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1 Definitions

The primary reference for Section 1 and 2 is [1].
This note is concerned with the correlation coefficient estimator defined as,

r =
∑

(xk − µ̂x)(yk − µ̂y)√∑
(xk − µ̂x)2

√∑
(yk − µ̂y)2

, (1)

µ̂x =
1
N

∑
xk , µ̂y =

1
N

∑
yk , (2)

where {xk} and {yk}, k = 0, . . . , N − 1 are two time series segments and all the
summations range over [0, N − 1].

2 Sampling distribution of r

Consider the case where the samples within each time series are independent
and identically distributed. Let xi and yj have a bivariate normal1 distribution,

N

[(
µx
µy

)
,

(
σ2
x δijρσxσy

δijρσxσy σ2
y

)]
,

where δij is the Kronecker delta, δij = 1 for i = j and δij = 0 for i 6= j. The
above means that each sample also has a normal distribution and that samples
xi and yi have a correlation coefficient ρ and xi is not correlated with yj if i 6= j.
The quantity r defined in Eq. 1 is an estimator of ρ.

The probability density function (pdf) p(r) of r under the above conditions
is given in [1]. The information that is relevant to us is,

1. p(r) should be independent of µx, µy, σx and σy. This follows from the
invariance of r w.r.t an overall change in location and scale. Thus, this
statistic makes us robust against non-stationarity in the mean and variance
of each time series provided the non-stationarity is not significant within
the on-source or off-source segments themselves. On the other hand, the
distribution of the cross-correlation statistic alone which is the numerator
of Eq. 1 does depend on σx and σy.

2. In the case of off-source data when there is no GW signal and assuming
that the noise in the two time series is uncorrelated (ρ = 0), we can obtain
a closed form expression for p(r),

p(r) =
Γ
[

1
2 (N − 1)

]

Γ
[

1
2 (N − 2)

]√
π

(1− r2)
1
2 (N−4) . (3)

There is no closed form expression for p(r) when ρ 6= 0 but analytical
expressions exist in the form of infinite series and can be obtained from [1].

1Same as a Gaussian distribution. The notation N(µ,Σ) denotes a multivariate Gaussian
distribution with mean µ and covariance matrix Σ.
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3. Although p(r) is not a normal density, it can be approximated by one. See
section 2.1 and 4.

4. For on-source data containing a GW signal h(t), the mean value of xk
becomes hk+µx which is is not a constant across sample index. (Similarly
for yk.) The density of p(r) is not tabulated in [1] for this case. This is
the subject of a separate note [2].

2.1 Limiting distribution of r

As one would suspect, the limiting form (as N becomes large) of p(r) is a normal
density. The limiting Normal density (for arbitrary ρ) is,

p(r)→ N(ρ, (1− ρ2)2/N) , (4)

which corresponds to mean ρ and variance (1 − ρ2)2/N . For ρ = 0, we get
N(0, 1/N) as the limiting density.

It can be shown that the quantity

z = ln
[

1 + r

1− r
]
, (5)

knows as Fisher’s z statistic, converges to a limiting normal distribution whose
variance is independent of ρ unlike the limiting distribution of r (c.f., Eq. 4).
This convergence is also faster than that of the distribution of r alone. We have
not explored the use of Fisher’s z further so far.

3 Validity of Normal density fit

We would like to quantify the range of N for which the exact form of p(r) as
given in Eq. 3 is approximated poorly by a normal density fit (which could
be measured from a histogram of r values for instance). As stated earlier, the
normal approximation becomes better as N becomes large. The question is how
large is “large”.

For a given signal, It turns out [3] that the optimum value of the integration
length depends quadratically on the rms amplitude, hrms, of the signal and
linearly on the signal duration. For signal rms ampltiude hrms ∼ 1, the optimum
integration length is close to the signal duration. Thus, for signals with short
duration and hrms ∼ 1, a sensible detection strategy would use short integration
lengths. This is not a very interesting situation, however, as far as a single trigger
analysis goes since such signals would be too weak to allow a high confidence
detection. But in a multiple trigger analysis where individually weak signals
are combined to improve the signal to noise ratio, we can imagine using short
integration lengths.
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3.1 Validity of asymptotic Normal form

We will do some numerical experiments for the N = 10 case. For comparison,
we will also cite the N = 20 results. One way to quantify the deviation between
the exact and the approximate Normal density is to look at the difference in
significance [4] that one would compute using the two densities. This is also
motivated by the fact that a mutiple trigger analysis might in some cases com-
bine only that part of data from each on-source segment which has a “small”
significance.

Consider the density functions given by Eq. 3 and the asymptotic form in
Eq. 4. Fig. 1 shows the significance as a function of |r| for the two densities.
From Fig. 1, one sees that the significances calculated from the exact and ap-
proximate densities begin to diverge quite a bit for values of significance ∼ 10−3

and smaller. For N = 10, |r| ' 0.85 gives a significance of ' 10−3 when the
exact form of p(r) is used while the significance is ' 10−2 for the Normal density.

Moreover, if one fixed a threshold on |r| corresponding to a given significance,
the two densities would give substantially different values. Fortunately for us,
the Normal density gives more conservative thresholds. More importantly, note
that for sufficiently low values of significance, there is no solution for a threshold
on |r| within the valid range (0, 1] when the normal density is used.

3.2 Validity of empirically determined Normal fit

What about fitting a normal density to p(r) instead of using the asymptotic,
N(0, 1/N), normal density? Maybe the best fit normal density for a given N is
not the asymptotic normal density. Fig. 2 shows the χ2,

χ2 =
∫ 1

−1

d r (p(r)−N(0, σ2))2/N(0, σ2) , (6)

between p(r) and a normal density for different value of σ (in units of 1/
√
N).

The use of a χ2 measure is motivated by the fact that we would use it to find the
best fit normal density if we did not know p(r) but had access to a histogram
of r values for an arbitrarily large number of trials.

From Fig. 2 one sees that (1) the best normal density fit to p(r) is already
close to N(0, 1/N) (c.f., the minimum value of χ2) and (2) the best fit ap-
proximation becomes closer to N(0, 1/N) as N increases, as it should. Thus
our conclusions made earlier with N(0, 1/N) remain valid. Moreover, the ac-
tual minimum of χ2 occurs at σ > 1/

√
N . This means that the problem of

indeterminable thresholds actually becomes worse with a best fit.

4 Summary

From the above numerical results we conclude that a normal density fit to the
distribution of r leads to large errors for significance or threshold calculations
when N ∼ 10 and significance ≥ 10−3. However, the situation improves quite
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fast as N increases (c.f., the numerical results for N = 20). This discussion
gives us an idea of the typical values of N and significance for which we may
expect problems if we use normal density fits to the distribution of |r|.
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