
LIGO-T020072-02-D

LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY
Technical Note

The Signal Injection Handbook

Peter Shawhan, Daniel Sigg, Isabel Leonor

January 27, 2003

This is an internal working note of the LIGO Project

 2

Introduction

The LIGO length-control servo, and other “ front end” control systems, have the
capabili ty to add user-supplied “excitation” waveforms to the regular feedback
waveforms at various points in the system. This was originally used only to inject sine
waves and other periodic signals (e.g. for calibration purposes), but in October 2001 we
wrote software to allow simulated waveforms of arbitrary duration to be injected into the
interferometer hardware. This document is intended to serve as a User’s Guide for this
capabili ty.

The basic approach is that a client program streams waveform data in one-second chunks
over ethernet to the GDS “arbitrary waveform generator” processor, which sends the
waveform to the excitation channels with the proper synchronization. There is a library
of client-side routines (called “SIStr” , for Signal Injection Stream) which provides a
very simple external call i nterface, and internally takes care of all the buffering and
timing issues. At present, there are two ways in which this can be used:

1. There is a utili ty called awgstream which reads waveform data (i.e. a sequence of real
numbers) from a formatted ASCII file and makes the appropriate SIStr calls to send the
waveform to a specified excitation channel.

There is also a separate utili ty, called multiawgstream, which determines the waveforms
to be injected from a user-specified configuration file. This utili ty makes possible the
eff icient injection of multiple waveforms at different times within a short time interval.

2. Users can write their own client programs in C which call functions in the SIStr
library. This opens up the possibili ty of injecting very long waveforms which are
computed on-the-fly, e.g. signals from periodic sources.

Any client program must run on one of the Sun workstations on the CDS network. The
waveforms are synchronized to the GPS clock, so it would be possible to inject
waveforms simultaneously into multiple interferometers with a known timing
relationship.

All i njections performed using the SIStr library are logged in a central log file:
/opt/CDS/d/controls/signal_injection_log/injection_log.txt at Hanford, and
/opt/LLO/c/controls/signal_injection_log/injection_log.txt at Livingston.
This file indicates the channel name, start and stop time for each injected waveform, as
well as the name of the client program and (typicall y) some additional information about
the waveform that was injected. (Note that the stop time recorded in this file is a second
or two after the actual end of the injected waveform.)

 3

How to Use the awgstream Utility

1. Determine what excitation channel you will use
The following channels (all sampled at 16384 Hz) are available for injecting signals at
various points in the LSC servo:

At Hanford:
 H1:LSC-ITMX_EXC and similarly for ITMY, ETMX, ETMY, BS
 H1:LSC-DARM_CTRL_EXC and similarly for CARM, MICH, PRC
 H1:LSC-DARM_ERR_EXC and similarly for CARM, MICH, PRC
 H2:LSC-ITMX_EXC and similarly for ITMY, ETMX, ETMY, BS
 H2:LSC-DARM_CTRL_EXC and similarly for CARM, MICH, PRC
 H2:LSC-DARM_ERR_EXC and similarly for CARM, MICH, PRC
At Livingston:
 L1:LSC-ITMX_EXC and similarly for ITMY, ETMX, ETMY, BS
 L1:LSC-DARM_CTRL_EXC and similarly for CARM, MICH, PRC
 L1:LSC-DARM_ERR_EXC and similarly for CARM, MICH, PRC

Other excitation channels are available to inject waveforms into other subsystems, such
as the alignment servo. There is a trick to get a complete list of excitation channels and
their sampling rates: log into any machine on the CDS cluster and type:

 setenv GDS_DIR /opt/CDS/a/gds [/opt/LLO/a/gds at LLO]
 setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:$GDS_DIR/lib
 ~controls/pshawhan/awgstream -d -d blah 1 null.dat

2. Prepare a waveform file
This should be a formatted ASCII file containing a list of real numbers separated by
newlines or spaces. For example:

 -4.903158e-04
 -2.675681e-04
 -4.475717e-05
 1.780641e-04
 ...

Note that any parsing error will cause the input file to be close and the waveform, up to
the point of the parsing error, to be flushed to the front end.

The sampling rate must match the intrinsic rate of the excitation channel onto which this
waveform is to be injected. The normalization is nominally in "counts", but you will be
able to scale the entire waveform by a constant factor when you inject it. The one tricky
part about generating the waveform is that you must account for the transfer function
between the point in the servo system where you inject it, and the actual mirror motion.

 4

For example, if you inject a waveform onto the LSC-ETMX_EXC excitation channel,
this causes current to flow proportionally in the coils, but the actual motion of the
mirror is subject to the "pendulum" response function, which goes as −1/f2 at frequencies
far above the pendulum frequency. Thus, the waveform injected into the system should
be the gravitational-wave strain waveform, weighted by a factor proportional to f2 in the
frequency domain. For simulated inspiral waveforms, I made this adjustment by reading
the waveform into a Matlab array, doing a fast Fourier transform, weighting the
frequency-domain data, then doing an inverse FFT to go back to the time domain.

3. Copy the waveform file to the CDS cluster
The CDS unix cluster is on a private network and is not visible to the outside world,
except for a single gateway machine (red . ligo - wa.caltech.edu at Hanford, and
london.ligo - la.caltech.edu at Livingston). The standard way to copy files to the
CDS cluster is:
 1. Log into the gateway machine as 'ops ' . You will need to know the password to do

this, of course.
 2. Make a subdirectory below ~ops for your personal use. The custom is to use your

usual unix username for the subdirectory name, e.g. 'mkdir pshawha n'
 3. Use scp to copy the remote waveform file to your personal subdirectory.

4. Log into any machine on the CDS cluster as 'ops', and get set up
After logging in, you need to set your LD_LIBRARY_PATH to include the directory with the
libraries for communicating with the servo system. At Hanford, do:

 se tenv GDS_DIR /opt/CDS/a/gds
 setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:$GDS_DIR/lib

At Livingston, do:

 se tenv GDS_DIR /opt/LLO/a/gds
 setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:$GDS_DIR/lib

Then change directories to your personal subdirectory.

5. Remind yourself of the syntax for the awgstream utili ty
This is the utility program which reads a waveform out of an ASCII file and injects it
onto the excitation channel you specify. It is located in the ~controls/ps hawhan
directory. To get a reminder of the syntax, just run it without any arguments:

 ~controls/pshawhan/awgstream

This will print out:

 5

Usage: awgstream <channel> <rate> <file> [<scale> [<gpstime>]] [- d]
 <channel> is case - sensitive and must be a re al excitation channel
 <rate> is in Hz and must match the excitation channel's true rate
 <file> is the file of waveform data, which must be a FORMATTED ascii file
 with the values separated by whitespace (e.g. newlines and/or spaces).
 Any con version error causes the rest of the file to be skipped.
 If <file> is ' - ' (i.e. a dash), data is read from standard input.
 <scale> is an optional scale factor to apply to the data in the file.
 <gpstime> is the time to start injecting the waveform . It can take any
 real value, not just an integer. It must occur during the 24 - hour
 period following the execution of the awgstream command.
 If omitted, the waveform injection will start in about 10 seconds.
 The ' - d' option causes deb ugging information to be printed to the screen.
 Specify ' - d' twice for extra information.

6. Determine the scale factor to use when injecting the waveform
Each sample in the waveform file is multiplied by the scale factor argument to
awgstream , if present. The resulting value is in units of "counts" within the LSC servo,
which ultimately gets converted to a current in the coil drivers. The exact conversion
factor may be obscure, but in practice net amplitudes of a few counts to a few hundred
counts are probably appropriate. Injecting signals of more than a few thousand counts
will knock the interferometer out of lock and/or make people nervous about over-driving
the coil drivers. Choose a scale factor accordingly.

7. Choose a start time
You can specify a GPS time that is at least several seconds in the future, and not more
than 24 hours in the future. An error will occur if you specify a time which does not fall
within this window. With sufficient tunneling through gateway machines, you should be
able to inject waveforms synchronously at both observatories.

If you do not specify a start time, the software picks a start time several seconds in the
future, aligned to an exact integer number of GPS seconds. However, by default it does
not tell you what that time is. You can use the '- d' flag to cause the actual start time and
other "debugging" information to be printed to the screen. Or you can omit this flag and
just check the central log file
(/opt/CDS/d/control s /signal_injection_log/injection_ log.txt at Hanford,
/opt/LLO/c/controls/signal_injection_log/injection_log.txt at Livingston)
later to see what the actual start time was.

8. Prepare to monitor the injected waveform
Before injecting the waveform, set up Data Viewer to look at the excitation channel you
will be using. Since excitation channels are disabled except when explicitly used, you
may see a repeated pattern of garbage data on the screen until the injection actually starts.
You should make sure the vertical scale is auto-ranging, and de-select the "Units"
checkbox to disable any (probably meaningless) conversion from "counts" to some other
units.

 6

9. Inject the waveform
Now you can run the awgstream utility! For example:

 ~controls/pshawhan/awgstream H2:LSC - ETMX_EXC 16384 inspira l16384.dat 0.12 - d

Caveats
If the waveform does not seem to be showing up on the interferometer output (and you
think the amplitude is large enough that you should be able to see it), make sure the LSC
servo is not disabling the signal that you inject into it. For instance, I tried injecting
inspiral chirps into ITMX, only to discover that ITMX was disabled on the servo control
screens, so that the waveform I injected was being ignored.

Miscellaneous
There is a command-line interface to the GDS arbitrary waveform generator. To invoke
it, type:
 diag –l –c

Here are a few example commands:
 awg show 1
 awg free 2007

The arbitrary waveform generator also keeps track of cumulative statistics. To view
them, do:
 awg stat 1

To clear the statistics registers:
 awg stat 1 clear

Note that the awgstream utility will read the waveform from standard input if you specify
a dash for the input filename.

 7

How to Use the multiawgstream
Utility

If one plans to inject many waveforms within a short time period, one might find it
convenient to use the multiawgstream utility. This utility reads the parameters for the
waveforms to be injected from a configuration file supplied by the user. The format of
the configuration file is described below. A copy of the multiawgstream utility used for
E9 can be found in:

/cvs/cds/lho/web/engrun/E9/HardwareInjection/Details/bin at LHO, and at
/cvs/cds/llo/web/engrun/E9/HardwareInjection/Details/bin at LLO.

To use the multiawgstream utility, follow steps 1 to 4 described in using the awgstream
utility above, then continue with the following step:

Familiarize yourself with the syntax for the multiawgstream utility,
then make a configuration file
Typing multiawgstream by itself without arguments will give the usage for this utility:

Usage: multiawgstream <channel> <rate> <configfile> [<scale> [<gpstime>]] [-d]

<channel> is case-sensitive and must be a real excitation channel.
<rate> is in Hz and must match the excitation channel's true rate.
<configfile> is a configuration file. Each waveform to be injected
 should have a corresponding line in this file specifying
 the file containing the waveform data preceded by the
 keyword "wffile", and a unique alias for this waveform.
 After all the waveform files and corresponding aliases have
 been specified, the remaining lines of the configuration
 file should each specify the alias of the signal to be
 injected, the scale factor to be multiplied to the overall
 scale factor specified at the command line, and the time
 offset relative to the GPS time specified at the command
 line, in that order. A "#" at the beginning of a line
 can be used to indicate that the rest of the line should
 be treated as a comment. For example, the contents of a
 configuration file should be similar to this:

 # Specify waveform files and aliases
 # in the following lines:
 wffile sinewave.dat sine
 wffile zwergermueller1.dat zm1
 wffile zwergermueller2.dat zm2

 # Specify aliases, scale factors, and
 # time offsets (in that order) of signals
 # to be injected:
 zm1 0.1 0.0
 zm1 1.0 15.0

 8

 sine 10.0 30.0
 zm2 100.0 45.0

 The file containing the waveform data must be a FORMATTED
 ascii file with the values separated by whitespace (e.g.
 newlines and/or spaces). Any conversion error causes the
 rest of the file to be skipped. If <configfile> is '-'
 (i.e. a dash), data is read from standard input. Waveform
 file names and aliases are limited to 100 characters, and
 each line in the configuration file is limited to 208
 characters.
<scale> is an optional overall scale factor to apply to all the
 waveforms. Default is 1. This overall scale factor is
 multiplied by the scale factor given in the configuration
 file to obtain the total scale factor applied to a
 waveform.
<gpstime> is a reference time for injecting the waveforms. It can
 take any real value, not just an integer. The resulting
 time from the sum of the reference time and the time offset
 given in the configuration file is the signal injection
 start time, and must occur during the 24-hour period
 following the execution of the multiawgstream command.
 If the resulting time is zero, waveform injection will
 start in about 10 seconds.

The '-d' option causes debugging information to be printed to the screen.
 Specify '-d' twice for extra information.

The multiawgstream client needs a configuration file from which the client will read the
parameters, i.e. waveform file names, waveform aliases, scale factors, and time offsets,
for the signals to be injected. These parameters are described in the multiawgstream
usage given above. After making the configuration files that one needs and which follow
the format describe above, one is then ready to inject the signals using multiawgstream.
Currently, the number of signals to be injected which can be specified in one
configuration file is limited to 200. Here is another example of a configuration file:

Hanford burst configuration file for H1:LSC-ETMX_EXC
Specify waveform data files and aliases
wffile /opt/CDS/d/scirun/S1/Injection/S1_Burst/wfsg100.dat wfsg100
wffile /opt/CDS/d/scirun/S1/Injection/S1_Burst/wfsg153.dat wfsg153
wffile /opt/CDS/d/scirun/S1/Injection/S1_Burst/wfsg235.dat wfsg235
wffile /opt/CDS/d/scirun/S1/Injection/S1_Burst/wfsg361.dat wfsg361
wffile /opt/CDS/d/scirun/S1/Injection/S1_Burst/wfsg554.dat wfsg554
wffile /opt/CDS/d/scirun/S1/Injection/S1_Burst/wfsg850.dat wfsg850
wffile /opt/CDS/d/scirun/S1/Injection/S1_Burst/wfsg1304.dat wfsg1304
wffile /opt/CDS/d/scirun/S1/Injection/S1_Burst/wfsg2000.dat wfsg2000

Specify signal aliases, scale factors, and time offsets
wfsg100 0.0069 41.0000
wfsg153 0.0162 81.0000
wfsg235 0.0381 121.0000
wfsg361 0.0897 161.0000
wfsg554 0.2112 201.0000
wfsg850 0.4970 241.0000
wfsg1304 1.1697 281.0000
wfsg2000 2.7529 321.0000

 9

How to Use the C Interface

The Signal Injection Stream library provides a simple interface so that users can write
their own client programs to send waveform data to the front end. The source code
resides in the files SIStr.h and SIStr.c, and there are only four or five functions which
are commonly called by the user’s code.

Basic skeleton of a user program

#include <stdlib.h>
#include <stdio.h>
#include "SIStr.h"
SIStream sis;

sprintf(string, "client_name %s", (other info));
SIStrAppInfo(string);

status = SIStrOpen(&sis, channel, samprate, starttime);
if (status != SIStr_OK) {
 fprintf(stderr, "Error opening stream: %s\n", SIStrErrorMsg(status));
 return 2;
}

while (there is waveform data to send) {
 status = SIStrAppend(&sis, data_array, ndata, scale);
 if (status != SIStr_OK) {
 fprintf(stderr, "Error streaming data: %s\n", SIStrErrorMsg(status));
 break;
 }
}

status = SIStrClose(&sis);
if (status != SIStr_OK) {
 fprintf(stderr, "Error closing stream: %s\n", SIStrErrorMsg(status));
 return 2;
}

Notes on calling SIStr functions
Note how we check for an error after each call to a SIStr function (except
SIStrAppInfo), but if SIStrAppend returns an error, then we do not exit out of the
program; we just break out of the loop so we can still call SIStrClose to clean up.

The string passed to SIStrAppInfo is written into the central log file along with the
channel name and start/stop times of the injected signal. This string should begin with
the client name and may include other information (waveform name, amplitude, etc.),
separated by spaces, if appropriate.

In the call to SIStrOpen, you must pass the name of a valid excitation channel, and a
sampling rate that matches the actual sampling rate for that channel. You can pass an

 10

explicit start time (in GPS seconds, as a double-precision value), which must be between
the current time, and the current time plus one day. Or you can pass starttime=0.0, in
which case the waveform injection will start "right away" (actually, after a delay of
several seconds to permit adequate buffering).

In the call to SIStrAppend, data_array is a pointer to an array of single-precision
floating-point values, and ndata is the number of values. You may append any number of
values at a time, and the number may change from one call to the next. Feel free to
append a single value at a time if you want (i.e. ndata=1), but note that if you have the
value in a scalar variable, then data_array must be a pointer to that variable; you can’ t
pass the value directly.

Waveform data passed to SIStrAppend is assembled into fixed-size buffers which, once
fill ed, are sent to the front-end awg server at appropriate times using the remote
procedure call (RPC) mechanism. All the buffering and timing is taken care of internally
by the SIStr library functions, so you do not have to worry about this as long as you can
calculate the waveform and pass it to SIStrAppend at a rate faster than real-time.

Other SIStr functions

SIStrBlank(&sis, duration)

Appends zeros for specified number of seconds, up to one day. (duration is a double.)

SIStrFlush(&sis)

Fill s rest of current buffer with zeros, sends all l ocal buffers to front end, and sleeps until
after the last part of the waveform has actually been injected by the front end.
SIStrClose calls this function, so normally you do not have to call it explicitly.

SIStrAbort(&sis)

Clears all l ocal buffers (but cannot clear buffers which have already been sent to the front
end). Also marks the stream as "aborted" so that any attempt to append more waveform
data to it will fail . You must still be sure to call SIStrClose on this stream to clean up
properly.

How to compile and link

Before you compile your program, you must be sure that the GDS shared-object libraries
can be found by the compiler. At Hanford, do:

 setenv GDS_DIR /opt/CDS/a/gds
 setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:$GDS_DIR/lib

At Livingston, do:

 11

 setenv GDS_DIR /opt/LLO/a/gds
 setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:$GDS_DIR/lib

To compile your program and link it to the SIStr library code (in the object file SIStr.o,
which is currently located in ~controls/pshawhan at each site), do:

 cc myprogram.c ~controls/pshawhan/SIStr.o \
 -I$GDS_DIR/include -I$GDS_DIR/include/dtt –I~controls/pshawhan \
 -L$GDS_DIR/lib -lawg -ltestpoint -lrt –lsockutil -o myprogram

Important note: whenever you want to run your program, the LD_LIBRARY_PATH
environment variable must be set to include $GDS_DIR/lib as described above.

 12

Appendix: SIStr.h

#ifndef _SISTR_H
#define _SISTR_H

/*==
SIStr.h - Header file for client API to stream a waveform to the awg front end
Written 28 Sep - 4 Oct 2001 by Peter Shawhan
See comments about compiling and linking at the beginning of the file SIStr.c
==*/

#ifdef __cplusplus
extern "C" {
#endif

/*------ Global variable ---*/
#ifdef _SISTR_LIBRARY
int SIStr_debug = 0;
#else
extern int SIStr_debug;
#endif

/*------ Compile-time parameters ---*/

#define SIStr_MAGICVAL 12345678
#define SIStr_MAXCHANNAMELENGTH 64
#define SIStr_MAXCHANLISTSIZE 32768

/* Target "lead time" for sending waveform data, in NANOseconds */
#define SIStr_LEADTIME 6000000000LL

/* Block size in "epoch" units (1/16 sec). Allowed values are 1 through 16 */
#define SIStr_BLOCKSIZE 16

#define SIStr_MAXBUFSIZE 16384
#define SIStr_MAXBUFS 8

/* Max number of times to try sending same data */
#define SIStr_MAXTRIES 5

/*------ Status codes --*/

#define SIStr_OK 0

/* Status codes returned from RPC calls */
#define SIStr_WFULL 1 /* Data accepted but front-end buffer is now full */
#define SIStr_WDUP 2 /* Data accepted but time was duplicated */
#define SIStr_WGAP 3 /* Data accepted but was not contiguous with prev */
#define SIStr_EBADSLOT -1 /* This awg slot is not set up for stream data */
#define SIStr_EBADDATA -2 /* Invalid data block or size */
#define SIStr_EPAST -3 /* Time is already past */
#define SIStr_EFUTURE -4 /* Time is unreasonably far in the future */
#define SIStr_ECONN -5 /* RPC connection failed */

/* Error codes internal to SIStr */
#define SIStr_EBADARG -101 /* Bad function argument */
#define SIStr_EBADSTR -102 /* Stream is not correctly open for writing */
#define SIStr_EBADRATE -103 /* Invalid sampling rate */
#define SIStr_EGAP -104 /* Gap detected in stream data */
#define SIStr_EUNINIT -105 /* Stream was not properly initialized */

 13

#define SIStr_EMALLOC -107 /* Error allocating memory */
#define SIStr_EOTHER -108 /* Other error */
#define SIStr_EABORTED -110 /* Attempted to append data to a stream which had
 been aborted */
#define SIStr_EBADSTART -111 /* Attempted to set start time to an unreasonable
 value */
#define SIStr_EINTERNAL -112 /* Unexpected internal error */
#define SIStr_EBUFSIZE -113 /* Tried to create too large a data buffer */
#define SIStr_ETIMEOUT -114 /* Timeout while trying to send data */
#define SIStr_ELISTERR -115 /* Error retrieving channel list */
#define SIStr_ELISTNONE -116 /* Channel list is empty */
#define SIStr_ELISTSIZE -117 /* Channel list is too large */
#define SIStr_EBADCHAN -118 /* Not a valid excitation channel */
#define SIStr_EDIFFRATE -119 /* Specified rate differs from actual rate */
#define SIStr_ESETSLOT -120 /* Error setting up an awg slot for channel */
#define SIStr_ESETTP -121 /* Error setting up test point */
#define SIStr_ESETCOMP -122 /* Error setting up awgStream component */
#define SIStr_ECLRCOMP -123 /* Error clearing awgStream component */
#define SIStr_ECLRTP -124 /* Error clearing test point */
#define SIStr_ECLRSLOT -125 /* Error freeing awg slot */
#define SIStr_ECLRBOTH -126 /* Errors clearing test point AND freeing slot */

/*------ Structure definitions ---*/

typedef struct tagSIStrBuf
{
 int gpstime; /* Start time of this block (integer number of GPS seconds) */
 int epoch; /* Start time of this block (epoch counter) */
 int iblock; /* Block number in sequence, starting with 1 */
 int size; /* Size of the data array */
 int ndata; /* Number of values added to the data array so far */
 struct tagSIStrBuf *next; /* Pointer to next buffer in linked list */
 float *data;
} SIStrBuf;

typedef struct tagSIStream
{
 int magic; /* "Magic number" to allow sanity checks */
 int id; /* Internal identifier for this injection stream */
 char channel[SIStr_MAXCHANNAMELENGTH]; /* Channel name */
 int samprate; /* Sampling rate in Hz */
 double starttime; /* Start time of waveform (double-precision GPS seconds) */
 int slot; /* awg slot number */
 int tp; /* Flag to indicate whether test point has been set up */
 int comp; /* Flag to indicate whether awgStream component is set up */
 int blocksize; /* Block size in "epoch" units (1/16 second time intervals)
 e.g. a block 0.25 seconds long has a blocksize of 4.
 Allowed values are 1 through 16. */
 int nblocks; /* Total number of blocks buffered and/or sent so far */
 int curgps; /* GPS time (integer number of seconds) of current buffer
 (or next buffer to be created) */
 int curepoch; /* Epoch counter of current/next buffer */

 int sentgps; /* GPS time (integer seconds) and epoch of last buffer */
 int sentepoch; /* sent to the front end */

 int nbufs; /* Current number of buffers resident in memory */
 SIStrBuf *curbuf; /* Pointer to current buffer. A buffer is not created
 until there is some data to put into it; therefore, it
 is possible for a stream to have NO current buffer
 (in which case curbuf==NULL) at various times. */
 SIStrBuf *firstbuf; /* Pointer to first buffer in linked list */
 SIStrBuf *lastbuf; /* Pointer to last buffer in linked list. This is the

 14

 current buffer if there is one; if not, it is the last
 buffer which was filled. */
 long long lastsend; /* Time that last data was sent to front end, in
 GPS nanoseconds */
 long long minwait; /* Enforced minimum on the time interval between RPC
 calls to transfer data to the front end, in
 nanoseconds */
 int aborted; /* Flag to indicate if stream has been aborted */
} SIStream;

/*------ Function prototypes ---*/

void SIStrAppInfo(char *info);
int SIStrOpen(SIStream *sis, char *channel, int samprate, double starttime);
int SIStrAppend(SIStream *sis, float newdata[], int ndata, float scale);
int SIStrBlank(SIStream *sis, double duration);
int SIStrFlush(SIStream *sis);
int SIStrClose(SIStream *sis);
int SIStrAbort(SIStream *sis);
char * SIStrErrorMsg(int status);

#ifdef __cplusplus
}
#endif

#endif /* _SISTR_H */

 15

Appendix: Source Code for the
awgstream Utility

/*===
awgstream - Command-line client to stream data from a file to the awg front end
 using the SIStr interface
Written Oct 2001 by Peter Shawhan
Modified June 2002 to call SIStrAppInfo

To compile:
 cc awgstream.c SIStr.o -I$GDS_DIR/src/util -I$GDS_DIR/src/awg \
 -L$GDS_DIR/lib -lawg -ltestpoint -lrt -o awgstream
where GDS_DIR on red = /opt/CDS/d/gds/diag
 on london = /opt/LLO/c/gds/diag

To run: $GDS_DIR/lib must be in your LD_LIBRARY_PATH

===*/

#define CLIENT "awgstream"

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "SIStr.h"

/*===*/
void PrintUsage(void)
{
 fprintf(stderr,
 "Usage: awgstream <channel> <rate> <file> [<scale> [<gpstime>]] [-d]\n");
 fprintf(stderr,
 " <channel> is case-sensitive and must be a real excitation channel\n");
 fprintf(stderr,
 " <rate> is in Hz and must match the excitation channel's true rate\n");
 fprintf(stderr,
 " <file> is the file of waveform data, which must be a FORMATTED ascii
file\n
");
 fprintf(stderr,
 " with the values separated by whitespace (e.g. newlines and/or
spaces).\
n");
 fprintf(stderr,
 " Any conversion error causes the rest of the file to be skipped.\n");
 fprintf(stderr,
 " If <file> is '-' (i.e. a dash), data is read from standard input.\n"
);
 fprintf(stderr,
 " <scale> is an optional scale factor to apply to the data in the file.\n"
);
 fprintf(stderr,
 " <gpstime> is the time to start injecting the waveform. It can take any\n"
);
 fprintf(stderr,

 16

 " real value, not just an integer. It must occur during the 24-hour\n"
)
;
 fprintf(stderr,
 " period following the execution of the awgstream command.\n");
 fprintf(stderr,
 " If omitted, the waveform injection will start in about %d seconds.\n",
 (int) (SIStr_LEADTIME/1000000000LL) + 4);
 fprintf(stderr,
 " The '-d' option causes debugging information to be printed to the
screen.\n
");
 fprintf(stderr,
 " Specify '-d' twice for extra information.\n");
 return;
}

/*===*/
int main(int argc, char **argv)
{
 char *arg;
 int iarg;
 int nposarg = 0;
 char *channel = NULL;
 int samprate = 0;
 char *filename = NULL;
 float scale = 1.0;
 double starttime = 0.0;
 char info[256];
 FILE *file;
 SIStream sis;
 int status;
 float val;

 /*------ Beginning of code ------*/

 if (argc <= 1) {
 PrintUsage(); return 0;
 }

 /*-- Parse command-line arguments --*/
 for (iarg=1; iarg<argc; iarg++) {
 arg = argv[iarg];
 if (strlen(arg) == 0) { continue; }

 /*-- See whether this introduces an option --*/
 if (arg[0] == '-' && arg[1] != '\0') {
 /*-- The only valid option is "-d" --*/
 if (strcmp(arg,"-d") == 0) {
 SIStr_debug++;
 } else {
 fprintf(stderr, "Error: Invalid option %s\n", arg);
 PrintUsage(); return 1;
 }

 } else {
 /*-- This is a positional argument --*/

 nposarg++;

 switch (nposarg) {
 case 1:

 17

 channel = arg;
 break;
 case 2:
 samprate = atol(arg);
 if (samprate < 1 || samprate > 16384) {
 fprintf(stderr, "Error: Invalid sampling rate\n");
 PrintUsage(); return 1;
 }
 break;
 case 3:
 filename = arg;
 break;
 case 4:
 scale = atof(arg);
 /*
 if (scale == 0.0 || scale > 600000000.0) {
 fprintf(stderr, "Error: Invalid scale factor\n");
 PrintUsage(); return 1;
 }
 */
 break;
 case 5:
 starttime = atof(arg);
 if (starttime < 600000000.0 || starttime > 1800000000.0) {
 fprintf(stderr, "Error: Invalid start time\n");
 PrintUsage(); return 1;
 }
 break;
 default:
 fprintf(stderr, "Error: Too many arguments\n");
 PrintUsage(); return 1;
 }

 }

 } /* End loop over command-line arguments */

 /*-- Make sure the required arguments were present --*/
 if (channel == NULL) {
 fprintf(stderr, "Error: Channel was not specified\n");
 }
 if (samprate == 0) {
 fprintf(stderr, "Error: Sampling rate was not specified\n");
 }
 if (filename == NULL) {
 fprintf(stderr, "Error: File was not specified\n");
 }
 if (channel == NULL || samprate == 0 || filename == NULL) {
 PrintUsage(); return 1;
 }

 /*-----------------------------------*/
 /* Report some information about this application and waveform */
 sprintf(info, "%s %s %.6g", CLIENT, filename, scale);
 SIStrAppInfo(info);

 /*-----------------------------------*/
 /* Open the file for reading (if not reading from stdin) */
 if (strcmp(filename,"-") != 0) {
 file = fopen(filename, "r");
 if (file == NULL) {
 /* An error occurred */
 fprintf(stderr, "Error while opening %s for reading: ", filename);

 18

 perror(NULL);
 return -2;
 }
 } else {
 file = stdin;
 }

 /*-----------------------------------*/
 /* Open the Signal Injection Stream */
 status = SIStrOpen(&sis, channel, samprate, starttime);
 if (SIStr_debug) { printf("SIStrOpen returned %d\n", status); }
 if (status != SIStr_OK) {
 fprintf(stderr,
 "Error while opening SIStream: %s\n", SIStrErrorMsg(status));
 return 2;
 }

 /*-----------------------------------*/
 /* Read data from input file and send it */
 while (fscanf(file,"%f",&val) == 1) {
 status = SIStrAppend(&sis, &val, 1, scale);
 if (SIStr_debug >= 2) { printf("SIStrAppend returned %d\n", status); }
 if (status != SIStr_OK) {
 fprintf(stderr,
 "Error while adding data to stream: %s\n",
 SIStrErrorMsg(status));
 break;
 }
 }

 /* Close the input file (unless it is stdin) */
 if (file != stdin) {
 fclose(file);
 }

 /*-----------------------------------*/
 /* Close the stream */
 status = SIStrClose(&sis);
 if (SIStr_debug) { printf("SIStrClose returned %d\n", status); }
 if (status != SIStr_OK) {
 fprintf(stderr,
 "Error while closing SIStream: %s\n", SIStrErrorMsg(status));
 return 2;
 }

 return 0;
}

 19

Appendix: Source Code for the
multiawgstream Utility

/*===
multiawgstream.c

Modification history:

June 19, 2002 - Modified Peter Shawhan's awgstream client to read a configuration
 file containing multiple waveforms to be injected at different
 times. Time offsets are sorted in this version. -- Isabel Leonor

awgstream - Command-line client to stream data from a file to the awg front end
 using the SIStr interface
Written Oct 2001 by Peter Shawhan

To compile:
 cc awgstream.c SIStr.o -I$GDS_DIR/src/util -I$GDS_DIR/src/awg \
 -L$GDS_DIR/lib -lawg -ltestpoint -lrt -o awgstream
where GDS_DIR on red = /opt/CDS/d/gds/diag
 on london = /opt/LLO/c/gds/diag

To run: $GDS_DIR/lib must be in your LD_LIBRARY_PATH

===*/

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include "SIStr.h"

#define CLIENT "multiawgstream"
#define ONEDAY 86400.0
#define WFNUMMAX 200
#define CONFIGCHARMAX 209
#define NAMECHARMAX 101
#define WFFILETAG "wffile"

/*===*/
void PrintUsage(void)
{
 printf(
 "Usage: multiawgstream <channel> <rate> <configfile> [<scale> [<gpstime>]] [-d]\n");
 printf(
 "\n");
 printf(
 "<channel> is case-sensitive and must be a real excitation channel.\n");
 printf(
 "<rate> is in Hz and must match the excitation channel's true rate.\n");
 printf(
 "<configfile> is a configuration file. Each waveform to be injected\n");
 printf(
 " should have a corresponding line in this file specifying\n");
 printf(
 " the file containing the waveform data preceded by the\n");
 printf(
 " keyword \"%s\", and a unique alias for this waveform.\n", WFFILETAG);
 printf(
 " After all the waveform files and corresponding aliases have\n");
 printf(
 " been specified, the remaining lines of the configuration\n");
 printf(

 20

 " file should each specify the alias of the signal to be\n");
 printf(
 " injected, the scale factor to be multiplied to the overall\n");
 printf(
 " scale factor specified at the command line, and the time\n");
 printf(
 " offset relative to the GPS time specified at the command\n");
 printf(
 " line, in that order. A \"#\" at the beginning of a line\n");
 printf(
 " can be used to indicate that the rest of the line should\n");
 printf(
 " be treated as a comment. For example, the contents of a\n");
 printf(
 " configuration file should be similar to this:\n");
 printf(
 "\n");
 printf(
 " # Specify waveform files and aliases\n");
 printf(
 " # in the following lines:\n");
 printf(
 " wffile sinewave.dat sine\n");
 printf(
 " wffile zwergermueller1.dat zm1\n");
 printf(
 " wffile zwergermueller2.dat zm2\n");
 printf(
 "\n");
 printf(
 " # Specify aliases, scale factors, and\n");
 printf(
 " # time offsets (in that order) of signals\n");
 printf(
 " # to be injected:\n");
 printf(
 " zm1 0.1 0.0\n");
 printf(
 " zm1 1.0 15.0\n");
 printf(
 " sine 10.0 30.0\n");
 printf(
 " zm2 100.0 45.0\n");
 printf(
 "\n");
 printf(
 " The file containing the waveform data must be a FORMATTED\n");
 printf(
 " ascii file with the values separated by whitespace (e.g.\n");
 printf(
 " newlines and/or spaces). Any conversion error causes the\n");
 printf(
 " rest of the file to be skipped. If <configfile> is '-'\n");
 printf(
 " (i.e. a dash), data is read from standard input. Waveform\n");
 printf(
 " file names and aliases are limited to %d characters, and\n",\
 NAMECHARMAX-1);
 printf(
 " each line in the configuration file is limited to %d\n",\
 CONFIGCHARMAX-1);
 printf(
 " characters.\n");
 printf(
 "<scale> is an optional overall scale factor to apply to all the\n");
 printf(
 " waveforms. Default is 1. This overall scale factor is\n");
 printf(
 " multiplied by the scale factor given in the configuration\n");
 printf(
 " file to obtain the total scale factor applied to a\n");

 21

 printf(
 " waveform.\n");
 printf(
 "<gpstime> is a reference time for injecting the waveforms. It can\n");
 printf(
 " take any real value, not just an integer. The resulting\n");
 printf(
 " time from the sum of the reference time and the time offset\n");
 printf(
 " given in the configuration file is the signal injection\n");
 printf(
 " start time, and must occur during the 24-hour period\n");
 printf(
 " following the execution of the multiawgstream command.\n");
 printf(
 " If the resulting time is zero, waveform injection will\n");
 printf(
 " start in about %d seconds.\n",
 (int) (SIStr_LEADTIME/1000000000LL) + 4);
 printf(
 "\n");
 printf(
 "The '-d' option causes debugging information to be printed to the screen.\n");
 printf(
 " Specify '-d' twice for extra information.\n");
 return;
}

void PrintError(void)
{
 printf("Error from %s. Aborting...\n", CLIENT);
 return;
}

struct wfname {
 char name[NAMECHARMAX];
 char alias[NAMECHARMAX];
};

struct wfinject {
 char alias[NAMECHARMAX];
 double scale;
 double timeoffset;
};

int cmp_wfalias(const struct wfname *, const struct wfname *);
int cmp_wfnames(const struct wfname *, const struct wfname *);
int cmp_wftimes(const struct wfinject *, const struct wfinject *);

/*===*/
int main(int argc, char **argv)
{
 char *arg;
 int iarg;
 int nposarg = 0;
 char *channel = NULL;
 int samprate = 0;
 float scale = 1.0;
 double starttime = 0.0;
 FILE *file;
 SIStream sis;
 int status;
 float val;

 char configLine[CONFIGCHARMAX];
 int dupsFlag;
 int endFilesFlag;
 char firstString[NAMECHARMAX];
 int i;
 int injectErrorFlag;

 22

 char injectInfo[256];
 int lineCtr;
 char *newLine;
 int openStreamFlag;
 double previousWfEndTime;
 double quietTimeInterval;
 int sigInjectCtr;
 int signalErrorFlag;
 char wfAlias[NAMECHARMAX];
 int wfDataCtr;
 int wfFileCtr;
 struct wfname *wfAliasFound;
 struct wfinject wfInject[WFNUMMAX];
 int wfInjectCtr;
 struct wfname wfName[WFNUMMAX];
 double wfScale;
 struct wfname wfAliasSearch;
 double wfStartTime;
 double wfTimeOffset;
 double wfTotalScale;
 FILE *configfile = NULL;
 char *configfilename = NULL;

 /*------ Beginning of code ------*/

 if (argc <= 1) {
 PrintUsage(); return 0;
 }

 /*-- Parse command-line arguments --*/
 for (iarg=1; iarg<argc; iarg++) {
 arg = argv[iarg];
 if (strlen(arg) == 0) { continue; }

 /*-- See whether this introduces an option --*/
 if (arg[0] == '-' && arg[1] != '\0') {
 /*-- The only valid option is "-d" --*/
 if (strcmp(arg,"-d") == 0) {
 SIStr_debug++;
 } else {
 fprintf(stderr,"Error: Invalid option %s\n", arg);
 PrintUsage(); return 1;
 }

 } else {
 /*-- This is a positional argument --*/

 nposarg++;
 switch (nposarg) {
 case 1:
 channel = arg;
 break;
 case 2:
 samprate = atol(arg);
 if (samprate < 1 || samprate > 16384) {
 fprintf(stderr,"Error: Invalid sampling rate\n");
 PrintUsage(); return 1;
 }
 break;
 case 3:
 configfilename = arg;
 break;
 case 4:
 scale = atof(arg);
 /*
 if (scale == 0.0 || scale > 600000000.0) {
 fprintf(stderr,"Error: Invalid scale factor\n");
 PrintUsage(); return 1;
 }
 */

 23

 break;
 case 5:
 starttime = atof(arg);
 if (starttime < 600000000.0 || starttime > 1800000000.0) {
 fprintf(stderr,"Error: Invalid start time\n");
 PrintUsage(); return 1;
 }
 break;
 default:
 fprintf(stderr,"Error: Too many arguments\n");
 PrintUsage(); return 1;
 }

 }

 } /* End loop over command-line arguments */

 /*-- Make sure the required arguments were present --*/
 if (channel == NULL) {
 fprintf(stderr,"Error: Channel was not specified\n");
 }
 if (samprate == 0) {
 fprintf(stderr,"Error: Sampling rate was not specified\n");
 }
 if (configfilename == NULL) {
 fprintf(stderr,"Error: File was not specified\n");
 }
 if (channel == NULL || samprate == 0 || configfilename == NULL) {
 PrintUsage(); return 1;
 }

 if (strcmp(configfilename,"-") != 0)
 {
 /*-----------------------------------*/
 /* Open configuration file */
 if ((configfile = fopen(configfilename, "r")) == NULL)
 {
 fprintf(stderr,"Error while opening %s for reading.\n", configfilename);
 PrintError();
 return -2;
 }

 /*-----------------------------------*/
 /* Initialize arrays */
 for (i = 0; i < WFNUMMAX; i++)
 {
 strcpy(wfName[i].name,"");
 strcpy(wfName[i].alias,"");
 strcpy(wfInject[i].alias,"");
 wfInject[i].scale = 0.0;
 wfInject[i].timeoffset = 0.0;
 }

 /*-----------------------------------*/
 /* Read configuration file, loop over waveforms */
 lineCtr = 0;
 wfFileCtr = 0;
 wfInjectCtr = 0;
 endFilesFlag = 0;
 strcpy(configLine,"");
 fseek(configfile,0,0);
 while (fgets(configLine,CONFIGCHARMAX,configfile) != NULL)
 {
 lineCtr++;
 if (strchr(configLine,'\n') == NULL)
 {
 fprintf(stderr,"\nLine %d of %s too long. Limit is %d characters.\n",\
 lineCtr, configfilename, CONFIGCHARMAX-1);
 PrintError();
 return 1;
 }

 24

 if (configLine[0] == '#' || configLine[0] == ' ' || configLine[0] == '\n')
 {
 continue;
 }
 if (sscanf(configLine,"%s", firstString) == 1)
 {
 if (strcmp(firstString,WFFILETAG) == 0)
 {
 if (endFilesFlag == 1)
 {
 fprintf(stderr,"\nLine %d of %s not formatted correctly.\n",\
 lineCtr, configfilename);
 fprintf(stderr,"Type multiawgstream without arguments to see usage.\n");
 PrintError();
 return 1;
 }
 if (wfFileCtr == WFNUMMAX)
 {
 fprintf(stderr,"\nToo many waveform files specified in %s. Limit is %d.\n",\
 configfilename, WFNUMMAX);
 PrintError();
 return 1;
 }
 newLine = NULL;
 newLine = configLine + strspn(configLine,WFFILETAG);
 if (sscanf(newLine,"%s %s", wfName[wfFileCtr].name,\
 wfName[wfFileCtr].alias) == 2)
 {
 if (strlen(wfName[wfFileCtr].name) >= NAMECHARMAX ||
 strlen(wfName[wfFileCtr].alias) >= NAMECHARMAX)
 {
 fprintf(stderr,
 "\nFile name or alias in line %d of %s too long. Limit is %d
characters.\n",\
 lineCtr, configfilename, NAMECHARMAX-1);
 PrintError();
 return 1;
 }
 wfFileCtr++;
 }
 else
 {
 fprintf(stderr,"\nLine %d of %s not formatted correctly.\n",\
 lineCtr, configfilename);
 fprintf(stderr,"Type multiawgstream without arguments to see usage.\n");
 PrintError();
 return 1;
 }
 }
 else
 {
 if (wfFileCtr == 0)
 {
 fprintf(stderr,"\nLine %d of %s not formatted correctly.\n",\
 lineCtr, configfilename);
 fprintf(stderr,"Type multiawgstream without arguments to see usage.\n");
 PrintError();
 return 1;
 }
 if (endFilesFlag == 0)
 {
 if (wfFileCtr > 1)
 {
 qsort(wfName,wfFileCtr,sizeof(struct wfname),cmp_wfnames);
 dupsFlag = 0;
 for (i = 1; i < wfFileCtr; i++)
 {
 if (strcmp(wfName[i].name,wfName[i-1].name) == 0)
 {
 fprintf(stderr,"\nDuplication of waveform filename %s detected.\n",\
 wfName[i].name);

 25

 dupsFlag = 1;
 }
 }

 qsort(wfName,wfFileCtr,sizeof(struct wfname),cmp_wfalias);
 for (i = 1; i < wfFileCtr; i++)
 {
 if (strcmp(wfName[i].alias,wfName[i-1].alias) == 0)
 {
 fprintf(stderr,"\nDuplication of alias %s detected.\n",
wfName[i].alias);
 dupsFlag = 1;
 }
 }
 if (dupsFlag == 1)
 {
 PrintError();
 return 1;
 }
 }
 endFilesFlag = 1;
 }
 if (sscanf(configLine,"%s %lf %lf", wfAlias, &wfScale, &wfTimeOffset) == 3)
 {
 if (wfInjectCtr == WFNUMMAX)
 {
 fprintf(stderr,"\nToo many signals to be injected. Limit is %d.\n",
WFNUMMAX);
 PrintError();
 return 1;
 }
 if (strlen(wfAlias) >= NAMECHARMAX)
 {
 fprintf(stderr,"\nAlias in line %d of %s too long. Limit is %d
characters.\n", \
 lineCtr, configfilename, NAMECHARMAX-1);
 PrintError();
 return 1;
 }
 strcpy(wfAliasSearch.alias,wfAlias);
 wfAliasFound = NULL;
 if ((wfAliasFound = bsearch(&wfAliasSearch,wfName,wfFileCtr,\
 sizeof(struct wfname),cmp_wfalias)) == NULL)
 {
 fprintf(stderr,"\nAlias %s in line %d of %s does not correspond to a
waveform.\n",
 wfAlias, lineCtr, configfilename);
 PrintError();
 return 1;
 }
 else
 {
 if (wfTimeOffset < 0.0 || wfTimeOffset > ONEDAY)
 {
 fprintf(stderr,"\nInvalid time offset %f in line %d of %s.\n",\
 wfTimeOffset, lineCtr,
configfilename);
 fprintf(stderr,"Type multiawgstream without arguments to see usage.\n");
 PrintError();
 return 1;
 }
 if (wfScale == 0.0) continue;

 wfTotalScale = scale*wfScale;
 wfStartTime = starttime + wfTimeOffset;
 if (wfStartTime != 0.0 && \
 (wfStartTime < 600000000.0 || wfStartTime > 1800000000.0))
 {
 fprintf(stderr,"\nInvalid start time %f for %s in line %d of %s.\n",\
 wfStartTime, wfAliasFound->alias, lineCtr,
configfilename);

 26

 fprintf(stderr,"Type multiawgstream without arguments to see usage.\n");
 PrintError();
 return 1;
 }

 strcpy(wfInject[wfInjectCtr].alias,wfAliasFound->alias);
 wfInject[wfInjectCtr].scale = wfScale;
 wfInject[wfInjectCtr].timeoffset = wfTimeOffset;
 wfInjectCtr++;

 } /* bsearch for alias successful */
 }
 else
 {
 fprintf(stderr,"\nLine %d of %s not formatted correctly.\n", lineCtr,
configfilename);
 fprintf(stderr,"Type multiawgstream without arguments to see usage.\n");
 PrintError();
 return 1;
 }
 } /* if first string is WFFILETAG */
 } /* if first string of line is converted */
 } /* loop over configfile contents */

 if (wfInjectCtr > 1)
 {
 qsort(wfInject,wfInjectCtr,sizeof(struct wfinject),cmp_wftimes);
 dupsFlag = 0;
 for (i = 1; i < wfInjectCtr; i++)
 {
 if (wfInject[i].timeoffset == wfInject[i-1].timeoffset)
 {
 fprintf(stderr,"\nDuplication of time offset %f detected in %s.\n",\
 wfInject[i].timeoffset, configfilename);
 fprintf(stderr,"Overlapping waveforms are not permitted (yet).\n");
 dupsFlag = 1;
 }
 }
 if (dupsFlag == 1)
 {
 PrintError();
 return 1;
 }
 }

 /*-----------------------------------*/
 /* Loop through waveforms and send them to SIStr */
 signalErrorFlag = 0;
 openStreamFlag = 0;
 injectErrorFlag = 0;
 sigInjectCtr = 0;
 previousWfEndTime = 0.0;
 quietTimeInterval = 0.0;
 for (i = 0; i < wfInjectCtr; i++)
 {
 strcpy(wfAliasSearch.alias,wfInject[i].alias);
 wfAliasFound = NULL;
 if ((wfAliasFound = bsearch(&wfAliasSearch,wfName,wfFileCtr,\
 sizeof(struct wfname),cmp_wfalias)) == NULL)
 {
 fprintf(stderr,"\nAlias %s in %s does not correspond to a waveform.\n",
 wfAlias, configfilename);
 PrintError();
 signalErrorFlag = 1;
 break;
 }
 else
 {
 if (i > 0 && wfInject[i].timeoffset < previousWfEndTime)
 {
 fprintf(stderr,"\nOverlapping waveforms %s and %s found in %s.\n",\

 27

 wfInject[i].alias, wfInject[i-1].alias, configfilename);
 PrintError();
 signalErrorFlag = 1;
 break;
 }

 /*-----------------------------------*/
 /* Open the waveform file */
 if ((file = fopen(wfAliasFound->name, "r")) == NULL)
 {
 fprintf(stderr,"\nError while opening waveform file %s for reading.\n",\
 wfAliasFound->name);
 PrintError();
 signalErrorFlag = 1;
 break;
 }
 wfTotalScale = scale*wfInject[i].scale;
 wfStartTime = starttime + wfInject[i].timeoffset;

 /*-----------------------------------*/
 /* Open the Signal Injection Stream */
 if (i == 0)
 {
 /*-----------------------------------*/
 /* Report some information about this application and waveform */
 sprintf(injectInfo,"%s %s %.6g %s",\
 CLIENT, wfAliasFound->name, wfTotalScale, configfilename);
 fprintf(stderr,"%s\n", injectInfo);
 SIStrAppInfo(injectInfo);

 fprintf(stderr,"\nOpening signal injection stream...\n");
 status = SIStrOpen(&sis, channel, samprate, starttime);
 if (SIStr_debug) { printf("SIStrOpen returned %d\n", status); }
 if (status != SIStr_OK) {
 fprintf(stderr,"Error while opening SIStream: %s\n", SIStrErrorMsg(status));
 return 2;
 }
 openStreamFlag = 1;
 }

 quietTimeInterval = wfInject[i].timeoffset - previousWfEndTime;
 if (quietTimeInterval > 0.0 && quietTimeInterval < ONEDAY)
 {
 fprintf(stderr,"\nSending %f seconds of zeroes to signal injection
stream...\n",\
 quietTimeInterval);
 status = SIStrBlank(&sis, quietTimeInterval);
 if (SIStr_debug) { printf("SIStrBlank returned %d\n", status); }
 if (status != SIStr_OK) {
 fprintf(stderr,"Error while appending zeroes to SIStream: %s\n",\
 SIStrErrorMsg(status));
 injectErrorFlag = 1;
 break;
 }
 fprintf(stderr,"...zeroes sent\n");
 }
 else
 {
 if (quietTimeInterval != 0.0)
 {
 fprintf(stderr,"\nInvalid quiet time interval %f calculated.\n",
quietTimeInterval);
 PrintError();
 signalErrorFlag = 1;
 }
 }

 fprintf(stderr,"\n");
 fprintf(stderr,"Sending waveform signal %d to SIStr...\n", sigInjectCtr+1);
 fprintf(stderr,"------------------\n");

 28

 fprintf(stderr,"signal alias : %s\n", wfInject[i].alias);
 fprintf(stderr,"waveform file : %s\n", wfAliasFound->name);
 fprintf(stderr,"channel : %s\n", channel);
 fprintf(stderr,"sampling rate : %d samples/sec\n", samprate);
 fprintf(stderr,"total scale : %.6f\n", wfTotalScale);
 fprintf(stderr,"GPS time : %.6f seconds\n", starttime);
 fprintf(stderr,"time offset : %.6f seconds\n", wfInject[i].timeoffset);
 fprintf(stderr,"config file : %s\n", configfilename);
 fprintf(stderr,"------------------\n");

 /*-----------------------------------*/
 /* Read data from input file and send it */
 wfDataCtr = 0;
 while (fscanf(file,"%f",&val) == 1) {
 wfDataCtr++;
 status = SIStrAppend(&sis, &val, 1, (float)wfTotalScale);
 if (SIStr_debug >= 2) { printf("SIStrAppend returned %d\n", status); }
 if (status != SIStr_OK) {
 fprintf(stderr,"Error while adding data to stream: %s\n",
SIStrErrorMsg(status));
 injectErrorFlag = 1;
 break;
 }
 }

 fclose(file);
 if (injectErrorFlag == 1)
 {
 fprintf(stderr,"\nError sending waveform signal %s given in %s.\n",\
 wfInject[i].alias, configfilename);
 break;
 }
 if (wfDataCtr == 0)
 {
 break;
 }
 previousWfEndTime = wfInject[i].timeoffset +
((double)wfDataCtr)/((double)samprate);
 fprintf(stderr,"...waveform sent to SIStr\n");
 sigInjectCtr++;
 } /* if bsearch for alias successful */
 } /* loop through waveforms to be injected */

 /*-----------------------------------*/
 /* Close the stream */
 if (openStreamFlag == 1)
 {
 fprintf(stderr,"\nClosing signal injection stream...\n");
 status = SIStrClose(&sis);
 if (SIStr_debug) { printf("SIStrClose returned %d\n", status); }
 if (status != SIStr_OK) {
 fprintf(stderr,"Error while closing SIStream: %s\n", SIStrErrorMsg(status));
 return 2;
 }
 }

 if (signalErrorFlag == 1) return 1;
 if (injectErrorFlag == 1)
 {
 printf("Error appending to signal injection stream. Closed stream and
aborting...\n");
 return 2;
 }
 if (wfDataCtr == 0 && wfInjectCtr > 0)
 {
 fprintf(stderr,"\nError reading waveform file %s.\n", wfAliasFound->name);
 PrintError();
 return -2;
 }

 29

 if (wfInjectCtr > 0)
 {
 fprintf(stderr,"\nSignal injection summary : %d signals successfully injected\n",\
 sigInjectCtr);
 }
 else
 {
 fprintf(stderr,"\nNo signals specified for injection.\n");
 }
 printf("End of signal injection.\n");

 } /* if not stdin */
 else
 {
 file = stdin;

 /*-----------------------------------*/
 /* Open the Signal Injection Stream */
 status = SIStrOpen(&sis, channel, samprate, starttime);
 if (SIStr_debug) { printf("SIStrOpen returned %d\n", status); }
 if (status != SIStr_OK) {
 fprintf(stderr,"Error while opening SIStream: %s\n", SIStrErrorMsg(status));
 return 2;
 }

 /*-----------------------------------*/
 /* Read data from input file and send it */
 while (fscanf(file,"%f",&val) == 1) {
 status = SIStrAppend(&sis, &val, 1, scale);
 if (SIStr_debug >= 2) { printf("SIStrAppend returned %d\n", status); }
 if (status != SIStr_OK) {
 fprintf(stderr,"Error while adding data to stream: %s\n", SIStrErrorMsg(status));
 break;
 }
 }

 /*-----------------------------------*/
 /* Close the stream */
 status = SIStrClose(&sis);
 if (SIStr_debug) { printf("SIStrClose returned %d\n", status); }
 if (status != SIStr_OK) {
 fprintf(stderr,"Error while closing SIStream: %s\n", SIStrErrorMsg(status));
 return 2;
 }

 }

 return 0;
}

int cmp_wfalias(const struct wfname *p1, const struct wfname *p2)
{
 return strcmp(p1->alias,p2->alias);
}

int cmp_wfnames(const struct wfname *p1, const struct wfname *p2)
{
 return strcmp(p1->name,p2->name);
}

int cmp_wftimes(const struct wfinject *p1, const struct wfinject *p2)
{
 double timesDiff = p1->timeoffset - p2->timeoffset;
 if (timesDiff > 0)
 {
 return 1;
 }
 else
 {
 if (timesDiff < 0)
 {

 30

 return -1;
 }
 else
 {
 return 0;
 }
 }
}

