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1 OVERVIEW

The LIGO global diagnostics system (GDS) provides diagnostics test capability for perfor
stimulus-response tests. Diagnostics tests are divided into five groups:(i) sine response tests
which include multiple stimulus and multiple response, harmonic distortion and two-t
intermodulation,(ii) swept sine response which determines transfer functions,(iii) FFT tools
which perform power spectrum estimates and cross-correlation measurements,(iv) time series
measurements which measure the response to a trigger signal, and(v) pseudo-random stimulus
response tests which utilize wide-bandwidth excitation signals.

The diagnostics test tools provided by GDS are not meant to replace more traditional me
diagnose the instrument—such as stand-alone network and spectrum analyzers—but ra
complement these tools for cases where test points are not readily available or where mea
points are at far distant locations. In particular, digital servo controllers are implementing d
test points which can be used to inject excitation signals and to extract intermediate fee
signals. The diagnostics test system uses the LIGO data acquisition system to collect s
simultaneously from different subsystems. It implements an excitation engine for generatin
signals which are synchronized with GPS time and which are provided to both digital and a
subsystems at all major locations.

Diagnostics tests are run from the control room or from any machine which is connected t
control and monitor network. Data from the instrument are obtained thought the network
server which in turn gets the data through a reflective memory network which connects to th
collection units (see Fig. 1 and T980026-00). Data collection units can acquire data from a
signals (ADCU), from digital subsystems (DDCU), or from EPICS channels (NDCU).

Test signals are generated by an excitation engine which is connected to the same ref
memory network which provides both read-back and interface to the digital servo systems
excitation engine also implements digital-to-analog converters which provide test signa
analog subsystems. Excitation engines are available in every building. Additionally, rem
controlled stand-alone signal generators can be used in temporary setups. Digital servo s
implement a test point interface which allows the user to select a finite set of test inputs an
outputs which are then read or written to and from reflective memory, respectively (see
T980020-A).

Two separate user interfaces to the diagnostics test system are provided:(i) a command line
interface which allows the user to manually adjust test parameters, start a test and save the
and(ii) a graphical user interface with identical capabilities. The results of a diagnostics tes
be stored in the LIGO lightweight data format which follows the extensible markup langu
(XML) specifications.

A schematic overview of the diagnostics test software is shown in Fig. 2. It consists o
following components:

1. a test organizer which runs tests by dividing them into individual measurement step
schedules them with the excitation engine, the network data server and the analysis pro

2. a command line interface to the test organizer,
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Figure 1: Overview of the data acquisition system (green boxes), the diagnostics system (re
the data analysis system (blue). The physical environment monitor and the detector are sh
top.
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3. a graphical user interface for the most commonly used tests,
4. a graphical user interface to the excitation engine for manual operation,
5. a graphical user interface to the testpoint manager,
6. an excitation engine which controls stand-alone function generators (DS340s) and whic

generate arbitrary waveforms and write them to a digital-to-analog converter or to digita
points residing in reflective memory,

7. an interface to the network data server to collect data,
8. an algorithm library which is used to analyze the measured data and produce the diagn

test results,
9. a data wrapper which manages data and parameters associated with a test, and
10. an XML interface which saves and restores diagnostics parameters, data and results

from disk in the LIGO lightweight data format, respectively.

Excitation

command line

repeater
microstepper

scheduler

test organizer:

TestpointsDiagnostics

GUI

excitation
engine
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C

te
st

 p
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nt
s
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data wrapper

server

control flow

data flow

network interface

disk interface

Figure 2: Overview of the diagnostics test software organization.

VME host

part of the DAQ system

test point
manager

test points
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2 USER INTERFACE

2.1 INSTALLATION

TBD.

2.2 GETTING STARTED

The diagnostics program is started by typing ‘diag –opt’, where ‘–opt’ is a list of opti
specifying initial start-up parameters. The available options are:

The diagnostics kernel can either run on a local machine or on a remote machine. In the firs
it is loaded dynamically and requires the shared object library ‘libgds.so.1’ to be available e
in the local directory or the default system library directory.

Option Description

–help shows a help text.

–g
starts the graphical user interface allowing the user to select a
diagnostics test.

–g ‘test’

starts the graphical user interface and preloads the specified test or
interface. Possible values for ‘test’ are:
awg: arbitrary waveform generator
fft: Fourier tests, includes power spectrum and cross-correlation
randomresponse: pseudorandom response test,
    pseudorandom cross spectrum test
sineresponse: (multiple) sine response test, harmonic distortion test,
    two-tone intermodulation test
sweptsine: swept sine test
timeseries: time series measurement
testpoint: testpoint control
triggerresponse: single and multiple trigger response test

–c starts the command line interface of a diagnostics test.

–i shows information about the configuration and services available.

–l runs the diagnostics kernel on a the local machine (default).

–s ‘server’
runs the diagnostics kernel on the specified remote machine. Requires
that the diagnostics kernel daemon is installed on the remote machine.

–r ‘filename’

reads the specified file as a command line script for initialization. All
commands which are available through the command line interface can
be used in a script file. Lines starting with a ‘#’ are comments. This
script is executed after all other options are parsed, but before the first
user input.

–t ‘filename’ uses the specified file as a template for a new diagnostics test.

‘filename’
if exists, opens the specified diagnostics test file; if not, uses it as the
default filename for saving the diagnostics test results.
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2.3 COMMAND LINE INTERFACE

The command line interface presents a common way to control diagnostics tests, the ar
waveform generator and the test point interface. All these functions are provided by conne
the user interface to a diagnostics kernel, and by passing messages forth and back. The fo
commands are implemented as part of the user interface:

Any command which is not recognized by the command line interface will be send to
diagnostics kernel. In case of an error the message “unable to send command to diagn
kernel” is returned, otherwise the reply string of the command is displayed.

2.3.1 Diagnostics Tests

Diagnostics tests are controlled through named variables. A named variable can contain
anything, for instance, it can contain a test parameter, a time series of the raw data, or a
array. Thus, only a small set of commands is necessary to setup and run a diagnostics te
can be separated into the following categories:

i) commands to set and read parameters,
ii) commands to start and stop a diagnostics test,
iii) commands to save or restore settings, data and results of a diagnostics test, and
iv)notification messages which are passed back from the diagnostics kernel to inform the

that a test has finished, or that a new result is available.

Command Description

help shows help text.

open

loads a diagnostics kernel on the local machine and established a
connection. It returns a list of the supported capabilities.
Return: supported capabilities: testing testpoints awg
Possible error messages:
– diagnostics kernel already connected
– unable to connect to local diagnostics kernel

open ‘server’

opens a new connection to a diagnostics kernel on the specified
remote machine.
Return:
Possible error messages:
– diagnostics kernel already connected
– unable to connect to remote diagnostics kernel

close

closes the connection to the diagnostics kernel
Return: none
Possible error messages:
– not connected to a diagnostics kernel

read ‘filename’

opens the specified file and interprets each line of the file a command.
Lines which start with ‘#’ are ignored.
Return: echo of commands found in file
Possible error messages:
– file not found

exit/quit quits the command line interface after closing any open connections.
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When running the diagnostics kernel on a remote machine the save and restore functions c
principle access either the local or the remote file system. The command line interface su
both possibilities, but defaults to the local machine.

The following list of commands is used to control diagnostics tests:

Command Description

help ‘test’
shows help text for specified test. Use “help *” for a list of available
tests.

run

starts a diagnostics test.
Return: running
Possible error messages:
–
–

abort

aborts a diagnostics test.
Return: aborted
Possible error messages:
– test is not running

pause

Pauses a diagnostics test.
Return: test paused
Possible error messages:
– test is not running

resume
Resumes a paused diagnostics test.
Return: test resumed
– test is not running

set ‘variable name’ = ‘value’

Sets the specified variable to the given value(s).
Return: none
Possible error messages:
– illegal argument

get ‘variable name’

Gets the value(s) of the specified variable(s). The variable name can
contain the wildcard character ‘*’.
Return: variable(s) and value(s)
Possible error messages:
– illegal argument

del ‘object name’

Erases a data objects belonging to scans, environment, plot, channel
data and result.
Return: ‘object’ erased
Possible error messages:
– illegal argument

defined ‘variable name’

Tests if a variable of the given name is defined. Use “defined *” to print
a list of all defined variables.
Return: yes/no, or list of names
Possible error messages: none

brief
if on (default), the value returned by get is truncated if it is very long.
Return: brief is on/off.
Possible error messages: none
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Each diagnostics test defines a set of valid named variables—including their data type—whi
necessary to run the test, or which are returned as a result. Variable names should not c
spaces, tabs, nor any other special character. Variable names are case-insensitive.

2.3.2 Arbitrary Waveform Generator

Arbitrary waveform generators are implemented separately for every interferometer nod
interferometer node can have multiple excitation engines (CPUs or stand-alone signal gene
each of them consisting of multiple slots which can be used independently to send wavefo
different channels. Commands to the arbitrary waveform generator are of all the form
command arguments’. The following commands are supported:

save –‘flags’ ‘filename’

saves the data of a diagnostics test. The flag specifies the data to be
saved: all (all data associated with a diagnostics test), ext (extended
data, all but images), std (standard data: parameters, settings and
result), or prm (parameter data only). If the flag is omitted the default
behavior is standard. If the filename starts with a ‘:’ and if the command
line interface is connected to a remote machine, the test is saved on
the remote machine.
Return: ‘filename’ saved
Possible error messages:
– illegal filename

restore –‘flags’ ‘filename’

restores the data of a diagnostics test. The flag specifies the data to be
restored: all (all data associated with a diagnostics test), ext (extended
data, all but images), std (standard data: parameters, settings and
result), or prm (parameter data only). If the flag is omitted the default
behavior is standard. If the filename starts with a ‘:’ and if the command
line interface is connected to a remote machine, the test is restored
from the remote machine.
Return: ‘filename’ restored
Possible error messages:
– file not found

Command Description

help shows help text.

channels displays all excitation channel names

show ‘node’.’awg’

shows the configuration of an arbitrary waveform generator.
Return: AWG information
Possible error messages:
– arguments for show are 'node'.'awg'
– node%i/awg %i not available

Command Description
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The ‘%’ arguments in the return message are replaced by the corresponding value and foll
C printf convention. Error message are preceded by the word “error:”. If the command is no
the above, the message “unrecognized command” will be returned.

The command arguments are explained below:

new ‘channel’

reserves a slot in an arbitrary waveform generator for the specified
channel. Requires the full channel name and returns a non-negative
slot number if successful. (The returned slot number also encodes
‘node’ and ‘awg’ number and is unique for each system.)
Return: slot %i
Possible error messages:
– no slot available or invalid channel name

free ‘slot’

frees a previously reserved slot of an arbitrary waveform generator
Return: slot %i freed
Possible error messages:
– invalid slot number
– slot not available or invalid

set ‘slot’ ‘waveform’
   {, ‘waveform’}

selects a new waveform in the given slot of an arbitrary waveform
generator. If the waveform argument is omitted the slot is cleared and
the output reset to zero.
Return: slot %i enabled
Possible error messages:
– invalid slot number
– invalid arguments
– not enough memory
– unable to download waveform
– unrecognized waveform
– slot not available or invalid
More than one waveform can be specifed by using a comma separated
list of waveforms.

clear ‘node’.’awg’

clears all waveforms from a given arbitrary waveform generator and
frees all slots.
Return: reset succeeded
Possible error messages:
– reset failed
– node %i/awg %i not available

stat ‘node’.’awg’

shows statistical performance data of a given arbitrary waveform
generator.
Return: statistics information
Possible error messages:
– arguments for stat are 'node'.'awg'
– node %i/awg %i not available
– no statistics available
The statitical record can be reset by specifying an additional ‘r’.

Command Description
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Argument Description

‘node’ interferometer node, e.g. 0 for H1 and L1, and 1 for H2.

‘awg’
identification number of excitation engine, or stand-alone signal
generator: starts with 0, and the stand-alone units generally use 5.

‘channel’
full channel name of an excitation or read-back channel,
e.g. “H1:LSC–TEST_1”.

‘slot’ slot number as returned by new.

‘waveform1’

specifies a periodic waveform of format:
   ‘func’ ‘frequency’ ‘amplitude’ ‘offset’ ‘phase’ ‘ratio’
where the frequency is given in Hz, the amplitude and phase in V, and
the phase in rad. The ratio parameter can be used to specify the ratio
between high and the full period of a square wave (default is 0.5).

‘waveform2’
specifies an impulse:
   impulse ‘frequency’ ‘amplitude’ ‘duration’, ‘delay’
A frequency value of 0 indicates a single pulse.

‘waveform3’
specifies a constant offset:
   const ‘amplitude’
where the amplitude is specified in V.

‘waveform4’
specifies a band-limited noise source of format:
   ‘noise’ ‘start frequency’ ‘stop frequency’ ‘amplitude’ ‘offset’

‘waveform5’

specifies a sweeping sine wave of format:
   sweep ‘start frequency’ ‘stop frequency’ ‘start amplitude’
   ‘stop amplitude’ ‘sweep time’ ‘sweeptype’ ‘updn’
where the sweep time is given in sec.

‘waveform6’

specifies an arbitrary waveform of format:
   arb ‘sample frequency’ ‘scaling’ ‘trigger type’ ‘rate’ ‘value 1’
   ‘value2’... ‘value n’
where the values are given in V. The output voltage is calculated by
multiplying the specified values with the scaling factor. The trigger can
either be continuous which repeats the waveform indefinitely, wait
which waits for a trigger, or trigger which outputs the (previously
stored) waveform exactly once. If a continous trigger is specifed,  the
rate indicates trigger rate. If a random trigger is specifed, the arbitrary
waveform will be aplied at random time times with an average rate
compatible with the specified one.

‘func’ one of the following: sine, square, ramp, or triangle.

‘noise’
one of the following: normal (normal distributed noise), or uniform
(uniformly distributed noise).

‘sweeptype’ one of the following: linear, or log.

‘updn’ one of the following: + (up), – (down), or ‘blank’ (bidirectional)

‘trigger type’ one of the following: c (continuous), r (random), w (wait), or t (trigger)
page 13 of 84
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2.3.3 Testpoint Control

Each interferometer node has its own testpoint control interface. Commands to the tes
interface are of all the form ‘tp command arguments’. The following commands are support

Error message are preceded by the word “error:”. If the command is not recognized, the
message “unrecognized command” will be returned.

2.4 GRAPHICAL USER INTERFACE

The graphical user interface is using the same message passing interface to communicate
diagnostics kernel. Thus, all functions of the diagnostics kernel which are accessible throu
command line interface can also be used by the graphical user interface. A description
message passing mechanism can be found in Appendix A.2.

Command Description

help shows help text.

show ‘node’

shows the configuration of a test point interface.
Return: testpoint information
Possible error messages:
– invalid node number
supported wildcard: “show *” to show test point information of all
nodes.

set ‘node’ ‘number1’...
‘number n’

sets testpoints of the specified node.
Return: test point set
Possible error messages:
– invalid node number
– unable to set test point

clear ‘node’ ‘number1’...
‘number n’

Clears testpoints from the specified node.
Return: test point cleared
Possible error messages:
– invalid node number
– unable to clear test point
supported wildcards: “clear *” to clear all testpoints from all nodes, and
“clear ‘node’ *” to clear all testpoints from the specified node.
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2.4.1 Common Properties of Diagnostics Tests

2.4.1.1 File Handling

2.4.1.2 Synchronization Tools

2.4.1.3 Channel Selection

2.4.1.4 Exporting Data

2.4.1.5 Parameter Sweep

2.4.1.6 Parameter Optimization

2.4.2 Diagnostics Tests

2.4.2.1 Sine Response, Harmonic Distortion and Two-Tone Intermodulation Tests

2.4.2.2 Swept Sine Tests

2.4.2.3 Fourier Tests

2.4.2.4 Time Series Measurements

2.4.2.5 Trigger Response Tests

2.4.2.6 Random Stimulus Response Tests

2.4.3 Control Screens

2.4.3.1 Arbitrary Waveform Generator

2.4.3.2 Testpoint Control
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3 ANALYSIS ALGORITHMS

3.1 FFT MEASUREMENTS

An FFT program (such as the FFTW, Fastest Fourier Transform in the West) will be us
compute theN-point DFT (discrete-time fourier transform) of a data streamx:

(1)

3.1.1 Sampling rate reduction: multistage decimation

Performing anN-point FFT analysis of a data channel at the sampled rate gives a full s
analysis, with spectral information in the band 0–fs/2. For baseband measurements (frequen
spans which start at DC) with increased resolution, the duration of the time record mu
increased. This is done by decimating the data appropriately, while keeping the FFT length
at N. To avoid aliasing in the decimation process, the data must be low-pass filtered with a d
filter. For large decimation factors, it is more efficient to implement multiple stages of decima
as shown in Fig. 3.

To simplify (though not necessarily optimize) the computation we fix the single stage decim
at a factor ofDi = 2. Thus decimation factors of 2n (n an integer) are possible by computingn

X k( ) x n( ) e
2πikn– N⁄⋅

n 0=

N 1–

∑=

x(n)
h(k)

y(m)

Digital anti-aliasing
filter

Sampling rate
compressor

↓ D
w(n)

h1(k) ↓ D1 h2(k) ↓ D2 h3(k) ↓ D3

x(n)

Fs Fs/D1 Fs/D1D2 Fs/D

y(m)

Figure 3: Top: Block diagram of a decimator. The digital low-pass filter is an FIR filter:

,

where N is the number of filter coefficients. The sampling rate compressor simply selects
Dth output sample. Bottom: Multistage decimation process.

w n( ) h k( )x n k–( )
k 0=

N 1–

∑=
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stages of decimation, leading to FFT spans of DC –Fs/2
n +1 (whereFs is the channel sampling

rate). This simplification means that the coefficients of the digital low-pass filters in each stag
identical: .

Sampling rate converters generally implement FIR digital filters because of their linear p
response, a necessary feature in our application as well. The diagrams in Fig. 3 imply a d
form realization of the FIR filter. This is an inefficient method of calculation, since the filte
operating at the full input sample rate, but only everyDth output sample is kept. It is more
efficient to embed the downsampling operation within the filter, as shown by the realizatio
Fig. 5. This structure also takes advantage of the symmetry of the filter coefficients for a lin
phase FIR filter – i.e., that ; this allows halving the number of multiplicatio
to compute the filter.

Another technique to reduce the computation time in a decimate-by-2 stage is to use ahalf-band
filter. A half-band filter is one which satisfies two constraints: the ripple in the pass- and s
bands are equal; the pass- and stop-band cutoff frequencies are related to the Nyquist fre
as: . These symmetries result in about 50% of the filter coefficients being z
cutting down the number of multiplies by roughly a factor of 2. Care must be taken in the de
of the digital filter so that when multiple stages are used (up to ~10 stages may be us
practice), the passband ripple from each stage does not accumulate into a much larger rippl
output. Two types of filter design methods have been used to generate specific filters:

1. An FIR filter designed using a least squares technique trades off increased error at the 
edge for better response over most of the passband; thus a cascade of these filters retain
passband error, since the band edge error of one filter is cut off by the next filter.

2. The McClellan-Parks filter design algorithm gives a constant error over the pass- and
bands. Compared to the least squares design, this filter has better performance (lower
near the band edge; however, multiple stages build up more error in the lower part of the
band.

Frequency responses for both types of filter, each of order 42, are shown in Fig. 4; ea
computed with 12 multiplications per output point. Several FIR filters are available to cho
from (more can always be added) to trade-off between execution speed and error. C
selections are:

Id Type Order
Passband

cutoff
frequency 1

1. as a fraction of the Nyquist frequency

Passband Ripple (dB) Stopband
attenuation

(dB)Midband Edge

2 Least-squares 22 0.45 0.1 0.8 30-40

1 Least-squares 42 0.45 0.02 0.1 40 - 56

3 Least-squares 82 0.45 0.0006 0.01 60 - 90

4
McClellan-Parks

(equiripple)
42 0.45 0.05 43

Table 1: Decimation filters.

h1 h2 … hn= = =

h n( ) h N 1– n–( )=

f p f s+ f N=
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Figure 4: Magnitude response of two half-band, order 42 FIR filters. On the left is the responf
a single filter stage, and the right shows the passband response for a single stage (solid lin
for 7 cascaded decimation stages (dashed line). (a): filter designed using a least-squares m
(b) filter designed using the McClellan-Parks method. The normalized pass- and stop-bandf
frequencies are 0.45 and 0.55, respectively.
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3.1.2 Zoom Analysis

In order to start an FFT span above DC, the data must first be down-converted so that the
frequency of the span is shifted to DC. This is accomplished with the heterodyne proce
shown in Fig. 6. The heterodyne multiplication produces a complex sequencey from the real data
sequencex:

(2)

↓ D ↓ D+

z – 1
+

z – 1

↓ D ↓ D+

z – 1
+

z – 1

↓ D ↓ D+

z – 1

+

h(0)

h(1)

h(N/2 – 1)

x(n)

y(m)

•

•

• •

•

Figure 5: Efficient structure for computation of a decimator that exploits the symmetry of the
filter coefficients. For a half-band filter, half of the coefficientsh would be zero, and thus no
computed.

y n( ) e
j2π f cn–

x n( )⋅=
page 19 of 84



LIGO-T990013-B

elect
d; the
they

ative
The DFT of this sequence,

(3)

shows that the frequenciesk of the original sequencex have been shifted to the frequenciesk – fc
of the sequencey. After heterodyning, we need to low-pass filter and decimate the data to s
the frequency span of interest. The data are now complex, so a complex FFT is require
negative frequencies ofY in this case are independent of the positive frequencies, and in fact
contain the lower half of the span, as shown in Fig. 6.

Y k( ) x n( ) e
2πi

n
N
---- k f c+( )–

⋅
n 0=

N 1–

∑=

Digital ↓ D

+x(n)
•

LPF

Digital ↓ D
LPF

e
j– 2π f cn

yR(n)

yI(n)

Complex
FFT

Figure 6: Block diagram of heterodyning for zoom analysis. The center frequencyfc is
downconverted to DC, and the lower half of the frequency span is mapped to neg
frequencies. The full span of the zoom,∆f, is again restricted to (1/2p) multiples (p an integer) of
the original channel sampling frequency. The decimator consists of (Fs/2∆f) stages of the single

Decimator

fc fN

X(k)

0

Y(k)
Zoom frequency

band

∆f

Y0 Y1 Y2 …… YN
2
---- 1–

Y, N
2
----

YN
2
---- 1+

…… YN 1–, ,, , ,

fc ≤ f < fc+∆f /2 fc–∆f /2 < f < fc

FFT coefficients ofY, and
relation to frequencies of
original datax:
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3.1.3 Data Windowing

All FFTs are performed on windowed data. The following windowing functions are offered:

3.1.4 Power spectrum estimation using the FFT

Welch’s method of power spectrum estimation is implemented according to the follow
algorithm:

1. the data is broken up intoD, possibly overlapping segments (50% overlap typical), ofN points
each; each segment may then optionally be ‘de-trended’ (i.e., the mean, or best linear fi
be removed) before being windowed

2. each (windowed) segment is transformed with anN-point FFT, givingXi(k) (i = 1 –D).

Window Type
Time-domain sequence

0 ≤ i ≤ N – 1

Max.
Amplitude

error
Comments

Uniform no window 4 dB
useful for looking at

transients

Hanning 1.5 dB
general purpose;
lowest noise floor

Flat-top 0.02 dB
very wide pass band,

but most accurate
amplitude meas.

BMH 0.8 dB

large dynamic range
(good for separating

two close frequencies,
with widely different

amplitudes)

Table 2: Windowing functions that can be applied to the data prior to Fourier transform
Amplitude error in the transformed data occurs for frequencies not exactly at a bin frequen

wi
1
2
--- 1

2πi
N 1–
------------- 

 cos–=

wi
1
2
--- 1 1.93

2πi
N 1–
------------- 

 cos–
=

1.29+
4πi

N 1–
------------- 

 cos 0.388
6πi

N 1–
------------- 

 cos–

0.028
8πi

N 1–
------------- 

 cos+ 


wi
1
2
--- 1 1.36109

2πi
N 1–
------------- 

 cos–
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0.39381+
4πi

N 1–
------------- 

 cos

0.032557
6πi

N 1–
------------- 

 cos– 
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3. the magnitude squared of each segment is properly scaled, forming the periodogramPi(k) of
each segment:

(4)

whereW accounts for the power in the window:

(5)

This normalization is chosen so that the value at each point in the periodogram gives the e
density in units of mean-squared-amplitude.

4. the average of theD periodograms is computed to form the power spectrum ofx:

(6)

5. scaling factors may be applied to convert from mean-squared-amplitude (msa) to ms
(root-mean-square)/Hz–1/2, peak, engineering units, etc.

If the data has been mixed down for zoom analysis, the periodogram is formed some
differently, as indicated in Fig. 6.

3.1.5 Cross-spectral density

The cross-spectral density between two data streamsx(n) andy(n) (the sampling rates of the two
channels, if not already equal, must be equalized by the sample rate conversion described
is computed as follows:

1. each data stream is segmented and de-trended & windowed as above
2. each segment of each channel is transformed with anN-point FFT
3. the FFT segment pairs are multiplied as:

(7)

where * denotes complex conjugate.

4. the average over the segments is taken, as above, to form

Pi 0( )
1
W
----- Xi 0( )

2
=

Pi k( )
1
W
----- Xi k( )

2
Xi N k–( )

2
+[ ] k 1 2 … N

2
---- 1– 

 , , ,= =

Pi N 2⁄( )
1
W
----- Xi N 2⁄( )

2
=

W N w
2

n( )
n 0=

N 1–

∑≡

Pxx k( )〈 〉 1
D
---- Pi k( )

i 1=

D

∑=

Pxy k( )
1
W
----- X k( ) Y k( )∗ , k⋅ 0 1 … N 1–, , ,= =

Pxy k( )〈 〉
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3.1.6 Transfer function estimates

The transfer function estimate given an input channelx and an output channely is the quotient of
the cross-spectrum ofx andy and the power spectrum ofx:

(8)

3.1.7 Coherence estimates

The coherence between two signal vectorsx andy is computed as:

(9)

3.2 SWEPT SINE MEASUREMENTS

3.2.1 Digital demodulation & frequency response calculation

Consider a signals(t) which contains a sine wave of frequencyω, of which we wish to know the
amplitude; expressed as a Fourier series:

(10)

The desired coefficient is calculated using the integral

(11)

whereT = 2nπ/ω (i.e., an integral number of cycles). We only have a sampled version ofs(t), of
course, which complicates the integration over an integral number of cycles; this is addres
the next section. The steps in making a sine detection and frequency response calculation

1. For the desired channel, obtain the number of data points required by the integration ro
(see below).

2. Multiply the data set by .
3. Integrate the real and imaginary parts of (2) over an integral number of sine wave cycles,

the numerical integration algorithm (see below), to compute the complex amplitudec1.
4. Repeat steps 1-3 for the desired number of averages (user-specified).

Txy k( )〈 〉
Pxy k( )〈 〉
Pxx k( )〈 〉

-------------------- , k 0 1 … N
2
----, , ,= =

Cxy 0( )〈 〉
Pxy 0( )〈 〉 2

Pxx 0( )〈 〉 Pyy 0( )〈 〉⋅
----------------------------------------------=

Cxy k( )〈 〉
Pxy k( )〈 〉 2

Pxy N k–( )〈 〉 2
+[ ]

Pxx k( )〈 〉 Pyy k( )〈 〉⋅
------------------------------------------------------------------------- k 1 2 … N

2
---- 1– 

 , , ,= =

Cxy N 2⁄( )〈 〉 Pxy N 2⁄( )〈 〉 2
=

s t( ) cn e
iωnt⋅

n ∞–=

∞

∑=

c1
1
T
--- s t( )e iωt–

td
0

T

∫=

e
iωt–
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5. The values ofc1 are averaged to form <c1>; this can be used to compute the (comple
frequency response with other channels. The individual coefficientsc1 from each of the
average measurements are also stored; these are needed to compute the coherence w
channels (see below).

3.2.2 Numerical integration algorithm

The numerical integration of equation (11) is done with a modified Newton-Cotes metho
follows. We find the fifth-order polynomial that passes through six adjacent points of
demodulated data series (real and imaginary treated separately), and integrate this poly
over the middle two points. We then move forward one sample, and find and integrate the
polynomial; this process is repeated until the end of the data set, the sum of all the steps giv
the desired integral.

The last integration step must be modified to end the integration at an exact integral num
sine wave cycles. This is done by again finding the fifth-order polynomial that passes throug
last six points, but only integrating over a portion of the span covered by the middle two po
stopping where a total span of an integral number of cycles has been reached.

Such an integration step can be reduced to 6 coefficients which multiply the 6 adjacent data
to give the integral over the middle two points; the sum of these 6 coefficients is unity
integrating a constant function using this method). Thus, when the whole data s
convolved with these 6 coefficients, nearly all data points are simply multiplied by unity; on
points at the beginning and 6 points at the end are multiplied by non-unity coefficients. Note
for each different detection frequency or integration time, the trailing coefficients mus
recomputed (the lead coefficients are always the same).

This integration algorithm is similar to Simpson’s rule, but uses a higher order approximatio
increased accuracy. The accuracy is tested by integrating

(12)

which should integrate to zero. This is shown in Fig. 7, as a function of the number of data p
in a cycle. As this shows, the method loses accuracy as the frequency increases (fewer po
cycle). To further improve the accuracy, we also pass the demodulated data through an FIR
pass filter, prior to integration. We use a 20-tap FIR filter, with a cut-off frequency
0.1×(Nyquist frequency). In fact, the convolution of this filter with the data can be combined w
the integration operation, giving a long coefficient vector that is simply dotted (dot-product)
the data. Most of the coefficients in this vector are unity, with 24 non-unity lead coefficients
25 non-unity trailing coefficients (the latter must be computed for each detection frequency

The number of data points used by the integration algorithm, per average, is given by

(13)

whereNlead= 24 is the number of leading coefficients,tint is the integration time (corresponding
to an integral number of cycles of the sine wave),fs is the sampling frequency, and ‘floor(x)’ gives
the largest integer not greater thanx.

f x( ) 1=

1
T
--- e

inωt–
td

0

T

∫

npt Nlead 1 floor t int f s⋅( )+ +=
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Figure 7: Accuracy of numerical integration algorithm.Top: plotted is the integral of equation
(12) as a function of the number of points in a cycle, using Simpson’s rule (modified to work
a fraction of the last span) (top/red), and the modified 5th-order polynomial method (bo/
black). The points are all computed using a half-integral number of points in a cycle, since t
where the error is the largest.Bottom: Error in the integration of a unit amplitude sine wave, plu
a DC offset of 100; uniformly distributed random values in the range 0-0.1. The sine wa
sampled at 16384 Hz, and each frequency is detected with 2 averages of 100 cycles. Th
increase above ~7.7 kHz because there are very few data points per cycle for the integ
algorithm; below 7.7 kHz the error is due to the random values (noise) added to the data.
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3.2.3 Integration time

The integration time may be specified either as a time duration, or in the number of sine
cycles. If specified as a time interval, it is checked that it equals an integral number of cycl
the sine detection frequency; and if not, it is set equal to the nearest cycle number. For det
frequencies near a channel’s Nyquist frequency, we want to ensure that a sufficient num
cycles are integrated over, and so we set a minimum integration time that is equal to 10 cy
the Nyquist frequency (1.2 msec for a 16384/sec sample rate).

3.2.4 Settling time

At each new frequency in a swept sine test (or a sine response test), the test channels are
to ‘settle’ before a sine detection is performed on the data. The settling time is nominally 10
the integration time. See also section 4.4.

3.2.5 Coherence calculation

Given a pair of channels on which multiple-average sine detection has been performe
coherence between these two channels can be calculated as follows:

(14)

where {c1} and {d1} are the sets of complex amplitudes resulting fromn sine detections on each
of the two channels, and the averaging is performed over thesen values.

3.3 SINE RESPONSE MEASUREMENTS

A sine response test is using the same integration algorithm as a swept sine test to det
transfer coefficients, but can use multiple sine wave excitations simultaneously. This allo
determine non-linearities and transfer matrices of multi-dimensional input-output problems.
response tests with a single excitation signal will automatically compute a harmonic ana
tests with exactly two excitations will perform a two-tone intermodulation analysis and tests
two or more excitations and with the same number of excitation readback channels
automatically compute the transfer matrix.

3.3.1 Harmonic Analysis

Assuming an excitation signal is applied at frequency , and the complex amplitude/p
coefficient, , is measured on a channel , then the complex amplitude/phase coefficie
integer multiples of the fundamental frequencies represent the harmonic coeffici

. The total harmonic distortion, , can be written as

(15)

c1 d1
∗⋅〈 〉 2

c1
2〈 〉 d1

2〈 〉
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3.3.2 Two-Tone Intermodulation

A two-tone intermodulation test uses two different frequencies to excite the system
determines non-linearities by calculating the complex amplitude/phase coefficients at the su
the difference of these frequencies.

3.3.3 Transfer Matrix Measurements

Assume there is a linear relation between a set of channels  and :

(16)

with the transfer matrix. Ideally, one would excite each channel individually and mea
the response , thus, determining each row of separately. In reality, the excitation mig
be orthogonal in and one will end up with measurements of both and . Choosin
different sine wave frequencies—one for each excitation—one can make all measure
simultaneously by determining the corresponding transfer coefficients. If we form matrices
the measure vectors  and ,

(17)

where the indices and are denoting the and channel numbers, respectively. Assumin
there are as many  channels as there are excitations, one can determine  by

(18)

where denotes the transposed matrix. To be able to invert the matrix none of the exci
signals (as measured by the  channels) can be co-linear with the others.

3.4 POLE-ZERO CURVE FITTING

TBD

3.5 CORRELATION MEASUREMENTS

TBD

3.6 TIME MEASUREMENTS

TBD

3.7 OCTAVE BAND ANALYSIS

TBD
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4 TEST ORGANIZATION

Fig. 8 shows the interactions between a diagnostics test and the application program inte
(APIs) which communicate with the user (storage API), the network data server (Real-Time
Distribution API) for obtaining channel data, the excitation engine (excitation API) and the
point manager (test point API).

4.1 INTERFACES

4.1.1 Storage API

All data—including test parameters, raw channel data, result arrays and plot settings
managed by the diagnostics storage object. Any data object can be accessed by its
Typically, the user will set test parameters prior of starting a test. The diagnostics test pro
will retrieve these parameters and setup the test. While the measurement is under way c
data is received by the real-time data distribution interface and automatically saved in the s

Figure 8: Interaction between a diagnostics test supervisory task and the interfaces to th
world.
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object. After a measurement cycle has finished the analysis task will read the channel
analyze it and write the results back.

4.1.2 Real-Time Data Distribution API

The real-time data distribution interface obtains data from the network data server on a conti
basis. It will subscribe the channels which are needed for the test analysis at the beginnin
test. While the test is running the data comes at a fixed rate of 16 Hz. The real-time
distribution interface has the capability to preprocess the data before sending it to the an
algorithms (see Fig. 9). The first stage of the preprocessing is a time delay filter which can
the data by an integer number of samples. This stage is followed by the first filter-decim
stage, the down-conversion stage and the second filter-decimation stage. If the down-conv
stage is included the data streams becomes complex. Before the data is partitioned into seg
the time series can be shifted forward in time to compensate for the delay accumulated
decimation filters. The time shift has to be a multiple of the sampling period after decima
Since the filter-decimation stages are based on FIR filters, the time delay accumulated w
them is a multiple of the sampling period at their input, but no necessarily a multiple of the o
their output. To compensate for fractional time delays at the output stages, the delay filter
input can be used to fine adjust the data stream. By default all filter delays are rem
automatically and the partitioned data has no remaining time deviation.

4.1.3 Excitation API

The excitation API communicates with the excitation engine for applying excitation signals t
instrument. For a description of the excitation engine see Section 5.

Figure 9: Data preprocessing in the real-time data distribution interface.
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4.1.4 Test Point API

The test point API communicates with the test point manager which is able to activate digita
points in the data acquisition system. Digital test points are used to read auxiliary channels
the ISC digital servo systems and to inject digital waveforms. Test points are automati
selected by the RTDD API or the excitation API if the requested channel is accessible thro
test point.

The test point API also enables and disables analog excitation inputs. (Most analog inputs h
enable/disable switch which is controlled through an EPICS channel.)

4.2 TEST SUPERVISORY

When a user starts a diagnostics test, the diagnostics kernel spawns a new test superviso
The supervisory task is selected by setting the variable “Supervisory” to the name o
supervisory task (see Appendix B.1.1). Currently, only one supervisory task with n
“standard” is supported.

4.2.1 Standard Supervisory Task

In principle every test could be implemented as its own supervisory task. This has
disadvantage that parameter scans and optimizations would need an additional superviso
for each test they can be combined with. Also, every test would have to implement its
synchronization means. The standard supervisory task provides a solution for this proble
separating the supervisory task into a synchronization task which is common to all tests,
iterator and the test itself. Both the test iterator and the actual test are selectable by the use
approach has the advantage that if any new test iterator is developed, it is immediately app
to all tests; and if a new test is developed it can use all common test iterators. Fig. 10 prese
flow chart of the standard supervisory task.

The standard supervisory task implements a few basic synchronization tools:

i) the start time can be set using the variable “Sync.Start” (GPS nsec); default is immediat
ii) a wait time can be specified with “Sync.Wait” (sec).
iii) the execution of a test or a test step can be triggered by an EPICS channels

“Sync.WaitForStart” and “Sync.WaitAtEachStep”, respectively.
iv)a test can send a trigger signal on an EPICS channels after it or one if its steps has fin

“Sync.SignalEnd” and “Sync.SignalEndOfStep”, respectively.

At initialization the supervisory task will setup the measurement environment as specified b
“Env[N]” variable sets (see also Appendix B.1.3).

A test can be aborted at any of the synchronization steps shown in Fig. 10. Currently, a the te
only be paused after an iterator evaluation has been completed.
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TEST INITIALIZATION

subscribe meas. channels
subscribe excitation channels
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TEST SETUP
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SYNCHRONIZATION 3
wait for intermed. sync. points

calculate start time

SYNCHRONIZATION 4
wait for end of test

TEST INTERMED. ANALYSIS
analyze meas. data
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calculate next step
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turn off excitation
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Figure 10: Flow chart of the standard diagnostics test supervisory task.
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4.3 TEST ITERATORS

The purpose of test iterators are to repeat a standard test. In the simplest case the test is r
with identical parameters. When performing a parameter scan the test is repeated while ch
the value of a parameter. A parameter scan can be combined with an optimization to find the
value” of a parameter set. The test iterator is selected by the variable “TestIterator”
Appendix B.1.1).

4.3.1 Repeat

The default test iterator is the trivial one with a repetition value of one. The number of repeat
be set with the variable “Sync.Repeat”, whereas the repeat rate is determine
“Sync.RepeatRate”. This repeat rate is interpreted as a minimum time between tests. In
words the second test is not started before the first one has finished completely.

4.3.2 Parameter Scan

For a parameter scan at least one “Scan[N]” variable sets have to be defined and set acti
Appendix B.1.4). A test will be repeated while scanning a parameter of an excitation channe
as the amplitude, the offset or the frequency. An example would be to investigate the coupl
input beam jitter into the gravitational wave band (sine response test) while changing the an
alignment of the interferometer test masses.

4.3.3 Optimization

For an optimization to take place the “Find” variable set has to be defined and ena
Additionally, a valid parameter scan has to be setup (see Appendix B.1.5). An optimization
parameter scan where parameters are adjusted to their “best value”. Typically, the paramete
to a new value after a scan interval has been completed. The “best value” is determined by a
function which has to be provided by the test.

4.4 TESTS

4.4.1 Sine Response

The timing diagram of a sine response test is shown in Fig. 11. The full test time is divided i
dwell time and a number of measurement periods. The dwell time is divided into a ramp up p
and a settling time (see also Appendix B.3.1). The settling time, , is determined by
“Test.SettlingTime” values, and , according to the following formula (negative values
ignored):

(19)

where represents the frequency of the excitation signal. In case of multiple excitations
difference frequencies the smallest frequency value is used for the calculation.

tS
t∆ nc

tS min t∆
nc

f
-----, 

 =

f
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During the ramp up time the amplitude of the excitation signals are slowly increase to their
requested levels. The ramp up time, , is determined by the following formula:

(20)

where is the maximum allowed ramp up time. The total dwell time is alwa
rounded up to the next sampling period. If an excitation signal can not be synchronized w
GPS clock, the minimum ramp up time is set to 500ms to account for network latencies
default ramp up function is a quadratic phase-in, see Eqns. (38) and (41).

The time of a single measurement is determined by the “Test.MeasurementTime” value
and , according to the same formula as the settling time with the only modification that
always rounded up the next full cycle and sampling period. If multiple excitation frequencie
present, the smallest frequency is used to perform the calculation.

4.4.2 Swept Sine

A swept sine is essentially a series of sine response tests with a single excitation frequency
is swept through a predefined frequency interval. The frequency points can be spaced lin

Figure 11: Timing diagram of a sine response (a) and a swept sine test (b).N and M are the
number of averages and the number of measurement points, respectively.
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logarithmically or by user supplied values. The frequency points are calculated from the
and stop frequencies,  and  with the following formulae:

where  represents the number of frequency points and the index  runs from 1 to .

The dwell time is calculated the same way is for a simple sine response test. The only differe
that the ramp up signal between measurement points is replaced by a ramp signal
guarantees a smooth transition in both amplitude and frequency. For the amplitude Eqns. (3
(41) are used again; for sweeping the frequency Eqns. (42) and (43) are used for linear swe
tests and Eqns. (44) and (45) for logarithmic swept sine tests, respectively.

4.4.3 FFT Tests

The timing diagram of an FFT test is shown in Fig. 12. The total test time is broken into pos
overlapping measurement intervals. The frequency span, of the FFT is calculate

linear (21)

logarithmic (22)
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Figure 12: Timing diagram of an FFT test (a) and a time series/trigger response test (b).N andM
are the number of averages and the number of measurement points, respectively.
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rounding to the next frequency which is a power of 2. The stretch fac
, is set at 1.1 which guarantees that the requested frequency range is within the band

of the decimation filters. To make sure that the number of FFT points is a power of 2, the spe
bandwidth is rounded to the closest power of 2. The measurement time is determined b
bandwidth through

. (23)

Of course, if a non-uniform window function is selected, the effective measurement bandwi
given by the width of the window function, i.e.

(24)

If , the time series is first down-converted by

(25)

where  is the number of points used by the FFT algorithm. It is given by

(26)

In general, input channels pass through three stages of preprocessing. First, a decimatio
adjusts the sampling rate to the required signal bandwidth. Second, the time series can be
converted by ; and third, an additional decimation stage adjusts the sampling rate
frequency span of the FFT.

The following rules apply for determining sampling rates and decimation factors:
(i) The sampling rate, , after the first stage is deduced from
rounding to the next power of 2.
(ii) The decimation factor of the second stage is set to 1 if no down-conversion was applied

 otherwise.

Compared to a standard (real) FFT analysis, a zoom analysis works with a complex time
which effectively doubles the number of data values, but only needs half the sampling rate
negative frequency components are truly different from positive ones). As a net effect the nu
of data values sent to the FFT algorithm are identical.

If the number of averages is greater than 1, the start time for each measurement interval is
by

(27)

with  the overlap factor.

Sstretch f stop f start–( )
Sstretch

TM
1

f BW
----------=

f BW
eff 1

∆twindow
--------------------≈

f start 0>

f zoom f start NFFT round
f stop f start–

2NFFT
---------------------------- 

 +=

NFFT

NFFT

2 f span f BW⁄ for f start 0=

f span f BW⁄ for f start 0>






=

f zoom

f sample max 2f stop 2 f span,( )

f sample f span⁄

ti

ti to i 1 η–( )TM+=

η

page 35 of 84



LIGO-T990013-B

rement

acted
e both
pling

e as
ice the
e the
4.4.4 Time Series Measurements

Time series and trigger response measurements are broken up in equal length measu
intervals (see Fig. 12). The trigger rate, , is related to the measurement time, , by

(28)

The stored time series can be limited in length by specifying a dead time, , which is subtr
from the end of the measurememnt interval. In order to keep the averaging algorithms simpl
the length of the measurement interval and the settling time have to be a multiple of the sam
period after decimation. If the Nyquist frequency of the original time trace is more than twic
large as the required bandwidth, the data is filtered and decimated to a rate no less than tw
bandwidth and no more than four times the bandwidth. The pre-trigger time specifies the tim
start of the trigger signals lags behind the start of the measurement.

f trigger TM

f trigger
1

TM
--------=

tD
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5 EXCITATION ENGINE

5.1 OUTPUT WAVEFORMS

5.1.1 Overview

Every output signal produced by the arbitrary waveform generator consists of two pa
fundamental waveform and phase-in and phase-out transition. The following fundam
waveforms are supported by the signal generator:

5.1.2 Periodic Waveforms

The output signal of an arbitrary waveform generator for a periodic waveform startin
time , lasting for a duration , ramping up between and , and phasing out a

 ( ) can be written as:

(37)

where is the periodic signal (fundamental waveform) of frequency and phase shift
functions and are then functions which determine the phase-in and phase-out transiti

sine wave (29)

square wave (30)

ramp (31)

triangle (32)

flat noise (33)

band limited noise (34)

pink noise (35)

sweep (36)

s t( ) A 2πft( )sin=

s t( ) +A 0 2≤ πft mod 2π π<
A– π 2≤ πft mod 2π 2π<




=

s t( ) A
φ

2π
------ with φ 2πft mod 2π==

s t( )
A

2φ
π
------ 1– 

  0 2≤ πft mod 2π π<

A 3 2φ
π
------– 

  π 2≤ πft mod 2π 2π<








=

o t( )
t0 ∆t t0 t0 tPI+

t0 t2+ t2 ∆t tPO–=

o t( ) s 2πf t t0–( ) φ0– ϕ t t0– t2– tPO,( )+( ) b t t0– ∆t tPI tPO, , ,( )×=

s φ( ) f φ0
ϕ b
page 37 of 84



LIGO-T990013-B

enoted

owing

or two
, it is
ping it

. The

during
the beginning and at the end of the output signal. The phase-in and phase-out times are d
with  and , respectively. The function  controls the amplitude and we write it as:

(38)

where and are the amplitude phase-in and phase-out functions, respectively. The foll
options are available: step, linear ramp, and quadratic.

where denotes the amplitude ratio of the signal before the phase-out and the one after. F
periodic waves of different frequencies which should smoothly transform into each other
usually more practical to sweep the frequency, rather than phase-out one signal by ram
down while ramping up the other one. The sweep function  is defined as follows:

(42)

with the frequency difference between the beginning and the end of the sweep
phase adjustment  can be written as:

(43)

with  the phase difference between the signal at  and .

The above sweep function can be readily generalized to logarithmic sweeps. For the time
the sweep one can rewrite Eqn. (37) as follows:

(44)

step (39)

linear (40)

quadratic (41)
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(45)

where the phase adjustment is the same as in Eqn. (43).

5.1.3 Non-Periodic Waveforms

Non-periodic output waveforms can be written as:

(46)

with the only difference to a periodic waveform that the actual signal does depend o
time directly rather than the phase, and that no sweep function is provided.

ϕlog t tPO,( ) 2πf tPO
f ∆f+

f
---------------- 

 
t

tPO
-------

∆φ–
t

tPO
--------=

o t( ) n t t0–( ) b t t0– ∆t tPI tPO, , ,( )×=

n t( )
page 39 of 84



LIGO-T990013-B

tics test
using
figured

er of

their
es. The

very

’ and

are
the
using
APPENDIX A NETWORK INTERFACES

A.1 SERVICES INFORMATION

Diagnostics services such as the test point interface, the excitation engine and the diagnos
kernel implement a configuration and information interface which can be queried by a client
broadcast messages on the local subnet. This allows user interface programs to be con
dynamically. Service information requests and answers all have the same format:

The transport protocol is udp/ip. A service information server can answer with any numb
datagrams to a single request.

The following information requests are available:

An interface descriptor has the following format:

‘interface’  ‘ifo’  ‘#’  ‘host name’  ‘port/prog #’  ‘version’

Examples are:

awg 0 0 gdsawg1 8220876582 1
awg * 0 cobox0 5000 *

The excitation engine and the test point manager implement their own information server for
respective services, whereas the diagnostics kernel relies on daemon to announce its servic
following lines should be added to the ‘/etc/inet/services’ and ‘/etc/inet/inetd.conf’ files on e
machine which runs a remote diagnostics kernel:

diagconf 5355/udp

diagconf dgram udp wait gds /home/gds/bin/diagconfd diagconfd \
/home/gds/param/diag.conf

(Assuming the full path name of the diagnostics service daemon is ‘/home/gds/bin/diagconfd
the corresponding configuration file is located at ‘/home/gds/param/diag.conf’.)

Each line of the configuration file contains an interface descriptors. Lines starting with ‘#’
ignored. Service names starting with a ‘?’ will only be part of the configuration information, if
corresponding machine is alive (i.e. answers to a ping). Service names starting with ‘&’ are

info id argument description answer answered by

0 – ask for interfaces interface descriptor all

information id

msb lsb

ASCII string (optional)

Service information request/answer:

1 2 N
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host name lookup to replace hostnames with IP names. A service name starting with ‘&?
first look up the host name and then wait for the ping answer.

A.2 MESSAGE PASSING INTERFACE

The message passing interface is the main communication channel between the user interf
the diagnostics test kernel.

A.2.1 USING REMOTE PROCEDURE CALLS

The rpc message passing interface implements four basic functions:

i) open a connection to a diagnostics kernel,
ii) close the connection to a diagnostics kernel,
iii) send a message to a diagnostics kernel and wait for the answer, and
iv) install a callback function for messages send back by the diagnostics kernel.

These functions are defined in the C header file ‘gdsmsg.h’ (for a more detailed descriptio
there, or in the corresponding web page). A message consists of a message heade
parameter argument; it returns a reply argument. Valid message headers are ASCII strings
are generally identical to the commands which are recognized by the diagnostics ker
specified in section 2.3. In general, a command and its ASCII arguments are passed throu
message header, whereas binary arguments are passed through the parameter argument.

One important difference to the command line interface are the ‘save’ and ‘restore’ comm
(i) the flag argument must be specified,(ii) the filename is assumed to be local to the machi
which runs the diagnostics kernel, and(iii) the reserved filename specifier ‘-’ is used to indica
that file is part of the message. When using ‘save’, the file is passed back through the
argument. When using ‘restore’ the file has to be passed to the diagnostics kernel throu
parameter argument.

The diagnostics kernel can run on a local machine—in this case the shared object li
‘libgds.so.1’ is loaded dynamically when the connection is established—or it can run on a re
machine—in this case the diagnostics kernel has to run on the remote machine. The diag
server listens at a well known tcp/ip port for a client to connect. Every client launches a
diagnostics kernel which then established an rpc communication channel. Upon on connect
client sends three 32 bit number in network byte order:
1. If the first number is larger than 65535, it is interpreted as an rpc program number which w
used to send notification messages back to the client,
2. The second number is a client specific identification number. It will be used when sen
notification messages, and
3. The third argument is a flag describing the required services (as specified by the gdsMsg
function).

In return the server will answer with up to three 32 bit numbers in network byte order:
1. The first one is the status flag which describes whether the server was initialized successf
non-zero, it indicates an error and the transmission is closed,
2. When successful, the second number describes the rpc program number which has to
by the client for subsequent calls, and
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3. The third argument describes the capabilities provided by the server (as defined b
gdsMsgOpen function).

The diagnostics server program can be started either at the command line prompt or thro
port monitor. Assuming the current path is the diagnostics binary directory the server is start
typing ‘./diagd’. When using the port monitor, the following lines have to be added to the ‘/
inet/services’ and ‘/etc/inet/inets.conf’ files:

diag 5354/tcp

diag stream tcp nowait gds /home/gds/bin/diagd diagd

(Assuming the full path name of the diagnostics server is ‘/home/gds/bin/diagd’.)

Whenever a request is made at the specified port a new diagnostics kernel is launched
private two way communication channel is established between the caller and the diagn
kernel. After closing the connection the diagnostics kernel is automatically terminated. To pr
an automatic shutdown, the client has to call the keep alive function every 30 sec.

A.2.2 USING SOCKETS

Instead of using remote procedure calls a client can also request that messages are sent
tcp/ip sockets. The start-up procedure is exactly the same as for the rpc interface, but with a
for the first argument between 0 and 65535. If a non-zero number is specified, it is interprete
port number of a socket maintained by the client, and it will be used by the server to send
notification messages. A zero value indicates that the server should use the already
connection to both transfer and receive messages. The server will answer with a status n
and, if successful, the flag describing the available services.
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After establishing a connection to the diagnostics server messages are passed using the
shown below:

Every message consists of a header and a binary argument (their sizes can be zero); it wil
either an ASCII or a binary argument dependent on the command. Each argument is prece
a 32 bit number in network byte order describing the length of the following argument. The s
will send the answers back in the order the commands were received. The return arg
consists of a status word, a word describing the following data and the data itself. A statu
marks a success, a status of –1 indicates an error, and a status of –2 indicates a notif
message. (Notification messages are send from the diagnostics kernel to the user interfac
the same format but without at return argument.)

To prevent automatic shutdown of the server the client has to send at least one message e
seconds. If no regular message is available the client can send an empty message with hea
argument of size zero (a null message will not produce any answer). Starting a diagnostics
for socket use is identical to the one for remote procedure calls, both from the command lin
through a port monitor. There is one important difference between using rpc or sockets: th
interface is fully multi-threaded, i.e. several messages can be send to diagnostics kernel
same client independently, whereas messages sent through sockets are processed one
other.

size of message header

msb lsb

ASCII string (diagnostics command)

Header:

size of binary argument

msb lsb

binary argument

Binary argument:

1 2 N

1 2 N

size of binary argument

msb lsb

ASCII / binary

Return argument:

Nmsb lsb 1 2

status
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APPENDIX B DATA REPRESENTATION

The diagnostics kernel manages variables, parameters and data which describe a diagnos
using the same basic representation. The basic storage objects are data objects and pa
objects. Parameter objects consists of a name, a type and a value or a list of values. A data
is a container which can contain a multidimensional data array, a set of parameter objec
other data objects. The diagnostics kernel stores all variables associated with a diagnost
within a single (global) data object. The diagnostics kernel limits the hierarchical levels of
objects to two. Meaning, the global object can contain parameters and data objects which
can contain other parameter objects, but no more data objects.

Every data object and every parameter object within a single data object must have a u
name. Any parameter can then be accessed by specifying its name and the name of its dat
(group name). The parameters in the global data objects can be accessed by their name on
specifying an empty data object name. A name is not case sensitive and can not contain
character, since this character is used to separate its name from the group name.

A name must not contain square brackets, because they are used for indexing. Names an
names can have an array index, e.g., ‘Scan[1]’ or ‘H0:GDS_TEST[0][2]’. A maximum of t
array indices are supported with values ranging from 0 to 999.

Both data and parameter objects have associated data fields consisting of a data type, a dim
list, the actual datum, an optional string describing the physical unit and an optional com
string. Supported data types are:

Parameter objects typically have a single value associated with them, whereas data objects
multi-dimensional.

The diagnostics kernel uses a set of data objects and parameters with predefined nam
describing:(i) the test parameters,(ii) the test results,(iii) the raw data and(iv) the plot options.
The following data objects are used by the diagnostics kernel:

Name C/C++ data type Abbreviation

8 bit integer char c

16 bit integer short s

32 bit integer int i

64 bit integer long long ll

boolean bool b

single precision floating point float f

double precision floating point double d

single precision complex number complex<float> zf

double precision complex number complex<double> zd

string char* st

channel name char* ch
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All data objects have a string parameter of name ObjectType which identifies the data objec
following object types are supported:

Name Type Description

Def test param. Global default settings of diagnostics tests.

Sync test param. Synchronization information.

Env[N] test param. Excitation environment; N from 0 to 99.

Scan[N] test param. Scan parameters; N from 0 to 9.

Find test param. Optimization parameters.

Test test param. Specific settings for a diagnostics test.

Index result Index of the results

‘channel name’[M][N] raw data measured time series; M and N from 0 to 999.

Result[N] result
results of diagnostics test: FFT, transfer functions,
averaged time series, coefficients and list of
measurement values; M from 0 to 999.

Plot[N] plot settings result plots; M from 0 to 99.

ObjectType Associated data objects

DiagnosticsTest global

Defaults Def

Synchronization Sync

Environment Env[N]

Scan Scan[N]

Optimization Find

TestParameter Test

TimeSeries ‘channel name’[M][N] or Result[N]

Spectrum Result[N]

TransferFunction Result[N]

Coefficients Result[N]

MeasurementTable Result[N]

Plot Plot[N]
page 45 of 84



LIGO-T990013-B
B.1 COMMON

This section list the parameters which are common to all diagnostics tests.

B.1.1 GLOBALS

A few parameters are defined in global scope:

The following default parameters are common to all tests:

Name Type Dim Description

ObjectType st 1 DiagnosticsTest

TestType st 1
describes the diagnostics test class. Possible values
are: TimeSeries, SweptSine, FFT, SineResponse,
RandomResponse.

TestName st 1 name of test, user supplied.

Supervisory st 1 name of supervisory task; default standard.

TestIterator st 1
name of test iterator; default repeat. Possible values
are: repeat, scan, find.

Comment st 1 user supplied comment.

TestTime ll 1 time when test was done in GPS nsec.

TestTimeUTC st 1
time when test was done in UTC format, e.g.
1998-11-08 17:40:00.032035.

Name Type Dim Description

Def.ObjectType st 1 Defaults

Def.AllowCancel b 1 if true (default), cancel a test is allowed at any time.

Def.NoStimulus b 1 if true, no stimulus is applied; default is false.

Def.NoAnalysis b 1 if true, omits the analysis; default is false.

Def.KeepTraces i 1
specifies how many of the original time traces are kept
(–1 represents all); default 100.

Def.SiteDefault c 1
describes the default site; any channel name that
contains an ‘X’ as the site identifier will be adjusted to
the specified default site.

Def.SiteForce c 1 overrides the site identifier in every channel name.

Def.IfoDefault c 1

describes the default interferometer number. Any
channel name containing an ‘X’ instead of an
interferometer number will be adjusted to the specified
interferometer.

Def.ifoForce c 1
overrides any none zero interferometer identifier in
every channel name.
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Channel names can be specified site and interferometer independent. To do so the characte
used instead if the site or the interferometer identifier, respectively. Any ‘X’ character wil
replaced with its corresponding default value before the test is started. Alternatively, it is pos
to override site or interferometer identifiers of all channel names. This can be useful when m
a diagnostics test from one instrument to an other.

B.1.2 SYNCHRONIZATION TOOLS

Diagnostics test can be synchronized with EPICS channels. A test can halt at the beginnin
test and/or at each step of a measurement until a trigger signal is received on a specified
channel. Similarly, a diagnostics test can send a trigger signal on a specified EPICS channe
end of a test and at the end of each measurement step.

B.1.3 ENVIRONMENT

While performing a diagnostics test, excitation and EPICS channels can be set to spe
waveforms and values, respectively. This environment is set before the test start
automatically reset after the test terminates. Environments are numbered, describing a
excitation channel each:

Name Type Dim Description

Sync.ObjectType st 1 Synchronization

Sync.Start ll 1 start time of test (GPS nsec); default 0 (now)

Sync.Wait d 1
time to wait before starting test (in sec); default 0.
the wait time is added to the start time.

Sync.Repeat i 1 number of times of repeating the test; default 1.

Sync.RepeatRate d 1 rate of repeating tests (in sec); default 0 (no wait).

Sync.WaitForStart ch 1
if defined, the test only starts after receiving a trigger
signal on the specified EPICS channel (waits for a 1;
resets channel to zero after trigger was received).

Sync.WaitAtEachStep ch 1
if defined, the test only starts a new step after
receiving a trigger signal on the specified EPICS
channel.

Sync.SignalEndOfStep ch 1
if defined, signals the end of a test step on the
specified EPICS channel (sets channel to 1).

Sync.SignalEnd ch 1
if defined, signals the end of the test on the specified
EPICS channel.

Name Type Dim Description

Env[N].ObjectType st 1 Environment

Env[N].Active b 1 if true (default), includes the Env[N] excitation channel.

Env[N].Channel ch 1 string describing an excitation channel name.
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If an excitation channel is defined in the environment and is also used by a stimulus respons
the two excitation waveforms are simply added. Certain restrictions apply if the excita
channel is a stand-alone signal generator.

B.1.4 PARAMETER SCAN

Any test can be repeated while sweeping either frequency, amplitude or offset of one or mu
excitation channels. Sweep parameters are numbered from N = 0, 2,... 9,describing a single
excitation channel each:

Env[N].Waveform st 1
string describing an excitation waveform. The format is
the same format as described in Section 2.3.2.

Env[N].Points f M describes the values of an arbitrary waveform.

Env[N].Wait d 1 time to wait for the environment to settle down.

Name Type Dim Description

Scan[N].ObjectType st 1 Scan

Scan[N].Active b 1 if true (default), includes Scan[N] in the sweep.

Scan[N].Channel ch 1
name(s) of sweep channel, can be an excitation
channel, or an EPICS analog output.

Scan[N].Type i 1
0 – linear sweep (default), 1 – logarithmic sweep,
2 – user supplied sweep points.

Scan[N].Direction i 1 0 – upwards (default), 1 – downwards.

Scan[N].Parameter i 1
0 – offset (default), 1 – amplitude, 2 – frequency
Only offset is valid for an EPICS channel.

Scan[N].Frequency d 1
specifies the frequency of the signal (not used, if the
frequency is swept, or if EPICS channel).

Scan[N].Amplitude d 1
specifies the amplitude of the signal (not used, if the
amplitude is swept, or if EPICS channel).

Scan[N].Offset d 1
specifies the offset of the signal (not used, if the offset
is swept, or if EPICS channel).

Scan[N].Start d 1
specifies the start point of the sweep (not used when
user supplies sweep points).

Scan[N].Stop d 1
specifies the stop point of the sweep (not used when
user supplies sweep points).

Scan[N].N i 1
specifies the number of points of the sweep (not used
when user supplies sweep points).

Scan[N].Points f M specifies the user supplied sweep points

Scan[N].Wait d 2
specifies the settling time before each measurement;
default is 10 cycles, or 65 ms, whatever is shorter.
first value is time in sec.

Name Type Dim Description
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The dimension of the scan is determined by the number of defined channel names. If fewer
values are specified for an N dimensional parameter, the remaining values are automa
padded with zero.

A multi-dimensional linear or logarithmic sweep will use a multi-dimensional mesh to set
sweep points. For a user defined multi-dimensional sweep the user has to supply every
point which will be used; they can be located anywhere in the multi-dimensional parameter s

If the same excitation channel which is defined in the environment and/or by a stimulus res
test, is also used by a sweep, the excitation waveforms are simply added. Certain restr
apply if the excitation channel is a stand-alone signal generator

B.1.5 PARAMETER OPTIMIZATION

A parameter scan can be combined with a parameter optimization. When optimization is en
the sweep will try to set the sweep channel values to the best values as determined by a
function. For a multi-dimension linear or logarithmic sweep the optimization process will s
through each dimension separately, and set the signal to the best value after each scan. A
dimensional sweep with user supplied sweep points is interpreted as a one dimens
optimization along the path of the user supplied points.

Name Type Dim Description

Find.ObjectType st 1 Optimization

Find.Enable b 1
if true, enables the optimization process; must be
selected together with a sweep. Default is false.

Find.Change b 1

if true (default), the detector state at the end of the test
will be set back to the values before the test, i.e. the
optimization process tries to find an optimal parameter
set without changing to the new and better state.

Find.Type i 1 0 – maximum, 1 – minimum, 2 – zero, 3 – value

Find.Value d 1 value to find, if type is ‘value’.

Find.Function i 1

The merit function which is used depends on the
selected diagnostics test:
SineResponse (single frequency only):
0 – amplitude, 1 – phase,
2 – harmonic distortion,
3 – intermodulation product (added in quadrature)
TimeSeries:
0 – average, 1 – rms
FFT or RandomResponse:
0 – band-limited power

Find.Param d 2 low and high frequency values for band-limited power

Find.Method i 1 0 – scan
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B.2 RESULTS

A diagnostics test can consist of multiple measurements such as the individual steps of a
Each measurement can contain multiple measurement points, such as the frequency poi
swept sine measurement. Typically, there is the need to store results of individual measur
points, as well as the results of each measurement step and the final result. This is achie
using array indices which are part of the result name. However, there is no one-to-one re
between result index and measurement step or point. Instead, an index is used to list measu
results together with the information where they are stored.

B.2.1 INDEX

An index is automatically generated by the diagnostics kernel while performing a test.
updated whenever a new results becomes available. The index is structured as follows:

An index entry has the following format: “<category>[step] : {<parameter> = <value> ;}” wh
the curly brackets denotes items which can be repeated multiple times. Possible categorie

B.2.2 PLOT

A plot object does not contain the data it displays, rather it describes the settings of the plo
stores pointers to the data objects which contain the plotted data. Plot objects are not gener

Name Type Dim Description

ObjectType st 1 Result

Entry[N] st 1 index entry

Status st 1
current status describing the current measurement
point/average and the current test iteration step.

Index Categroy Description

MasterIndex list of all index entries (master index)

TimeSeries describes a time series result

PowerSpectrum describes a power spectrum measurement

Coherence describes a coherence estimate for FFTs

CrossCorrelation describes a cross-spectrum measurement

TransferFunction describes a transfer function

CoherenceFunction describes the coherence estimate for swept sine measurements

TransferCoefficients describes a set of transfer coefficients

TransferMatrix describes a transfer matrix

CoherenceCoefficients describes a set of coherence coefficients

HarmonicCoefficients describes a set of harmonic coefficients

IntermodulationCoefficients describes a set of two-tone intermodulation coefficients
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the diagnostics test, but rather by the graphical user interface to keep track of the plot setti
plot object can handle A and B channels. When displaying a transfer function or a cross-p
spectrum, A and B channels point to the individual measurement channel; and the plotting r
is responsible to calculate the ratio or product, respectively. The following options are us
control the appearance of the plot.

Parameter Name Type Dim Description

ObjectType st 1 Plot

PlotType i 1

0 – XY plot (line/scatter),
1 – time series (line/scatter),
2 – power spectral density (PSD),
3 – Bode plot (dB/phase plots, line),
4 – histogram (lego).
default: 0.

Trace i 16

0 – none
1 – A channel
2 – B channel
3 – cross spectrum (PSD)
4 – transfer function B/A (PSD, Bode)
5 – coherence (PSD, Bode)
6 – normalized variance (PSD, Bode)
default: 1.

PlotLabel st 1
Plot label. Use TEX convention for greek letters,
superscript and subscript, e.g. ‘$\alpha_1$’
default: empty string (no label).

AspectRatio d 1
aspect ratio of plot.
default: 0.7.

Frame b 1
if true, plot is framed.
default: true.

Label[N] st 1
Frame labels, numbering: clockwise starting at lower
x-axis.
default: empty strings (no labels).

Font i 1
0 – Helvetica, 1 – Times.
default: 0.

FontSize d 3

Font sizes of plot label, frame labels and axes label,
respectively (in relative units to the diagonal plot
length).
default: 0.045, 0.04, 0.03.

Axes b 2
whether to draw x-axis (first value) and y-axis (second
value).
default: true, true.

AxesType i 2
0 – linear, 1 – log.
default: 0, 0.
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AxesPlacement d 1

place of axes (in relative units to the diagonal plot
length);
positive unit – axes are placed outside
default: 0.05.

AxesThickness d 1
tickness of axes (in relative units to the diagonal plot
length).
default: 0.004.

AxesLabel i 2
0 – no axes labels, 1 – labels at major ticks,
2 – labels at major and minor ticks.
default: 1, 1.

MajorTicks i 2
0 – automatic, 1 – no major ticks, 2 – user specified.
default: 0.

MajorTicksStyle i 2
0 – both directions, 1 – inside only, 2 – outside;
default: 1, 1.

MajorTicksLength d 2
length of major ticks (in relative units to the diagonal
plot length).
default: 0.03, 0.03.

TicksX d M where to place ticks (x-axis)

TicksY d M where to place ticks (y-axis)

MinorTicks i 2
0 – automatic, 1 – no minor ticks,
>1 – number of minor ticks intervals.
default: 0.

MinorTicksStyle i 2
0 – both directions, 1 – inside only, 2 – outside.
default: 1, 1.

MinorTicksLength d 2
length of major ticks (in relative units to the diagonal
plot length).
default: 0.015, 0.015.

GridLines i 2

0 – no grid lines,
1 – dotted grid lines at major ticks,
2 – dashed grid lines at major ticks,
3 – dashed grid lines at major ticks, dotted at minor.
default: 1, 1.

PlotRange i 2
0 – automatic, 1 – user specified.
default: 0, 0.

PlotRangeLimits[N] d 2
lower and upper limits of plot range.
default: 0, 1.

BinType i 1

0 – no binning,
1 – averages values of bins 0,... Bin–1 into bin 0,
2 – averages values of bins 0,... Bin–1 into (Bin–1)/2,
3 – adds values of bins 0,... Bin–1 into bin 0,
4 – adds values of bins 0,... Bin–1 into (Bin–1)/2.
default: 0.

Bin i 1
number of bins.
default: 1.

Parameter Name Type Dim Description
page 52 of 84



LIGO-T990013-B
MarkerType i 1
0 – no marker, 1 – x-axis markers, 2 – y-axis markers,
3 – trace markers.
default: 0.

Marker d 2
Marker values.
default: lower and upper plot range.

PlotStyle i 16

0 – lines,
1 – symbols,
2 – lines and symbol.
default: 0.

LineColor i 16

–1 – automatic
0 – black,
1 – red,
2 – blue,
3 – green,
4 – yellow,
5 – brown,
6 – cyan,
7 – purple,
default: –1 (0 on paper; 0,... 7 on screen)

LineType i 16

–1 – automatic
0 – solid
1 – dashed
2 – doted
3 – dash-doted
4 – dash-dot-doted
5 – dash-dash-doted
6 – dash-dash-dot-doted
7 – long dashed
default: –1 (0 on screen, 0,... 7 on paper)

LineTickness d 16
tickness of lines (in relative units to the diagonal plot
length).
default: 0.004.

SymbolShape i 16

–1 – automatic
0 – circle,
1 – triangle up,
2 – square,
3 – triangle down,
4 – diamond,
5 – star,
6 – cross,
7 – slanted cross.
default: –1 (0,... 7).

SymbolSize d 1
size of symbols (in relative units to the diagonal plot
length).
default: 0.02.

Parameter Name Type Dim Description
page 53 of 84



LIGO-T990013-B

ment

ndices
a of one
Plotting packages which do not implement the complete set of above options have to imple
as many as possible.

B.2.3 TIME SERIES

Time series containing raw channel information are stored by the channel name and two i
(measurement step and measurement point). Each of these data object contains the dat
channel only. The following table lists the parameters of a time series object:

ErrorBars i 16

0 – no error bars,
1 – symmetrical vertical error bars,
2 – symmetrical horizontal error bars,
3 – symmetrical vertical and horizontal error bars,
4 – asymmetrical vertical error bars,
5 – asymmetrical horizontal error bars,
6 – asymmetrical vertical and horizontal error bars.
default: 0.

PlotNameA[M] ch 1 Name of plot curve

PlotNameB[M] ch 1
Name of plot curve, B channel (can be used to specify
a second channel, e.g. B channel of transfer function,
or B channel of cross-power spectrum).

PlotColumnA[M] i 7

data columns:
XY plot: X, Y, –, err1A, err2A, err1B, err2B;
time series: –, Re Y, Im Y, err1A, err2A, err1B, err2B;
histogram: X, Y, –, err1A, err2A, err1B, err2B;
Bode plot: X, Re Y, Im Y, err1A, err2A, err1B, err2B.
The error bar columns are used depending on the
setting of ErrorBars.
Default: 0, 1, 2, 3, 4, 5, 6.

PlotColumnB[M] i 7 data columns; same as above, but for B channel.

Name Type Dim Description

ObjectType st 1 TimeSeries

Subtype i 1

0 – normal time series in format (Y),
1 – down-converted time series in format (Y),
2 – averaged time series in format (Y),
3 – averaged time series in format
      (mean, std. dev., min., max., rms),
4 – normal time series in format (t,Y),
5 – down-converted time series in format (t,Y),
6 – averaged time series in format (t,Y),
7 – averaged time series in format
      (t, mean, std. dev., min., max., rms),

t0 ll 1 start time in GPS nsec.

dt d 1 temporal spacing in sec.

Parameter Name Type Dim Description
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Normally, raw data uses subtypes 0 or 1, whereas a time series of a result object uses subty
3.

tp d 1
pre-cursor time in sec. The time stamp of the first data
point is: t0 – tp.

f0 d 1
modulation frequency in Hz (type 2/5),
trigger rate in Hz (type 1/4).

tf0 ll 1 start time for modulation signal in GPS nsec.

Decimation i 1 overall decimation factor; default 1.

Decimation1 i 1
decimation factor before modulation (first stage)s;
default 1.

DecmiationType i 1 decimation filter type identifier; default 1 (see Table 1).

DecimationFilter st 1 description of decimation filter.

DecimationDelay d 1 delay introduced by the decimation filter in sec.

DelayTaps i 1
number of taps in the time delay filter (in number of
original samples).

TimeDelay d 1 remaining time delay of time series in sec.

AverageType i 1
0 – fixed number,
1 – running (exponential weight).

Averages i 1 number of averages.

Channel ch 1 channel name

N i 1 number of points.

Unit st 1 physical unit.

f / zf

N
2×N
5×N
6×N

time series in format (Y),
time series in format (t,Y),
time series in format (mean, dev., min., max., rms),
time series in format (t, mean, dev., min., max., rms).

Name Type Dim Description
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B.2.4 FFT AND (CROSS) POWER SPECTRUM

A data object which describes FFT and power spectra can contain multiple spectra. By conv
the first one always describes the averaged spectrum. The following table lists the param
associated with a power spectrum:

Name Type Dim Description

Type st 1 Spectrum

Subtype i 1

0 – FFT in format (Y),
1 – power spectral density in format (Y),
2 – cross-power spectrum in format (Y),
3 – coherence in format (Y),
4 – FFT in format (f, Y),
5 – power spectral density in format (f,Y),
6 – cross-power spectrum in format (f,Y),
7 – coherence in format (f,Y).

f0 d 1 start frequency in Hz.

df d 1 frequency spacing in Hz.

t0 ll 1 start time in GPS nsec.

dt d 1
temporal spacing in sec (only useful for averaged
power spectrum).

BW d 1 resolution bandwidth

Window i 1

0 – uniform (no window),
1 – Hanning,
2 – Flat-top,
3 – Welch,
4 – Bartlett,
5 – BMH,
6 – Hamming,
7 – Kaiser.

AverageType i 1
0 – fixed number,
1 – running (exponential weight).

Averages i 1 number of averages (only useful for power spectra).

ChannelA ch 1 channel name

ChannelB[M] ch 1 2nd channel name(s) for cross-power spectra

N i 1 number of points.

M i 1 number of spectra.

Unit st 1 physical unit.

f

zf

M×N
+N

M×N
+N

power spectral density/coherence in format (Y),
power spectral density/coherence in format (f,Y),
FFT/cross spectrum in format (Y),
FFT/cross spectrum in format (f,Y).
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Diagnostics tests will generally use suptype 1 for a power spectrum, subtype 2 for the c
spectra and subtype 3 for the coherence. Power spectra are typically stored individually (
whereas cross-spetrum and coherence are stored as a set of spectra with one A chan
multiple B channels.

B.2.5 TRANSFER FUNCTION AND COHERENCE

A transfer function object can contain multiple transfer functions of the same two measure
points. By convention the first one is the average of the following ones. The following list pres
the associated parameters of a transfer function:

Name Type Dim Description

ObjectType st 1 TransferFunction

Subtype i 1

0 – transfer function B/A in format (Y),
1 – transfer function A in format (Y),
2 – coherence B/A in format (Y),
3 – transfer function B/A in format (f,Y),
4 – transfer function A in format (f,Y),
5 – coherence B/A in format (f, Y).

f0 d 1 start frequency in Hz.

df d 1 frequency spacing in Hz.

t0 ll 1 start time in GPS nsec.

BW d 1 measurement bandwidth in Hz.

Window i 1

0 – uniform (no window),
1 – Hanning,
2 – Flat-top,
3 – Welch,
4 – Bartlett,
5 – BMH,
6 – Hamming,
7 – Kaiser.
default: 1

AverageType i 1
0 – fixed number,
1 – running (exponential weight).

Averages i 1 number of averages.

ChannelA ch 1 name of A channel

ChannelB[M] ch 1 name(s) of B channel

N i 1 number of points.

M i 1 number of transfer/coherence functions.

zf

f

M×N
+N

M×N
+N

transfer function in format (Y),
transfer function in format (f,Y),
coherence in format (Y),
coherence in format (f,Y).

M 1=
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Diagnostics tests will generally use suptype 3 for a transfer function and subtype 5 fo
coherence. Typically, they are both stored as a set of functions with one A channel and mult
channels.

B.2.6 LIST OF COEFFICIENTS

A sine response measurement can yield multiple transfer coefficients which are stored i
dimensional arrays. One of the dimension always represents the multiple measurement
whereas the other dimension may represent the multiple excitation points, the harmonic or
the modulation product terms.

Name Type Dim Description

ObjectType st 1 Coefficients

Subtype i 1

0 – transfer coefficients in format (Y),
1 – harmonic coefficients in format (Y),
2 – intermodulation product in format (Y),
3 – coherence coefficients in format (Y),
4 – transfer coefficients in format (f, Y),
5 – harmonic coefficients in format (f, Y),
6 – intermodulation product in format (f, Y),
7 – coherence coefficients in format (f, Y),
8 – transfer matrix in format (Y).

t0 ll 1 start time in GPS nsec.

BW d 1 measurement bandwidth in Hz.

AverageType i 1
0 – fixed number,
1 – running (exponential weight),
2 – running (accumulative).

Averages i 1 number of averages.

ChannelA[M’] ch 1 channel name corresponding to M’-th readback point.

ChannelB[N] ch 1 channel name corresponding to N-th detection point.

N ll 1
number of detection points (A + B channels, except
subtype 8 which only counts B channels)
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B.2.7 MEASUREMENT VALUES

Measurement values which do not fit into one of the above category can be stored in a tab

M ll 1

number of frequency points:
f_1, f_2, f_M: transfer/coherence coefficients,
0, f, 2 f, 3 f, M f: harmonic coefficients (the 0 frequency
is used for storing the total harmonic distortion),
f_1, f_2, |f_1 – f_2|, f_1 + f_2: intermodulation product

Unit[N] st 1 physical unit.

zf
zf
zf
f
zf
zf
zf
zf
f

M×N

M×
(N+1)

transfer coefficients in format (Y),
harmonic coefficients in format (Y),
intermodulation product in format (Y),
coherence coefficients in format (Y),
transfer matrix in format (Y),
transfer coefficients in format (f, Y),
harmonic coefficients in format (f, Y),
intermodulation product in format (f, Y),
coherence coefficients in format (f, Y).

Name Type Dim Description

ObjectType st 1 MeasurementTable

t0 ll 1 start time in GPS nsec.

TableLength i 1 length of table

Name[N] st 1 name of measurement variable

Unit[M] st 1 physical unit.

Description[M] st 1 description of measurement

ValueType[M] st 1 type of value: number or complex

zf M measurement values

Name Type Dim Description
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B.3 DIAGNOSTICS TESTS

B.3.1 SINE RESPONSE, HARMONIC DISTORTION AND TWO-TONE

INTERMODULATION TESTS

Name Type Dim Description

ObjectType st 1 TestParameter

Subtype st 1 SineResponse

MeasurementTime d 2

measurement time at each frequency; first value in
sec, second value in cycles. The smaller one is taken
and rounded up to the next cycle. Negative values are
ignored.
default: 100, 10.

AverageType i 1

0 – fixed number,
1 – running (exponential weight),
2 – running (accumulative).
default: 0.

Averages i 1
number of averages;
default is 1.

SettlingTime d 1
settling time; specified in fraction of the total
measurement time; default is 0.1.

StimulusChannel[M] ch 1 name of stimulus channel.

StimulusReadback[M] ch 1

if defined, this is the readback of the stimulus channel,
otherwise, it is assumed the readback channel is
identical to the stimulus channel. A stimulus readback
can be explicitly disabled by specifying a “!” as the
stimulus readback channel.

StimulusFrequency[M] d 1
frequency of stimulus channel in Hz.
default: 100.

StimulusAmplitude[M] d 1
amplitude of stimulus channel.
default: 0.

StimulusOffset[M] d 1
offset of stimulus channel.
default: 0.

StimulusPhase[M] d 1
phase of stimulus signal in rad; the phase is relative to
the last 0:00UTC. default: 0.

MeasurementChannel[N] ch 1 measurement channel.
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If there is only one stimulus channel, the result will automatically include a harmonic analys
the first stimulus channel at every measurement point. Similarly, if there are exactly two stim
channels of different frequencies, the result will include a two-tone intermodulation analys
every measurement point. In all cases the result will include a sine response analysis of
stimulus frequency at every measurement point.

B.3.2 SWEPT SINE TESTS

HarmonicOrder i 1

indicates the highest harmonic order of interest; when
set to a value larger than 1 (default), it prevents that
the data to be decimate to a rate below
2 * max (StimulusFrequency) * HarmonicOrder. A
value of zero or smaller will prevent any decimation.

Window i 1

0 – uniform (no window),
1 – Hanning,
2 – Flat-top,
3 – Welch,
4 – Bartlett,
5 – BMH,
6 – Hamming,
7 – Kaiser.
default: 1

FFTResult b 1
if true (default), calculates averaged 1024 point FFTs
of each measurement channel as part of the result.

Name Type Dim Description

ObjectType st 1 TestParameter

Subtype st 1 SweptSine

SweepType i 1

0 – linear,
1 – log,
2 – user supplied frequency points,
3 – user supplied frequency/amplitude points
default: 1.

SweepDirection i 1
0 – upwards,
1 – downwards (default).

StartFrequency d 1
start frequency of swept sine in Hz.
default: 1.

StopFrequency d 1
stop frequency of swept sine in Hz.
default: 1000.

NumberOfPoints i 1
number of frequency steps;
default is 61.

Name Type Dim Description
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SweepPoints d M

user supplied frequency and amplitude points:
if SweepType is equal 2 the points consist of only
frequency values; if SweepType is 3, they consist of
frequency-amplitude pairs.

AChannels i 1

Number of A channels; default 0.
If this value is non-zero, the specified amount of
channels starting with the first measurement channel
are also considered A channels. By default only the
excitation channel is considered an A channel. For
each A channels, the swept sine test will calculate
both the transfer function and the coherence between
them and any other (B) channel. A negative number
will automatically include all channels.

Averages i 1
number of averages;
default is 1.

MeasurementTime d 2

measurement time at each frequency; first value in
sec, second value in cycles. The smaller one is taken
and rounded up to the next cycle. Negative values are
ignored.
default: 100, 10.

SettlingTime d 1
settling time at each frequency step; specified in
fraction of the total measurement time; default is 0.1.

StimulusChannel ch 1 name of stimulus channel.

StimulusReadback ch 1
if defined, this is the readback of the stimulus channel,
otherwise, it is assumed the readback channel is
identical to the stimulus channel.

StimulusAmplitude d 1
amplitude of stimulus channel.
default: 0.

MeasurementChannel[N] ch 1
measurement channels; must be at least two. By
default the first channel is the A channel.

HarmonicOrder i 1

indicates the highest harmonic order of interest; when
set to a value larger than 1 (default), it prevents that
the data to be decimate to a rate below
2 * max (StimulusFrequency) * HarmonicOrder. A
value of zero or smaller will prevent any decimation.

Name Type Dim Description
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B.3.3 FOURIER TESTS

Window i 1

0 – uniform (no window),
1 – Hanning,
2 – Flat-top,
3 – Welch,
4 – Bartlett,
5 – BMH,
6 – Hamming,
7 – Kaiser.
default: 1

FFTResult b 1
if true, calculates averaged 1024 point FFTs of each
measurement channel for each frequency step as part
of the result; default is false.

Name Type Dim Description

ObjectType st 1 TestParameter

Subtype st 1 FFT

StartFrequency d 1
start frequency of FFT in Hz.
default: 0.

StopFrequency d 1
stop frequency of FFT in Hz; internally always rounded
up so that the frequency spawn is a power of 2.
default: 1000.

BW d 1
bandwidth in Hz; always rounded to the closest power
of 2.
default: 1.

Overlap d 1
overlap of FFT windows (only useful when averaging);
t(i) = t0 + i * (1 – Overlap) * dt.
default: 0.5.

Window i 1

0 – uniform (no window),
1 – Hanning,
2 – Flat-top,
3 – Welch,
4 – Bartlett,
5 – BMH,
6 – Hamming,
7 – Kaiser.
default: 1

Name Type Dim Description
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AChannels i 1

Number of A channels; default 0.
If this value is non-zero, the specified amount of
channels starting with the first measurement channel
are considered A channels. For A channels, the fft test
will calculate both the cross-correlation and the
coherence between them and any other channel. Any
stimulus readback channel is automatically considered
an A channel. A negative number will automatically
include all channels.

AverageType i 1

0 – fixed number,
1 – running (exponential weight),
2 – running (accumulative).
default: 0.

Averages i 1
number of averages;
default is 10.

SettlingTime d 1
settling time; specified in fraction of the measurement
time; default is 0.

StimulusType[M] i 1

0 – no signal,
1 – sine wave,
2 – square wave,
3 – ramp,
4 – triangle,
5 – impulse,
6 – constant amplitude,
7 – normally distributed noise,
8 – uniformly distributed noise,
9 – arbitrary waveform,
10 – linear amplitude/frequency sweep,
11 – logarithmic amplitude/frequency sweep.
default: 0.

StimulusChannel[M] ch 1 name of trigger channel.

StimulusReadback[M] ch 1

if defined, this is the readback of the stimulus channel,
otherwise, it is assumed the readback channel is
identical to the stimulus channel. A stimulus readback
can be explicitly disabled by specifying a “!” as the
stimulus readback channel.

StimulusFrequency[M] d 1

frequency of trigger signal; default is 0, i.e.
1/MeasurementTime.
describes the center frequency for sweeps and band-
limited noise signals; describes the sampling
frequency for arbitrary waveforms.

StimulusAmplitude[M] d 1
amplitude of trigger signal; default 0.
describes the center amplitude for sweeps.

StimulusOffset[M] d 1
offset of trigger signal; default 0.
(describes the delay in sec for impulse).

Name Type Dim Description
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B.3.4 TIME SERIES MEASUREMENTS AND TRIGGER RESPONSE TESTS

StimulusPhase[M] d 1

phase of stimulus signal in rad; the phase is relative to
the last 0:00UTC. default: 0.
(describes the duration in sec for impulse and
sweeps).

StimulusRatio[M] d 1
ratio between high and the full period of a square wave
signal; default is 0.5.

StimulusFrequencyRange[M] d 1
describes the frequency range for sweeps and band-
limited noise signals; default 10000.

StimulusAmplitudeRange[M] d 1 describes the amplitude range for sweeps; default 0.

StimulusPoints[M] f K array describing an arbitrary waveform.

MeasurementChannel[N] ch 1 measurement channel.

Name Type Dim Description

ObjectType st 1 TestParameter

Subtype st 1 TimeSeries

MeasurementTime d 1

measurement time in sec.
To allow simple averaging this value is rounded to the
next multiple of the sample period of the measurement
channel with the lowest sampling rate. The sampling
rate of a channel can be reduced by specifying a
bandwidth.

PreTriggerTime d 1
measurement time before trigger is applied (given as a
ratio); default is 20% of the total measurement time.

DeadTime d 1
dead time; specified in fraction of the measurement
time; default is 0.

SettlingTime d 1
settling time; specified in fraction of the measurement
time; default is 0.

BW d 1

required signal bandwidth in Hz; always rounded up to
the closest power of 2. This value is used to determine
the decimation factor.
default: 10000.

IncludeStatistics b 1

If true (default), the resulting time series includes the
mean, the standard deviation, the minimum, the
maximum and the root-mean-square value. If false,
only the mean is included.

Averages i 1

number of triggers/averages.
1 – single trigger response (no average),
>1 – periodic trigger response (with average),
default: 10.

Name Type Dim Description
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AverageType i 1

0 – fixed number,
1 – running (exponential weight),
2 – running (accumulative).
default: 0.

StimulusType[M] i 1

0 – no signal,
1 – sine wave,
2 – square wave,
3 – ramp,
4 – triangle,
5 – impulse,
6 – constant amplitude,
7 – normally distributed noise,
8 – uniformly distributed noise,
9 – arbitrary waveform,
10 – linear amplitude/frequency sweep,
11 – logarithmic amplitude/frequency sweep.
default: 0.

StimulusChannel[M] ch 1 name of trigger channel.

StimulusReadback[M] ch 1

if defined, this is the readback of the stimulus channel,
otherwise, it is assumed the readback channel is
identical to the stimulus channel. A stimulus readback
can be explicitly disabled by specifying a “!” as the
stimulus readback channel.

StimulusFrequency[M] d 1

frequency of trigger signal; default is 0, which is
interpreted as 1/(MeasurementTime).
describes the center frequency for sweeps and band-
limited noise signals; describes the sampling
frequency for arbitrary waveforms.

StimulusAmplitude[M] d 1
amplitude of trigger signal; default 0.
describes the center amplitude for sweeps.

StimulusOffset[M] d 1
offset of trigger signal; default 0.
(describes the delay in sec for impulse).

StimulusPhase[M] d 1

phase of stimulus signal in rad; the phase is relative to
the trigger point. default: 0.
(describes the duration in sec for impulse and
sweeps).

StimulusRatio[M] d 1
ratio between high and the full period of a square wave
signal; default is 0.5.

StimulusFrequencyRange[M] d 1
describes the frequency range for sweeps and band-
limited noise signals; default 10000.

StimulusAmplitudeRange[M] d 1 describes the amplitude range for sweeps; default 0.

StimulusPoints[M] f K array describing an arbitrary waveform.

MeasurementChannel[N] ch 1 measurement channel.

Name Type Dim Description
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B.3.5 RANDOM STIMULUS RESPONSE TESTS

TBD.

B.4 XML CONVENTIONS

The file format for saving a diagnostics test is the LIGO lightweight file format which is base
XML. Data fields of parameters are ASCII encoded; in case the parameter uses a list of v
they are comma delimited. Data fields of data objects are save as binary arrays following
convention for storing rows and columns and using a big-endian representation. These bina
fields are appended to the XML file, so that a diagnostics test can be stored in a single file.
page 67 of 84



LIGO-T990013-B

ules.
e web
ive an
iled
in the

ries)
with a
APPENDIX C SOFTWARE MODULES

A fair amount of documentation is written directly into the header files of the C and C++ mod
This documentation can be converted into html web pages using the doc++ program. Th
pages can be reached at www.ligo-wa.caltech.edu/gds. This appendix is intended to g
overview of the existing software modules and to explain their main functions. A deta
description of the constants, types, macros, objects, routines and their parameters is found
web pages.

C.1 OVERALL STRUCTURE

The source tree of the diagnostics test software is divided into sections (sub directo
representing groups of modules. A typical section contains all the modules associated
software interface or category. The following sections are implemented:

Section Description Modules

src/algorithm
analysis algorithms:
FFT, swept sine, etc.

decimate – decimation
gdsrand – random number generation
gdssigproc – general purpose signal processing
sineanalyze – sine amplitude determination

src/awg
arbitrary waveform
generator,
excitation engine

awg – excitation generator and manager
awgapi – API to the excitation engine
awgfunc – general purposes awg functions
awgtype – types used by the excitation engine
awg_server – rpc server of excitation engine
excitation – diagnostics test interface to the awg
rawgapi – rpc (remote procedure call) interface

src/cmd
command line
interface

cmdline – command line interpreter
gdscmd – cmd line interface to diagnostics kernel
gdsmsg – message interface for sending commands
gdsmsg_server – rpc server for command messages
rgdsmsg – rpc interface

src/daq
interface to the data
acquisition system

gdschannel – interface to channel information database
gdsrtdd – interface to the network data server

src/diag diagnostics tests

diagclass – basic class for diagnostics tests
diagnames – names used by tests
repeat – repeats a test
sineresponse – sine response test
sweptsine – swept sine test
testiter – basic object for test iterations
testorg – manages all diagnostics tests
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src/drv hardware drivers

cobox – driver for an ethernet-to-RS232 converter
ds340 – driver for SR DS340 signal generators
gdsdac – driver for ICS115 digital-to-analog converter
gpsclk – driver for the VME gps clocks
hardware – parameters of the VME modules
rmapi – driver for reflective memory boards
target – VME host parameters

src/prog programs

chndump – dumps the channel database to screen
chnsave – saves channel data to disk
diag – main program
gdsd – diagnostics kernel (daemon)

src/rmem
reflective memory
interface

map – memory map of the reflective memory
rmorg – macros for managing DCUs
testpoint – API for selecting test points
testpoint_server – test point manager
rtestpoint – rpc interface

src/sched scheduler

gdssched – scheduler
gdssched_client – remote scheduler client interface
gdssched_server – remote scheduler server interface
gdsrsched – rpc interface

src/storage
storage objects for
diagnostics tests

gdsdatum – hierarchical storage object
diagdatum – diagnostics storage object
rtddinput – storage interface to the network data server

src/test test programs miscellaneous

src/util utilities

gdserr – common error log
gdserrmsg – error messages
gdsheartbeat – heartbeat interface and synchronization
gdsmain – compiler directives for different hosts
gdsmutex – mutual exclusion semaphore objects
gdsprm – parameter file interface
gdsstring – additional string functions
gdstask – task/thread creation
rpcinc – common rpc routines
tconv – time conversion routines
gdsutil – includes most utility modules

Section Description Modules
page 69 of 84



LIGO-T990013-B

ules.
C.2 UTILITIES

The following sections list the main routines and objects of the more important software mod

C.2.1 GDSERR

C.2.2 GDSHEARTBEAT

C.2.3 GDSMUTEX

C.2.4 GDSPRM

Function Description

gdsConsoleMessage prints a message to the gds console

gdsErrorMessage prints an error message

gdsError prints one of the predefined error conditions

gdsWarningMessage prints a warning message

gdsDebugMessage prints a debug message

gdsDebug prints a debug message if the DEBUG is defined

Function Description

installHeartbeat installs a heartbeat interrupt (16 Hz clock derived from GPS)

syncWithHeartbeat
syncWithHeartbeatEx

synchronizes the program execution to the next heartbeat

Object Description

mutex mutex object

recursivemutex mutex which can be called multiple times from the same thread

readwritelock read/write lock semaphore

semlock locks a semaphore/mutex as long during the scope of the object

Function Description

findParamFileSection finds a section within a parameter file

nextParamFileSection finds the next section

getParamFileSection gets a section

findParamSectionEntry finds a parameter section entry

nextParamSectionEntry finds the next entry

getParamSectionEntry gets the entry
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C.2.5 GDSSTRING

C.2.6 GDSTASK

C.2.7 RPCINC

loadParamSectionEntry loads a parameter

loadBoolParam loads a boolean parameter

loadIntParam loads an integer parameter (int)

loadNumParam loads a numerical value (unsigned long)

loadFloatParam loads a floating point number (double)

loadStringParam loads a string parameter

Function Description

gds_strcasecmp compares two strings ignoring the case

strend goes to the end of a string

strecpy copies a string and returns the end of the resulting string

chnIsValid returns true if a correctly formatted channel name is supplied

chn... miscellaneous channel name handling functions

Function Description

taskCreate creates a new task/thread

Function Description

rpcGetHostaddress returns the host address

rpcGetLocalAddress gets the address of the local machine

rpcGetClientAddress gets the rpc client address

rpcInitializeServer initializes an rpc server

rpcRegisterService registers an rpc service

rpcStartServer starts an rpc server

rpcStartCallbackService starts an rpc callback service

rpcStopCallbackService terminates the rpc callback service

rpcResgisterCallback registers a callback service

rpcProbe test if an rpc service exists

Function Description
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C.2.8 TCONV

C.3 ALGORITHMS

C.3.1 DECIMATE

C.3.2 GDSRAND

C.3.3 GDSSIGPROC

C.3.4 SINEANALYZE

Function Description

TAInow returns the time in GPS seconds

TAItoUTC
UTCtoTAI

converts between universal coordinate time and gps seconds

Function Description

decimate filter decimation stage

zoom down-conversion

Function Description

urand_r MT safe uniformly distributed random number generator

urandv_r uniformly distributed random vector generator

nrand_r normally distributed random number generator

nrandv_r normally distributed random vector generator

Function Description

DotProd vector dot product

Mean vector mean

Mixdown complex down-conversion

Function Description

sineAnalyze determines the amplitude and phase of a sine wave

sweptSineNpts calculates the number of necessary data points
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C.4 ARBITRARY WAVEFORM GENERATOR

C.4.1 AWG

C.4.2 AWGAPI

Function Description

initAwg initializes the arbitrary waveform generator

getIndexAWG gets an unused slot in the awg

releaseIndexAWG frees an awg slot

resetAWG resets an awg slot

configAWG configures an awg from a parameter file

showAWG displays the current state information of an awg slot

processAWG calculates the waveform

disableAWG disables a slot

enableAWG enables a slot

addWaveformAWG adds a waveforms to a slot

setWaveformAWG sets an rabbitry waveform vector

queryWaveformAWG returns the current waveforms

checkConfigAWG checks the configuration

resetAllAWG,
configAllAWG,
showAllAWG,
processAllAWG,
disableAllAWG,
enableAllAWG

same as corresponding functions above but for all awg slots

getStatisticsAWG get the real-time performance statistics of an awg

Function Description

awg_client installs the awg client interface

awgSetChannel reserves a slot of an awg

awgRemoveChannel frees the slot

awgAddWaveform adds waveforms (signals)

awgSetWaveform sets an arbitrary waveform vector

awgQueryWaveform returns the current waveforms

awgReset resets an awg
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C.4.3 AWGFUNC

C.4.4 AWG_SERVER

C.4.5 EXCITATION

TBD.

C.5 COMMAND LINE INTERFACE

C.5.1 CMDLINE

awgStatistics returns the real-time performance statistics of an awg

awgShow shows the status information of an awg

awgCommand command interpreter for arbitrary waveform generators

Function Description

normPhase normalizes the phase to be between 0 and 2π

productLog calculates the inverse of z(w)=wexp(w)

awgSignal calculates a waveform function

awgPhaseIn phase-in function

awgPhaseOut phase-out function

awgSweepOut phase-out for frequency sweep

awgSweepComponents defines a frequency sweep waveform component

awgPeriodicComponent defines a waveform component of a periodic waveform

awgIsValidComponent tests if waveform component is valid

awgSortComponents sorts awg components according to their start time

Function Description

awg_server starts the rpc services for an arbitrary waveform generator

Object / Method Description

commandline command line object

operator ! returns true if finished

operator () calls the command line interpreter

Function Description
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C.5.2 GDSCMD

C.5.3 GDSMSG

C.5.4 GDSMSG_SERVER

C.5.5 GDSMSG_SOCKETS

C.6 DATA ACQUISITION INTERFACE

C.6.1 GDSCHANNEL

Function Description

gdsCmdInit Initializes the diagnostics kernel

gdsCmdFini terminates the diagnostics kernel

gdsCmd executes a diagnostics command

gdsCmdNotifyHandler installs a command notification handler

cmdNotification sends a notification back to the command line interface

Function Description

gdsMsgOpen opens a communication channel to the diagnostics kernel

gdsMsgClose closes the communication channel

gdsMsgSend sends a message to the diagnostics kernel

gdsMsgInstallHandler installs a message callback handler for receiving notifications

Function Description

gdsmsg_server starts the rpc message server of the diagnostics kernel

Function Description

gdsmsg_sockets starts the TCP/IP message server of the diagnostics kernel

Function Description

gdsChannelInfo obtains channel information

gdsChannelListLen returns the number of channels in the database

gdsChannelList returns a list of all channels
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C.6.2 GDSRTDD

C.7 DIAGNOSTICS TEST UTILITIES

C.7.1 DIAGNAMES

C.7.2 DIAGORG

C.7.3 TESTENV

C.7.4 TESTSYNC

C.8 DIAGNOSTICS TEST SUPERVISORY

C.8.1 SUPERVISORY

C.8.2 STDSUPER

TBD.

C.9 DIAGNOSTICS TEST ITERATORS

C.9.1 TESTITER

C.9.2 REPEAT

C.9.3 SCANITER

C.9.4 FINDITER

C.10DIAGNOSTICS TESTS

C.10.1DIAGTEST

Function Description

gdsSubscribeData subscribes a channel to the network data server

gdsUnsubscribeData unsubscribes the channel

gdsGetNewdata gets new channel data

gdsGetData gets channel data for a specific time interval
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Figure 13: Class hierarchy of the diagnostics supervisory, the disgnostics tests and th
iterators.

test environment

testiterator

diagtest

basic_supervisory

standardsupervisory

FFT

sweptsine

sineresponse

repeatiterator

timeseries

scaniterator

finditerator

diagStorage

testpointMgr

pseudorandom
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C.10.2SINERESPONSE

C.10.3SWEPTSINE

C.10.4FOURIER

C.10.5TIMESERIES

C.10.6PSEUDORAN

C.11HARDWARE DRIVERS

The layout of the excitation engine VME modules can be found in the hardware and target h
files.

C.11.1COBOX

C.11.2DS340

Function Description

openCobox opens a socket connection to a cobox (ethernet-to-RS232 converter)

Function Description

connectSerialDS340 connects a DS340 through a serial port

connectCoboxDS340 connects a DS340 through a cobox

resetDS340 resets a DS340

isDS340Alive tests if the DS340 is alive

pingDS340 tests if the DS340 is connected and powered up

setDS340
uploadDS340Block

sets the configuration of a DS340

getDS340
downDS340Block

gets the configuration

sendWaveDS340 uploads an arbitrary waveform vector to a DS340

sendResetDS340 sends a reset signal

sendClearDS340 sends a clear signal

sendTriggerDS340 sends a trigger signal
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C.11.3GDSDAC

Not yet implemented.

C.11.4GPSCLK

C.11.5RMAPI

Function Description

dacInit initializes the ICS115 board

dacRestart restarts the ICS115 and re-synchronizes it with the GPS clock

dacCopyData copies data to the ICS115

Function Description

gpsBaseAddress returns the VME base address of the GPS clock

gpsInit initializes the board

gpsSyncInfo returns the synchronization status

gpsTimeNow returns the current time in GPS nsec

gpsTime converts the native time format of the board into GPS nsec

gpsNativeTime returns the current time in the native format

gpsMicroSec returns the micro seconds only

gpsInfo returns GPS information

gpsHeartbeatInstall Installs a 16Hz GPS synchronized interrupt

gpsHeartbeatHealth monitors the health of the heartbeat interrupt

Function Description

rmInit initializes the reflective memory board

rmBaseAddress returns the base address of the reflective memory region

rmBoardAddress returns the base address of the reflective memory board

rmBoardSize returns the memory size supported by the board

rmLED turns the LED on and off

rmResetNode resets a reflective memory node

rmInt sends an interrupt to a reflective memory node

rmCheck check if a memory region is accessible

rmRead reads from reflective memory

rmWrite writes to reflective memory
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C.12REFLECTIVE MEMORY ORGANIZATION

The memory map of the reflective memory and set of macros to handle parameters o
collection units can be found in the header files of the map and rmorg modules.

C.12.1TESTPOINT

C.12.2TESTPOINT_SERVER

C.13SCHEDULER

C.13.1GDSSCHED

Function Description

testpoint_client initializes the test point client interface

tpRequest selects a set of test points

tpClear clears test points

tpQuery returns the active test points

tpGetIndexDirect returns the test point index on VME systems

tpIsValid tests if a test point is valid

tpAddr returns the address of a test point in reflective memory

tpCommand command line interface to the test point manager

Function Description

testpoint_server starts the rpc services of the test point manager

Function Description

createScheduler creates a scheduler

closeScheduler closes a scheduler

scheduleTask adds a new task to the scheduler

getScheduledTask obtains information about a scheduled task

removeScheduledTask removes a task from a scheduler

waitForSchedulerToFinish waits until all tasks have been scheduled and finished

setScheduleTag sets a synchronization tag
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C.13.2GDSSCHED_CLIENT

C.13.3GDSSCHED_SERVER

C.14STORAGE OBJECTS

The class hierarchy of the diagnostics storage interface is shown in Fig. 14. There are two
class categories:(i) classes which contain data (inherited from gdsDatum) and(ii) classes which
manage the access to the data (inherited from diagObjectName). The main diagnostics s
object is of type diagStorage, it is inherited from a generic storage object, gdsStorage
contains all access classes. This main object is able to set and get variables by name fr
generic storage object using the access classes to make sure the variable names are valid
object and valid test parameters. The storage object is organized implementing two hierar
levels: the main storage objects contains both data objects and global parameter objects; w
data objects can contain their own private parameter objects. Thus, the generic storage
gdsStorage inherits from the data object, gdsDataObject, and also contains a list of data ob

Access classes for data objects are inherited from diagObject which itself is inherited
diagObjectName. The diagObject contains a list of access classes for the parameters wh
associated with this data object. Data objects which contain results and data objects
describe a diagnostics test are inherited from diagMultipleObject. The diagMultipleOb
manages a list of access classes which are used depending on the type of the data object.

C.14.1GDSDATUM

Function Description

createRemoteScheduler creates a new local scheduler for remote use

createBoundScheduler creates a new scheduler on a remote machine

Function Description

registerSchedulerClass registers a task which can be scheduler from remote

runSchedulerService start the rpc services of a remote scheduler manager

Object / Method Description

gdsDatum object which stores data, can be multi-dimensional.

gdsNamedStorage object with a name.

gdsNamedDatum object which stores data and has a name.

gdsDataReference object which manages data references to memory mapped files.

storage_ptr
auto pointer object which manages pointers to parameter and data
objects.
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gdsDatum gdsNamedStorage

gdsNamedDatum

gdsDataObject

gdsStorage

gdsParameter

gdsParameterList

gdsDataReference

gdsObjectList

storage_ptr

auto_ptr

diagStorage

diagObject

diagObjectName

diagParam

diagParamList

diagGlobal

diagDef

diagSync

diagEnv

diagScan

diagFind

diagPlot

diagMultipleObject diagResult

diagTimeSeries

diagSpectrum

diagTransferFunction

diagCoefficients

diagMeasurementTable

diagTest

diagChn

testSineResponse

testSweptSine

testFFT

testTimeSeries

testPseudoRandom

Figure 14: Class hierarchy of the diagnostics storage interface.

inheritance

contains

list container

all from below
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C.14.2DIAGDATUM

C.14.3RTDDINPUT

gdsParameter parameter object.

gdsDataObject data object; contains a list of parameter objects.

gdsStorage generic storage object; contains a list of data objects.

Object / Method Description

diagObjectName
generic access class, handles names, dimensions, indices, data types
and access writes.

diagParam generic access class for a parameter object.

diagObject generic access class for data objects.

diagGlobal, diagDef,
diagSync, diagEnv,
diagScan, diagFind,
diagPlot

access class for global parameters, default parameters, synchronization
variables, environment settings, scan parameters, optimization
parameters and plot settings, respectively.

diagMultipleObject
generic access class for a data object with multiple possible
configurations.

diagTest access class for the diagnostic test object.

testSineResponse,
testSweptSine, testFFT,
testTimeSeries,
testPseudoRandom

access class for sine response test, swept sine test, FFT test, time series
measurement, and pseudo random response test, respectively.

diagResult access class for a result object.

diagTimeSeries, diagChn
diagSpectrum,
diagCoefficients,
diagMeasurementTable

access class for time series vectors, channel data, FFT spectra,
measurement coefficients, and measurement tables, respectively.

diagStorage
diagnostics storage object; manages parameters and data objects which
can have their own parameters. Uses the access classes to make sure
that only valid parameter and data objects are stored.

Object / Method Description

rtddcallback class implementing a callback method for the network data server API

gdsRTDDchannel
class for reading channel data from the network data server, it manages
a single channel, knows how to handle data partitions and knows where
to store the read data in the diagnostics storage object.

partition class which describes a channel data partition

gdsRTDDinput
class which manages a list of gdsRTDDchannel objects, i.e. class which
handles the input from the network data server.

Object / Method Description
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C.15PROGRAMS

C.15.1CHNDUMP

This is a utility program to dump all channel information records to the standard output.

C.15.2DIAG

This program is the interface to the diagnostic system, it can invoke either the comman
interface or the graphical user interface. For a more detailed discussion see Sections 2.2 –

C.15.3GDSD

This is the diagnostics kernel. See Appendix A.2 on how to set it up.

C.15.4LIBGDS.SO

This is the dynamic link library which implements most of the diagnostics kernel. It is used b
‘diag’ program if a connection to a local kernel is established.
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