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1. Introduction 
 
The current model used to estimate the isolation achieved by the quadruple suspension 
system for the most sensitive mirrors (ETM and ITM), the results of which were 
presented in the suspension conceptual design, (LIGO T010103-00-D), does not include 
several features which will affect the isolation at high frequencies. These features 
include: 
1) effects due to the finite mass of the blades 
2) the violin modes of the wires 
 
One of the actions raised in the report of the SUS design requirements review (LIGO 
L010161-00-D) was to evaluate the effects of blade internal modes. This comes under 1) 
above. 2) is not directly addressed in this document.  
 
In this paper we present an estimate of the peak height of the lowest in frequency of the 
blade internal modes, and compare it to the expected sensitivity of Advanced LIGO at 
that frequency, which is limited by sapphire internal losses.  We conclude that given the 
assumptions presented here, the internal modes of the blades will not require to be 
passively damped. 
 
2. Isolation 
 
The isolation curves presented in the conceptual design come from the MATLAB model 
of the quadruple suspension. This model currently consists of 4 uncoupled sets of 
dynamical equations, corresponding to vertical motion, yaw, longitudinal and pitch 
(together) and transverse and roll (together). In this paper we will focus on the vertical 
isolation as being the limiting effect. The lowest internal mode of a blade involves 
vertical motion. It will couple in to horizontal motion of the mirror through cross-
coupling from vertical to horizontal.  Higher modes could involve twisting, which could 
produce direct horizontal motion. However the horizontal isolation should be more than 
adequate at the frequencies of such internal modes, as demonstrated below. 
 
2.1 Direct Horizontal Isolation 
 
An estimate of the residual motion due to direct horizontal excitation can be made as 
follows. The horizontal transfer function of the quad falls off as f7, taking into account 
eddy current damping between the first stage and its support. (If active control is used, 
the transfer function would fall as f8 at higher frequencies where the gain is rolled off,). 
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The transfer function should continue to fall as a steep function of frequency at least up to 
the violin mode frequencies.  By 75 Hz (the frequency of the lowest of the blade internal 
modes) it is estimated to have a value of ~ 1.5 x10-13, assuming f7 behaviour. This value 
can be combined with the residual noise from the isolation platform, specified to be not 
greater than 3x10-14 m/√Hz at these frequencies, giving an overall background level of 
horizontal displacement noise of ~4.5x10-27 m/√Hz.  A blade internal mode might have a 
loss corresponding to a Q of 104 (the value we assume for maraging steel). Thus a well 
coupled mode might produce a peak at a level of ~4.5x10-23 m/√Hz. This is well below 
the expected internal thermal noise level for sapphire at 75 Hz, ~8x10-21 m/√Hz. 
 
2.2 Vertical Isolation 
 
The MATLAB model for vertical motion assumes that the blades are ideal massless 
springs. The overall behaviour of a blade from whose tip a mass is suspended via a wire 
is treated as a simple mass/spring unit, where the spring constant is found by adding in 
series the spring constant of the blade and the wire. The behaviour is dominated by the 
spring constant of the blade, which is much less than that of the wire.  
 
In reality a blade has finite mass. A more complete treatment of the blade/wire/mass 
system can be carried out, where the mass and moment of inertia of the blade are 
included. This has been done for example by Husman (1999), where he uses the 
Lagrangian technique for analysing the system. The potential energy of the system 
consists of two terms, corresponding to the energy stored in the blade and the wire. The 
kinetic energy terms correspond to the translational energy of the mass and the blade and 
the rotational energy of the blade. From the resulting equations of motion, the magnitude 
of the transfer function (transmissibility) from the base of the blade to that of the 
suspended mass can be found. Examples, using Husman’s formula (see Appendix A), of 
the transmissibility for the three different blades in the current baseline design for 
Advanced LIGO are shown in Figure 1. Note that there is no damping assumed in this 
model. 
 
Several features should be noted.  
1) There are two resonances in each curve. The lower resonance is the familiar one 

corresponding to a simple spring/mass system. The upper resonance corresponds to 
the mode of the combined blade/wire/mass system where the blade tip and mass 
move out of phase as the wire stretches between them. These peaks are sufficiently 
high in frequency that they should not compromise the overall sensitivity (but note 
comment in conclusions below). 

2) The transmissibility falls off as f -2 above the first resonance as expected. However 
the transmissibility flattens out around 100Hz for these blades. Note that the 
flattening out is not due to the presence of the second resonance. It would still be seen 
if the mass were rigidly attached to the end of the blade. It is due to the finite mass of 
the blade and the fact that the wire suspending the mass is attached at a point that is 
not the centre of percussion. The blade/wire/mass system is behaving in a manner 
analogous to a compound pendulum.  

 

 2



These curves can be used to give an estimate of the overall vertical transmissibility of the 
quadruple pendulum at a particular frequency. We note that above the coupled 
resonances of a system consisting of several stages, the overall transmissibility tends to 
the product of the individual transmissibilities of the uncoupled stages. Thus an estimate 
of the overall transmissibility for the quadruple pendulum consisting of these three blade 
  

 
 
Figure 1: Vertical transmissibility of the three blade/wire/mass stages in the baseline Advanced LIGO 
quadruple suspension design. Each curve represents an uncoupled stage consisting of a particular blade, the 
wire or wires suspended from it and the mass it supports in that stage alone (since there are two blades per 
stage, the mass involved is half of the total mass of that stage). The blades are assumed to be triangular. 
Red, solid = top stage, blue, dotted = second stage, green, dashed = third stage. Note that the peak heights 
are limited by the number of data points displayed. 
 
stages plus a final stage of fused silica fibres suspending the mirror can be found by 
multiplying the individual transmissibilities from figure 1, and an estimated 
transmissibility of the final stage. 
 
2.3 Estimate of Vertical Transmissibility for Quadruple Pendulum  
 
We require to calculate the transmissibility of the final stage. Since we want to consider 
the uncoupled behaviour, the vertical frequency can be found from the spring constant of 
a silica fibre supporting ¼ of the load (since there are 4 fibres). For the particular 
parameters used in the baseline design (fibre radius = 200 micron, length = 0.6 m and 
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sapphire mass  = 40 kg) this yields a frequency of 6.1 Hz. Note that this is less than the 
coupled frequency of ~8 Hz which is more familiar from noise curves.  
 
At this point we note that the estimated frequencies of the first internal mode of the three 
different blades in the baseline design are 75, 98 and 118 Hz (from top to bottom). So we 
shall consider the situation at the lowest of these frequencies, namely 75 Hz, where in 
general the isolation is less. The product of the transmissibilities is thus given 
approximately by 
 
 3x10-3 x 9x10-3 x 1.5x10-2 x (6.1/75)2 =  2.8x10-9 

 
The residual noise on the isolation platform supporting the quadruple pendulum is taken 
as 3x10-14 m/√Hz. We further assume a cross-coupling of 0.1% from vertical to 
horizontal, thus giving an overall horizontal noise level of 8.4x10-26 m/√Hz. 
 
To put this into context with respect to any internal modes, such peaks if fully coupled  
might appear at a level of Q above this background. For Q=104, this would give a peak 
height of 8.4x10-22 m/√Hz. This is a factor of ~10 below the estimated sapphire internal 
thermal noise level. 
 
2.4 Consideration of Effect of Damping on Vertical Isolation. 
 
The above estimation has been made by multiplying the transmissibilities of 4 stages, 
assuming no damping. However if eddy current damping is used the uppermost stage will 
be damped, and this will effect its transmissibility. To test the significance of damping on 
the conclusions above, a model of a blade/wire/mass system with damping was required. 
A slightly simpler model was used for this – one in which the effect of the wire stretching 
is not included. The resulting transfer function can be obtained by letting the spring 
constant of the wire go to infinity in the formula derived by Husman. It can also be 
derived directly from writing down the equation of motion for such a system, and it was 
checked that these two methods yielded the same relationship. It was then straightforward 
to incorporate a damping term in the latter formulation (see Appendix A). Figure 2 shows 
the results of this analysis carried out on the top blade i.e. in the uppermost stage, the 
stage in which damping will be applied. 
 
Several features should be noted.  
1) On comparing the original curve including the finite wire spring constant with the 

curve where the wire is assumed infinitely stiff, we see in the latter curve the 
flattening of transmissibility without the high frequency peak. 

2) The effect of damping (here chosen to give a Q of the system of around 5) is to 
slightly modify the curve between the resonance and the region of flattening, but the 
additional effect of the damping by 75 Hz is not significant. 

 
Thus we can conclude that our original estimate of noise level is valid in the presence of 
damping. 
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Figure 2: Vertical transmissibility of the top blade/wire/mass stage in the baseline Advanced LIGO 
quadruple suspension design. Red dashed line shows the original, undamped case as in figure 1. Blue 
dotted line shows the same system with an infinitely stiff wire. Black solid line is damped version of the 
latter, with a Q value of ~5.  
 
3. Conclusions 
 
From the arguments presented here, it appears that it should not be necessary to passively 
damp the internal modes of the blades. However one feature which this analysis reminds 
us of is that there is another family of peaks corresponding to the upper modes of the 
blade/wire/mass systems. And we have also not included the violin modes in this 
analysis. An undesirable situation could arise where there is overlap of mode frequencies 
– e.g. of an internal blade resonance and a wire stretching resonance. A check should be 
made on such a potential overlap once the baseline design parameters are more firmly 
chosen, and before committing to a final design. 
 
It should be noted that in the analysis presented here several parameter values have been 
used which could take different values in a future design.  
1) The so-called “shape factor”, α, which is a geometric factor dependent on blade 

shape, and is used in the calculation of spring constant, has been taken to equal 1.38 
here (α=1 for rectangle, α=1.5 for triangle). This value was experimentally found to 

 5



fit measurements of spring constants for the blades designed for GEO 600. 
Measurements on blades more recently acquired have suggested that a value of 
around 1.56 fits the new experimental data better. Further investigation of blade 
design using finite element analysis will help to more fully explore their behaviour 
under load and should lead to a better estimation of this factor. For the purposes of 
this document we have chosen to use the value which leads to a larger spring 
constant, and hence higher uncoupled frequencies, which gives a more conservative 
estimate of the isolation. 

2) The blade design has been carried out assuming that the maximum stress in the blades 
should not exceed ~800 MPA, a value which is  ~ half of the yield strength. Again 
this may be conservative, and one could push up the stress to say ~ 2/3 of the yield 
strength, and still be within the linear stress/strain region. By doing this, one could 
push up the internal mode frequencies of the blades, by a factor which for the first 
internal mode is equal to the ratio of the stresses, assuming the spring constant is not 
changed. An example is given in the Appendix. 

A summary of the key blade equations can be found in Torrie (1999). 
 
It should be noted that if better high frequency vertical isolation were required, one 
method of doing this could be to modify a blade such that the mass is suspended 
effectively at the blade’s centre of percussion. For example Husman analysed and 
experimentally investigated this effect for a GEO blade, by extending the tip and adding a 
suitably chosen small mass to the new tip to move the centre of percussion. In practice 
however, adding more mass will reduce the internal mode resonant frequency, and so it is 
not simple to predict whether such a modification gives any significant reduction in the 
peak motion associated with the resonance. 
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Appendix A: Summary of Equations and Parameters Used  
 
A 1 Model Used by Husman (1999) 
 
    yo 
            θ 
 
       yc 
  blade 
              y1 

 
(looking from the side) 
 
The variables yo, yc and y1 measure the vertical displacement of the base to which the 
blade is rigidly attached, the tip of the blade, and the suspended mass respectively. Note 
that the suspended mass is assumed point-like in this analysis. 
 
The transfer function Y1/Yo is given by (c.f. eqn. 4.43 in Husman) 
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where kw and kc are the spring constants of the wire and the cantilever blade respectively, 
mc and m1 are the masses of the blade and suspended mass respectively, Icant is the 
moment of inertia of the blade about a vertical axis through its centre and lc is the length 
of the blade. For a triangular blade . 18/2

cccant lmI =
 
A simplified model can be derived assuming yc = y1, which is equivalent to setting 

. ∞→wk
In that case, and for a triangular blade, the transfer function becomes 
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A 2 Derivation of Simpler Model Including Damping. 
 
The relationship given in eqn. 2 can be derived directly from the equation of motion of a 
blade clamped at one end with a (point) mass rigidly attached to its tip. 
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Consider the rotational equation for the motion of the blade 
 

( ) ( ) cmccctot lymmlyykI 01010, +−−−=Γ= ∑θ      eqn. 3 
 
 
Here Itot,0 is the moment of inertia of the blade plus mass through a vertical axis at the 
wide end of the blade rigidly attached to the “ground”. 
The first term on the right hand side is the restoring torque due to the blade when its tip is 

deflected by θ, where 






 −
=

cl
yy 01θ

0y

. The second term is the torque introduced by the 

acceleration of the ground, , where lcm is the position of the centre of mass of the 
blade/mass assembly, measured from the wide end of the blade. 
Itot,0 is given by Iblade,0 + Imass,0 .  
Using the parallel axis theorem, the first term = ( ) 6/3/ 22

cccccant lmlmI =+ , where we 
have assumed a triangular blade, for which the centre of mass of the blade is at lc/3 from 
the base. The second term is m1lc

2. 

It can be shown that lcm is given by 
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Combining all of the above, and using Laplace transforms, we can derive eqn 2. 
 
To add damping, we include a factor in eqn. 3 on the right hand side of the form . The 
resulting transfer function is 

θb
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The value of b can be suitably chosen to give a resonance with a certain Q value. 
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A 3 Parameters Used in Figures 1 and 2. 
 
Blade 1 (top) kc=4.19*10^3;     
  kw=6.14*10^5; 
  mc=1.24; 
  lc=0.5; 
  m1=18.2; 
  for damping b=(m1*lc*lc/Q)*((kc/m1)^0.5) 
  and Q=5 
 
Blade 2 kc=4.56*10^3; 
  kw=2.2*10^6; 
  mc=0.81; 
  lc=0.48; 
  m1=18.2; 
 
Blade 3 kc=4.47*10^3; 
  kw=1.24*10^6; 
  mc=0.54; 
  lc=0.4; 
  m1=36.2; 
 
 
A 4 Example of Two Blade Designs: same kc, different first internal mode frequency 
 
Blade 1 (as above)  
spring constant 4.19*10^3 N/m 
length = 0.5 m, base = 0.124 m, thickness = 0.005 m 
max. stress = 880 MPa 
first internal mode = 75 Hz 
 
Blade 1 (alternative) 
spring constant 4.19*10^3 N/m 
length = 0.457 m, base = 0.095 m, thickness = 0.005 m 
max. stress = 1050 MPa 
first internal mode = 90 Hz 
 
 
------------------------------------------------------------------------------------------------------------ 
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