LIGO-T020194-00-D

To: B. Barish and G. Sanders

From: E. D’Ambrosio, V. Braginsky, B. Kells, K. Thorne and S. Vyatchanin

Subject: Recommendations on the program of researches of the parametric
oscillatory instability in power recycled LIGO interferometer

Dear Barry and Gary!

As you may be aware, last year two of us [1] raised the possibility of a parametric oscillatory
instability that might be a serious obstacle for LIGO-II interferometers, and two others of us [2] pointed
out a mitigating factor that might subdue the instability. Further research [3] shows that it is far from
clear whether the instability will be subdued or not. We are all seriously concerned about this instability
and write this memo to recommend a small experimental research program to investigate it.

In this instability, a photon in the pumped electromagnetic mode of a LIGO arm cavity gets con-
verted, via light-pressure coupling, into a phonon in a mechanical mode of the ITM or ETM plus
a photon in a near empty mode (“idle mode”) of the cavity. If the light power is above a certain
threshold and the standard 3-mode resonant frequency condition is satisfied [(frequency of pumped
mode) = (frequency of idle mode) + (frequency of mechanical mode)], then the energies of the me-
chanical mode and idle mode can grow exponentially at the expense of the pumped mode, thereby
endangering the interferometer’s operation. The potential existence of this effect may be regarded as a
penalty that must be paid for the high mechanical Q’s of the test masses and the planned high pump
power. Our calculations show that in the worst case, when the mechanical Q is ~ 10% and the resonant
frequency condition is satisfied, then the threshold for this intability is five (!) orders of magnitude
below the planned ~ 1 Megawatt pump power. By carefully adjusting the shapes of the TM’s, one may
be able to prevent the resonant-frequency condition from being satisfied by modes with dangerously
- high @’s; but at present we are not able, by numerical calculatlons to give a complete rec1pe for the
necessary TM shapes. ’ ot

This situation motivates us to recommend establishing-a relatlvely modest subprogram of research
W1th1n the LIGO-I project, aimed at detecting and recognizing the signs (precursors) of the parametric
instability. In particular, we recommend making aspectral ‘analysis of the output! power at the dark
port in the range of optical sidebands, on both sides of the carrier, from 30 kHz up to 200 — 300 kHz.
It would be helpful if these measurements were accompanied by a slow sweeping of the frequency of the
pump field.

We also recommend carrying out direct measurements and numerical calculations of the eigenfre-
quencies, structures and quality factors of several hundred elastic modes for each TM. In the future,
this will be a foundation for understanding the results of an exhaustive parasitic-mode spectral analysis
of the output power in the dark port IGO-II interferometers.
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We present the analysis of a nonlinear effect of parametric
oscillatory instability in power recycled LIGO interferometer

with the Fabry-Perot (FP) cavities in the arms. The basis for

this effect is the excitation of the additional (Stokes) optical
mode with frequency w; and the mirror elastic mode with fre-
quency wy,, when the optical energy stored in the main FP
cavity mode with frequency wq exceeds the certain threshold
and the frequencies are related as wo ~ wi + wm. The pres-
ence of anti-Stokes modes {with frequency wia & wo + wm)

can depress parametric instability. However, it is very likely

that the anti-Stokes modes will not compensate the paramet-
ric instability completely.

I. INTRODUCTION

The full scale terrestrial interferometric gravitational

wave antennae are in process of assembling and tuning at.

present. One of these antennae (LIGO-I project) sensi-
tivity expressed in terms of the metric perturbation am-
plitude is projected to achieve the level of h ~ 1 x 10~2!
[1,2]. After the improvement of the isolation from noises
in test masses (the mirrors of the 4 km long optical FP
cavities) and after increasing the optical power circulat-
ing in the resonator up to W =~ 830 kW the sensitivity
is expected to reach the value of A ~ 1 x 10722 [3]. This
value of W corresponds to the energy £y = 22 J stored in
the FP .resonator. :

In previous paper [4] we have described the possibly
existing effect of pure nonlinear dynamical origin which
may cause substantial decrease of the antennae sensitiv-
ity or even the antenna disfunction. The essence of this
effect is classical parametric oscillatory instability in the
FP cavity which modes are coupled with mechanical de-
gree of freedom of the mirror. This effect appears above
the certain‘threshold of the optical energy £ when the
difference wg — wy between the frequency wp of the main
optical mode (which stores &) and the frequency w; of
the idle (Stokes) mode is close to the frequency wy, of
the mirror mechanical degree of freedom. The coupling
between these three modes appears due to the pondero-
motive pressure of the light photons in main and Stokes
modes and due to the parametric action of mechanical os-
cillation on the optical modes. Above the critical value of
energy & (dimensionless parameter Ry > 1, see below)
the amplitude of mechanical oscillation will rise expo-
nentially as well as the optical power in the idle (Stokes)
optical mode.

In the article [4] we have used a simplified model of this
effect in which lumped model of mechanical oscillator had

been used and optical modes with gaussian distribution
over the cross section had been taken into account. Under
these assumptions the parametric oscillatory instability
will appear if

Ro

- > 1, (1)
(1+%) |
_ & wwwm _ 260Q1Qm
Ro = 2mL2w, §16m T omlLWwi (2)

Here m is the value of the order of mirror mass, L is
the distance between the FP cavity mirrors, Aw; = wp —-
W1 — Wm, 61 and @; = w;/26; are the relaxation rate
and quality factor of the Stokes mode correspondingly,
Om and @, = wpm /260, are relaxation rate and guality
factor of the mechanical oscillator.

Recently E. D’Ambrosio and W. Kells [5] have reported
that if in the same one dimensional model the anti-Stokes
mode (with frequency w;, = wp + wm) is taken into ac-
count then the effect of parametric instability will be sub-
stantially dumped or even excluded. In this article we
present the analysis based on the model which takes into
account several important details of the antenna. This
analysis shows that parametric oscillatory instability still
may exist.

In section II we present the analysis of one dimensional -
optical model of antenna in which the so called power
recycled mirror is taken into account. In section III im-
portant key elements of 3-dimensional approach are used
to prove that it is very likely that the anti-Stokes modes
will not compensate the oscillatory instability.

II. THE ROLE OF POWER RECYCLING
MIRROR IN THE ANTENNA

The design of laser interferometer gravitational wave
antenna apart from the two main optical FP cavities
also includes the so called power recycling mirror (PRM)
which allows to increase the value of & using the same
laser input power (see fig. 1).
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F1G. 1. The scheme of power recycled LIGO interferometer
with the Fabry-Perot (FP) cavities in the arms. The end
mirror of the FP I cavity is a part of mechanical oscillator.
"Tes and Ty ave transmittances of the beam splitter and power
recycling mirror correspondingly; l; is the distance between
the input mirror of the FP I cavity and the beam splitter,
lor is the distance between the power recycling mirror and
the beam splitter, F; and E; are the complex amplitudes of
travelling optical waves in different parts of interferometer.

The results of calculations presented below are based
on the following simplifying-assumptions:

¢ Only one mirror (in the FP I cavity in fig. 1) is
movable, it is a part of mechanical oscillator that
is considered as lumped one with single mechani-
cal degree of freedom (eigenfrequency wm, quality
factor Qm = wm/2d,, and mass m which is of the
order of the total mirror mass). All other mirrors
are assumed to be fixed.

e Allmirrors have no optical losses. Both end mirrors
" of FP cavities have the ideal reflectivity. The input
mirrors of the FP cavities are identical and have the
finite transmittances Ty =Ty =T = 21rL/ (AoQopt)
(Ao is the optical wavelength, Q.p: is the quality
factor, L is the dlstance between the mirrors). The
dlsta.nces L) = Ly = L are equal.

¢ Only the main (pumped) mode with frequency wy
and relaxation rate 8y = wq/2@Q, and Stokes mode
withw; and d; = wy /2@ correspondingly are taken
into account (Qp and @; are the quality factors).
It is assumed that wg — w; =~ Wy, '

¢ Only the main mode is' pumped by laser and the
. value of stored energy &, is constant (approxima-
tion of constant field).

o In this particular model we do not take into account
the possible influence of the anti-Stokes mode.

It is possible to calculate at what level of energy &,
the Stokes mode and mechanical oscillator become un-
stable. The origin of this instability can be described
qualitatively in the following way: small mechanical os-
cillations with resonance frequency w,, modulate the dis-
tance L that causes the excitation of optical fields with
frequencies wg & wy,. Therefore, the Stokes mode ampli-
tude will rise linearly in time 1f time interval is shorter
than relaxation time. The presence of two optical fields
with frequencies wg and wy will produce the component of
ponderomotive force (which is proportional to the square
of fields sum) at difference frequency wg — wy;. Thus this
force will increase the initially small amplitude of me-
chanical oscillations.

For analysis of parametric instability we have to use
two equations for the Stokes mode and mechanical oscil-
lator, and find the conditions when this "feedback” pre-
vails the da.mplng which exists due to the finite values

- of relaxation in mechanical resonator and in the FP cav-

ity. Note that in resonance wg ~ wy + wy, the effect of
parametric instability for power recycled LIGO interfer-

-ometer is larger than for the separate FP cavity because

the Stokes wave (at frequency w;) emitted from the FP
cavity throughout its input mirror is not lost irreversible
but returns back due to power recycling mirror, therefore
its interaction is prolonged.

We can write down the field components Ei*, Ei" of
the main and Stokes modes inside the FP I cav1ty corre-
spondingly and the displacement ¢ of mechanical oscilla-

tor in rotating wave approximation as:

B = Ao[Doe™" 4 Dge™"],
E* = Ay[Dye™ + Die), (3)
= Xe—'iwmt +X*eiwmt’

where Dy and D; are the slowly changing complex am-
plitudes of the main and Stokes modes correspondingly,
and X is the slowly changing complex amplitude of -me-
chanical displacement. Normalizing constants Ag, A, are
chosen so that energies &, 1 stored in each mode (of the
FP I cavity) are equal to 80 1 = w§ 1|Dg,1]?/2. Then one
can obtain the equations for slowly changing amplitudes
(see details in Appendix A):

=I_’_1%0"”_0x \ (4)

X |:3t + 8pr + (—521] . X etBwrt

(0t + 61) (Gy + Opr) DY

Awy = wy — w1 — W,

cT - 7},,-51 |
= — = é
é.1 4L) 6}’7‘ . 4 << 1,
(8, + 6) X = DoDIw0w1 —is (5
My L

Remind that we assume Dy to be constant. The addi-
tional relaxation rate 6, describes the relaxation of os-
cillations in the FP cavity with power recycling mirror.

One can find the solutions of (4, 5) in the following
form
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Di(t) = DjeMt
X(t) = X e,

)\1 = )\—}-zAwl

and write down the characteristic equation:

. 72,0616,,, [ 51 ] \
A+dy) = = s Se— 6
( ) A1+ 61 2(A1 + 0pr) (6)

(7)

The parametric oscillatory instability will appear if one

of the characteristic equation roots real part is positive.
Analysis of this equation with assumption

5m <L Jpr K 51:

glves the condition of parametric instability (see details
in Appendix B):

24 A4 B
NN R

In ultimate resonance case when Aw; << dpr We obtain
the condition of resonance parametric instability:

Ro x ( 22;,,) > 1. (9)

It means that the parametric instability takes place at
energy £ which is smaller tha.n one for the separate FP
cavity by the factor of ~ 3 J

It is 1mportant that factors ’R,g and

merical values, using the parameters for probe mass fab-
ricated from high quality [8] fused silica that are planned

have large nu-

to use in LIGO-II we obtain (see [6] and Appendix D}: .

Ro~ 6100, —i ~31. (10)

Wy

It means that if Aw; < d,r the maximal energy stored in
the FP cavity can not exceed the value of about 6100 x
31 ~ 1.9 x 10° times smaller than one planned for LIGO-
I (. ‘

Note that the estimate of R differs from the estimate

presented in [4] because here we use parameters more
close to ones planned for LIGO-IL. In particular: (a) mass
is four times greater than in [4]; (b) mechanical frequency
is assumed to be two times smaller; (c) loss angle (and
mechanical relaxation rate) is ~ 4 times smaller in accor-
dance with results of Ageev and Penn [8]; (d) relaxatlon
rate d; is'~ 6 times smaller.
" The probability of the ultimate resonance (Aw; < Jpr)
is extremely low because the value of dp ~ 1.5 5= =1 is
rather small. In more realistic case when Aw? 3> 616,
we obtain the ” partial resonance” condition of parametric
instability from (8):

(11)

It means that in the case when 01 3> Awy > /616, the
maximal energy stored in the FP cavity can not exceed
the value of about 3050 times smaller than one planned
for LIGO-II (!). Note that condition (11) differs from the
parametric instability condition in the separate FP cavity
[4] by the factor of 2 in denominator.

The considered model is the simplest one and more

. detailed 3-dimensional model of interferometer has to be

analyzed. In particular, there are reasons to hope that
the danger of parametric instability may be smaller in
real interferometer:

o Even in resonance the Stokes and elastic modes may
not spatially suit to each other (small overlapping
factor).

o The possible presence of the anti-Stokes mode may
partially or completely depress the parametric in-
stability.

In the next section we consider both these factors.

III. CONSIDERATION ON
THREE-DIMENSIONAL ANALYSIS

It is possible to generalize the above simplified model
for the arbitrary elastic mode in the mirror. It has been
shown [4] that in this case the constant R in condition

(8) should be multiplied by the overlapping factor Aj.

In general case when both Stokes and anti-Stokes
modes have to be taken into. account the characteristic
equation may be presented in the following form:

Al 51 ]
(A4 dm) 001 X)\1+51[ +2()‘1+5p‘7~)
Wia Ala
—Rgb10m o X PP X (12)
Jla ]
x 14 —21,
[ 2()‘10 + Jpr a)
o (f folFL) fi (FL)usdFy)*
L= TThl?dr. J 1A Pdrs [ @y’
Ar = 4 (ffO(FJ.)fla(F_L)uzdﬁ)z
T Tlhol2dey [ |fral2dFy [la2dv’
Al = A+ 1Awy, Aw) = wo— Wi — Wn,

AMe = A+ 1Aw,, Awig = Wig —Wo — W -
The equation (12) is the generalization of (6). Hereinafter
subscript ; corresponds to the Stokes mode and subscript
1 to the anti-Stokes mode. A1, A, are the overlapping
factors for the Stokes and anti-Stokes modes correspond-
ingly. fo, fi and f1, are the functions of the optical fields’
distribution in the main, Stokes and anti-Stokes optical
modes correspondingly over the mirror surface. Vector @
is the spatial vector of displacements in the elastic mode,
u, is the component of # normal to the mirror surface,
[ dF.. corresponds to the 1ntegrat1on over the mirror sur-
face, and de over the mirror volume V.
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Analyzing this characteristic equation one can see that
the presence of the anti-Stokes mode can considerably
depress or even exclude parametric instability. For ex-
ample, let the main, Stokes and anti-Stokes modes be
equidista.nt and be]ong to the main frequency sequence
wy = (K — 1)¢/L, wo = mKe/L, wyy, = m(K + 1)c/L
(K is an integer). In this case Aw; = Awi,, the main,
Stokes and anti-Stokes modes have the same gaussian dis-
tribution over the cross section and hence the same over-
lapping factors: A; = Ajs. It means that the second
term in the right part of (12) is larger than first term,
the positive damping introduced into elastic mode by the
anti-Stokes mode is greater than negative damping due
- to the Stokes mode, hence the parametric instability is
impossible. This case has been analyzed in details in [5).

However, it is worth noting that this situation is possi-
ble only for the small part of the total number of op-
tical modes (see fig. 2). Indeed, resonance conditions
Wo = W) +wp, can be fulfilled with a relatively high prob-
ability for many of the optical Stokes and mirror elas-
tic modes combinations. If we assume the main optical

mode to be gaussian with the waist radius of the caustic

wo (the optical field amplitude distribution in the mid-
dle between the mirrors is ~ e~""/ '“3)), then the Stokes

and anti-Stokes modes are described by generalized La- -

guerre functions (Gauss-Laguerre beams) and the set of
frequency distances between the main and Stokes (anti-
Stokes) modes is determined by three integer numbers:

c (K_ 2N +M) L ) N
m

Wy — W) = — arctan 52
0

~ (24K --0.66 N — 0.33 M) x 10%s~1,- (13)
wig —wo =~ (2.4 K, + 0.66 N, +0.33 M,) x 10%s™1,

where Ag is the wavelength, K=0+ 1, £2..
gitudinal index, N = 0,1, 2..

. is the lon-
sand M =0,1,2... are

the radial and angular indices, other numerical parame- .
ters are given in Appendix D. We see that full depression

of parametric instability takes place only if the Stokes
and anti-Stokes modes belong to the main sequence i.e.
M = N =0, when Aw; = Aw;, and the Stokes and anti-
Stokes modes have equal spatial gaussian distribution.
Such modes obviously present the small part of the total
optical modes number. Indeed for K =1, N=M =0
we have from (13) wg — wy =~ 2.4 x 10° sec~!. However,
our numerical calculations show (see below) that the low-
est elastic mode has the. frequency of about nine times
smaller: W, jowest 2 0.28 x 10° sec™! and only within the
range between 0.28 x 10° sec™! and 1.6 x 10% sec™?! there
are more than 50 (!} elastic modes and each of them
has to be carefully considered as possible candidate for
parametric instability. _

For the case when the Stokes and anti-Stokes modes do
not belong to the main sequence (non zero numbers N
and M) the frequencies of the suitable Stokes and anti-
Stokes modes are not equidistant from the main mode
(l.e. Aw; # Awis) and have different spatial distribu-
tions (i.e. Ay # Ay,). Illustration of this is given in fig. 2.
For the shown Stokes mode (left to the main mode) there

is no suitable anti-Stokes mode (it should be located right
to the main one). In this case one can use the approxi-
mate condition for the parametric instability (see details
of approximations in Appendix C):

F) Aw?
Rohi 2% 5+ mt
1 Aw? 2 1 wz . (14)
(+%) 20+
8, Aw?d
ROAIG wla + ‘Syra 63,‘,,
A AR AT AR
(1455 ) 2(1+ 55%)

Here the second term.in the right part describes the in-
fluence of the anti-Stokes mode.

l Main sequence (M = N =0} l

Ny Mein mode |

AL UUUAR TN

F1G. 2. Schematic. structure of optical (Laguer-Gauss)
modes in the FP cavity. The modes of the main frequencies
sequence are shown by higher peaks. It is shown that Stokes
mode with frequiency wi may not have suitable anti-Stokes
mode (it is denoted by question-mark).

The above consideration for lossless mirrors can be gen-
eralized for mirrors with losses. Analyzing the more im-
portant case when only the FP cavity mirrors have losses '
with loss coefficient R < T for each of them we can easily
show all previous formulas to be valid taking the following
substitutions into account:

2R
01 = dqr=06(1+n), 77=T<<11 (15)

Tpr
Opr = Oprp = ( 4p +77> o1 . (16)

We see that in the case 7 < Tpr/4 all formulas does not
change, in the case of 1 3> 1 > T}, /4 the condition of the
ultimate resonance changes but the condition of partial
resonance remains unchanged. For LIGO-II the losses are
negligible (it is planned that R ~ 5 ppm,n~ 2x 1073 «
Ty /4).

The account of losses is 1mportant when we consider
optical modes with high indices M, N because their
diffractional losses increases for higher indices M, N. We
have numerically calculated the equivalent loss coefficient
R, v describing the diffractional losses on each mirror
and have found that

2Ry, v _ T,

mag = =2 < L~ 0,015, if 2N + M <6,

nae < 1, if 2N+ M <9,
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We see that there is a wide range of indices M, N which
must be taken into account when analyzing parametric
instability. Note that even for the case ngy > 1 the para-
metric instability may also be possible due to the large
numeric value of factor Ry.

Using the Femlab program package we have numer-
ically calculated the first 50 elastic modes frequencies
“and spatial distributions in the cylindric mirror fabri-
cated from fused silica (parameters are listed in Appendix
D): These frequencies lied within the range between
28000 sec™! and 164000 sec™!. We have estimated the
errors Awy, of these frequencies comparing the data ob-
tained with different total number of nodes (N, ~ 1135
and N, = 3777): Aw., ~ 500 --- 4000 sec™! (the error
increases for elastic modes at higher frequencies). Such

error is unacceptably large because in order to determine:

the ultimate resonance in power recycled interferometer
the error have to be Aw, < dpr =~ 1.5 sec™! or in the
case of ”partial resonance” Aw,, < §; ~ 94 sec™!.

It is worth noting that the frequency density of elastic
modes rapidly increases at higher frequencies. In partic-
ular, the mean distance Awy,q between the elastic modes
frequencies can be estimated as follows:

and it is equal to Awpmg ~ 100 sec™! ~ §; even at w, =

3.8x 10° sec™!. It means that practically for each elastic
mode with frequency higher than 3.8 x 10° sec™! there
exists the Stokes mode with small detuning: Aw; < §;
("partial resonance”). However, the same speculations
can also be referred to the antl—Stokes modes and hence
the accurate calculation of overlappmg factors Ay, Aig
is required for each of the elastic modes.

Even in the case of parametric resonance the overlap-
ping factor A; may be zero (for example, elastic mode
and the Stokes mode can have different dependence on
azimuth angle). However, it is important to take into
account that only the elastic mode attached to the mir-
ror axis in contrast to the optical mode which can be
shifted from the mirror axis due to non-perfect optical
alignment. Hence, the overlapping factor must depend on
distance Z between the center of mirror and the center of
‘the main optical mode distribution over the mirror sur-
face. It means that A; may be zero for Z = 0 but nonzero
for Z # 0. Therefore, the numerical analysis of the mode
structure should evidently include the case when Z # 0.
Note that there is a proposal to use special shift Z of the
laser beam of about several centimeters from the mirror
axis in order to decrease thermal suspension noise [9].

Due to the necessity to decrease the level of thermoe-
lastic and thermorefractive noises [10,12,11,7] the size of
the light spot on the mirror surface is likely to be substan-
tially larger and the light density distribution in the spot
is not likely to be gaussian (the "mexican hat” modes
[7]) to evade substantial diffractional losses. The optical
modes which are complementary to such a ” mexican hat”
main mode have the frequencies more close to the main
mode than given by equation (13), and the probability
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to be entrapped into the parametric instability is higher.
Thus the estimates presented above for gaussian optical
modes may be regarded only as the first approximation
in which the use of analytical calculations is still possible.

IV. CONCLUSION

Summing up the above calculations and considerations
we have to conclude that the effect of parametric oscil-
latory instability is a potential danger for the gravita-
tional wave antennae with powerful laser pumping. From
our point of view, to estimate correctly this danger it
is necessary to 1mplement the following subprograms of
researches:

1. To calculate numerically the values of eigenfrequen-
cies Wy, for lower elastlc modes with relative errors
of at least 10™% ---10=3. It is.not an easy task
because the error in standard schemes of finite ele-
ments calculations rises as square of w,,. It is nec-
essary to keep in mind that these calculations will
play a role of introductory ones because it is likely
that in LIGO-II non-gaussian mode distribution of
light will be used (so called ”mexican hat” mode)
and, correspondingly, it will be necessary to cal-

- culate numerically all spectrum of ”mexican hat”
modes.

2. At the same time the numerical analysis can not
solve the problem completely because the fused sil-
ica pins and suspension fibers will be attached to .
the mirror. This attachment will change the elastic
modes frequency values (and may be also the qual-
ity factor and distribution). For example, assuming
the pin mass of about Am ~ 80 g one can estimate
that frequency shift may be about

Hm X é—T—n- ~ 4100 sec™!

Awmpin < il x 105 sec=1 = 2m !

Le. about the value of d; (!). In addition, the
unknown Young modulus and fused silica density
inhomogeneity (we estimate it may be of about
1073 ... 107%) will additionally limit the numeri-
cal analysis accuracy. Thus we have to conclude
that the direct measurements of eigenfrequency val-
ues, distribution and quality factors for several hun-
dreds of elastic modes for each mirror of FP cavity
are tnevitably necessary.

3. When more "dangerous” candidates of elastic and
Stokes modes will be known their undesirable influ-
ence can be possibly decreased. Perhaps, it can be
done by accurate small change of mirror shape or
by introducing low noise damping [13].

4. The last stage of this program should be presented
by the direct tests of the optical field behavior with
smooth increase of the input optical power: it will
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be possible to register the appearance of the pho-
tons at the Stokes modes and the rise of the Q,, in
the corresponding elastic mode while the power W
in the main optical mode is below the critical value.

We think that the parametric oscillatory instability effect
can be overcome in the laser gravitational antennae a,fter
these detailed investigations.
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APPENDIX A: POWER RECYCLED
INTERFEROMETER

In this Appendix we deduce the equations (4, 5).

1. Internal FP Cavities

For the fourier components of complex slowly changing
amplitudes in general case we have obvious expressions
(see notations in fig. 1):

2id1 Fy (Q) cT1 9
Q J1.=—=, (Al
@) = VT (61 —iAw—iQ)" 1T 4Ly, (A1)
By(Q) = —Fy (@) SLE 00 0 (A2)

81 — iAw —iQ°
One can obtain the similar formulas for the second FP

-cavity:

28, Fy(Q) (9

B = ot oL
By(Q) = —Fz(Q) 02 + iQ (A%)

(52—ZQ.

2. The Mean and Small Amplitudes

Let us introduce the mean amplitude and small ampli-
tude (denoted by small letters). For example, for ampli-
tude in the FP I cavity it means: F{™ = Fi"* + fir.

Let us also assume that d9 = J;, and now we keep in -

mind that
wiz
Aw = ”L’11‘ . (A5)
Then the mean amplitudes are written as follows:
Fit = —25-1”-1, & = —Fy, (A6)
3= %;_;fz, Ea=~F,. (A7)
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Rewriting the equations (7A2 and A4) we find the small
amplitudes:

(81 —+ 61) X (51 —iAw — 'LQ) =

—(F1+ 1) (6 +iAw +4Q), (A8)
er=~fiTo—~F1T1, e2=—folo, (A9)
8 +1iQ 2iAw
Lo = AL Fl‘ﬁ—_' (A10)

3. Béam Splitter -
Assuming that T3, = 1/2 one can write the following:

Fie% = (st + Fy), = T(Fs +iFy),

By =

ﬁl

Ey= -—1——(E2 +iB e .

\/5 V2

Here ¢y = kl; is the wave E; phase shift due to length
path 1 between the FP cavity and the beam splitter. We
assume that ¢; = n/2 and analogous phase shift ¢, (for
the wave Ej) is equal to zero. Then one can obtain for
the mean amplitudes the following:

(’iE2 + E’le’7¢1) ,

—7F3 Fs
Fi=2 =2 (ALY
1= =5 (A11)
Fs ~Fs
Fo=m—F%=, &E=— Al2
2 \/5 2 \/5 ( )
Ea=0, & =—F3, (A13)
Smal] amplitudes are equal to:
—fa +ifs fs+ifs
= = , Al4
fl \/i ) fZ ‘\/§ ( )
1. FsT FsT
64=f4Fo+z31, e5 = —falp — 2.
2 : 2
4. Power Recycling Mirror
. 'We have the following expressions:
Fae™ % = i\/Tp, Fs + /T — Tpr Bge'%e, (A15)
Es = i\/Tpr Bae**er + /1~ T, Fs, (A16)
wo + Awyr + Q)
’¢pr=(° or + Dlpr (A17)

c

Using (A13) and assuming that the PR cavity is in reso-
nance: exp(iwglpr/c) =1 (i.e. wolpr/c =7/2+2mn, nis
an integer) one can obtain:

(A18)

(A19)
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2 { A Q
Aa:l_po+poz}l 1_1(_“’{"_-"_)
2 5
= T,
bpp = =,
"=,

) ., (A20)

The value of 5p,- > |Awpr + | and hence one can rewrite
(A20) as follows:

A3:1—F0+T0§1=26p"—m (A21)

: D) b —
i = 0oL (A22)

4
And finally, for f3 one can obtain the following:
51 -1 }-3]:‘1
e () (‘f? Tor + =5~ ) - (A29)
Using (Al6)we will have:

£ = —Ts, ’ (A24)
F3T ' '
es = +/Ipr <f3Fo + 5 ) + fs. (A25)

5. The Small Variational Amplitude in the FP I
Cavity

In order ‘to calculate the small amplitude f; one can
rewrite equation (A1) using (Al14) and (A19) assuming
that small amplitudes f4 and fs describing vacuum fluc-
tuations of the input waves are zero: ‘

(Fin 4 £in) x (6 — iAw — iQ) = (A26)
_ i/28, (—Fs = fa+ ifa) '
vTi ’
m_ 2F _ iV2Fs _ 2iV2Fs

Fir = = A27

VR, v =l

(8 —iQ) = tAw F" ~ (A28)

Z\/i(s]_ 51 - rl
2 (s 3 G

It can be rewritten using (A27) as

7in (61 - iQ) (5;, —iQ) = iF"Aw [5 —iQ+ 51] (A30)

6. Time Domain

Now it seems that one can make in (A30) the following
substitution:
, , w ,
Fit = Doe 0=, Aw — == X"efnt
1

However, such substitution will be incorrect, because the
equation for the fourier transform of complex amplitude
has not contain time-dependent terms. The correct form
of this equation is the following;: ‘

Q) (61 — i) (G — 1) =
= iDir X" (Q - Awl)%l— [5 —iQ+ ‘51}
1

(A31)

Now one can obtain time domain equivalent of (A31)
applying inverse fourier transform: '

(8 + 61) (8: + &) Fi™ (1) =

: . 8
= {Dif oMt _“i; X [& + bpr — 1Aw1 + ] X*(t)

& :
_sz — X [6t+6p,.+ ]X*() gTiowrt

(A3

The last;equa.tion is the complex conjugate to (4) where:

ln - Ds.

7. Equation for Elastic Oscillations

For elastic displacement we have the following'equa—
tion:

B + Wndyo + e = 2T, (A33)
2 (Bt B
= . 4r -
= 5 (mr(pipeiomrs (ag)

HFRY fineileomer)

where S is the cross section of light beam, ¢ is the light
speed. Introducing the slow amplitudes for displacement
&T:

:U(t) — X(t) —zw,,.t -+ X*( ) zwmt,
one can obtain the following:

iS

2memwn,

atX + amX —_ ];-Sn(ﬂ'n)*e—iAwlt’

Aw] = wp — Wy ~ W -

(A35)
(A36)

This equation coincides with (5) after the substitutions,
listed below:

fir = D1, Fo— Do.

APPENDIX B: SOLUTION OF THE
CHARACTERISTIC EQUATION (8)

In this Appendix we obtain the instability condition-
(8) from the characteristic equation (6).
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Let us write down the the solution of equation (6) as
sum of real and imaginary part:

A=a+ib.

The condition of instability is a > 0. Thus substituting
A = 4b into (6) one can find two equations (introducing
notations A and B):

8 y
(b+ Awy)? + 67

-~

b = Rob1m X (B1)

- A
l:l N 5151,,- - (b-l- Awl)z}
2[(b+ Aw1)? + 6211
B

b_— 'Rodlém X (b-l- Aw1)2+5%

61 (61 -+ Jpr) ] .
x [1 TGt Awr2 1 5]

~

(B2)

c
_6m (b-l- Awl)C’
81 B '

(B3)

Using the last equation one can formally express & as:

_ 5 C 6mC
b‘"AM'&B/(L*&B>’

C _ 26;1' + 81 (81 + 8pr) +2(b+ Awy)? - -
R syt

It is obvious from the last expression that

C 81
2<§<3;

for any value of (b+ Awy). Hence one can conclude from
(B4) that [b] < Aw (remind that é,, < §;) and equation
(B1) can be simplified as follows:

81
(Aw? +4%)
o Jor (01 + 205,) + Aw?

2[Aw? + 62,1

bm = Rob16m X x (B5)

Now rewriting this equation one can easily obtain the
condition of parametric instability (8).

APPENDIX C: SOLUTION OF THE
CHARACTERISTIC EQUATION (14)

In this Appendix using some approximation we de- -

duce the instability condition (14) from the characteristic
equation (12).

We write down the the solution of this equation as a
sum of real and imaginary parts anew:

A=a+1ib

and assume a = 0. So substituting A = ib into (12)
and extracting real and image parts we can write two
equations: '
014
—_— X
(b+ Awq)? + 62
Ay

14 5151,,- - (b + Awl)z] _
30 + Bur + 53]

By

Wi
- Rodlam =2 x
w1

~

(C1)

é.laAla %
(b+ Aw1g)? + 62,
At '
51a6pra - (b + Awla>2] _
b+ Awia)? +62.,] ]
Bia

= A1B; — A14B1a,

—— N —

6m1 67» la

x[1+

(C2)

Al(b + Awl) %
(b + Aw1)2 + 512
61 (51 +5p1') ]
1- +
g [ T
‘ G
Wig Ala(b + Ac’-’14:.)
TR0 T X Bk Auna)? + 67,
: 51(,(61“ + Jpr a) ]
1 =
" [ A0+ Awra)? 3, ]

b= —Rgéldm X

-

Cra

b+ A
+5 “ + Alacla
1

b <+ Awla

" (C4)

= —A1C1

Using notations (C2) this equation can be rewritten as:

‘Sm 101 Jm lacla

b= — Om1aCia
6181 616 Bia

X (b+Aw1)+ X (b+Aw1a):

~ and one can formally express b as:

_ 81 C1 m1aC1a
( Awy TPEt + Awia PhBT

b= 6m1C1L _ Sm1aCia (C5)
(1 + 8B T diibia )
Using definitions (C1, C3) it is easy to prove that
Cy & 20m1 6 C1 _ Omi
2<—B;1'<5P7 or T 5131 <5p7~’
Cla 510. 2é"rnla. ) 5m1acl'a 5m1a
2 <
< Bla < Jpra o 5:11 < 51aBla 5pra
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Now assuming that

5771 6771 a
Lk, Y&, (C6)
6pr 6pra

we can conclude that
|b| <4 Awl, Awla. (C?)

Then the parametric instability condition (14) can be eas-
ily obtained from (C1).

It is worth noting that inequalities (C6) are the key
assumption for deduction of the PI condition (14). These
inequalities obviously correspond to the case when values
dm1 = A1 By and §pm14 = A14B1, are not very close to
each other. In order to understand how close they can be
let us assume that

Jmlazéml(l_f), ek 1,

and try to estimate theminimal value of ¢. From (C6) one
- can obtain 6m1 ~ dm14 =~ 6m/e. Hence the inequalities
(C6) are equivalent to:

m
P <1. 7 | (C8)

Using parameters of LIGO II (see Appendix D) we have
estimates én, =~ 1 X 1072 sec™?, 6, = 1 sec™!. Hence one
can conclude tha.t for values of e> 10" =2 the- 1nequa11t1es

(C6) fulfill.

APPENDIX D: NUMERICAL PARAMETERS

For interferometer we use parameters planned for
LIGO-II. More details see in [6].

wg = 2x10% sec™!, wg = 5.5 cm,

T = 5x1078, L = 4x10%cm,.

T, = 6x 1072, lr = 10 m, (D1)
81 =~ 94 sec™!, Spr =~ 1.5sec™!]

W = 830 kW, & ~ 22x10% erg

Here W is the power circulating inside FP cavity (& =
2LW) We assume that cylindric mirror (with radius R,

height H and mass mn) is fabricated from fused silica with

angle of structural losses ¢ = 1.2 x 10~% [8]:

R = 194 cm, H = 154 cm, |
m = 40 kg, p = 22g/cm®

0 kg, 2
E =72x101Z& & =017, (B2)
¢ = 12x1078  Gp = wnd/2.

Here E is Young’s modulus, o is Poison ratio. It is useful
to calculate factor Ro for these parameters and elastic
mode frequency w,, = 1 x 105 sec™!:

go Wilm Eotc)l‘

Ro= 2mL%w2 616, ~ mLiw2 ¢4,

~ 6100
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