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Abstract 

LIGO (Laser Interferometer Gravitational wave Observatory) seeks to open a new avenue 

to explore the universe by detecting gravitational radiation from extra-terrestrial sources. 

Gravitational waves from astrophysical sources can be broadly classified into four 

categories: bursts, chirps, periodic waves and stochastic waves. Bursts are emissions from 

localized sources in the sky whose precise waveforms are difficult to predict in advance, 

so that matched filtering techniques are not useful. The classical methodology adopted to 

detect bursts is to identify peaks of excess power in the sensitive frequency bands of the 

data stream and then localize the analysis around these peaks in order to rule out the 

possibility of the burst being the result of noise. This paper explores the possibility of 

using the coherence function (between the gravitational wave streams) as a statistic to 

further analyze the burst peaks. The paper also seeks to identify the optimal value of the 

coherence function statistic which minimizes the fake rate of detection while maintaining 

an acceptable level of efficiency of detection. This paper also seeks to quantitatively 

verify claims that the laser frequency noise and spacecraft displacement noise of the 

proposed LISA mission are suppressed using different combinations of measured 

quantities in time-delay interferometry. 
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Section 1: Introduction 

 
(1) Interferometric Detectors of Gravitational Radiation 

 
Interferometric detectors of Gravitational Radiation (of frequency content 0 < f < fm) use a phase 

modulated laser beam (of nominal frequency ν0 >> fm) folded into several beams and, at one or 

more points where they intersect, monitor relative fluctuations of frequency or phase. These 

fluctuations are caused by frequency variations of the source of the electromagnetic waves about 

ν0 as well as by relative motions between the source and the detector of the electromagnetic 

radiation.  

 

General Relativity predicts that time variable gravitational fields between the source and the 

detector causes relative motion between them. Gravitational waves are an important example of 

time-variable gravitational fields and the net effect of a plane gravitational wave on space-time is 

to induce a strain in the plane orthogonal to its direction of propagation. Thus, Interferometry 

enables us to detect these strains as frequency fluctuations of the electromagnetic radiation 

circulating in the detector.   

 

The sensitivity of an interferometer at a given frequency is determined by the strength of the 

coupling between the gravitational radiation and the proof-masses (ie : the free masses whose 

separation is altered by gravitational radiation, the change being detected through interferometry) 

at that frequency as well as by the expected power of the noise sources at that frequency. The 

regions of maximal sensitivity of terrestrial and space-based interferometers are therefore very 

different. Seismic noise determines the low frequency limit of sensitivity to terrestrial 

interferometers while acceleration noise of the proof-masses determines the same limit in the case 

of space-based interferometers. The net effect of the gravitational radiation on the arm lengths of 

the interferometer decreases when the wavelength of the gravitational wave becomes comparable 
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to, or smaller than, the arm lengths of the interferometer (due to the change in the polarity of the 

wave as it passes through the arms). This effect combined with shot noise determines the high 

frequency limit of sensitivity to both terrestrial and space-based interferometers. Several 

terrestrial interferometers like LIGO (Laser Interferometer Gravitational wave Observatory) (1) 

have been successfully built and are expected to be fully operational by 2004. LISA (Laser 

Interferometer Space Antenna) (2) is a proposed space-based interferometer which is expected to 

be launched within a decade.  

 

(2) Antenna Patterns of an Interferometer 

The Antenna Pattern of an interferometer is a function which when represented as a function of 

the polar and azimuthal angles gives the response of the interferometer to a gravitational wave 

incident on the interferometer from the direction of the unit vector specified by the given polar 

and azimuthal angles. The response of the interferometer is normally expressed as the difference 

between the arm lengths of the interferometer (called the Differential Mode or DTM). The sum of 

the two arm lengths (called the Common Mode or CTM) and the lengths of individual arms 

(ETMx, ETMy modes) are also useful characterizations of the interferometer response. In section 

(2) of this paper, we will calculate the antenna patterns (DTM, CTM, ETMx, ETMy modes) of an 

interferometer as a function of the angle (θ) between the arms. The antenna patterns for the 

special cases of θ = 90o (the angle between the arms of LIGO) and θ = 60o (the angle between the 

arms of LISA) are plotted.  

(3) Gravitational Wave Bursts  

Gravitational radiation from astrophysical sources can be broadly classified into four categories: 

bursts, chirps (created due to the coalescence of compact binaries), periodic waves (caused due to 

rotating neutron and binary star systems) and stochastic waves  (primarily from the Big Bang). 

Bursts can be caused by the collapse of a star into a neutron star or black hole, the fall of stars and 

small black holes into supermassive black holes as well as asymmetric supernova explosions. The 

waveform of a gravitational wave burst caused due to these sources depends primarily on the 

dynamics of the system and therefore, burst waveform templates are difficult to create. Matched 

filtering techniques cannot therefore be reliably employed to detect bursts. The classical 

methodology adopted to detect bursts is to identify peaks of excess power in the sensitive 

frequency bands of the data stream. The LIGO Data Analysis System (LDAS) (3) identifies 

bursts in the data streams by using algorithms in the LIGO Analysis Library (LAL) (11) (like 

Power, Slope and TFClusters) which look for such peaks in the data stream from one detector, 

and then to find coincidences in time between such peaks in multiple detectors. However, excess 
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power in a particular frequency band may also be due to unexpected surges in the noise sources, 

for example, a glitch in the pre-stabilized laser may lead to excess power being generated at a 

particular frequency. In section (3) of this paper, we will discuss a statistical test that can be used 

to rule out such fake detections.   

 

(4) Simulation of Time De lay Interferometry with applications in canceling laser frequency 

noise and space-craft motion effects in LISA: 

The proposed LISA mission is currently envisaged as three spacecraft in heliocentric orbits with 

the orbital motion 

of the center of the 

constellation 

trailing the orbital 

motion of the Earth 

by 20o, with the 

plane of the 

constellation being 

inclined at 60 o to 

the ecliptic (4). The 

orbits are designed 

such that the 

constellation is 

approximately 

equilateral (of side 5,000,000 KM) during the course of the mission. However, the dynamics of 

the spacecraft are such that it is impossible to maintain precisely equal arm lengths between them. 

The frequency fluctuations of the laser beams  (about the nominal frequency ν0, which for LISA 

is approximately 300 THz) are therefore not cancelled by the geometry of the interferometer. 

LISA will use a diode pumped Nd:YAG laser which offers a frequency stability of a few parts in  

10-13. However, since the goal of LISA is to detect gravitational waves which are expected to 

cause frequency fluctuations of the order of 10-20, it is essential that the laser frequency 

fluctuations are precisely cancelled (or at least cancelled to the second order) in order for the 

interferometer to be able to detect gravitational waves. Armstrong, Tinto and Estabrook have 

proposed (in papers (5), (6) and (7)) several combinations of the LISA data which eliminates laser 

frequency fluctuation noise as well as the velocity noise caused due to the random motions of the 

optical benches of the LISA spacecraft. In Section (4) of this paper, the details and the results of a 

 

Figure 1 
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simulation of Time Delay Interferometry is presented. The results are found to be in accordance 

with the predictions made by Armstrong et al.  

 

 

 

 

 

 

 

 

 

Section 2:  Antenna Patterns of an Interferometer 

 

Consider the co-ordinate system 

described in the adjoining figure 

(Figure 2).  Let a plane gravitational 

wave (of dimensionless strain h), 

propagating along the Z-axis, be 

incident on the XY plane such that 

its net effect (up to first order in h) 

is to maximally alter lengths along 

the directions of the X and Y axes 

(such a wave is said to be in the “+” 

polarization). When such a 

gravitational wave passes through the XY plane, it takes the vector v = Xi + Yj + Zk  to the 

vector   v’ = (1+h)Xi + (1-h)Yj + Zk (for a time duration very much smaller than the time 

period of the gravitational wave) (8). Therefore, when such a gravitational wave passes 

through this system, it takes the vector OP to OP’ such that, if |OP| = r then, |OP’| = r (1 + 

hSin2φCos2θ). Since we know the effect of such a gravitational wave on an arbitrary vector, 

we can easily calculate the response of the interferometer arms by calculating the appropriate 

values of φ and θ of the interferometer arms (this calculation follows from simple geometry). 

The responses of interferometer for the cases where the angle between the arms is 90o and 60o 

were then plotted by using Mathematica. The results have been summarized below.  

 

 
Figure 2 
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Fig 3 

 Fig 4 
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 Fig 7 

 Fig 8 

 
 

Section 3: Analysis of Co-incident Gravitational Wave Bursts  

 

The software running in the LDAS system (3) identifies sections of the data stream which 

may contain gravitational wave bursts by looking for unexpected surges in the power of the 

data stream at sensitive frequencies. These identifications are performed by algorithms like 

the Power Event Trigger Generator (ETG) (11), the Slope ETG and the TFCluster ETG. 

When a burst-search ETG identifies a particular data section as “bursty”, it generates a trigger 

containing useful information about the burst (eg: the start time, duration and central 

frequency of the burst etc.). The triggers thus generated are then stored in a meta-database 

(usually an XML file). The traditional method to reduce the fake rate of detection is to 

identify coincident (after allowing for the 10 ms light travel time between Hanford and 

Livingston) triggers and thereafter impose further consistency conditions on the identified 

data sections (eg: we may require frequency overlaps between the identified data sections). 

The efficiencies of these methods of burst detection were evaluated using the data gathered 

from the LIGO interferometers during LIGO’s Engineering Run 7 (E7) (9). The basic method 

adopted to evaluate the efficiency of burst detection of a particular algorithm is to inject 

simulated gravitational wave bursts (like the Zwerger Muller waveforms) into the LIGO data 

stream, process the data stream through the algorithm and check if the algorithm identifies the 

injected burst. We thus arrive at the efficiency of detection of that particular algorithm.  A 

plot of the efficiency of detection of the TFClusters ETG against the distance between the 

Earth and various Zwerger Muller supernovae is given below.  
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Figure 9 

 
Figure 9 – (cf  (10)) 

The accidental coincidence rate should be as small as possible; ideally, false coincidences 

should occur less than once per century. The coincidence rate depends on the thresholds used 

to define a burst event, and the coincident time-window. We desire to set these limits so that 

our efficiency for detecting real (or simulated) bursts remains high. With the settings used for 

analysis of the data from LIGO’s E7 run, this false coincidence rate remains too high. Thus, 

we wish to explore the possibility of using the raw data from the interferometers to further 

reduce the fake rate while maintain a high efficiency. We therefore seek a statistical measure 

which significantly reduces the fake rate while maintaining very high efficiency for even the 

faintest injected burst which triggers the ETGs. We require this statistic to be robust even 

when the two interferometers have very different sensitivities (like the Livingston 4 KM 

Interferometer (L1) and the Hanford 2 KM Interferometer (H2)) as well as when there is a 

time delay of 10 ms (light travel time between H2 and L1) between the injected gravitational 

wave bursts. For this study, we focus on the data taken during the LIGO E7 run (December 

28, 2001 through January 14, 2002), by the LIGO Livingston Observatory 4km detector 

(LHO4K, or L1), and the LIGO Hanford Observatory 2km detector (LHO2K, or H2). We 

have used data when both interferometers were “in lock” (capable of detecting gravitational 

waves), and which were pre-selected as a “playground” for the development of algorithms 

and the tuning of thresholds. 
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Let:  

X(t) = ∆T seconds of data from L1 

Y(t) = ∆T seconds of data from H2 

PL1(f) = Discrete Power Spectral Density of X 

PH2(f) = Discrete Power Spectral Density of Y 

CL1,H2(f) = Discrete Cross Spectral Density of X, Y 

CXY(f) = Discrete Coherence Function between X, Y 

 = |CL1,H2(f)|2 /( PL1(f) *  PH2(f) ) 

Consider the statistic:  

   CCS = Σ  CXY(fi) ∆f with fnin < =fi <=fmax (where the sum is over the frequency bins, as discussed below) 

If the value of the CCS statistic when the data-streams X(t) and Y(t) contain gravitational wave 

bursts is significantly (statistically) different from the value of the CCS statistic when there are no 

coincident gravitational wave burst candidates in the data-streams X(t) and Y(t), then we can 

identify a gravitational wave burst candidate by demanding that the CCS statistic computed from 

the data-streams exceeds a certain threshold condition. We therefore estimate the distribution of 

the CCS statistic between the data-streams of L1 and H2 in the presence and in the absence of a 

simulated gravitational wave burst. We have determined a value of the CCS Statistic which can 

then be used to identify coincident gravitational wave bursts and reject accidental coincidences.  

Parameters affecting the performance of the CCS Statistic:  

(1) The value and performance (by which we mean its ability to distinguish a fake burst from 

a gravitational wave burst) of the CCS Statistic will depend upon the value of ∆T. If ∆T 

is a lot larger than the duration of the burst, then the CCS statistic will be dominated by 

the noise (thereby leading to a drop in performance) while if the value of ∆T is too small, 

we risk losing significant chunks of the gravitational wave burst signal thereby leading to 

a drop in performance. For our analysis, we take the value of ∆T = 1 second. The 

dependence of the CCS statistic on the value of ∆T needs to be explored.  

(2) ∆f will affect the value of the CCS statistic. But it should have little effect on the 

performance of the CCS statistic as a statistical tool to identify broad-band gravitational 

wave bursts. ∆f merely acts as a blind magnifying factor for the CCS statistic in both 

cases. We used the value of ∆f = 16 for our analysis.  

(3) The value and performance of the CCS statistic also depends upon the range in frequency 

space over which we calculate the CCS statistic. This range is set by the values of fmin and 

fmax.  The optimal values of this frequency band depend on the (a priori unknown) power 
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spectrum of the Gravitational Wave burst, compared with the power spectrum of the 

detector noise. In order to determine the optimal values of fmin and fmax, we plot the values 

of the coherence function Cl1,h2(f) when there are no injected signals in the data-streams 

and compare it with the plot of Cl1,h2(f) obtained when the data-streams contain simulated 

broad-band gravitational wave bursts. The value of fmin and fmax is then set by identifying 

the region in the frequency space where the plots are maximally different.  

Comments on the playground data and simulated burst signals used for the analysis: 

The data and triggers were obtained from the data gathered during E7. The simulated 

gravitational wave bursts were Zwerger-Muller supernovae (10) placed at a distance of 2 

Parsec from the Earth (2 Parsecs being the limit of LIGO’s sensitivity during E7 cf: figure 9). 

The data was whitened and resampled at 4 KHz before being analyzed. The resampling was 

primarily done because Zwerger-Muller supernovae have very low power over 1000 Hz and 

therefore, we have little to lose by discarding information about frequencies higher than 1000 

Hz. The resampled data required less disk space, memory and cpu-time to process.  

Determination of the values of fmin and fmax for Zwerger-Muller Supernovae at a 

distance of 2 Parsec:  

The procedure previously outlined for determining the values of fmin and fmax was adopted in 

order to arrive at the optimal frequency range for various Zwerger-Muller supernovae. The 

following 7 plots show data from the same 1-second interval, into which 7 different ZM 

Supernova waveforms were added.  

 

Fig 10 
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Fig 11 

 

 

Fig 12 
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Fig 13 

 

 

 

Fig 14 
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Fig 15 

 

 

Fig 16 

 

 

 

From the above plots (figures 10-16), it is clear that the region of interest lies between 

~250 Hz – 1000 Hz. This is consistent with the fact that ZM supernovae have little power 

beyond 1000 Hz and the fact that LIGO has its peak sensitivity in this region. The plots 

also indicate that the CCS statistic will be of little use in detecting some weak waveforms 

(eg: A1B1G5). In fact, this seems to be the case for nearly 55 of the 78 ZM waveforms 

(the supernovae are placed at a distance of 2 Parsec). The values of fmin and fmax for our 

analysis were chosen to be 300 Hz and 1200 Hz respectively. This was done to include 
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all the significant peaks in the coherence function plots. The plots also indicate that by 

choosing a lower value of fmax=1000 Hz, the statistic will yield better results. 

 

Procedure adopted to estimate the distribution of the CCS statistic in the presence 

and absence of a simulated Gravitational Wave Burst:  

 

(1) We take N (N = 1800 for this study) seconds of data from L1 and H2. ∆T  was taken 

to be 1 second. We then estimate the distribution of the CCS statistic on the raw data (in 

the absence of simulated gravitational wave bursts) by forming (N/ ∆T)2 coincidences 

between them and computing the CCS statistic between the ∆T second intervals thus 

generated. We histogram the results to arrive at the distribution of the CCS statistic on the 

raw data.  

 

(2) Since the CCS statistic test will be used only on the data sections that trigger the 

ETGs, we perform the same analysis on the “bursty” data sections between the times t 

and t + ∆T where t corresponds to the time identified by the ETG as the start time of the 

burst which triggered the tfClusters ETG.  

 

(3) We then inject Zwerger-Muller waveform signals in the (N/∆T) intervals (both bursty 

and non-bursty) of length ∆T. The distribution of the CCS statistic after signal injection is 

similarly studied. We then inject the Zwerger-Muller waveform signals with a time delay 

of 10 ms (H2/L1 light travel time) between them and estimate the CCS statistic by the 

above method. The results are plotted below:  
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Figure 17 

 

Comments on the Plots:  

(1) It is clear from the comparison of the green and the brown curves (random intervals and 

intervals selected by tfClusters) that the distribution of the CCS statistic on the data 

sections identified by the ETGs as containing bursts is very similar to the distribution of 

the CCS statistic on random ∆T seconds of data from L1 and H2. Also, the distribution of 

the CCS statistic for intervals in which a barely-detectable ZM burst was injected peaks 

significantly higher than those intervals in which no simulated burst was injected. 

(2) The peak of the CCS statistic distribution when the signal between H2, L1 is delayed by 

10 ms occurs at a slightly lower bin than the peak of the distribution when there is no 

delay. However, we notice that we can produce an efficient value of the CCS statistic 

which maintains high rates of efficiency while minimizing the fake rate.  

(3) The Matlab function cohere (X, Y, NFFT, Fs) (wherein, X, Y = data sampled at a rate of 

Fs Hz while NFFT controls the frequency resolution of the coherence estimate) was used 
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to estimate the coherence function. Since we are interested in a specific region of the 

frequency spectrum (namely, 300-1200 Hz), we must ensure that the coherence function 

estimate contains significant information between the frequency bins 300-1200 Hz. In 

order to achieve this, we require to maintain the ratio length(X)/NFFT = 16. If the ratio is 

bigger than 16, then the number of frequency bins in the coherence function estimate 

between 300-1200 Hz is far too small to cause a significant difference in the estimation 

of the CCS statistic. If the ratio is lesser than 16, the coherence function estimate between 

X, Y gets artificially boosted up due to the inadequacies of the Welch’s averaged 

periodogram method of estimating the coherence function of a discrete time series when 

the size of the data sample is not large enough (as compared to NFFT).  

Performance of the CCS Statistic: 

From the above plots, a simple test to identify coincident gravitational wave bursts is to check 

if the value of the CCS statistic exceeds a given threshold value. If it exceeds the specified 

threshold, then we conclude that the coincident burst is consistent with originating from a 

coherent source (presumably, an extra-terrestrial gravitational wave). The value of the 

threshold should be chosen such that it operates at a low fake rate while maintaining high 

levels of efficiency. The fake rate has been plotted against the corresponding efficiency for 

the CCS statistic test in the following plots. The plots were made for Zwerger Muller 

A1B1G1 placed at a distance of 2 parsec from the Earth. This Zwerger Muller supernova was 

chosen because it represented the outer limit to the sensitivity of LIGO during E7 for the 

TFCluster ETG.  
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 Figure 18 

 

 

Figure 19 
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Figure 20 

 

 

 

The above plots (figures 17-20) indicate that the CCS statistic test can be used to detect the 

faintest bursts which trigger the ETGs with an efficiency of nearly 70 percent while operating at 

close to a zero fake rate. The plots also indicate that we can increase the efficiency of the CCS 

statistic test by significant amounts if we allow for a marginal fake rate. The efficiency of 

detecting a Zwerger Muller of type A1B1G1 has been plotted against the distance between the 

supernova and the Earth. The  plot is furnished below:  
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Figure 21 

 
Conclusions:  

The CCS statistic test proves to be a robust test for the detection of several types of 

Zwerger Muller waveforms. For the Zwerger Mullers, we identified the optimal values of 

fmin and fmax to be 250 Hz and 1000 Hz respectively. Since LIGO has its peak sensitivity 

in this particular region, we expect that these values would suffice for detecting all forms 

of gravitational wave bursts which have significant power in this particular section of the 

frequency space. The dependence of the CCS statistic on the waveforms must however be 

more closely examined to verify this conjecture. It is also important that we explore the 

dependence of the CCS statistic test on the duration (∆T) of the data sections used while 

computing the CCS statistic. 
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Section 4: Simulation of Time Delay Interferometry in LISA 

 

Description of the LISA System: 

Consider the adjacent cartoon depicting 

the geometry of the LISA constellation 

(4). The spacecraft are labeled 1,2,3 and 

distances between pairs of spacecraft are 

L1, L2, L3 with Li being opposite 

spacecraft i. Unit vectors between 

spacecraft are ni, oriented as indicated in 

the figure. Each vertex spacecraft contains 

two rigid optical benches (the benches are 

attached to each other by an optic fiber) 

shielding two (almost) inertial proof masses. Each optical bench has its own laser, which is used 

to both exchange signals with one of the distant spacecraft and also to exchange signals with the 

adjacent optical bench. Thus, there are six optical benches, six lasers, and a total of twelve 

Doppler time series observed. The six beams exchanged between distant spacecraft contain the 

gravitational wave signal (plus noises); the other six beams are for comparison of the lasers and 

relative optical bench motions within each spacecraft. All beams are inertially referenced by 

reflection off a proof mass. An outgoing light beam transmitted to a distant spacecraft is routed 

from the laser on the local optical bench using mirrors and beam splitters; this beam does not 

interact with the local proof mass. Conversely, an incoming light beam from a distant spacecraft 

is bounced off the local proof mass before being reflected onto the photo-detector where it is 

mixed with light from the laser on that same optical bench. Beams between adjacent optical 

benches however do precisely the opposite. Light to be transmitted from the laser on an optical 

bench is first bounced off the proof mass it encloses and then directed to the other optical bench. 

Upon reception, it does not interact with the proof mass there, but is directly mixed with local 

laser light.  

We adopt the following convention to index the Doppler data to be analyzed: Y31 is the fractional 

(or normalized by center frequency) Doppler series derived from reception at spacecraft 1 with 

transmission from spacecraft 2. Similarly, Y21 is the Doppler time series derived from reception at 

spacecraft 1 with transmission at spacecraft 3. The other four Doppler series from signals 

 

Figure 22 
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exchanged between distant spacecraft (containing the Gravitational Wave signal ) are obtained by 

cyclic permutation of the indices: 1->2->3->1. We also use a useful notation for delayed data 

streams: Y31,23 = Y31 (t-L2 - L3) (where L2 represents the light travel time between spacecraft 1 and 

3 etc.). Six more Doppler series result from Laser beams exchanged between adjacent optical 

benches; these are similarly indexed as Zij. The fractional frequency fluctuations of the laser on 

the optical bench on spacecraft 1 which exchanges signals with spacecraft 2 is labeled C1. The 

random velocity of this optical bench is labeled V1 while the random velocity of the proof mass 

associated with this bench is labeled v1. The fractional frequency fluctuations of the laser on the 

other optical bench on spacecraft 1 which exchanges signals with spacecraft 3 is labeled C1* 

while the random velocity of this optical bench is labeled V1* and the random velocity of the 

proof mass associated with this bench is labeled v1*. The shot noise contribution to the Doppler 

time series Yij is denoted by Yij
shot , while the effect of a passing gravitational wave on the time 

series Yij is denoted by Yij
GW. Note that the shot noise contribution to the Doppler time series Zij 

is insignificant owing to the close proximity of the laser generating the beam and the photo- 

detector receiving the beam; and, the gravitational wave contribution to the Doppler time series 

Zij is similarly insignificant. The four photo-detector readouts at spacecraft 1, including 

gravitational wave signals and shot noises, are thus (the other time-series are arrived at by cyclic 

permutation of the indices: 1->2->3->1):  

Y21 = C3,2 – n2. V3,2 + 2n2.v1* - n2.V1* - C1* + Y21
GW + Y21

shot 

Z21 = C1 + 2n3.(v1 – V1) – C1* 

Y31 = C2,3*+ n3. V2,3* - 2n3.v1 + n3.V1 - C1 + Y31
GW + Y31

shot 

Z31 = C1* - 2n2.(v1* – V1*) – C1 

Armstrong, Tinto and Estabrook have demonstrated in their papers (5), (6), (7) that this 

configuration enables us to combine the twelve Doppler time streams in such a manner that the 

combination eliminates laser frequency fluctuation noise and optical bench buffeting noises while 

retaining the gravitational wave signal. In this simulation of LISA, we simulated the response of 

the combinations X and α. Τhe combination X is given by:  

  X = Y32, 322  – Y23,233  + Y31,22 – Y21,33 + Y23,2  – Y32,3  + Y21 – Y31 +     

                                  (1/2) * ( - Z21,2233 + Z21,33 + Z21,22 –Z21) +  

                                  (1/2) * ( Z31,2233 – Z31,33 – Z31,22 + Z31) 

The combination α is given by:  

  α = Y21 – Y31 + Y13,2  – Y12,3  + Y32,12 – Y23,13 - 

         (1/2) * (Z13,2  + Z13,13 + Z21 + Z21,123 + Z32,3  + Z32,12) +  

         (1/2) * (Z23,2  + Z23,13 + Z31 + Z31,123 + Z12,3  + Z12,12) 
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Cyclic permutation of the indices of X (1->2->3->1) yields the combinations Y and Z while a 

similar permutation performed on α gives combinations β and γ.  

Details of the Time Delay Interferometry Simulation 

The simulation was written in Matlab. The noise spectra of the expected noise sources, the 

transfer function of the coupling of the LISA constellation to a passing plane gravitational wave  

as well as the noise canceling combinations of the LISA data were obtained from (4), (5), (6) and 

(7). The data for the simulation was generated and sampled at 2 Hz since LISA is maximally 

sensitive between 10-4 Hz – 1 Hz. Since we require a frequency resolution of at least 10-4 Hz, the 

simulation was executed to obtain a week (604800 seconds) of LISA data and the power 

spectrum of the gathered data in the combinations described above was then estimated. The 

simulation in its current state accepts only elliptically polarized sinusoidal gravitational waves 

(LISA sensitivities have been traditionally given for sinusoidal waves). In this particular 

simulation of LISA, we assume that the Doppler data received at each spacecraft has been 

preprocessed to remove Doppler shifts caused due to known orbital motion of the spacecraft. We 

also assume that the distances between the spacecraft (L1, L2 and L3) are precisely known. In 

papers (4), (5), (6) and (7), Armstrong et al. have analyzed the precision required in measuring 

L1, L2 and L3 so as to reduce the laser frequency fluctuation noise and spacecraft motion noise to 

second order and they find that the required precisions are easily attainable. Therefore, the 

assumption that the arm lengths of the constellation are precisely known is unlikely to cause 

significant errors.  The simulation therefore deals with a system which consists of three almost 

but not precisely stationary spacecraft (ie: each spacecraft is assumed to have a small random 

velocity), the spacecraft forming the vertices of a triangle with known sides. The Doppler data 

represented in this simulation is normalized by central frequency (300 THz corresponding to 1 

µm wavelength laser light from the Nd:YAG Lasers).  

Generation of Noise with a given Frequency Spectrum 

The following procedure was adopted to generate random signals (the noise) with a given power 

spectral density.  

(1) Use Matlab’s built-in randomizer to generate a normal random time series X(t).  

(2) Compute the Fourier Transform of X(t)  to obtain X(f).  

(3) Theoretically, we expect X(f) = 1 (as X(t) is white gaussian noise). In order to obtain a 

random signal Y(t) with a power spectrum S(f), we form Y(f) = X(f)*(S(f)1/2).  

(4) Compute the inverse Fourier transform of Y(f) to obtain the random signal Y(t). It can 

easily be verified that the power spectrum of Y(t) is indeed S(f).  
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Results of the Simulation: 

The simulation was executed to gather 1 week (604800 seconds) of LISA data and the power 

spectrum of the raw Doppler data as well as the power spectra of the noise canceling 

combinations α and X (see paper ) were calculated. The sinusoidal gravitational wave used in the 

simulation was an elliptically polarized gravitational wave of dimensionless amplitude 10-21 

incident on the LISA constellation from the point (π/4, π/4) on the celestial sphere with its co-

ordinates on the Poincare sphere being (π/4, π/4).  Plots of a typical time series of the raw 

Doppler data from the photo-detectors and the time series produced by the noise canceling 

combinations α and X as well as the corresponding power spectra have been plotted below:  

 

Figure 23 

 

Figure 24 
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Figure 25 

 

Figure 26 
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Figure 27 

 

 

Figure 28 
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Figure 29 

 

Figure 30 
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Conclusions:  

The above plots (figures 23-30) demonstrate that the noise canceling combinations α and X successfully 

cancel the laser frequency fluctuation noise and spacecraft motion effects to acceptable levels while 

allowing us to detect the gravitational wave. The noise spectra obtained from the simulation are identical to 

the spectra obtained by Armstrong, Estabrook and Tinto (in papers (1), (2), (3)) through an analytic 

calculation of the appropriate transfer functions. Thus, the simulation quantitatively demonstrates that Time 

Delay Interferometry can be successfully implemented in LISA to recover the gravitational wave signal 

even when the system is swamped by laser frequency fluctuation noise and spacecraft motion effects. The 

gravitational wave sensitivity of LISA is then limited by acceleration noise (at low frequencies) and shot 

noise (at high frequencies).  
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