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Abstract 
   In this paper we describe a stochastic GW search technique in wavelet domain. It uses the 
rank and sign correlation tests, which allow calculate a significance of observed correlation 
for non-Gaussian data. As a part of optimal search technique we introduce a robust estimator 
for a GW detector noise spectral amplitude. It is insensitive to outliers in the data and allows 
to apply this search technique to non-stationary data. We also address the problem of 
correlated noise using a concept of correlation time scale. 

1 Introduction 
   Recently there is an impressive progress in development of the gravitational wave (GW) 
interferometers [1-4]. One interferometer (TAMA, Japan) is collecting data and several more 
(LIGO, VIRGO and GEO) are about to start the data taking. In the frame of extensive 
scientific program, these interferometers will be used to search for the stochastic 
gravitational waves (SGW). The SGW might be produced by processes in the early universe 
and by large number of independent and unresolved GW sources [5-7]. It is exceptionally 
weak and a single detector cannot distinguish the SGW from an instrumental noise. 
However, if the SGW is correlated between several detectors, it can be detected using their 
cross-correlation. By integrating the cross-product of the detector output signals over a long 
period of time, we expect to enhance the signal to noise ratio (SNR) if the instrumental noise 
is not correlated.  
   This technique for detecting of the SGW using two or more gravitational wave detectors 
was described in [8,9]. It uses a linear correlation test [10], which allows estimate the 
significance of the observed correlation only if the instrumental noise is stationary and has a 
Gaussian distribution.  In Section 2, we consider a robust correlation test that is free of these 
limitations. In Section 4, we illustrate how it works with two GW detectors. 
    A correlated instrumental noise arising from the environment could be a serious limitation 
for the cross-correlation technique described above. A weak background from seismic 
events, power supplies and other environmental sources may result in statistically significant 
correlation between the GW detectors, which may be misinterpreted as the SGW or affects 
the SGW upper limit. The SGW’s contribution to cross-correlation depends on the relative 
orientation of the detectors. As suggested in [11], the contributions of the signal and the 
correlated background can be estimated separately by changing the orientation of one of the 
detectors, which is, in this case, the resonant bar detector ALLEGRO located in Louisiana 
State University (used in pair with the LIGO Livingston interferometer). Unfortunately, this 
method is not applicable to the GW interferometers, which are permanently located. In 
Section 3, we address the problem of correlated background for the GW interferometers 
using a concept of correlation time scale. 

2 Robust correlation test 

2.1 Statement of the problem 

To characterize a correlation between two data sets xi and yi usually the linear correlation 
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coefficient is used.  
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where x  and y are means of the x and y distributions respectively. When the correlation is 
known to be significant, r is one conventional way to summarize its strength. However there 
is no universal way to compute r distribution in the case of null hypothesis, which is: x and y 
are not correlated. In other words r is a poor statistics to decide whether a correlation is 
statistically significant or whether one observed correlation is significantly stronger then 
another if the data is not Gaussian.  
   To solve this problem, often a rank statistic [10] is used (non-parametric Spearman’s test). 
It has precisely known probability distribution function, which allows calculate the 
significance level of the observed correlation. The rank correlation test (RCT) is almost as 
efficient1 as the linear correlation test (LCT) and potentially it is a good choice to be used for 
the SGW search. However, in this paper we do not discuss the rank correlation in details. The 
rank test is based on sorting algorithms, which are quite time consuming for large data sets. 
Instead we consider a robust correlation test (sign test), which is much simpler to use and 
easier to implement. Both correlation tests, rank and sign, can be used for the SGW search.   

2.2 Description of the test 
   Let assume x to be produced by a random process with zero median. In cases when it’s not 
true, a new statistics xx ˆ− can be calculated, where x̂  is a median of the x data set. If to 
replace the value of each xi with its sign uj, the resulting first order statistics would be drown 
from a well known distribution function. It has zero mean and ui take values +1 and –1. 
Given a second data set y, we repeat the procedure, replacing each value yi by its sign vi. Now 
we can build a statistics is , which is a product of iu  and iv , for detecting a correlation 
between two sets. The correlation coefficient is simply a mean of the is  statistics   

iiiuv vuss == .     (2.2) 

A value of uvs near zero indicates that the variables u and v are uncorrelated. The significance 
of a nonzero value of uvs  is described by a binomial distribution. 
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where n is the number of is samples. This equation can be re-written using Sterling’s 
approximation for factorials 
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For large n, the ),( uvsnP can be also approximated by Gaussian distribution with variance 1/n 
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and a significance level is given by a complementary error function. Since, typically n is 
large, we will use this Gaussian approximation below in the text.  
   If we could know a priori the medians of x and y distributions, this test would be a non-
parametric test. Since we estimate the medians from data, the test depends on the errors of 
x̂ and ŷ , and uvs  may have a systematic shift from its true mean. It can be shown that this 
dependence is very weak and, hence, the test is robust. Indeed, the mean of u (and v) 
distribution has a variance 1/n. Respectively, the mean of is  distribution experiences 
systematic fluctuations with variance 2/n2, which is much less then the intrinsic variance of 

uvs given by the test (1/n). We could say that for large n the sign correlation test (SCT), is 
almost non-parametric. 

2.3 Comparison of correlation tests 
   The SCT has been studied using Gaussian signals and noise with various distributions. The 
goal of the study was to estimate the SCT efficiency compare to the linear correlation test 
(LCT), which is supposed to be one of the most efficient correlation tests. For comparison we 
also estimated the efficiency of the rank correlation test (RCT).  
  For the data sets, first we generated two time series xn and yn  with uncorrelated white 
noise. We tried various noise probability distribution functions: Gaussian, Gaussian with 
tails, asymmetric Gaussian and uniform (see Figure 1). Then a Gaussian signal g was added 
to both time series, so the data (x and y) is a sum of uncorrelated noise and correlated signal  

gnx x += ,    gny y += .    (2.6) 

 
Figure 1. Distribution of noise used to compare different correlation tests: Gaussian (red), 

                  Gaussian with tails (black), asymmetric (blue), uniform (green). 
 
The amplitude of the signal was relatively small (signal to noise ratio (SNR) <0.5), where the 
SNR was calculated as a ratio of standard deviations of the signal and noise distributions. 
   To compare the correlation tests, the correlation coefficients (R) were calculated. Figure 1 
shows the correlation coefficients as a function of SNR for Gaussian signals and different 
correlation tests (LCT, RCT, SCT). 
 
                                                                                                                                                       
1 See discussion of the correlation test efficiency in section 2.3  
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Figure 2. Correlation coefficients as a function of SNR for Gaussian noise: LCT(red),  

                      RCT  (black), SCT (blue). 
 
   To estimate the SCT efficiency we calculate the ratio LCTSCT RR /  for different types of 
noise. This ratio (or the sign correlation efficiency) doesn’t depend much on the signal to 
noise ratio and for the Gaussian noise it is around 64%. For comparison, similar ratio for the 
RCT is 95%. Figure 3 shows the sign correlation efficiency for different types of noise. 

 
Figure 3. The sign correlation efficiency as a function of SNR: Gaussian (red), 

                               Gaussian with tails (black), asymmetric (blue), uniform (green). 
  

   Typically, if applied to the same data, the SCT will detect correlation with less significance 
level then the LCT. For Gaussian noise, to achieve the same significance level with the SCT 
we need to use about 2.4 times more data (1.1 for the RCT), which means effective loss of 
data compare to the LCT. However, for Gaussian noise with tails, which is the most typical 
type of noise, the SCT shows better efficiency then the LCT.  
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3 Correlated noise 

3.1 Statement of the problem 
   In case of two GW detectors, let say L and H, the output of each detector is a mixture of the 
SGW signal (h) and noise (n)  

HLHLHL nhs ,,, +=       (3.1) 
Assuming no correlation between signal and noise, the cross-correlation of the data Ls  and 

Hs  is 

HLHL nnhhr += .      (3.2) 
Due to correlated noise, the noise cross-correlation term may not be zero and the correlation 
test may find correlation, if even no signal is present in the data. For example, if detector 
output is dominated by power supply harmonics, which are very stable in time, the 
correlation test will always find a significant correlation between the detectors. Combined 
with correlated signal the noise may result in a wrong upper limit on the SGW. The 
correlation test may also fail to find a correlation if the noise is anti-correlated. 
  The problem with the correlation tests described above is, that applying a test we check if 
any correlation is present in the data. However, different correlation processes may be 
distinguished by their correlation time scale and the correlation tests can be modified 
accordingly. Both, rank and sign correlation tests can be modified to accommodate the 
correlated noise. Below we show it on example of the sign correlation test.  

3.2 Correlation time scale 
  In general, there could be a correlation between samples of the sign statistics is  and ( )tsi  is 
a step function of time. It is fully described by its normalized autocorrelation function 

)()()( τττ −+ −= ppa , where +p ( −p ) is the probability to find the same (opposite) signs of 

is  and js  separated by time τ.  For )(τa  it holds that 1)0( =a  and 0)( => sTa τ 2, where sT  
is a correlation time scale (CTS). Namely, any samples is  and js , separated by time 
τ greater then sT , are not correlated.  
   The function )(τa  depends on a correlation process between the data sets. The time scale 

sT  characterizes the function’s width. For example, if the statistics is  is a white noise, then 
tTs ∆= , where t∆  is the sampling interval. Different correlation processes due to 

instrumental noise may have different correlation time scales, which may be greater then t∆ . 
For environmental noise we expect a correlation time scale to be finite, thought the SGW 
correlation time scale is assumed to be infinite. In other words, if a data set is long enough, 
such a time sT  can be selected, that only a faint SGW signal will contribute to the function 

)( sTa >τ 3. 
  The sign correlation test (as well as the linear and rank tests) tells us if there is a correlation 
with any time scale equal or larger then t∆ . It does not use any noise model4 and the null 
hypothesis reads accordingly – data sets are not correlated. So, if a correlated noise is 

                                                 
2 We assume no noise process exists with an infinite correlation time scale. 
3 See Section 5.3 for more detailed discussion of correlated noise. 
4 So far we didn’t use any signal model as well. 
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present in the data, a different null hypothesis should be used:  
0H :  Data sets are not correlated at time scale greater then some scale sT  and the 

observed correlation coefficient is described by noise with the time scale less then sT . 
Respectively, a correlation test should be modified to incorporate this new parameter. 
   To modify the test, lets divide the correlation statistics is  on subsets of m samples long 
(time duration tmTm ∆⋅= ) and calculate the correlation coefficients uvs  separately for each 
subset. Lets also calculate the product of mT and the variance of the correlation coefficients 

( ) 2)( muvmm TsTTT ⋅=∆ ,      (3.3)  
which is the effective sampling interval. The meaning of this name is clear from the 
following. 
   If some correlated noise with time scale sT  is present in the data and we increase mT , the 
function ( )mTT∆  will increase first and then saturates Indeed if sm TT > , samples in the 
beginning and the end of a subset are not correlated. Then, in the Gaussian approximation,  

m
muv T

tconstTs ∆⋅=2)( ,     (3.4) 

and the mean of the T∆  distribution is independent on mT  

( ) tconstTTT sm ∆⋅=>∆ .     (3.5) 
For example, Figure 4 shows ( )mTT∆  for the simulated white noise and for the cross-
correlation of the LIGO Livingston and Hanford power supply monitors (60Hz). For white 
noise it holds that ( ) tttT m ∆=∆≥∆  ( sec64/1=∆t ), which can be clearly seen from the 
figure. For power monitors the ( )mTT∆  saturates at sec60>mT , which means that at this 
time scale the sign correlation statistics is effectively a white noise with a sampling interval 
of sec10≈∆T .  

 
Figure 4. Effective sampling interval for the LHO/LLO power monitor sign  

cross-correlation (black) and simulated white noise (red). 
 

   When  ( ) TTT s <∆ , where T is the time duration of the data, the correlation coefficients νus  
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still have a binomial distribution   
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where n~  is the effective number of samples 

( )sTT
tnn

∆
∆=~ .      (3.7) 

In the Gaussian approximation, the variance of νus  distribution is .~/1 n  One can see that 
correlated noise effectively increases variance, resulting in a lower significance level 

( ) .
2

2








∆

∆= uv
s

s
TT
tnerfSL       (3.8) 

It is convenient also to introduce a reduced correlation coefficient νus~ , which is distributed 
with variance n/1  

( )s
uvuv TT

tss
∆

∆=~ .      (3.9) 

   Usually, we don’t know a time scale of the noise a priori. In principle, we may select any 
time scale sT  between t∆ and T 5. Varying sT , we can calculate the effective sampling 
interval and thus the significance level. If starting with some sT , the significance level (3.9) 
is greater then, let say, 5%, we choose the hypothesis 0H otherwise we choose the alternative 
hypothesis:  

1H :  Data sets are correlated at time scale greater then scale sT . 
In this case, we can calculate a false alarm rate ( 0H is true, but we choose 1H ), but we are 
not able to calculate a false dismissal rate ( 1H is true, but we choose 0H ), because so far a 
model for signal was not specified. 

4 Correlation in wavelet domain 

4.1 Wavelet transforms 
   The term wavelet is usually associated with a function )(2 RL∈ψ 6 such that the translation 
and dyadic dilation of )(2 RL∈ψ  constitute an orthonormal basis of )(2 RL  [12,13].  For 
discrete wavelet transform the basis is 

( )mtt nn
mn −= 22)( 2/ ψψ , Zmn ∈, ,     (4.1)  

 where ψ satisfies  

∫ = 0)( dttψ .      (4.2) 
    The important property of wavelets is a time-frequency localization of their basis. It allows 
the time-frequency representation of data in wavelet domain, similar to windowed Fourier 
transform. The result of a wavelet transform of data x is an array of wavelet coefficients pmn , 

                                                 
5 Actually, we have to limit the time scale sT  between t∆ and LT ,where TTL << .  
6 Space of all square-integrable functions. 
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where m is a time index and n is a scale (or layer) index. Applied to wavelet data, the 
correlation can be estimated as a function of the layer index, which represents different 
frequency bands of the data x. Each layer can be considered as a time series with the 
sampling interval tt n

n ∆=∆ 2 . 
   The same as for the original data x, we don’t know the exact probability distribution 
function for coefficients p as well. However, if consider the detail wavelet coefficients, 
usually their distribution is “more Gaussian” (see, for example, Figure 5). 
  

 
Figure 5. Distribution of white noise with tails in time (black) and wavelet (DAUB4) 
domains (red).   Blue curve is a Gaussian fit of data in wavelet domain. 

 
Due to condition (Eq.4.2) the distribution of wavelet data usually has zero mean and it is also 
symmetric, which makes convenient to perform the sign transform in wavelet domain.  
      To apply the wavelet method to the SGW search, we modify the linear correlation test 
described in [14].  First (Section 4.2), we calculate the linear cross-correlation in wavelet 
domain and then (Sections 4.3, 4.4) we consider the sign cross-correlation.   

4.2 Cross-correlation in wavelet domain 
   The cross-correlation between two detectors is 
 

      ( )HLHL

T

T

T

T

ttQtststddtS ΩΩ′−′′= ∫∫
−−

,,)()(
2/

2/

2/

2/

,      (4.3) 

where T is the integration time and ΩH (ΩL) is the orientation of H (L) interferometer. The 
integration kernel Q is selected to maximize the correlation due to the stochastic GW signal. 
Decomposing Ls and Hs  in wavelet domain with a discrete wavelet transform  

∑=
lk

klklL tpts
,

)()( ψ ,     )()(
,

tqts
mn

mnmnH ∑= ψ      (4.4) 

where ijψ  is the orthonormal basis of wavelet functions, we can rewrite 4.3  

mnkl
lk

mnkl
nm

IqpS ,
,
∑∑= ,   (4.5) 



 Page 10 

( )HLmnkl

T

T

T

T
mnkl ttQtttddtI ΩΩ′−′′= ∫∫

−−
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2/
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We can also write double integral lkl,mn in Fourier domain. Using the time localization of 
wavelet functions it follows that 

 ( )HLmnklmnkl fQffdfI ΩΩ= ∫
∞

∞−

,,)(ˆ)(ˆ *
, ψψ  (4.7) 

where )(ˆ fψ  and ( )HLfQ ΩΩ ,,  are the Fourier transforms of )(tψ  and ( )HLtQ ΩΩ ,, . Note, 
if )()( ttttQ ′−=′− δ , due to the orthogonality of wavelet basis, it holds that ln, δδkmmnklI = , 
where kmδ ( lnδ ) is Kronecker delta. It is not true for an arbitrary kernel, but because of good 
localization of wavelet functions in time and frequency the most of the mnklI ,  terms are equal 
zero. Because of the frequency localization, we may neglect terms with nl ≠  and rewrite the 
eq. as follows 

∑≈
n

nSS ,  ∑=
mk

mnknmnknn IqpS
,

,  (4.8) 

where  nS  is a cross-correlation for the nth layer. Since wavelet functions for each layer are 
produced by translation in time of the same mother function nψ , the Fourier integral for 

mnknI ,  is  

( ) ( ).2exp,,)(ˆ)(ˆ)( *
, τπψψτ fjfQffdfII HLnnnmnkn −ΩΩ== ∫

∞

∞−

, (4.9) 

where τ is a time shift between coefficients p and q ( )( mktn −∆=τ ). Assuming that the 
noise of each detector is much larger in magnitude then the SGW signal, the noise mean 
square for the nth layer is  

∑
=
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22 1σ ,     ∑
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m
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nH q
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where nN  is the number of samples in the layer. Introducing the coefficient of linear 
correlation for layer n  

∑
=
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m
nnnn

nLnHn
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the cross-correlation sum S calculated in wavelet domain is 
( ) ( ) ( ) ( )∑ ∑∑ =⋅=

τ τ
ττττσσ

,n
nnnn

n
nHnLn rwrINS . (4.12) 

   So far the cross-correlation S is equivalent to the result obtained in the Fourier domain [14]. 
Similarly we can use the optimal kernel to calculate )(τnI  and hence )(τnw  

( )
)()(

),,()(||
,,

3

fPfP
fff

fQ
HL

HLGW
HL

ΩΩΩ
=ΩΩ

− γ
, (4.13) 

where ( ) ffGW /Ω  is proportional to the GW differential energy density, γ is the detector 
overlap reduction  function [15] and PL, PH are spectral densities of the detector noise. Then 
the full expression for the )(τnw is   
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( ) ( ) ( ) ( ) ( )τπσσγψτ fj
fPfP
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   The equation shows that the cross-correlation S is a weighted sum of linear correlation 
coefficients )(τnr . For a pair of GW detectors, the optimal weight coefficients can be 
calculated for a selected SGW model ( ( )fGWΩ ) and using an appropriate noise spectral 
density estimator. However, as we have mentioned above two questions remain: 

a) What is the actual distribution of the correlation coefficients )(τnr ? 
b) How to calculate an optimal weight coefficients if the detector noise is non-stationary 

or correlated?  
To solve those problems, we suggest to use a robust correlation test, like RCT or SCT. In the 
next section we show how it works for the sign correlation test. The rank correlation test can 
be implemented in a similar way. The problem of correlated noise could be partially solved, 
by taking in to account the correlation time scale (see Section 4.4). 

4.3 Uncorrelated noise 
   To apply the sign test, we simply replace the coefficients )(τnr  in the cross-correlation sum 
S (Eq.4.12) with the corresponding sign (or rank) correlation coefficients )(τns . It may 
reduce the efficiency of the test, but we gain confidence in calculation of the significance 
level. To keep the weight coefficients optimal, the sign correlation efficiency (see Section 
3.1) should be taken into account. The sign correlation efficiency ( nε ) may be different for 
different wavelet layers. Then, the optimal weight coefficients are 

( ) ( ) nnn ww εττ =~  , (4.15) 
and the sign cross-correlation is 

( ) ( )∑=
τ

ττ
,

~
n

nns swS . (4.16) 

As it was mentioned in section 2.2, the correlation coefficients )(τns  are normally distributed 
with variance 1/Nn. Then, the variance of sS is  

( )∑=
τ

τ
,

2~1)var(
n

n
n

s w
N

S . (4.17) 

In many cases we can consider that all efficiencies nε are the same (around 65%) and just 
reduce the signal to noise ratio 

( )s

s

S
S

SNR
var

2
2 = . (4.18) 

However if the noise distribution has tails, the efficiencies nε can be very different (see 
Figure 2).   
   We can include the nε in the expression for ( )τnw  (Eq.4.14) and introduce a robust noise 
spectral amplitude  

( )
nnI

I
I

fPfA
εσ

=)( ,      I=L,H .  (4.19) 

Then the optimal weight coefficients ( )τnw~  are 
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ΩΩ⋅Ω= −
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∫ .    (4.20) 

One can see that only the amplitudes AL and AH should be estimated from the experimental 
data to calculate the optimal weight coefficients. 
   The robustness of amplitudes AI can be shown on example of Gaussian noise with tails. For 
simplicity we use a white noise, then constfPI =)( . If, let say, we have a Gaussian noise 
with fixed variance 2

gσ and vary contribution from the tails, the value of spectral density P  is 

proportional to the total noise variance 2
nσ and it increases, if we increase the tail contribution 

(see Table 1). 
 

gn σσ /  P A 
1.0 0.45 0.0266 
1.45 0.94 0.0274 
2.31 2.40 0.0273 

Table 1. Dependence of the noise SD and noise RSD on tail contribution 
 

At the same time one can see that the amplitude A remains constant. It makes calculation of 
the optimal weight coefficients much more robust if the tails are non-stationary. 
   To find the efficiency nε we use the fact that it is constant as a function of the SNR for all 
reasonable distribution functions of the noise (see Figures 2,3). Since we assume the SGW 
signal to be Gaussian, we could estimate the efficiencies ns  by adding a Gaussian signal gm 
to the data mnp  and mnq  in the wavelet domain. Calculating the LCT and SCT correlation 
coefficients, we can find the efficiencies ns  for relatively large SNR, when the signal gm 
dominates, and then extrapolate it to small SNR, using the assumption constSNR =)(ε .  

4.4 Correlated noise 
   Compare to the Section 3.1, now we are dealing with a set of correlation coefficients 

)(τns . Each coefficient )(τns  is a mean of the corresponding sign correlation statistics 
),( τnsi . If some correlated noise is present in the data, the different statistics ),( τnsi  may 

not be statistically independent. Similar to the sign statistics autocorrelation function (see 
Section 3.1) we may introduce a cross-correlation function for two statistics ),( 11 τnsi  and 

),( 11 τnsi .  If samples of ),( τnsi  are not correlated at the time scale ( )τ,nTs , then samples of 
any two statistics ),( 11 τnsi  and ),( 22 τnsi , separated by time ( ) ( )( )2211 ,,,max ττ nTnT ss  do not 
correlate as well. It means, that at this time scale the correlation coefficients are statistically 
independent and they have a binomial distribution. In the Gaussian approximation the 
optimal cross-correlation sum is 

( ) ( ) ( ) ( ) ( )∑∑ =
∆

∆=
τ

τττ
τ

τ
,

~~
,

~~
n

nnnns sws
nT
twS , (4.21) 

where )(~ τns  are the reduced correlation coefficients (see Section 4.1) and ( )τ,nT∆  are the 

effective sampling intervals. The variance of sS~  is equal to the variance of sS  (see Eq.4.17) 
and the SNR is   
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
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One can see that the correlated noise effectively reduces the signal to noise ratio. 
   This approach for correlated noise works if the noise time scale is much less then the SGW 
time scale7 and it fails if the noise time scale is comparable to the SGW time scale. Of 
course, the first type of noise does some harm – it reduces the significance of correlation, but 
the second type of noise can make the detection of the SGW impossible.   

5 Conclusion 
   The SGW signal should manifest itself in the cross-correlation of several detectors. In this 
paper we discussed the problem (i) of estimating the significance of the cross-correlation if 
the detector noise is non-Gaussian and the problem (ii) of correlated noise.  
   Different correlation techniques can be used to calculate the detector cross-correlation. We 
discussed the optimal signal processing in wavelet domain using the rank and sign 
correlation tests, which allow calculate the significance of the cross-correlation if the detector 
noise is non-Gaussian. The rank correlation is a non-parametric test and it is almost as 
efficient as the linear correlation test. It is based on sorting algorithms and could be quite 
time consuming for large data sets. The sign correlation test is robust and simple to use, 
however it is less efficient (65%) compare to the linear and rank correlation tests. Using the 
sign correlation test we also introduced a spectral density estimator, which allows a robust 
calculation of the noise spectral density if the detector noise distribution has outliers. 
  We addressed the problem of correlated noise using the concept of correlated time scale. 
Namely, different sources of correlated noise can be distinguished by their correlation time 
scale.  In this paper we developed a method, which allows estimate the significance of the 
correlation in the presence of correlated noise. The concept of correlation time scale is not an 
ultimate solution of the problem, however it allows a consistent calculation of the cross-
correlation if the correlated noise time scale is much less then the SGW time scale.  
   This approach fails to work for noise sources with a very long time scale, but most likely 
there should be very few sources like that. For example, it could be a noise due to magnetic 
field fluctuations [15], the power system synchronization, seismic events coming from 
locations equally distant from the detectors, and also the data sampling and data processing 
artifacts. In this case we need to study this sources (for example using the environmental data 
channels) and build a consistent noise model to estimate correctly the correlated noise 
contribution.  
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