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Abstract
The likelihood of close encounters is estimated for stars in globular

clusters or galaxies. Close approaches of compact cosmic objects pro-
duce bremsstrahlung gravitational-wave radiation of well-known wave-
forms. We calculated the frequency range of these signals and showed
that it would not be regularly detectable with LIGO for sources of
currently understood forms of matter.

1 Introduction
The study is inspired by the search for gravitational bremsstrahlung signals
(GBS) with presently operating terrestrial gravitational-wave detectors such
as LIGO. The GBS waveforms are known analytically for the case of small
de�ection angles and arbitrary velocities [1], for the arbitrary de�ections and
small velocities in the Newtonian limit [2], as well as in the post-Newtonian
limit [3]. These signals are short period waveforms (�bursts�) and are special
since they can be trusted to high accuracy as the physics behind them is well
understood.

In this paper we shall estimate the average time, 〈t〉, between consecutive
encounters of stars in systems such as galaxies and globular clusters. Various
encounters generate GBS with various characteristic frequencies f . The f
value is an independent degree of freedom, besides the parameters describing
the system (i.e N the number of stars, R the maximum radius of the system,
M the typical mass of one star). Without physical restrictions on the possible
sizes and velocities, there is a nonzero GBS rate for any f frequency within
the same star system. Thus, the encounter rate is �rst obtained for �xed
in�nitesimal frequency bands, which is then integrated over the sensitive
ranges of the gravitational wave detectors.

There are three di�erent di�culties associated with the detection of GBS.
First we will show that the frequency range for the majority of the GBS will
not fall into the sensitive range of current terrestrial detectors. The GBS
frequency increases with decreasing the impact parameter b. Decreasing b
could lead to a collision before the detectable frequency range is reached,
thereby producing a signal, di�erent from the GBS waveforms. The second
di�culty is that GBS are generated very rarely in one given star cluster.
The third problem could be the relative weakness of any GBS compared to
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the target sensitivity of detection with the present or near-future terrestrial
technologies.

We have used a classical nonrelativistic treatment for our analysis. In
�2, we derive a gas model with a unique velocity and homogeneous spacial
distributions. In �3, the model is improved to account for the velocity distri-
bution. In �4, the relative velocity distribution is taken into account. Finally,
the conclusions are drawn in the last section.

2 Model I
This is the zeroth order approximation: uniform density and uniform mag-
nitude of velocities. In this estimate, we derive the encounter probability as
a scattering on a still target lattice. We use the viral theorem to obtain the
typical velocities, and we derive the enhancement of the impact parameter
due to gravitational de�ection. The encounter rate is then calculated for
�xed in�nitesimal frequency bands.The GBS rate is obtained by integrating
over the sensitive ranges of the gravitational wave detectors.

Let us �rst calculate the characteristic velocities in the system. The
Newtonian gravitational potential of a spherical uniform cluster is U =
3
5
GNM/R, where N is the number of stars, R is the radius of the clus-

ter, and M is the mass of one star. The speed is estimated using the virial
theorem 2Ekin/M = U ,1

vRMS = v0 =

√
3

5

GNM

R
(1)

For this estimate, we shall also take this as the velocity dispersion, which
might lead to close encounters between stars. As we shall now demonstrate
these velocities are typically too low for the detection of the induced GBS in
realistic star systems.

The timescale of the GBS generated by this encounter is T = b∗/v∗ (e.g.
[1]), where v∗ is the velocity and b∗ the distance of separation at the closest
point2. Let us de�ne the relative enhancement of the velocity during the

1There is a similar result for a spherical star system of polytropic distribution with a
root mean square radius R. The only di�erence is in the 3

5 factor, which becomes 1
2 in that

case (e.g. [5]).
2For small de�ection angles, b∗ ≈ b.
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encounter as κ = v∗/v. This corresponds to a short burst with the maximum
frequency

f =
1

T
=

v∗

b∗
= κ

√
3GNM

5Rb∗2
(2)

For terrestrial gravitational wave interferometry the lower frequency limit is
currently around 100 Hz. An encounter without a collision occurs for neutron
stars with an impact parameter greater than b∗ = 24 km. The minimum v∗

velocity for having the GBS in the right band is v∗ = fb∗ = 8 · 10−3c.
However, the typical v velocities of these systems are generally much lower,
around v ≈ 10−4c for globular clusters of radius 10 ly and star population of
N = 106, and v ≈ 10−3c for galaxies with r = 104 ly and N = 1011. Only
very close encounters with κ > 100 or κ > 10 give the su�cient boost in
order to get a signal in the detectable range of such detectors. We shall now
demonstrate that this condition is very rarely met in regular systems.

In this approximation the trajectories of objects shall be taken nearly
straight between near encounters. The increase in the cross section due
to gravitational focusing can be accounted for by introducing an enlarged
e�ective impact parameter. Let b∗ be the distance to closest approach along
the hyperbolic trajectory. Using the conservation of mechanical energy and
angular momentum

1

2
Mv2 =

1

2
Mv∗2 − GM2

b∗
(3)

bv = b∗v∗ (4)

Solving for b and v in terms of b∗ and v∗ we get

b =
b∗√

1− 2γ
(5)

v = v∗
√

1− 2γ (6)

where γ = GM
b∗v∗2 is the ratio of potential energy and double kinetic energy at

the closest point3. For large speeds the e�ective impact parameter b reduces
to the original b∗, which is evident since in this case the trajectory is a straight
line.

In this section we will neglect the deviation from the homogenous distri-
bution of the positions of stars within the system. The �edge e�ects� arising

3For hyperbolic Newtonian trajectories, this has to be less than 1/2.
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from the inhomogeneity observed in the region will not be taken into account.
The main contribution is expected to come from the inner parts.

For this estimate let us take a star A moving through the cluster, and
assume that the other stars are �xed. Now we derive the number of events
when Star A approaches another star after travelling a distance r within
a minimum separation of [b∗, b∗ + db∗]. The variable r is held �xed at an
arbitrary value. Using the relationship (5) connecting b and b∗ leads to the
corresponding in�nitesimal range for b. The number of close approaches with
b and r in the given ranges are

dN
2πbdb

4πr2
(7)

where 2πbdb is the cross section of such a close approach, the total area is
4πr2 and dN is the number of target objects within r and r+dr. Substituting

dN =
N

4π
3

R3
4πr2dr (8)

gives the number of events per unit r and b for star A.

∂r∂bn1(b
∗, r) =

3N

2R3
b (9)

Note that the result is independent of r. Since A is any one of the N stars
in the cluster and encounters occur between two stars, the total number of
collisions is N/2 times the number obtained for A. Substituting dr = vdt
gives

∂t∂bn(b∗, t) =
3N2

4R3
v0b (10)

∂tn is the number of encounters per unit time, it's reciprocal gives the time
between consecutive encounters. The probability of an encounter to occur
between t0 and t0 + dt is independent of t0. Therefore the consecutive en-
counters follow an exponential distribution with a decay constant

λ(b)db = ∂t∂bn(b∗, t)db =
3N2

4R3
v0bdb (11)

Using the identity for the GBS characteristic frequency f for a given b∗

encounter, we can obtain an expression for λ(f)df . In reality the sensitiv-
ity of the detector sets the detectable f interval, leading to a macroscopic
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λ(fmin, fmax) parameter. The distribution of the times between consecutive
encounters is then

P (fmin, fmax, t) = λ(fmin, fmax)e
−λ(fmin,fmax)t (12)

We will �rst derive the in�nitesimal λ(b∗)db∗ rate, and then will change
to the GBS frequency variable f . Using equation (5) for b in (11) gives

λ(b)db =
3

4

N2

R3
v0

(
1

2
d

b∗2

1− 2GM
b∗v∗2

)
(13)

=
3

4

N2

R3
v0

∣∣∣∣∣
b∗db∗

1− 2GM
b∗v∗2

− b∗2

2

2GM

(b∗v∗2)2

d(b∗v∗2)(
1− 2GM

b∗v∗2
)2

∣∣∣∣∣ (14)

=
3

4

N2

R3
v0

∣∣∣∣
v∗2

v2
0

b∗db∗ − GM

v4
0

d(b∗v∗2)

∣∣∣∣ (15)

=
3

4

N2

R3
v0

[(
2GM

v2
0

+ b∗
)

db∗ − GM

v4
0

v2
0db∗

]
(16)

=
3

4

N2

R3

GM

v0

(
1 +

v2
0

GM
b∗

)
db∗ (17)

=

√
15

4

N1.5

R2.5

√
GM

(
1 +

3

5
N

b∗

R

)
db∗ (18)

where in (15) and in (16) we have used an equivalent form of (3), the equation
of energy conservation

b∗v∗2 = 2GM + b∗v2 = 2GM

(
1 +

3

10
N

b∗

R

)
(19)

and in (18) we have substituted the v0 velocity from (1).
Recall that v∗ = b∗f connects the variables v∗ and b∗, only one of them

can be chosen freely. Equation (19) yields a cubic equation for the f(b∗) or
f(v∗) dependence.

f =
v∗3

2GM
− 3

10

N

R
v∗ =

√
2GM

b∗3

(
1 +

3

10

N

R
b∗

)
(20)

For realistic systems and detectable b∗ values, the second term of the paren-
thesis is much less then 1. Note that the physics behind this approximation
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is that the total energy of the system is much less than the magnitude of
the kinetic and potential energies respectively at the encounter. Also note,
that this corresponds to a parabolic rather than a hyperbolic trajectory, in
which case b is unde�ned. Therefore, this approximation is to be handled
with care.

To avoid these complications we shall work to the �rst non-vanishing
order. The solution of (20) is expanded in a Taylor-series around the critical
trajectory.

b∗ ≈ 3
√

2GMf−2/3 + (2GM)2/3 N

10R
f−4/3 + . . . (21)

Also note, that for the v∗ velocity this implies

v∗ ≈ 3
√

2GMf 1/3 + (2GM)2/3 N

10R
f−1/3 + . . . (22)

Substituting in (??)

λ(f)df ≈
√

5

3
2−2/3(GM)5/6N1.5

R2.5
f−2/3

(
1 +

4

5
3
√

2GM
N

R
f−2/3

)
df

f
(23)

to the �rst order. For dense globular clusters of R = 10 ly and N = 106 we
get the rate for consequent signals.

λ(f)globdf ≈ (
3 · 10−11 yr−1

)
[
1 + 3 · 10−6

(
f

100 Hz

)−2/3
](

f

100 Hz

)−2/3
df

f

(24)
For galaxies of R = 104 ly and N = 1011 this becomes

λ(f)galdf ≈ (
3 · 10−11 yr−1

)
[
1 + 3 · 10−4

(
f

100 Hz

)−2/3
] (

f

100 Hz

)−2/3
df

f

(25)
Equations (24) and (25) describing the GBS rates are plotted on Figure 1.

Notice how negligible the �rst correction in the parenthesis is. Therefore
the main contribution is due to the zeroth term, which is exact for parabolic
trajectories. Hence, this approximation favors the high de�ection angle en-
counters instead of the low de�ection angle hyperbolic encounters.

We obtain the macroscopic λ parameter by integrating (23) over the sen-
sitive region of the detector. If the detectable minimum and maximum fre-
quencies are fmin and fmax respectively then

λ(fmin, fmax) ≈
√

15 · 2−5/3(GM)5/6N1.5

R2.5

(
f
−2/3
min − f−2/3

max

)
(26)
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This is therefore the output of this model for λ. Recall that λ is the decay
constant of the exponential distribution (12) describing the time intervals be-
tween the consecutive encounters. The expectation value of the time intervals
is 1/λ which for the above cases becomes4,5

〈t〉glob = 〈t〉gal = (3 · 1010 yr)

(
fmin

100 Hz

)2/3
1

1− (fmin/fmax)
2/3

(27)

The expected time between consequent GBS is plotted on Figure 1 for
logarithmic frequency bins. The timescale between events is higher at lower
frequencies, but is still very large when considering practical time scales.
Even space detectors with minimum frequencies of 0.1 mHz (e.g. LISA [4]),
will have a chance to encounter one event in every 3 · 106 yr per dense cluster
or galaxy. Terrestrial detectors like LIGO have event rates of one event per
3 · 1010 yr per cluster.

Equation (27) gives the expected times between GBS in the sensitive
bands for a Newtonian system of point masses. However, the theoretical
waveforms for these signals can only be trusted within the limits of these
approximations. Therefore we shall impose the following constraints:

Accept events with

b∗ > 24km (28)
v∗ < 0.1c (29)

Substituting in equations (2) and (20) leads to the following constraints

f < v∗max/b
∗
min = 1300 Hz (30)

f <

√
2GM

b3
min

= 4400 Hz (31)

f <
(v∗max)

3

2GM
= 101 Hz (32)

4Note that these results do depend on the (N, R) values describing the system, and is
just a mere coincidence that the special cases of (106, 101 ly) and (1011, 104 ly) produce
the same numerical result.

5The primary potential energy in galaxies come from the dark matter and the distri-
bution of stars is non-spherical. The result for galaxies should therefore be accepted with
caution.
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The strongest constraint is the third, fmax = 101 Hz, which leaves just
a marginal bandwidth for terrestrial detection. Note that if we trusted our
results up to v∗ = 0.25c instead of 0.1c, then this bound becomes fmax =
1600 Hz. Hence, the evaluation of relativistic corrections should be considered
in the future.

The above calculation gives the rate limit provided that all GBS are
detected from a given star system. Depending on the distance and strength
of the source, however, only a fraction of these events can be detected. The
GBS characteristic strain magnitudes scale as

δh

h
=

4M2

rb∗
= (1.1 · 10−18)

(
M

MSUN

)2 (
10 kpc

r

)(
24 km

b∗

)
(33)

(see [1]), where r is the distance of the cluster from Earth. This puts a
maximum bound on b∗ or a maximum bound on r. The detection limit for
LIGO [7] is currently about 10−21, and advanced LIGO will have marginal
strain magnitudes around 10−23. Substituting these values in (33) yields

f >

√
2GM

b3
max

=





(0.11 Hz)
(

r
10 kpc

)3/2

for current LIGO sensitivities

(0.11 mHz)
(

r
10 kpc

)3/2

for advanced LIGO sensitivities
(34)

Since the minimum frequency bound for LIGO is ∝ 100 Hz, the detection
rates will not be hampered for nearby globular clusters and galaxies due to
sensitivity. The detection cuto� distance according to equation (34) for GBS
sources for LIGO is

r <

{
0.94 Mpc for current LIGO sensitivities

94 Mpc for advanced LIGO sensitivities (35)

All GBS sources closer than (35), that are in the appropriate frequency bands,
satisfy the sensitivity margins of the LIGO detectors.

According to equation (27), the main GBS sources are globular clusters.
Let us approximate the number of globular clusters per galaxy with 200.
The accumulated number of galaxies is 25 within 1 Mpc and 5 · 104 within
100 Mpc (see [6]). The expected resultant timescale between detectable GBS
events for all globular clusters is therefore

〈t〉 =





6 · 105 yr for current LIGO
3 · 103 yr for advanced LIGO

0.3 yr for LISA
(36)
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In this calculation, anticipated LISA sensitivities are assumed to reach the
advanced LIGO sensitivities, and the lower frequency bound was taken to be
0.1 mHz.

Notice that this estimate is just a theoretical optimal limit for the rate of
GBS, realistic expectations are even worse. The signals are only generated by
compact objects, such as black holes or neutron stars, which are generally just
a small q fraction of the star population6. The rate of the signals, according
to equation (10), is decreased by q2, which adds several orders of magnitudes
for the result obtained for the timescale of succeeding encounters.

3 Model II
The velocity distribution in reality is some continuous function not just one
v0 value. Depending on how likely the encounter speed, the probability for
GBS will be di�erent in all frequency ranges. However the gravitational
bremsstrahlung radiation depends on v∗, the relative velocity at the closest
point, instead of the initial velocities which are generally much lower. The
model of the last section also showed, that the section of the v∗ distribution
which produced GBS waves in the detectable range was mostly independent
of v0 initial velocities. The velocity buildup due to gravitational attraction
was much larger in this regime. We only expect the low v∗ speed encounters
(i.e. low frequency radiation) to depend strongly on the initial velocity dis-
tribution. Therefore, the results should not di�er from the last section for
the LIGO frequencies.

Our approximation uses a position averaged velocity distribution, and
assume a Maxwell-Boltzmann form, valid for ideal gases

F (v) =

(
M

2πkT

)3/2

4πv2e
−Mv2

2kT (37)

By equipartition and the virial theorems we can eliminate the kT factors.

< Ekin >=
1

2
M < v2 >=

3

2
kT =

1

2
< U > (38)

6GBS might also be generated by WD�NS or WD�BH encounters, but only at frequen-
cies below 300Hz for 1000 km size WDs. At higher frequencies the �yby would have to take
place with a superluminal velocity. The nonrelativistic limit corresponding to v∗ = 0.1c
is fmax = 30 Hz. To avoid a collision from b∗ > rWD eq. (21) gives a limit fmax = 16Hz.
These limits hold only for the sensitive regions of space detectors. WD � NS and WD �
BH encounters therefore do enhance the rate of GBS for space observation.
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where U is the average potential energy of the system such as in (1). With
the v0 =

√
< v2 > notation

F (v) = 4π

(
3

2π

)3/2
v2

v3
0

e
− 3

2
v2

v2
0 (39)

Also note that vRMS = v0, the relative RMS velocity �uctuations around v0

are 0.397.
From now on all probabilities are v dependent. The derivation is similar

until eq. (12), with the velocity chosen with the given probability distribution
instead of v0. With µ = 3

4
N2

R3 we have

λ(b, v)dbdv = µbF (v)vdvdb (40)

To get a measure of the encounter likelihood for a given frequency, we should
change to the f = v∗/b∗ frequency variable.

λ(b∗, v∗)db∗dv∗ = µbvF (v(v∗))
1− γ

1− 2γ
dv∗db∗ (41)

= µb∗v∗F (v(v∗))
1− γ

1− 2γ
dv∗db∗ (42)

where γ is the ratio of U∗/2K∗, the potential energy and twice the kinetic
energy at the closest point. Recall that γ < 1

2
for hyperbolic trajectories. The

fraction (1 − γ)/(1 − 2γ) is the Jacobi determinant for the variable change,
and we have used equation (4). Since b∗ = v∗/f for any v∗, we have

λ(f)df = µf−3df

∫
dv∗v∗3F (v(v∗))

1− γ

1− 2γ
(43)

Using the expression (39) for the velocity distribution

λ(f)df = Cf−3df

∫
dv∗v∗5

(
1− GMf

(v∗)3

)
e
− 3

2
v∗2
v2
0

(1− 2GMf

(v∗)3 ) (44)

where C = 4π
(

3
2π

)3/2
v−3

0 µ has been used. Recall that the hyperbolic encoun-
ters are de�ned only for v∗ > v∗min = 3

√
2GMf , and collisions are avoided if

v∗ > b∗minf . Since both of these conditions must be ful�lled, the integrals
should be taken from the larger of these values. For b∗min = 24 km, the �rst
condition is the larger for frequencies below 4400 Hz. We evaluate the result
only in this regime.
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Changing to the dimensionless integration variable w = v∗/v∗min,

λ(f)df = A
df

f

∫ ∞

1

dww5

(
1− 1

2w3

)
e−

w2

2s
(1− 1

w3 ) (45)

where the coe�cient comes from

A = Cf−2v∗min
6 =

√
35

23π

N2

R3

v∗min
6

v3
0

f−2 = 26.8 ·
√

GMN

R1.5
(46)

and the variable s is de�ned as

s =
v2

0

3v∗min
2 =

1

22/35
3
√

GM
N

R
f−2/3 = (3.2 · 10−7)

(
f

100 Hz

)−2/3

(47)

the RHS was calculated for globular clusters of N = 106 and R = 10 ly. This
shows that s ¿ 1 is a su�cient approximation.

The top bound of the integration is in�nity, which is a good approximation
for GBS sources closer than 0.5 Mpc. The details about this approximation
are discussed in the Appendix.

Changing the integration variable to u = w − 1,

λ(f)df = A
df

f

1

2

∫ ∞

0

du(1 + u)2(1 + 6u + 6u2 + 2u3)e−
3u
2s e−

u3

2s(1+u) (48)

Since s ¿ 1,

λ(f)df ≈ A
df

f

∫ ∞

0

du

(
1

2
+ 4u

)
e−

3u
2s (49)

= A
df

f

(
1

3
s +

16

9
s2

)
(50)

After simplifying, we get

λ(f)df =

√
6

π

√
5

3
2−2/3(GM)5/6N1.5

R2.5
f−2/3

(
1 +

16

30
3
√

2GM
N

R
f−2/3

)
df

f
(51)

This is to be compared with the result of the previous model, eq. (23). The
di�erence a factor of

√
6/π=1.38, a 38% increase in the GBS rate for the

leading order coe�cient, and 7.9% for the �rst correction. The result satis�es
the intuition: at large frequencies, v∗, the GBS source velocity is much larger
than v0, the RMS velocities in the star cluster, implying that the velocity
uncertainty around v0 ought not alter the v∗ velocities signi�cantly.
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4 Model III
So far we have treated the bremsstrahlung encounters in the star cluster as
the scattering of stars o� �xed background stars. This treatment is also used
in [5] for calculating the probability of collisions in spherical star clusters. A
better model accounts for the relative movement of the targets. The correc-
tion to the GBS rates can be signi�cant if the velocity distribution doesn't
vanish rapidly for large initial speeds. In this model we calculate the GBS
rate, taking the relative velocity distribution into account.

We now derive the relative velocity distribution for pairs of stars. The
relative velocity is v = v1 − v2. Let us denote the relative velocity direction
with ζ, i.e. ζ = arg(v1,v2). The individual distribution is assumed to be
isotropic, therefore the relative velocity distribution for pairs is also isotropic.
The ζ probability density is therefore P (ζ) = sin(ζ)/2. The vi velocity
magnitudes (with i=1,2) follow the identical distributions F0(vi).

By the cosine theorem we have

v =
√

v2
1 + v2

2 − 2v1v2 cos(ζ) (52)

The relative velocity distribution can be calculated as follows.

F (v) =

∫ ∫
dv1dv2F0(v1)F0(v2)

∫ π

0

dζ sin(ζ)

2
δ

(
v −

√
v2

1 + v2
2 + 2v1v2 cos ζ

)

(53)

=
1

2

∫ ∫
dv1dv2F0(v1)F0(v2)

v

v1v2

(54)

=

∫ v/
√

2

−v/
√

2

dξ

∫ ∞

v/
√

2

dη F0

(
η − ξ√

2

)
F0

(
η + ξ√

2

)
v

η2 − ξ2
(55)

where in the last equation we have switched to integration variables (ξ, η),
where ξ = (v1 − v2)/

√
2 and η = (v1 + v2)/

√
2. The integration domain is

the set of (v1, v2) pairs for which v ∈ [|v2 − v1|, (v2 + v1)].
The integration can be evaluated symbolically for the Maxwell-Boltzmann

distribution, i.e. F0 de�ned by (39). The result is also a Maxwell-Boltzmann
distribution:

F (v) =

√
27

4π

v2

v3
0

e
− 3v2

4v2
0 (56)
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This is just the single velocity distribution with

vRMS =
√

2v0 (57)

The encounter probability for the dynamical star system can be obtained
by adding up the contributions of pairs of stars. Assuming that the spatial
distribution of stars is homogeneous the encounter probability is identical to
the model II, with the velocity distribution changed to the relative velocity
distribution. Therefore equation (43) describing the GBS rate is valid, with
F (v) substituted from (55). For the Maxwell-Boltzmann distribution, it is
su�cient to simply replace v0 with vRMS =

√
2v0.

From equations (17) and (50) the results of our models can be summarized
as

λ(f)df =





1
4

N2

R3

v∗min
4

v0

(
1 + 8

3

v2
0

v∗min
2

)
df
f3 model I√

3
8π

N2

R3

v∗min
4

v0

(
1 + 16

9

v2
0

v∗min
2

)
df
f3 model II√

3
16π

N2

R3

v∗min
4

v0

(
1 + 32

9

v2
0

v∗min
2

)
df
f3 model III

(58)

where v∗min = 3
√

2GMf and v0 is the virialized speed (1) in the star system.
The leading order terms are proportional to 1/v0. The result is slightly

counterintuitive if one identi�es the star system with an ideal gas, since for
ideal gases, the rate of collisions is directly proportional to v0. In this per-
spective it seems reasonable to expect the encounter rate a growing function
of v0 for �xed frequency bins. The confusion arises from the fact that the
models I, II, and III discussed in this study are using the opposite limit. For
star systems the typical velocities are so small that the gravitational interac-
tion dominates the motion of the stars.7 Increasing the velocities decreases
the gravitational focusing, thereby decreasing the encounter likelihood.

Notice the interesting feature in equation (58) that models I and III are
practically identical in the leading order terms. The change is a factor of√

3/π, a mere 2% decrease for model III. The inferences obtained for model
I are therefore valid for the most sophisticated case as well. The predictions
for the overall GBS detection rate for various interferometric detectors are
given by equation (36).

7The ideal gas model is su�cient only for extremely small GBS frequencies. In this
regime the stars' trajectories are only slightly de�ected, inferring that gravity, in terms
of encounter likelihood, is negligible. This approximation leads to λ(f) ∝ v3

0 , a growing
function of v0 indeed.
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5 Conclusions
We have obtained an estimate for the expected rate of the gravitational
bremsstrahlung signals (GBS). We gave an estimate using three models.
Model I used a uniform velocity model with nonrelativistic stars moving
through and scattering o� a �xed lattice formed by the other stars in the
cluster. In model II we improved this model to account for the velocity dis-
tribution statistics. Finally, we obtained model III by relaxing the �xed lat-
tice condition, deriving the relative velocity distribution. The results showed
that model I indicates GBS event rates in an excellent approximation.

Our result is in accord with di�erent models such as [5]. They calculate
collision times for solar mass stars in spherical star systems. They use a poly-
tropic density distribution and account for the velocity distribution and the
increase of the cross section due to gravity. Their results give the same order
of magnitudes' timescale for collisions as our estimates for GBS frequency
limited encounters.

Our results describe the event rates of detectable GBS for a given fre-
quency interval for one star cluster. The magnitudes of the signals are avail-
able [1] to compare with the current and anticipated sensitivities of present
and near-future gravitational-wave detectors [7]. We have shown that for
sources closer than ∝ 1 Mpc the GBS events can be detectable with the cur-
rent LIGO detectors and 100 Mpc for advanced LIGO. Adding up all the
detectable sources, we have obtained the expected overall GBS rate. The
results show that even the most sensitive terrestrial gravitational wave de-
tectors such as Advanced LIGO will encounter less than one GBS event in
every 3 thousand years. Future space detectors as LISA can have event rates
of 1 one event per 4 months. These values are only theoretical upper limits,
since the derivation used a pure star population of compact stars (e.g. NS
and BH). If the ratio of compact stars was q, than the result is decreased by
a factor of q2.

In conclusion, gravitational bremsstrahlung signals are not likely to be
found in regular spherical star systems.8 High frequency GBS might only
be detected by LIGO if the sources of the encounters are neutron stars or
black holes with radii less than half their minimal separation, otherwise a
collision occurs. If GBS events were to be regularly detected, the above

8The estimate assumed spherical symmetry and homogeneity, which was applicable for
spherical clusters but breaks down for galaxies. Due to their smaller velocity distributions,
event rates are expected to be even lower for galaxies.
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estimate would set an upper bound on the typical mass or a lower bound
on the number density of the system. As of now we have no evidence for
the existence of low mass primordial black holes or dense black hole systems.
The detection of GBS with LIGO would prove their existence.

Further studies are needed to investigate the changes in event rates in
the post-Newtonian and general relativistic regimes. We have checked the
�xed background model for general relativity for two stars having a large
mass ratio. By assuming the radius of the individual stars much smaller
than the distances in between, we obtained the trajectory for the lighter
BH in the background Schwarzschild metric of the massive BH. The results
were in accord with the Newtonian solution. Therefore, the post-Newtonian
calculation is not expected to change the GBS event rates signi�cantly.
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7 Appendix
Notice that in equation (45) the top bound of the integration is uncon-
strained. An exact treatment would introduce the quantity v∗max, de�ned
by two reasons. The �rst is simply related to the fact that we have used the
classical kinematics, which is only valid in the nonrelativistic regime. For
relativistic velocities there is a signi�cant Doppler-shift in the frequencies,
depending on which direction the �yby occurs. Also the Maxwell-Boltzman
distribution was used in the nonrelativistic limit. Therefore v∗max < c is a

9The other two papers are [8] and [9].

16



hard bound, but more realistically v∗max = 0.25c would be a reasonable choice.
This implies

wmax = 2.5× (f/100 Hz)−1/3 (59)
Since the integrand of equation (45) is negligible everywhere except in the
close vicinity of w = 1, the constraint (59) does not change the result for
f < 1500 Hz.

The other reason for introducing w∗
max in (45) is the limitation of detection

caused by signal strength. As it was shown in the previous section, the signal
strength puts a low bound on b∗, and thus a high bound on v∗ for a given
frequency. From equation (33) we get10

wmax(r) = 91.4

(
r

10 kpc

)−1 (
f

100Hz

)2/3

×
{

1 for current LIGO
100 for advanced LIGO

(60)
Therefore r < 0.5 Mpc with LIGO and r < 50 Mpc with Advanced LIGO
yields wmax À 1. Therefore equation (45) will approximate the true GBS
rate, within this distance. For larger r distances, the integration domain
ceases with r, decreasing the observable GBS rate.

Substituting in equation (50),

λ(f)df = A
df

f

∫ W (r)=wmax(r)−1

0

du

(
1

2
+ 4u

)
e−

3u
2s (61)

= A
df

f

s

3

(
1 +

16

3
s

)[
1−

(
1 +

3W (r)

2s

)
e−

3W (r)
2s

]
Θ(W (r)) (62)

where Θ(.) is the Heaviside step function and s is de�ned in equation (47).
Equation (62) describes how the detection rate of GBS depends on the

distance r of the source star system from Earth. The r dependance is implicit
through the W variable. For r ¿ 1 Mpc, W ≈ ∞, leading to eq. (62)≈(51).
For distances larger than the critical distance (35), the detectable GBS rate
is identically zero. The resultant rate from all sources can be obtained by
multiplying with the number density of globular clusters and integrating
over space. Since the r-cuto� of (62) is very rapid, the r-dependance can be
approximated by Θ(W ). This is exactly what has been carried out in the �rst

10Current and advanced LIGO sensitivities are taken δh/h = 10−21 and 10−23 respec-
tively.
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model. Therefore the resultant GBS rate of model II is well approximated
by the result (36) of model I.

For model III, we show that model II should be modi�ed with the sub-
stitution of vRMS =

√
2v0 for v0. The GBS rates for model III are identical

to model II within 2%. Equation (62) de�nes the smooth r-dependence for
model III. Practically for globular clusters and galaxies, this can be well
approximated with the Θ(W (r))
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Figure 1: The expected rate of GBS produced in one star cluster is plotted per
logarithmic frequency bin, on log-log scale. The solid curve depicts the result
for globular clusters, and the dashed curve is for dense galaxies. The rate is
expressed in yr−1. Note that these curves show only an upper limit, real GBS
rates are further decreased by q2, the square of the portion of the number
of dense cosmic objects (e.g. NS & BH) within the full star population of
the cluster. Only a fraction of these events can be detected, depending on
the distance of the source. The typical sensitive bands of terrestrial and
space gravitational wave detectors are indicated. The maximum distance for
a signal to noise ratio of 1 for the current LIGO detectors, is 0.94 Mpc, and
94 Mpc for Advanced LIGO.
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