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Abstract

The response of LIGO’s photodetector to a particular signal depends on
several factors of the incoming gravitational wave (GW). GW amplitude, polar-
ization, and incidence angle all determine the contraction or expansion of the
interferometer arms. This paper is based directly on D. Sigg’s Appendix [1] and
provides a derivation of how the laser’s phase is affected by the presence of a
GW.

1 Introduction

In principle, a GW could arrive at earth from any direction and with any polarization.
A natural question to ask is: how sensitive is LIGO to a particular type of signal? We
will see that in some cases, a perfectly legitimate GW signal may, for example, distort
the interferometer arms equally: there would be no chance of observing it. Fortu-
nately, this is a worst case scenario; most directions in space and types of polarization
allow for much better detection by LIGO.

LIGO is somewhat of a black box: a GW enters and “somehow” a voltage sig-
nal is output by the photodetector. This article aims to partly bridge this gap by
mathematically describing how a particular GW affects the phase changes of the laser
light in each of the interferometer arms. Ultimately, the information presented here
will be implemented in an existing end-to-end (e2e) simulation of LIGO. The e2e
software then handles the calculation of the interfering electric fields resulting from
phase differences.

2 The Coordinate System

A right-handed coordinate system is constructed by taking the x- and y-axes to co-
incide with the interferometer arms. These constraints force the origin to be at
the beam splitter and the z-axis oriented “vertically”. We will make use of spher-
ical coordinates, so note that a point (x, y, z) may also be identified by the usual
(r sin θ cos φ, r sin θ sinφ, r cos θ), where θ is the azimuthal angle measured from the
+z-axis (0 ≤ θ < π), and φ is the polar angle measured from the +x-axis (0 ≤ θ < 2π).

In order to mathematically express a GW in the above coordinate frame, we must
perform certain rotation operations. Suppose a GW approaches LIGO with spherical
coordinate angles θ and φ. To transform a quantity in the wave’s frame to LIGO’s
frame, we first rotate about the y-axis by θ, then rotate about the z-axis by φ1. Or,
in matrix notation, if R(θ, φ) is the net rotation, it can be decomposed as:

1The rotations are carried out in this order so that they are about principal axes.
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R(θ, φ) = R(φ)R(θ) (1)

where R(θ) and R(φ) are the matrices that perform the aforementioned rotations.
They are given below:

R(φ) =

 cos φ − sinφ 0
sinφ cos φ 0

0 0 1

, R(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 (2)

3 The Induced Laser Phase Change

Let ω be the angular frequency of oscillation of the laser. We are interested in the
total phase of the laser during the round-trip from the beam splitter, to the end test
mass, and back to the beam splitter. Starting from time t0, this phase can be found
simply by integrating ω over time:

ΦRT (t0) =
∫ t0+t(2L)

t0

dt ω (3)

where ‘RT’ denotes ‘round-trip,’ and t(2L) means the time at which the light has
traveled the distance 2L. In this case we integrate over time. LIGO is sensitive to
GWs’ distortion of length, so we wish to change variables from t to, say, x. Some
equations from general relativity will be helpful here, because they provide a means
of converting from time to distance.

In the vicinity of earth, where there are no particularly strong gravitational fields,
the metric gµν is simply the Minkowski metric ηµν

2. If a GW is present, it is rep-
resented in the metric by a small, time-dependent adjustment hµν to the Minkowski
metric. Now we can write out an expression for the proper time:

dτ2 = dxµgµνdxν = dxµ(ηµν + hµν)dxν (4)

But what is hµν? Consider a GW with angular frequency Ω traveling the +z
direction. As with any traveling wave, it can be written as cos(Ωt − kz) times some
amplitude (k is the magnitude of the wave vector ~k). In this case, the amplitude is
tensorial (since a tensor is needed to describe the quadrupolar GW’s polarization):

hµν = cos(Ωt− kz)


0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

 (5)

Note that all z or t components of this tensor amplitude are 0, since 1) the wave
propagates along z and GWs can only be polarized in transverse directions, and 2)
polarization of a wave is only for space (i.e. not time). In general, however there
will be polarization in all three spatial directions. For a GW of arbitrary incidence
angle, we must transform the polarization tensor Ĥij (composed of the nine spatial
components of hµν) to LIGO’s coordinate system using the matrix R(θ, φ) from eq.(1).
Using the transformation rule for second-rank tensors, we have:

2We use the convention where the coefficient of the time component of ηµν is negative.

2



Hij = R(θ, φ)ĤijR(θ, φ)−1 (6)

so that Hij will have the general form:

Hij =

 hxx hxy hxz

hyx hyy hyz

hzx hzy hzz

 (7)

Similarly, it is necessary to transform the wave vector, ~k. Applying the rule to
convert spherical coordinates, ~k in the LIGO coordinate system is:

(kx, ky, kz) = (k sin θ cos φ, k sin θ sinφ, k cos θ). (8)

Now, we may begin to make the change of variables for integration. At first we
will consider the x-axis interferometer arm, so y and z are fixed at 0 (thus, we require
a wave traveling in the +x direction with wavenumber kx). Recall that for a signal
traveling at c, we have the identity dτ2 = 0. Then, from eq. (4):

0 = dτ2 (9)
= dxµηµνdxν + dxµhµνdxν (10)

= −c2dt2 + dx2 + dy2 + dz2 +
4∑

i,j=0

hijdxidxj (11)

= −c2dt2 + dx2 + hxx cos(Ωt− kxx)dx2 (12)

where numerous cancellations take place because 1) ηµν is diagonal, 2) the time
components of hµν are 0, and 3) dy = dz = 0. Note that the only non-vanishing
component of Hij is hxx

3. Finally, the conversion from dt to dx is clear:

0 = −c2dt2 + dx2 + hxx cos(Ωt− kxx)dx2 (13)
c2dt2 = dx2(1 + hxx cos(Ωt− kxx)) (14)

dt =
dx

c

√
1 + hxx cos(Ωt− kxx) (15)

However, the oscillatory part still explictly depends on t. It must be written in
terms of x to perform the integration. Over the interval 0 ≤ x ≤ L, t increases linearly
with x as:

t = t0 +
x

c
(16)

For the return trip, x ranges from L to 0. The return trip begins at time t0 +L/c,
and the time increases linearly as the light gets farther from position x = L (i.e. as
L− x increases). Symbolically:

t = t0 +
L

c
+

1
c
(L− x) (17)

= t0 +
2L

c
− x

c
(18)

3A tool such as Mathematica is quite useful for finding hxx and hyy . It turns out that hxx =
−h× cos θ sin 2φ + h+(cos2 θ cos2 φ− sin2 φ) and hyy = h× cos θ sin 2φ + h+(cos2 θ sin2 φ− cos2 φ).

3



We now write out the integral in eq. (3) entirely in terms of x, and use the fact
that Ω/c = k:

Φx
RT (t0) =

∫ t0+t(2L)

t0

dt ω (19)

=
∫

0→L

dx

c

√
1 + hxx cos(Ωt0 + (k − kx)x) ω (20)

+
∫

L→0

dx

c

√
1 + hxx cos(Ωt0 + 2Lk − (k + kx)x) ω

4 Simplifications

Up to this point, we have an exact analytical expression for Φx
RT (t0). Now we will

use the following first-order Taylor expansion to simplify the integrands:
√

(1 + ε) ≈
1 + ε/2.

Φx
RT (t0) ≈ ω

c

∫ L

0

dx

[
1 +

hxx cos
(
Ωt0 + (k − kx)x

)
2

(21)

+1 +
hxx cos

(
Ωt0 + 2Lk − (k + kx)x

)
2

]

=
2Lω

c
+

hxxω

2c

[
1

k − kx
sin

(
Ωt0 + (k − kx)x

)
(22)

− 1
k + kx

sin
(
Ωt0 + 2Lk − (k + kx)x

)]L

x=0

=
2Lω

c
+

hxxω

2c

[
k + kx

k2 − k2
x

(
sin

(
Ωt0 + (k − kx)L

)
− sin(Ωt0)

)
(23)

− k − kx

k2 − k2
x

(
sin

(
Ωt0 + 2Lk − (k + kx)L

)
− sin(Ωt0 + 2Lk)

)]
Observe that the leading term represents the total phase change of the laser in a

round trip in one arm in the absence of a GW. Since we are concerned with changes
in phase, this term will be neglected. Now, we apply the trigonometric identity
sinA− sinB = 2 cos(A+B

2 ) sin(A−B
2 ) to two places in the previous equation:

∆Φx
RT (t0) ≈

hxxω

2c(k2−k2
x)

[
(k+kx)2 cos

(2Ωt0 + (k−kx)L
2

)
sin

( (k−kx)L
2

)
(24)

− (k−kx)2 cos
(2Ωt0 + 4Lk − (k+kx)L

2

)
sin

(−(k+kx)L
2

)]
Consider the arguments of the two sine functions. The one largest in magnitude is

the latter, (k+kx)L
2 . In the extreme scenario in which kx ≈ k, the argument is about

kL. However, in the case of a 4 km interferometer with 1 kHz GWs:
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kL =
2π

λ
L =

2πf

c
L ≈ 6.28× 1000× 4000

3× 108
≈ 0.08 (25)

Thus we may use the small angle approximation sinx ≈ x for both sine terms
(note that the approximation’s accuracy increases for lower frequency waves):

∆Φx
RT (t0) ≈ hxxω

2c(k2−k2
x)

[
L(k2−k2

x)
2

(2)
(

cos
(
Ωt0 +

1
2
(k−kx)L

)
(26)

+ cos
(
Ωt0 + 2Lk − 1

2
(k − kx)L

))]

Now, we apply the identity cos(A) + cos(B) = 2 cos(A+B
2 ) cos(A−B

2 ) to the re-
maining trigonometric terms:

∆Φx
RT (t0) ≈

hxxLω

2c

[
2 cos

(2Ωt0 + 2Lk − kxL

2

)
cos

(−Lk

2

)]
(27)

Recalling that kx/k = sin θ cos φ, we may write the phase change of the laser due
the a GW in the x−axis arm as:

∆Φx
RT (t0) ≈

hxxLω

c

[
cos

(
Ωt0 + Lk(1− 1

2
sin θ cos φ)

)
cos

(Lk

2

)]
(28)

Retracing these steps for the quite similar case of the y−axis, we find:

∆Φy
RT (t0) ≈

hyyLω

c

[
cos

(
Ωt0 + Lk(1− 1

2
sin θ sinφ)

)
cos

(Lk

2

)]
(29)
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