
Some notes on pitch frequency, in particular for two wires from one blade, 
including torsional effect of blade, and crossing of blades. 
 
Norna A Robertson, 5 Sept 2002 
 
T020209-00-R 
 
General Introduction. 
 
The MATLAB code based on the equations derived in Calum Torrie’s thesis does not 
include several factors which may have an effect on the frequencies of various modes. 
Considering the longitudinal/pitch model, two factors not included are 

a) the torsional motion of the blades, when two wires attached to one blade is used 
(as in Adv. LIGO design) 

b) the effect of having the blades crossed at an angle in the x/y plane (as in Adv. 
LIGO design). 

 
These effects will be considered in turn for a one stage pendulum. 
 
Section 1. General equations, and introduction of torsional effect of blades. 
 
1.1   Introduction. 
 
Assume the wires are vertical, and assume the blades are not crossed. The appropriate 
equations from Calum’s thesis are 4.17 and 4.19. 
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where 4.17 has been modified to account for 4 “springs” (wires, blades or combinations), 
each of spring constant ktot. Other terms are as defined in the thesis.  

 
1.2   Simplification for d ~ 0. 
 
Firstly it can be seen that these equations are coupled through the “d” value, which is the 
vertical separation between the breakoff points for the springs at the mass and a 
horizontal line through the centre of mass.  To consider the simplest situation to start 
with, assume d is small enough that we can ignore the terms in d, so that the pitch and 
longitudinal modes are essentially uncoupled. The equation of motion in pitch in this case 
is 

φφ 24 skI toty −=&&     equation 3 
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The 4 “springs” each with spring constant ktot are separated in the y direction by 2s. Iy is 
the moment of inertia of the mass with respect to the y-axis (which is directed parallel to 
the face of the mass). One can see how this equation is derived by considering figure 1 
below. Consider that there are 4 springs supporting a mass – two can be seen in the side 
view as shown, with two more lying behind them. The y-axis is into the page. 

 

 
 

Side view of springs 
attached to mass – 
with mass’s central 
line indicated.s 

φ 

Figure 1. 
 
 
Two springs are extended by ~ sφ for small motions and two are compressed by the 
same amount. Each spring thus exerts a torque on the mass in the same direction 
(such as to restore the mass to its equilibrium position). The magnitude of each torque 
is given by force x distance = ksφ  x  s = . Hence with 4 such springs equation 3 
is obtained. 

φ2ks

 
1.3   Derivation of ktot for one wire off one blade. 
 
 If one wire is attached to one blade, and there are 4 such blade/wire combinations then 
ktot is given by 1/ktot = 1/kblade + 1/kwire, where kblade is the spring constant of one blade, 
and kwire is spring constant of one wire. Note that in practice for typical values, ktot is 
approximately equal to kblade, since kblade is so much smaller than kwire.  

 
The relationship for “summing” k’s can be derived by considering figure 2. Consider 
force F applied to this system. Spring 1 extends by x1 and spring 2 by x2 so that total 
extension x = x1+x2. For spring 1, x1 = F/k1, and for spring x2 = F/k2. Thus adding these, 
x1+x2= x = F(1/k1+1/k2) = 1/ktot. Hence result. 
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Figure 2. 
 
 

1.4   Derivation of ktot for two wires from one blade, including torsional effect of blade. 
  
 If there are two wires attached to one blade, and two blades in total then firstly ignoring 
the torsional affect of the blade, (i.e. assuming it is rigid), ktot is simply equal to kwire. This 
is what is currently in the MATLAB model for the case of two wires off one blade. 

 
However the blade itself will twist as the mass moves in pitch, and a torsional restoring 
torque will be produced. Considering two blades acting on the mass through rigid wires, 
the pitch equation of motion is 

φφ bladey KI 2−=&&    equation 4 
where Kblade is the torsional constant for one blade (N.B. Kblade and kblade are different 
quantities!) 

 
By analogy to the case of restoring force when two springs are in series (as in figure 2), 
we can “sum” the torsional effects of the blade and the wires, with a resulting equation 

φφ toty KI 2−=&&    equation 5 
 

Here Ktot is the total torsional constant and it is given by 
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Note that if Kblade tends to infinity, Ktot is simply equal to 2 kwires2, and equation 5 
simplifies to equation 3. 
 

1.5   Estimation of torsional constant for blades. 
 
In the summer of 2000 a student visiting Glasgow from Germany, Maike Keuntje, made a 
series of experimental investigations of pitch frequency to look at the torsional effect of 
the blade. She directly measured the torsional constant for a blade, and compared the 
experimental pitch frequencies with theoretical ones, assuming a simple model as given 
above for incorporating the blade. These results when fully analysed supported the model 
presented above to an accuracy of ~7% or better. 
 
To be able to extend this modeling to any arbitrary blade it is necessary to be able to 
estimate from the blade parameters what its torsional constant will be.  
 
From a web site http://www.aoe.vt.edu/~johnson/AOE3024/Chapter7.pdf  I found the 
following equation (7.15) for a rectangular bar 
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where b = width of bar, t = thickness, G = shear modulus , T = torque, and bar lies along z 
direction. 
G = = E/(2(1+ν)), where E = Young’s modulus and ν = Poisson’s ratio 
 
Thus for a simple rectangular bar length L, rearranging eqn 7 as T = Kθ 
we can identify the torsional constant K as 
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For a more complicated shape, where b is a function of z, rearranging equation 7 we have 
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and torsional constant K is given by 
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Equation 11 can be used to compute a value for K for any arbitrary blade shape. 
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Consider a blade shaped as below. 
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Section 2.  Effect of crossing blades in x/y plane.  
 
The above analysis assumes the blades are arranged (looking from above) as in figure 
3. The wires are separated in the x direction by 2s as before. 
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Figure 3. 
 
However to reduce overall footprint of the suspension for Advanced LIGO, the blades are 
typically crossed, as indicated in Figure 4. 
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Figure 4. 
 
Let α be the angle through which the blade is rotated from the y-axis. Note that the wires 
will be attached to the blade using a clamp which ensures that the two wires from each 
blade will still be lying one directly behind the other in the x direction with the same 
separation in the x direction as in Fig 3. 
 
Now consider what happens when a blade twists. The resultant torque is applied to the 
mass below via the two wires attached to the end of the blade. As the tip rotates, one wire 
is lifted as the other wire is lowered. When the situation is as in Fig 3, the full effect of 
that rotation is imposed on the mass below via the wires. For example if the blade tip 
twists by a small angle φ in the z-x plane the relative height of the wires changes by 2sφ. 
However when the blades are arranged as in Fig 4, the effect is reduced by cosα. This can 
be understood by considering the tip of the blade as in Fig 5. The solid dots represent 
where the wires are attached (via a clamp).  If the blade tip twists by a small angle φ in 
the plane defined by z and xsinα the relative height of the two ends of the wire will 
change by 2scosα x φ. Since this has produced a smaller resultant change for the same 
angle of twist, (or equivalently the same applied torque), it corresponds to an increase in 
the effective torsional constant of the blade, by a factor 1/cosα.  
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Figure 5 
 
 
 
Section 3.   Some quantitative analyses. 
 
For maraging steel the relevant physical constants are 
 
E = 1.86e11 Pa, G = 7.1e10 Pa, ν = 0.30. 
 
For the blade used in recent Caltech experiments (old GEO blade) the relevant 
parameters are B = 82 mm, b= 16 mm, L1 = 72 mm, L2 = 370 mm. 
Using these values in eqn 12, the integral =11.9, and using eqn 11 with t= 2 mm, the 
value of Kblade = 15.9 Nm. 
 
3.1   Comparison of typical blade torsional constant and the effect due to the wires. 
 
For recent experiment carried out by John Veitch, the values used were kwire = 
9.95e4 N/m and s = 0.00215 m. Thus 2 x kwire x s2 = 0.92 Nm. This is the value of Ktot 
assuming the blade is stiff. 
 
Applying equation 6 gives resultant Ktot = 0.87 Nm. The change in K is around 5.4%. 
Since the pitch frequency is proportional to the square root of K, the resultant change 
(reduction) in frequency by taking into account the effect of the blade will be around 
2.7%. It could be measurable if frequency measurements at this accuracy can be 
achieved.  
 
I have also considered the blades used in MIT prototype, and the change in Ktot taking 
into account the torsioning of the blades is again at the few percent level. 
 
The above argument assumes the blades are not crossed. Crossing the blades effectively 
stiffens Kblade. If α=20 degrees, the new Kblade for the above example is 15.9/cos(20o) = 
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16.9 Nm. The resultant Ktot is still 0.87 to 2 sig figs. Hence the crossing of the blades 
produces a negligible change in frequency. 
 
NB The torsional effect on the pitch frequency will only be seen if the “K” term 
dominates in the pitch equation of motion i.e. if we can ignore the terms involving d. 
Recall eqn 1,  
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Now replace the final term using Ktot (c.f. equations 5 and 6), giving 
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When John carried out his measurements recently, the value of d was large (approx 2 
cm). It can be shown that with this value the restoring torque due to the first term 
involving d in the brackets dominates over the other terms. Thus any change in the 
effective value of Ktot due to including the torsional effect of the blades will not be 
measurable with such a value of d. 
 
Section 4. Conclusions 
 
The torsional motion of the blades when two wires are suspended from one blade has the 
effect of reducing the overall torsional restoring constant and hence reducing the pitch 
frequency.  However for typical values the frequency is changed by a few percent or less. 
This is a small effect, and, for example, is not likely to have any impact on damping of 
modes. Also since it produces a decrease in frequency it improves isolation rather than 
the contrary. 
 
When the crossing of the blades at an angle is considered, the effect is to stiffen the 
blades in the pitch direction, raising the effective blade torsional constant by a few 
percent. Since the effect of the blade is already small, this small change produces a 
negligible overall effect on the pitch frequency. 
 
It should be noted that the above arguments are to first order, and in particular the 
torsional effect is treated in a simplified manner. However given the magnitudes of the 
effects involved, this would appear to give sufficient accuracy for drawing these 
conclusions. 
 
 

-------------------------------------------------------------------- 
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