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We present an analysis of thermoelastic damping in materials arising from the temperature de-
pendence of the elastic moduli. We show that this new form of damping can cancel thermoelastic
damping arising from thermal expansion for a suitably chosen operating stress. For the case of the
suspension fibres used in the gravitational wave detectors, this loss mechanism can be the dominant
one.

PACS numbers: 04.80.Nn, 05.40.Jc, 62.40.+i, 46.25.Hf

I. INTRODUCTION

Brownian motion in the suspension wires of the mirrors in interferometric gravitational-wave detectors is one of
the fundamental limitations to gravitational wave detector sensitivity [1]. For this reason they are fabricated from
materials with very low internal friction, since this friction is related to the displacement noise through application
of the fluctuation-dissipation theorem [2]. In order to reduce the displacement noise still further by means of the
dilution factor[3], these wires are so thin that the weight of the mirror stresses them to a significant fraction of their
breaking strength.

However, in general the diameter can only be made so small, due to the specific strength of the material and in
some cases due to thermoelastic damping, which has a frequency dependence which is related to the diameter of the
wire. For the fused silica suspension wires currently preferred for GW detectors, thermoelastic damping dominates
the intrinsic damping of the material in the frequency bandwidth of the detector at about 200 MPa. The mechanism
of linear thermoelastic damping is well understood. When a rod of material is flexed, the material to the inside of
the bend is compressed and that to the outside of the bend is expanded. Because of its nonzero thermal expansion
coefficient, the material will change temperature with the sign depending on whether it is compressed or expanded.
Thus there will be a temperature gradient across the bend. Heat will flow irreversibly across this gradient and dissipate
energy.

It can be easily seen how the thermal expansion responsible for thermoelastic damping can also cause thermal
fluctuations in the position of a mass suspended from a thin elastic wire. If we consider the wire as having a front
half and a back half, it is obvious that a thermal fluctuation in the temperature of the front half of the wire will
lead to an expansion or contraction of that part of the wire and therefore a bend in the wire, thus moving the mass.
Now consider what happens if this wire is under fixed tension and the Young’s modulus is a function of temperature.
A thermal fluctuation in one half of the wire will also change the Young’s modulus, and thereby the strain of that
segment under the tension. This also will bend the wire. It is easy to show that these two effects exactly cancel each
other if the tension is such that the static strain is u0 = αE0/E′, where α is the linear expansion coefficient and E0

and E′ are the Young’s modulus and its temperature derivative.
We will show here that the elastic modulus’ dependence on temperature also causes a temperature change upon

expansion or contraction of the material where the amount of temperature change depends nonlinearly on the amount
of strain, and that the sign of the temperature change depends on the sign of the strain. Therefore, the strain
can be chosen, taking into account both the thermal expansion coefficient and the temperature dependence of the
Young’s modulus, such that a small additional strain will result in no net temperature change, and therefore no net
thermoelastic damping. Nonlinear thermoelasticity (NTE) has been discussed in the literature [4][5], but the internal
damping that results from NTE has— to our knowledge— not been explored prior to this work.

II. DAMPING IN A HOMOGENEOUSLY STRETCHED FIBRE

We begin by treating a wire under simple extension. The free energy for our nonlinear thermoelastic solid is[6]

F (T ) = F0(T ) +
E(T )

2(1 + ν(T ))

[
uijuij +

ν(T )
1− 2ν(T )

(ull)2
]
− α(T − T0)

E(T )
(1− 2ν(T ))

ull (1)
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where F0 is the undeformed free energy, uij is the strain tensor, T is the temperature, α is the linear thermal expansion
coefficient, E(T ) is Young’s modulus, and ν(T ) is Poisson’s ratio. T0 is an arbitrary temperature at which we define
the unstressed deformation to be zero. It is understood that repeated indices are summed over. This formula as
written explicitly recognizes that E and ν are functions of T . For simple extension of a thin beam in the z direction
(σzz 6= 0, σall other = 0, where σij is the stress tensor) we have

uxx = uyy = −ν(T )uzz + α(1 + ν(T ))θ, (2)

where θ ≡ (T − T0). We substitute this into the free energy to get

F (T ) = F0(T ) +
E(T )

2
u2

zz − αθE(T )uzz − E(T )
1 + ν(T )
1− 2ν(T )

α2θ2 (3)

and use the thermodynamic relation σik = dF/duik to get the stress-strain equation:

σzz = E(T )(uzz − αθ) (4)

Note that this equation correctly models the free thermal expansion of a beam, for on setting σzz = 0, the result is
uzz = αθ. It is also clear upon inspection that this stress-strain equation is correct in the isothermal limit, when the
strain changes so slowly that the material is always in thermal equilibrium.

If the strain changes very rapidly, there is not sufficient time for the material to exchange energy with its environment
or between its parts, and so the transformation is adiabatic: the entropy remains constant. The entropy is related to
the free energy by

S(T ) = − (∂F/∂T )uij
. (5)

In Appendix A, where we expand E(T ) = E0 + E′θ and ν(T ) = ν0 + ν′θ, we show that if the material is taken from
the unstressed state to a large strain umax, then

θad =
T0

CV

[
−αE0umax +

E′u2
max

2

]
, (6)

where θad is the adiabatic temperature change. In the same appendix we show that if the material is initially at a
large strain u0 to which is added a relatively small strain δu, then

θad =
T0

CV
[−αE0 + E′u0] δu (7)

Substituting the adiabatic temperature change into the stress-strain equation to find how the stress varies with the
strain we get:

σzzad = E0uzz − αE0θad + E′θaduzz (8)

where we have dropped the term proportional to E′θ2
ad, which is small so long as θad ¿ E0/E′. This is justifiable

because the θad at the yield strength of most materials, including fused silica, satisfies this condition. We will use
σzz iso to refer to the stress when θ = 0. Note the remarkable fact that Poisson’s ratio, ν, does not appear in Eqs. 6, 7,
or 8.

We now estimate the strength of the nonlinear thermoelastic damping by considering the energy lost as the material
is cycled through a closed loop in stress-strain space. The closed loop consists of 1) an adiabatic extension from the
initial state to the extended state, 2) thermalization at fixed strain with a surrounding reservoir, so slow that the
material temperature can be considered essentially uniform, and 3) isothermal return to the initial state. This
process frees us from the considerations of the timescale of dissipation that would follow from inhomogeneous thermal
gradients.

The work done in this process is

∆W =
∮

σzzduzz =
∫ umax

umin

σzzadduzz +
∫ umin

umax

σzz isoduzz (9)

where there is no work done during the thermalization stage since duzz = 0. We first consider the case where umin = 0.
Here both the adiabatic temperature change Eq. 6 and the stress-strain relation Eq. 8 are nonlinear in uzz. There are
two interesting values of the strain. For uzz = u1 = αE0/E′, the last two terms in Eq. 8 cancel, with the result that
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FIG. 1: The closed loop in stress-strain space for large extensions from zero strain. The value of the thermal expansion
coefficient has been set to 1 to better show the difference between σad and σiso.

σzzad = σzz iso, and at uzz = u2 = 2αE0/E′, the adiabatic temperature change is zero so that again σzzad = σzz iso.
The closed loop in stress-strain space for umax > u2 is shown in Figure 1. For small values of uzz, the stress follows
the asymptote σzz = Eaduzz, where Ead = E0(1 + α2E0T0/CV ) is the adiabatic Young’s modulus from the linear
thermoelastic theory (LTE). The dissipation in cycling through the closed loop is equal to the area circled by the
curve in the clockwise sense. The integrals in Eq. 9 are easily solved, with the result for the total dissipation being

∆W =
T0

CV

[
α2E2

0

2
u2

max −
αE0E

′

2
u3

max +
E′2

8
u4

max

]
. (10)

Inspection shows that the dissipation takes a minimum at umax = u2; in fact the dissipation is exactly zero at this
point. Therefore the dissipation is never negative and thus satisfies the laws of thermodynamics. This latter statement
is true regardless of the sign of E′, α, or umax.

We next consider the case where umin = u0 and umax = u0 + δuzz. This time the integral Eq. 9 is over the variable
d(δuzz), and Eq. 7 is used for θad. In this case both σzzad = σzz iso and θad = 0 at u0 = u1. In addition both the
adiabatic temperature and stress equations are quasilinear in that for δu very small, σzzad and θad depend on δuzz

to first order only. Closed loops in stress-strain space for u0 less than, equal to, and greater than u1 are shown in
Figure 2. The dissipation is now

∆W =
1
2

T0

CV
(αE0 − E′u0)2(δumax)2. (11)

The dissipation is clearly always positive, independent of the sign of δumax, as shown in Figure 2. In both of the
above cases, if we set E′ = 0, we get the familiar thermoelastic damping strength. Therefore, we may generalize to
nonlinear thermoelasticity in the quasilinear case by making the substitution α → α′ = α − E′u0/E0. In particular,
note that if we set the strain u0 = E0α/E′, there is no net thermoelastic damping for small additional strains. Notice
that if u0 is much larger than this value, then the damping increases as u2

0.

III. THE CASE OF A BENT WIRE UNDER TENSION

The previous example demonstrated in a simple way how nonlinear thermoelasticity manifests itself in internal
damping of a homogeneously strained material where the heat flow is through contact with a thermal reservoir. We
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FIG. 2: The closed loops in stress-strain space for small extensions around three different large initial strains. The value of the
thermal expansion coefficient has again been set to 1 to better show the difference between σad and σiso.

now consider a more complicated but in practice the more relevant case of nonlinear thermoelastic damping due to
the transverse thermal currents that are generated in a bent wire which is under tension. We derive the frequency
dependence of the dissipation using two complementary approaches. In both derivations we ignore the presence of
other forms of damping not associated with thermoelasticity.

Assume, as is usual in dealing with the bending of thin rods, that any external forces required to cause the bending
are negligible compared with internal stresses. As a result we need only consider the σzz component of stress and
the nonzero strain components, which are uxx, uyy, and uzz. We model the wire as a thin beam of length L and
rectangular cross-section of width a and thickness b, held under a static tension P and deformed along the x-axis
with radius of curvature R(z) that can vary along the beam length. (See Figures 3 and 4.) We make no assumptions
about R(z) except that it is large (the bending is moderate). The strain distribution inside the beam is then given by

uzz =
P

E0
+ (x− q)/R = u0 + (x− q)/R, (12)

with uxx and uyy related to uzz by Eq. 2. Here q is the coordinate of the neutral surface of the bending, which
contrary to what is usually done cannot be assumed to run through the center of the beam because the temperature
gradient as well as other nonlinearities will cause the Young’s modulus to vary across the beam. This neutral surface
must be treated with some care, because the work required to move it during bending is comparable to the dissipation
induced by NTE.

A. The Quasiperiodical Analysis Approach

It is possible to apply the closed-loop analysis of the previous section to this case in a way that explicitly considers
the dynamics of the damping. We take 1/R(t) = (1/R0)eiωt, and allow θ(t) and q(t) to be quasiperiodic functions of
time with period 2π/ω, where ω is the fundamental frequency of oscillation of the beam. For example, q(t1) = q(t2)
where t2 − t1 = 2π/ω. We may then express the closed-loop integral in stress-strain space as the time integral

W =
∫

t1

t2

σzz
duzz

dt
dt (13)
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FIG. 3: Model for the bent beam under tension, showing the variables used in the quasiperiodical analysis and dynamic beam
equation derivation: diagram showing the variables X, Z, and R.
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FIG. 4: Model for the bent beam under tension, showing the variables used in the quasiperiodical analysis and dynamic beam
equation derivation: diagram showing how a uniform stretching Z′ superimposed on an extension which varies linearly across
the beam due to the bending deflects the neutral surface from the center to q.
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where σzz obeys Eq. 4 as in the case of homogeneous stretching and where θ now depends upon time and position
within the beam through the heat equation

dθ

dt
= χ∇2θ − T0

CV
(αE0 − E′u0)

duzz

dt
, (14)

where χ is the thermal diffusivity. The final term of Eq. 14 can be seen to be the time derivative of Eq. 7. In using
Eq. 4 we make the same approximation used in arriving at Eq. 8, namely that terms of second order in θ are negligible.
In Appendix B we show how Eq. 14 and the quasiperiodicity requirement lead to a simple form for the dissipation,
provided that we require the neutral surface to obey the parity requirement q(−R) = −q(R). This parity requirement
simply asks that the neutral surface moves as far to the right for a rightward bend as it does to the left for a leftward
bend, and if it is satisfied the neutral surface makes no contribution to the damping.

The final result is

∆W =
∫

Wdxdy =
T0

CV

(αE0 − E′u0)2

R0
2 2πaIm

[
1
k3

(
kb

2
− tan

(
kb

2

))]
(15)

where k =
√

iω/χ and 1/R0 is the amplitude of the bending. The complicated expression involving k is shown in [7]
to be the exact solution of the frequency dependence for Zener damping in a beam of rectangular cross section. In
addition it is shown that this exact solution for the frequency dependence of the damping is closely approximated by
the Zener formula. Using this we may then approximate the NTE damping in the bent beam in the more familiar
form φ = ∆W/2πWmax, where Wmax = E0ab3/24R2

0 is the energy stored in the bent beam:

φ =
T0E0

CV

(
α− E′u0

E0

)2

Im
[

24
k3b3

(
kb

2
− tan

(
kb

2

))]
∼ T0E0

CV

(
α− E′u0

E0

)2
ωτ

1 + (ωτ)2
, (16)

where τ = b2/π2χ. This shows that NTE has the same frequency dependence as LTE. Note that the parity assumption
for q is quite general and applies for many sources of nonlinearity that may move the neutral surface, such as
nonlinearity of the isothermal Young’s modulus or the nonlinear increase of tension with bending in a clamped beam.
It must be remembered that as derived the losses due to NTE may be described by a linear loss function φ only in
the quasilinear limit.

B. The Dynamic Beam Equation Approach

We may also derive the dynamic beam equation obeyed by the wire under tension by means of a variational
approach. In Appendix C we derive a Lagrangian for the bent beam under tension and apply the Euler-Lagrange
equations to it. Thereafter we follow Lifshitz & Roukes [7] in deriving the beam equation as a function of several
thermal moments of inertia, which are determined by solving the heat equation for the bending beam in the frequency
domain. The result is

AρẌ − PX ′′ + IE0

(
1 +

T0

CV
(αE0 − E′u0)2

[
1 + 24

kb/2− tan(kb/2)
(kb)3

])
X(iv) = 0, (17)

where A = ab is the beam cross sectional area, ρ is the density, and I = ab3/12 is the moment of inertia of the beam
cross section. This equation and Eq. 15 strictly hold only for a beam of rectangular cross section (such as a ribbon),
but the equation for a circular beam will be very similar, differing only slightly in the precise frequency dependence
of the elastic modulus of the bending. By comparison to the general damped dynamic beam equation

AρẌ =
d2

dz2
[−IE0 (1 + iφ)X ′′ + PX] , (18)

this formula gives rise to a loss φ identical to Eq. 16.
We see, therefore, that the thermoelastic damping in the case of a suspension fibre or ribbon such as are used in grav-

itational wave detectors is just that of the linear thermoelastic damping with the substitution α → α′ = α− E′u0/E0.
In particular note that for a particular value of tension u0 (in practice realizable with fused silica because— unlike
most materials— its Young’s modulus temperature coefficient is positive) the thermoelastic damping can be cancelled
exactly. This leaves only other sources of dissipation, which can be at a much lower level. Thus, since thermal noise
increases with damping as a result of the fluctuation-dissipation theorem, it is possible to reduce the random noise
motion in the detector. Of course, if u0 is chosen too large, then the thermal noise can become much worse, since
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FIG. 5: Calculated thermal noise spectra for fused silica ribbons of three different cross sectional areas in a gravitational wave
detector. The peaks at high frequency are due to violin mode resonances of the ribbons.

u0 appears in the damping formula to the second power. Figure 5 shows the calculated thermal noise for suspension
ribbons of fused silica [8] for three different levels of static strain, where the suspension mass was held fixed and the
strain varied by changing the ribbons’ cross sectional area. The damping in the material is the nonlinear thermoe-
lastic damping plus a frequency-independent structural damping term. It is seen that the minimum thermal noise is
obtained when u0 = αE0/E′, as expected. Figure 6 shows for comparison the thermal noise when E′ is set to zero
for the strain that gives the lowest noise and for another, much larger, strain. In this case, generally, the greater the
static strain the less the thermal noise. We see therefore that consideration of nonlinear thermoelasticity leads to
very different conclusions about the optimum fibre thickness than those from consideration of linear thermoelasticity
alone [9]. Note that the optimum strain for fused silica (u0 = .003) is much less than the breaking strain u0 = .07 and
accordingly is achievable in practice. In the case of ribbons the thickness may be varied independently of the width
for best performance. Here nonlinear thermoelastic considerations set the product of thickness and width so that the
static strain satisfies u0 = αE0/E′.

IV. CONCLUSIONS

We have shown in this paper how the existence of a temperature dependence of the elastic modulus leads (through
nonlinear thermoelasticity) to dissipation in strained materials. In particular, we have shown that nonlinear ther-
moelasticity can be the dominant source of thermal noise in fused silica suspension fibres, or instead may cancel the
linear thermoelastic damping. It is therefore of importance to interferometric gravitational wave detectors, where
suspension thermal noise can limit the ultimate sensitivity at certain frequencies.

Recently the important role of linear thermoelasticity in the thermal noise of the test mass mirrors for gravitational
wave interferometers has been pointed out [10]. Thermoelastic noise may in fact be the dominant thermal noise source
in the case of sapphire test masses. It is natural to ask whether nonlinear thermoelasticity could be used to reduce
this source of noise as well, for example by putting the mirror under a static strain. This seems to the authors to
be unlikely, for on inspection of the material properties of sapphire, it is seen that cancellation of the thermal noise
occurs at a compression of 5%. Even if sapphire could survive such compression without fracture, we see no way to
compress a mirror to such a high level without compromising its optical performance. This conclusion might have to
be modified, however, at cryogenic temperatures.
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APPENDIX A: DERIVATION OF THE ADIABATIC TEMPERATURE CHANGE

We find the entropy by using the thermodynamic relation S = −∂F/∂T :

S(T ) = S0(T )−
[

E′

2(1 + ν)
− ν′E

2(1 + ν)2

]
uijuij −

[
E′ν + Eν′

2(1 + ν)(1− 2ν)
− Eν′ν

2(1 + ν)2(1− 2ν)
(A1)

+
2Eν′ν

2(1 + ν)(1− 2ν)2

]
(ull)2 + α

[
E + E′θ
(1− 2ν)

+
2Eν′θ

(1− 2ν)2

]
ull

where S0(T ) = −dF0(T )/dT .
We consider two types of adiabatic extension. First, an extension of the material from the unstressed state at T0

to some large extension umax at T . Using Eqs. 2 for simple extension, if we set S(T ) = S(T0) and use the relation
CV = T (dS/dT )V , where CV is the heat capacity per unit volume, we find after some tedious but straightforward
algebra that the temperature change upon adiabatic extension is

θad =
T0

CV

[
−αE0umax +

E′u2
max

2

]
(A2)

In deriving this formula we have dropped as negligibly small all terms proportional to θ in the entropy equation except
for that of S0(T ). This approximation is justified for all the materials we consider in this paper and in particular
for fused silica. Notice that if E′ → 0, then the formula is just that for linear thermoelasticity and is linear in umax.
However, for E′ 6= 0 the temperature change is quadratic in umax. This is similar to the formula derived by Wong et
al. [5] to explain observed nonlinearities in the thermal emission of strained wires. If umax = 2αE0/E′, then the total
temperature change is zero.
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If instead we consider an extension of the material from the strain u0 at temperature T0 to u0 + δu at T , where
u0 À δu, the temperature change becomes

θad =
T0

CV
[−αE0 + E′u0] δu (A3)

In this case the temperature change is zero at umax = αE0/E′, and in addition it is linearized with respect to δu.

APPENDIX B: DERIVATION OF THE QUASIPERIODICAL ANALYSIS

If we substitute the stress equation Eq. 4 into the formula for the work done in an integration cycle Eq. 13,
remembering to ignore the small second-order terms in θ, we may integrate by parts to get

W = (αE0 − E′u0)
∫ t2

t1

δu(t)
dθ(t)
dt

dt (B1)

where we have used uzz = u0 + δu as before, with δu = (x − q)/R as given in Eq. 12. Because the bending is small
we may assume the additional strain δu due to the bending is small compared to the strain u0 due to tension. This
justifies the use of the quasilinear heat equation Eq. 14. If we substitute Eq. 14 into Eq. B1 and again integrate by
parts the result is

W = (αE0 − E′u0)
∫ t2

t1

δu(t)χ∇2θ(t)dt. (B2)

We must now solve the heat equation. We restrict 1/R to vary sinusoidally (1/R = 1/R0Re[eiωt]), and make the
expansions

θ = Re

[ ∞∑
n=1

θn(x)eniωt

]
, q = Re

[ ∞∑
n=1

qneniωt

]
(B3)

The parity requirement q(−R) = −q(R) on q then implies that all the even terms in the expansion Eq. B3 for q are
zero. Substituting Eq. 12 and Eq. B3 into the heat equation Eq. 14 and taking care to multiply only real quantities
yields

iω

∞∑
n=1

nθneniωt = χ

∞∑
n=1

∇2θneniωt

+ i
Γω

R0

(
xeiωt −

∞∑

n odd

[
n + 1

2
qne(n+1)iωt +

n− 1
2

qne(n−1)iωt

])
(B4)

where Γ = (αE0 − E′u0)T0/CV . Assuming that there is no heat flow out the surface of the beam and that heat flow
along the beam is much less than heat flow across the beam, the solution to Eq. B4 is [7]

χ∇2θ1 =
χΓk

R0

sin(kx)
cos(kb/2)

, χ∇2θn6=1 = 0 (B5)

where k =
√

iω/χ. We may then substitute this and the expression for δu into Eq. B2, again taking care to multiply
only real quantities; the result is:

W =
T0

CV

(αE0 − E′u0)2

R0
2

∫

t1

t2

Re
[
eiωt

]
(

x− Re

[ ∞∑

n odd

qneniωt

])
Re

[
χk

sin(kx)
cos(kb/2)

eiωt

]
dt (B6)

Examination of the terms involving qn shows that they involve products of eiωt, eiωt, and eniωt. Since only the qn

with odd n are nonzero, these products are all sinusoids in t and therefore integrate to zero. This means that the
work required to move the neutral surface is reversible and does not contribute to the dissipation. Integrating the
work over the beam cross section yields

∫
Wdxdy =

T0

CV

(αE0 − E′u0)2

R0
2 2πaIm

[
1
k3

(
kb

2
− tan

(
kb

2

))]
, (B7)
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which is the dissipation due to thermoelastic damping.
We have devoted considerable effort to the question of the neutral surface and its influence on the loss. We now

justify our concern. Consider the bending of a thin rod at high frequency, when there is is very little heat flow. The
temperature change is then approximately adiabatic.

Because the strain varies linearly across the bent rod, so will the temperature in the adiabatic limit, as can easily
be seen in Eq. B4 by ignoring the heat flow term χ∇2θ. The Young’s modulus will therefore also vary linearly across
the bent rod. It is easy to show that for small bending 1/R0, if the Young’s modulus varies as E(x) = E0 +E1x, then
the neutral surface will move to q = E1b

2/12E0 in order that the strain averaged over the beam cross section remain
equal to the tension P . In the adiabatic limit,

E1 =
dE

dx
=

dE

dT

dT

dx
= E′ dT

dx
= E′ T0

CV
(αE0 − E′u0)

(x− q)
R0

, (B8)

and therefore

q =
E′b2

12E0R0

T0

CV
(αE0 − E′u0) (B9)

The energy per unit length required to bend a beam under tension is given by

W =
∫ a/2

−a/2

dy

∫ b/2

−b/2

dx

∫ umax

umin

σzzduzz ≈
∫ a/2

−a/2

dy

∫ b/2

−b/2

dx
E0

2
(u2

max − u2
min) (B10)

where umin = u0 is the unbent strain and umax = u0 + (x− q)/R0 is the bent strain. The work required to move the
neutral surface may be estimated by comparing this energy to what it would be if q = 0:

Wneutral surface =
∫ a/2

−a/2

dy

∫ b/2

−b/2

dx
E0

2

[
−2u0q

R0
+
−2xq + q2

R2
0

]
(B11)

Plugging in Eq. B9 for q and dropping terms of higher order than (1/R0)2 as negligibly small yields

Wneutral surface = − ab3

12R2
0

T0

CV
u0E

′(u0E
′ − αE0) (B12)

Dividing by the total energy required to bend the beam Wmax = E0ab3/24R2
0 gives the fractional energy stored in the

neutral surface motion as

Wneutral surface

Wmax
= 2

T0E0

CV

u0E
′

E0
(α− u0E

′

E0
). (B13)

Comparing this formula with the loss fraction in Eq. 16 shows that the energy stored in the neutral surface motion
caused by NTE is comparable to the dissipated energy and cannot be ignored as small, thus justifying our more
careful analysis.

APPENDIX C: DERIVATION OF THE DYNAMIC BEAM EQUATION

We begin with the strain, where, rather than using Eq. 12 to model the bending, we note that the motion of the
neutral surface can equally well be modelled by an additional strain homogeneous over the beam cross section:

uzz ≈ Z ′(z) +
1
2

(X ′(z))2 − xX ′′(z). (C1)

(See Fig. 3.) Here we have made the identity X ′′(z) = 1/R(z) and use Z ′(z) + (X ′(z))2/2 to describe the part of
the stretching that is homogeneous over the cross section. The term (X ′(z))2/2 arises because we have chosen a
coordinate system fixed in the beam equilibrium position and a tilt of the beam relative to the coordinate z-axis must
lead to stretching if it is not accompanied by a contraction Z ′ < 0. We will see that this term leads to the restoring
force due to tension. This approximation is good for small bending angles.

We draw a distinction between the variables x and z and X and Z. The lowercase symbols x and z are independent
variables that represent points within the beam and therefore move with the fiber, as shown in Fig. 3. The uppercase
symbols X and Z are dependent variables that represent the displacements of points within the beam along the x
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and z directions of the undeflected beam. For small deflections the dynamics may equivalently use fixed x, z or x, z
moving with the beam. For integrating over the beam cross section it is more convenient to set x to move with the
midpoint of the beam.

We can then use this form for the extension of the beam to get the elastic potential energy by substituting into the
free energy equation Eq. 3 and integrating over x and y. Because we will vary the Lagrangian only with respect to X
and Z, we drop all terms depending only on the temperature θ:

Ve =
E0I + E′I(2)

θ

2
(X ′′)2 + α(E0I

(1)
θ + E′I(1)

θθ )X ′′ +
E0A + E′Iθ

8
(X ′)4 − α

2
(E0Iθ + E′Iθθ)(X ′)2 (C2)

+
E0A + E′Iθ

2
(Z ′)2 − α(E0Iθ + E′Iθθ)Z ′ − E′I(1)

θ Z ′X ′′ +
E0A + E′Iθ

2
Z ′(X ′)2 − E′I(1)

θ

2
X ′′(X ′)2,

where A is the beam cross section, I =
∫ ∫

x2dxdy is the bending moment of inertia, and the thermal moments are
defined by:

Iθ =
∫ ∫

θdxdy (C3)

Iθθ =
∫ ∫

θ2dxdy (C4)

I
(1)
θ =

∫ ∫
xθdxdy (C5)

I
(2)
θ =

∫ ∫
x2θdxdy (C6)

I
(1)
θθ =

∫ ∫
xθ2dxdy (C7)

There is in addition to the elastic energy required to stretch the wire the work VP done against the forces at the
end of the fiber which maintain the tension, which is

VP = P [Z(L)− Z(0)]. (C8)

The kinetic energy of a section of the beam is (ignoring the small rotational kinetic energy)

K =
1
2
Aρ(Ẋ2 + Ż2) (C9)

where ρ is the density of the beam material.
Forming the Lagrangian L =

∫ L

0
Ldz − VP =

∫ L

0
(K − Ve)dz − VP and the action S =

∫
dtL and setting δS = 0 we

obtain

d

dt

∂L

∂Ẋ
+

d

dz

∂L

∂X ′ −
d2

dz2

∂L

∂X ′′ = 0, (C10)

d

dt

∂L

∂Ż
+

d

dz

∂L

∂Z ′
= 0, (C11)

where we adopt the boundary conditions

∂L

∂X ′′

∣∣∣
z=0,L

= 0, (C12)

(
∂L

∂X ′ −
d

dz

∂L

∂X ′′

) ∣∣∣
z=0,L

= 0, (C13)

∂L

∂Z ′

∣∣∣
z=0,L

= P. (C14)
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While these boundary conditions are fairly arbitrary, they reduce the nonlinearity of the beam equation to only that
caused by the nonlinear thermoelasticity.

Inserting the explicit form of the Lagrangian yields the equations

AρẌ +
d2

dz2

([
E0I + E′I(2)

θ

]
X ′′ + α

[
E0I

(1)
θ + E′I(1)

θθ

])
− d

dz
(E0AZ ′X ′) = 0, (C15)

AρZ̈ − d

dz

(
[E0I + E′Iθ]Z ′ − α [E0Iθ + E′Iθθ]− E′I(1)

θ X ′′ +
E0A + E′Iθ

2
(X ′)2

)
= 0, (C16)

We now insert the formula for the strain Eq. C1 into the heat equation Eq. 14 to determine the thermal moments.
We expand Z ′ = u0 + Z ′d, where u0 and Z ′d are the static and dynamic components, respectively. The solution in the
frequency domain is [7]

θ(x, z) = Γ [f(x)X ′′(z) + Z ′d(z)] (C17)

where k =
√

iω/χ and Γ = (T0/CV )(αE0 − E′u0) as before, and

f(x) = x− sin(kx)
k cos(kb/2)

. (C18)

In solving this equation we assume that only thermal currents transverse to the beam axis are important, i.e. that
the radius of bending along the beam does not change too rapidly. With this solution for θ the thermal moments take
the values

Iθ = −ΓA
(
Z ′d + (X ′)2/2

)
(C19)

Iθθ = Γ2
[
A

(
Z ′d + (X ′)2/2

)2
+ h(X ′′)2

]
(C20)

I
(1)
θ = ΓgX ′′ (C21)

I
(2)
θ = −ΓI

(
Z ′d + (X ′)2/2

)
(C22)

I
(1)
θθ = −2Γ2gX ′′ (Z ′d + (X ′)2/2

)
. (C23)

Here g =
∫

xf(x)dx and h =
∫

f2(x)dx. Making these substitutions into Eqs. C15, C16 yields the desired equations

AρẌ − PX ′′ + E0I

[
1 + (α− E′

E0
u0)Γ

g

I

]
X(iv) = 0, (C24)

AρZ̈d − E0A

[
1 + (α− E′

E0
u0)Γ

]
Z ′′d =

d

dz
O(X ′2, X ′′2, . . .), (C25)

where in the first equation all nonlinear terms are neglected as small, and in the second equation they are collected
to one side as a driving term. We expand g and Γ in Eq. C24 to get the desired form

AρẌ − PX ′′ + IE0

(
1 +

T0

CV
(αE0 − E′u0)2

[
1 + 24

kb/2− tan(kb/2)
(kb)3

])
X(iv) = 0. (C26)

If we compare Eq. C26 to the standard form of the beam equation AρẌ − PX ′′ + EIX(iv) = 0 and expand E =
E0(1 + iφ), we can extract the loss angle φ to be

φ =
T0E0

CV

(
α− E′u0

E0

)2

Im
[

24
k3b3

(
kb

2
− tan

(
kb

2

))]
(C27)

which is exactly the same form derived in the quasiperiodical analysis. By inspection of Eq. C25 for Zd, we see that
the stretching of the fiber is driven parametrically by the bending of the fiber, and has a homogeneous solution that
is nondissipative, which indicates that the dynamics of the neutral surface are nondissipative, as was also shown via
the quasiperiodical analysis. Closer inspection shows the restoring force for Zd to be given by the adiabatic Young’s
modulus, regardless of frequency. This is a consequence of our having ignored thermal currents along the beam
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axis in calculating the thermal moments. This is a good approximation for our primary application of this theory
to gravitational wave detectors, in which the suspension thermal noise is significant at audio frequencies, because
longitudinal thermal currents become significant only well above 1 MHz [11].

The beam equation derived here uses admittedly unusual boundary conditions. More realistic boundary conditions
for a beam under tension, such as clamping of both ends of the beam, impose constraints on X and Z that couple
their dynamics far more strongly than does NTE; for example, if the ends of the beam are fixed, then geometric
considerations alone require it to stretch as it bends. This coupling is also nonlinear, and relates the net stretching of
the whole beam to the net bending of the whole beam. The situation in a gravitational wave detector, where one or
both ends of the suspension wire are rigidly fixed to heavy suspended masses, will be approximately the same as the
clamped-clamped case for frequencies above the pendulum and vertical bounce frequencies. The boundary conditions
we have chosen free us from consideration of such global constraints, leaving only the coupling due to NTE, while
showing the independence of the dissipation from the homogeneous part of the stretching. In the quasiperiodical
analysis we showed that in general the motion of the neutral surface (which is equivalent to a homogeneous stretching)
does not affect the dissipation, regardless of its cause, provided it satisfies the parity requirement.

APPENDIX D: MATERIAL PARAMETERS

We take CV to be the heat capacity per unit volume, rather than per unit mass as is more common. The derivative
of the Young’s modulus with respect to temperature for fused silica has various measured values in the published
literature, which may reflect differences in the samples studied or differences in the frequency of measurement, but
they are clustered around 15 MPa/K at room temperature.[12]

E0 (GPa) α (1/K) E′ (MPa/K) u0 = αE0/E′

fused silica 75 5.5× 10−7 15 .003
sapphire 400 5× 10−6 -40 -.05
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