that into OperStateCondList’s TypeInfoMap. You will need to add a
section that actually adds a new OSC to the hash map (around line no. 612
and onwards). You may need to write sections to parse the config file line
for your new OSC, though it’s quite unlikely unless you have a new type of

16

parameter (e.g a complex number) that behaves very differently from the types
that already exist. OperStateCondList: :parseAtomicParams() is the method
that parses config file lines for OSCs. The transit* conditions have config
line parsing written inline in the constructor of OperStateCondList. Only the
boolean OSC type has it’s own parser since it’s a bit of a trick to parse a
Boolean expression.

References

[1] D. Chin and K. Riles, “Description of the DMT LockLoss Monitor”, LIGO-
T-010105-00-Z (September 2001).

[2] D. Chin and K. Riles, “Description of the DMT ServoMon Monitor”, LIGO-
T-010106-00-Z (September 2001).

17

