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1 ABSTRACT
Dumbbell-shaped suspension fibers are proposed for the baseline design for advanced LIG
pensions, as a relatively simple way to meet longitudinal thermal noise requirements and lo
tical bounce frequency simultaneously. We present calculations of the noise spectrum and d
other advantages such a geometry might have.  We briefly discuss how such fibers may be
cated and compare with twisted ribbon geometries.

2 KEYWORDS
suspensions, fused silica, thermal noise

3 INTRODUCTION
The choice between fused silica fibers and fused silica ribbons for advanced LIGO has, until
been driven by the following tradeoff: ribbons can meet the proposed thermal noise requirem
but are difficult to make, while round fibers are relatively easy to make, but cannot meet the
requirements.

The inability of fibers to meet the noise requirements specifically relates to the tradeoff betw
low longitudinal displacement noise and low vertical bounce frequency.  If the length of the
pension and the suspended masses are taken as fixed, then the bounce frequency can be
only by reducing the fiber radius.  However, there is an optimal fiber radius that minimizes l
tudinal thermal noise, essentially by setting the strain to cancel the nonlinear thermoelastic
ing.  This optimal radius sets the vertical bounce frequency well above 10Hz.

Ribbons are, in theory, able to evade this tradeoff by making the ribbon width and thicknes
pendently variable.  The cross-section is set small enough for a suitably low vertical bounc
quency.  This leads to a large static strain, and thus a high thermoelastic damping strength
ribbon thickness is then made small enough (and the width correspondingly large) so that th
tion factor is large enough, and the thermoelastic peak frequency high enough, that the the
noise at 10Hz meets requirements.  The price paid for this flexibility is the difficulty of maki
ribbons.  Very little experience in manufacture of high-Q ribbons exists, they are harder tha
fibers to make strong and precise, and they must have twists along their length to prevent bu
during pendulum oscillation- the suitability of these twists is yet untested.

At low frequencies, the longitudinal thermal noise of a fiber suspension is predominantly ge
ated at the very ends of the fiber, where the bending is concentrated in pendulum motion. Th
sipation in the middle section of the fiber contributes very little.  The vertical bounce freque
by contrast, samples the whole of the fiber equally.  Therefore, we propose an improved fib
geometry, where the end regions have the optimal radius for longitudinal thermal noise, an
middle is made thinner to reduce the vertical bounce frequency- the dumbbell fiber.

This technical memo will first derive the equations of motion for a fiber made from several
shorter, uniform fibers joined at their ends.  It will then solve these equations and calculate
longitudinal thermal noise, and compare the calculations to those for a uniform fiber to show
the thinner middle regions do not increase the thermal noise at 10Hz. It will then derive equa
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for the vertical thermal noise and show that the vertical bounce frequency is reduced and the
close to requirements.  Lastly, we discuss some other potential merits of the dumbbell fiber
address some issues regarding their manufacture.

4 EQUATIONS OF MOTION FOR A DUMBBELL
FIBER

The equations of motion for a dumbbell-shaped fiber are not very different from those for a
form fiber.  However, the equations must be solved for each segment independently and th
tions matched through boundary conditions. We have produced Mathematica code that solv
equations for fibers and ribbons and produces thermal noise spectra, entitled ‘dumbbell fib
‘dumbbell test.nb,’ and ‘straight ribbon.nb.’  An outline of the theory is presented in the App
dix. In the notebooks, these numerical solutions are tested against known analytical solutio
straight fibers and against the approximation of Gretarsson et al., “Pendulum Mode Therm
Noise in Advanced Interferometers: A Comparison of Fused Silica Fibers and Ribbons in th
Presence of Surface Loss.”  The agreement is very good.  (Note that the Gretarsson formu
updated to include nonlinear thermoelasticity.) The modelling of dissipation may be unfamili
those using bench, so we describe them briefly below.

5 MODEL FOR THE DISSIPATION
The dissipation in the fiber motion is different for bending motion and stretching motion.  W
point out that for a thin beam, bending is simply a stretching that varies linearly across the 
having a maximum tension at the outside of the bend and a maximum compression at the ins
the bend, with no stretching at the midpoint.  We take a moment to clearly elaborate the los
mechanisms.

Intrinsic loss

This is just the loss of bulk fused silica independent of surface or thermoelastic effects.  It i

assumed frequency-independent with value 2x10-8, based on the most recent results from Syra
cuse.  It enters equally into bending and stretching motion.

Thermoelastic loss

This is the loss due to thermoelastic damping, which arises when there is nonuniform strain
material.  As such, it enters into damping but not into stretching.  The formula for the loss is

We ignore any longitudinal thermoelastic damping due to thermal gradients at the clamps or
boundary regions.

φTE
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Surface losses

These are losses in the surface of the fiber as analyzed by Gretarsson et al.  These will be
both in bending and in stretching; however, they will be more important in bending because
ing concentrates the stress energy in the surface region, while stretching stresses the whole
cross section equally. In the limit that the lossy surface is thin compared to the fiber itself, th
ference is a factor of two; we assume this to be the case. For thin wide ribbons the factor is

to three. The value taken for the surface loss in bending is (3x10-11m)/r, consistent with the value

used in bench, although a value of (2x10-11m)/r is more consistent with violin modes Q’s recentl
measured at Caltech.  We also note that the same value of surface loss is divided by r or b
thickness of the ribbon t when comparing fibers to ribbons, as appears to be the way it is d
bench, although the ribbon damping should be 3/2 larger according to Gretarsson et al.

6 RESULTS OF THE MODEL
The formalism described in the last chapter was implemented using Mathematica to calcula
thermal noise spectrum for a fused silica fiber supporting 10kg, with a length of .6m, compa
to the advanced LIGO baseline suspension (where four fibers support 40kg). The ends of th
were given thicknesses of 767um, to have a stress that cancels the thermoelastic damping e
These ends were 10cm long, and the middle 40cm was given a thickness of 380um.

Here is the thermal noise spectrum calculated by the model for this dumbbell fiber:
page 6 of 12
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Here is the thermal noise plot for the ribbon used in the advanced LIGO baseline model (not
twists have not been modelled):
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We see that both the dumbell fiber and the ribbon meet the thermal noise requirements at 
The fiber is slightly better at higher frequencies because it has no thermoelastic damping ne
pendulum frequency.

7 DISCUSSION
The results presented show that dumbbell shaped fibers can meet advanced LIGO noise re
ments, even though uniform fibers cannot.  This gives advanced LIGO another option besid
twisted ribbons in the suspension design.

The dumbell-shaped fiber is arguably superior to the twisted ribbon in several respects. This
is a fairly modest extension of technology already in hand, and could be made in several diff
ways: the center region can be drawn when the fiber is made or after it is installed.  The str
of such a design is essentially already proven both by Caltech and by Glasgow. Ribbons ha
yet been proven strong enough for advanced LIGO, and have not been tested with twists a

The quality factors of fiber suspensions are now in excess of 4x108, while those of ribbons are not
yet proven superior, or even equal.
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Given that they can meet the thermal noise requirements with relatively little risk, we sugges
dumbbell shaped fibers be adopted in the baseline design for advanced LIGO.

APPENDIX 1 EQUATIONS OF MOTION FOR A
DUMBBELL FIBER

We assume the fiber to be made of three segments, the outer two having identical lengths 
identical uniform diameters, the inner having a uniform diameter that is thinner.  The transit
between the sections are abrupt.  Each section is described by the dynamic beam equation

Here E is the Young’s modulus, I is the bending moment of the fiber, T is the tension, andρ is the
linear mass density of the fiber.  If we assume sinusoidal motion, for which

then the general solution takes the form

where i labels the fiber segment, and

and the A,B,C,D are constant coefficients determined by the boundary conditions.  Notice t
dissipation in the fiber is not modelled here. This is because the loss is assumed to be so sm
to not perceptably influence the dynamics. This approximation fails very close to resonance
quite good away from resonance.

EI X
iv( )

z t,( ) T X'' z t,( )– ρ Ẋ̇ z t,( )=

X z t,( ) X z( )eiωt
=

Xi z( ) Ai ktiz( )cos Bi ktiz( )sin Ci keiz( )cosh Di keiz( )sinh+ + +=

kti

T– T
2

4EIiρiω
2
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2EIi
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T T
2
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2
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For three fiber segments, there are 12 coefficients, requiring 12 boundary conditions. They
the top of the fiber, rigid clamping to fixed support

At the first joint between segments (z1),

These are, in order, conditions that the fiber is continuous, that its slope is continuous, that
moment is continuous, and that the force is continuous.  At the second joint between segm
(z2),

At the bottom of the fiber, an applied force, with the constraint that the fiber end not rotate,

This constraint against rotation approximates the four-fiber suspension design, in which pe
lum and pitch motion are nearly decoupled.

X1 0( ) X1' 0( ) 0= =

X1 z1( ) X2 z1( )=

X1' z1( ) X2' z1( )=

I 1X
1
'' z1( ) I 2X

2
'' z1( )=

EI1X
1
''' z1( ) T X1' z1( )– EI2X

2
''' z1( ) T X2' z1( )–=

X2 z2( ) X3 z2( )=

X2' z2( ) X3' z2( )=

I 2X
2
'' z2( ) I 3X

3
'' z2( )=

EI2X
2
''' z2( ) T X2' z2( )– EI3X

3
''' z2( ) T X3' z2( )–=

EI3X
3
''' z3( ) T X3' z3( )– G= X3' z3( ) 0=
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These 12 equations in 12 unknowns are solved numerically, yielding the motion of the fiber
response to a force G at frequencyω. The dissipation W associated with this motion is estimate

by multiplying the energy in bending 1/2EI(X’’)2 per unit length of fiber by2π times the loss
angle of the fiber as described in section 5, and integrating over the fiber length.  The force
fiber end equals the force required to accelerate the suspended mass plus some additional
force. By subtracting the mass acceleration from G we obtain the driving force F, and thereb
ratio of the driving force to velocity of the mass, which is the admittance Y. Since the calcula
of the fiber bending assumes no loss, the admittance is infinite at the fiber resonances, so 
culation is unreliable there.

The thermal noise is given by the fluctuation-dissipation theorem by

The real part of the admittance can be evaluated by noting that the dissipation is given by

We are free to choose F to be real, and since we have already calculated the dissipation, we
result

Finally, we must correct our model to account for the actual four-wire geometry. Since our m
calculates the deflection of a single wire, the force required to deflect four wires that amoun
four times larger, and the dissipation is also four times larger. Plugging these changes into th
mula for Re[Y] thus reduces it by four.  The vertical bounce motion of the system is simpler
model.  The speed of sound for longitudinal waves in the fiber is ~6km/s, so for frequencies
below 6km/s/.6m=10kHz the system is well approximated by a mass on a spring, and the th
noise spectrum is just

x
2

f( )
kBT

π2
f
2

------------Re Y f( )[ ]=

W Re F[ ]Re v[ ] td

0

2π ω⁄

∫ Re F[ ]Re FY[ ] td

0

2π ω⁄

∫ Re Y[ ] Re F[ ]( )2
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0

2π ω⁄
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Re Y[ ] W

πF
2
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The spring constant of the fiber is just the spring constants of its three sections combined in
lel; in the limit of small dissipation the real and imaginary parts are

where k1, k2, φ1, φ2 are the spring constants and losses for the (1) end and (2) middle of the fi

The spring constant for the ith segment is

The dissipation of a segment is discussed in section 5.

x
2
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2πf k m 2πf( )2
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2
k
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