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Abstract

Details of the implementation of a simulation of a gravitational wave’s effect
on the LIGO interferometer are given. To help validate program’s results, a
variety of test cases are presented. For a range of values of the free parameters,
the simulation’s outputs are compared to physical and mathematical predictions.

1 Introduction

While an end-to-end simulation software package does exist for LIGO, it does
not yet allow for gravitational waves to interact with the interferometer. The
program described in this document, written in C++, is a first step toward
adding this functionality to the simulation. It consists of two main classes: a
source class that generates a gravitational wave signal emanating from a binary
star system, based on parameters such as star masses, separation, and distance
to Earth. The resulting time series is dynamically passed to the detector class,
which contains information on a LIGO site’s location and orientation. Based on
these data, the detector class outputs the phase differences of the laser in each
interferometer arm.

The primary coordinate system of interest here has its origin at the center
of the Earth. The positive z-axis extends through the rotation axis (toward the
north pole), and the x- and y-axes pass through the equator at longitudes of 0◦

and 90◦, respectively. We generally deal with spherical coordinates with radius
R, polar angle θ measured from the +z-axis, and azimuthal angle φ measured
in the right-handed sense from the +x-axis. For the purposes of this simulation,
the point (R, θ, φ) gives the location in space of a GW source. See figure 1 for
an illustration.

We also require a means of specifying the location and orientation of a LIGO
site on Earth. Let the beam detector be located on the Earth’s surface at polar
angle α and azimuthal angle β, using the same convention as above. Also let
the arms of LIGO contain the x- and y-axes of a local right-handed coordinate
system, such that the +z-axis points away from the earth. Then we define the
orientation of the LIGO site using γ, the angle between the prime meridian and
the great circle that contains the LIGO x-arm1. See figure 2.

1In the actual simulation, γ corresponds to rotation of the source about the propagation axis,
looking from the Earth. Mathematically, these two cases are equivalent. However, visualization is
more straightforward if we think of rotating LIGO.
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Figure 1: G-wave source coordinate system

In a spherical coordinate system, a gravitational wave approaches earth with polar angle θ from the z-axis

and azimuthal angle φ from the x-axis.

Figure 2: LIGO coordinate system

In the same spherical coordinate system, LIGO’s position is defined by α and β, as shown. LIGO’s

orientation is in terms of the rotation angle γ.

For the simplest case, we simulate GW’s from a compact binary system of
neutron stars (neglecting any inspiralling). Let the two stars have masses m1

and m2 with orbital angular frequency ω. Also let ψ be the angle between the
1) line connecting this system and the earth and 2) a normal of the system’s
orbital plane (see figure 3). Then [1] states that both polarizations of waves
oscillate in phase with angular frequency 2ω and amplitudes:
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Figure 3: The binary source

Since the gravitational radiation distribution of a binary system depends on observing angle, the parameter

ψ determines what the signal looks like from Earth.

2 Basic Trial Runs

For each of the following cases, a description of the physics is presented, along
with an interpretation of the simulation’s results. The neutron stars, located 10
Mpc from earth, each have 1.4 times the mass of the sun and are separated by
1000 km. This results in an orbital frequency of 3.2 Hz and a gravitational wave
frequency twice that.

Case 0: Simplest Trial As the simplest case, we run the simulation with
the source directly above the north pole (with ψ = 0), with LIGO oriented
with γ = 0 at the north pole. To allow for clearer analysis, we set the cross
polarization component to zero for now. The plus component elongates one arm
and shortens the other. Thus, the phase change of the light in each arm is equal
in magnitude but opposite in direction to the other. Indeed, the simulation data,
when analyzed in MATLAB agreed with this hypothesis and demonstrated the
correct frequency (see figure 4).

Figure 4: Results for Case 0

The gravitational wave causes the lengths of the interferometer arms to oscillate 180◦ out of phase, at a

rate twice the orbital frequency of the star system.
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Case 1: Vary θ Now all parameters will remain the same, except θ, the
polar angle of the source will be moved from 0◦ to 15◦. With φ = 0◦, [2] gives
hxx = h+ cos2 θ, and hyy = −h+. This makes physical sense, since the x-arm
no longer coincides perfectly with the plus polarization component (and thus is
affected less). Also, the plus polarization still lines up with the y-arm and so
∆Φy is the same as in the previous case. In figure 5 we see that the simulation
was consistent with our expectations. Mathematically, the amplitude of the laser
phase shift in the x-arm was diminshed by a factor of 0.933, which is cos2 15◦

besides rounding errors. This is consisent with the anticipated value found in
[2] for the x-arm strain when h× = 0:

hxx = h+(cos2 θ cos2 φ− sin2 φ) = h+ cos2 θ (3)

Figure 5: Results for Case 1

Since the strain is no longer parallel to the x-arm, the magnitude of the laser phase shift in that arm is

diminished by a factor of the square of the cosine of the polar angle. There is no change to the y-arm.

Case 2: Vary θ more For this trial, the last case is extended by increasing
θ to 90◦; that is, the gravitational wave is incident on LIGO in a direction
parallel to the equator and the great circle containing the prime meridian. The
propagation direction is parallel to the x-axis, so there is no phase change of the
light in that arm. However, the y-arm is still affected by the maximum amount.
See figure 6.
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Figure 6: Results for Case 2

The x-arm does not register a change in phase, since the gravitational wave propagates parallel to it.

Case 3: Vary θ to the extreme As a final test of θ, it will be set to 180◦,
the south pole. Since the new axes are parallel to the original ones, there is no
difference between this scenario and case 0’s. See figure 7.

Figure 7: Results for Case 3

The gravitational wave now approaches from the opposite direction as in the original case, but the effect

is identical; the interferometer arm lengths oscillate perfectly out of phase.

Case 4: Vary φ The polar angle, θ, is returned to 0◦, but φ is rotated to
15◦. Note that at the north pole, a change in φ is equivalent to a rotation of
the source about the z-axis. Since the signal was maximized at φ = 0, this
small rotation diminishes the signal strength in both arms. In figure 8 we see a
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reduction in phase change by a factor of about 0.867. This is in agreement with

the anticipated strain factor of
√

3
2

for plus-polarized waves with θ = 0, given by
[2]:

hxx = h+(cos2 θ cos2 φ− sin2 φ) = h+ cos 2φ =

√
3

2
h+ (4)

hyy = h+(cos2 θ sin2 φ− cos2 φ) = −h+ cos 2φ = −
√

3

2
h+ (5)

Figure 8: Results for Case 4

With θ = 0◦, a change in φ is simply a rotation of the source. In this case, the rotation tends to reduce

the signal strength by the predicted factor of cos 2φ.

Case 5: Vary φ more The longitude, φ, is set at 90◦. Now, the stretching
component of the gravitational wave aligns with the x-arm, and the contracting
component aligns with the y-arm. Thus, the effect of the gravitational wave on
the interferometer is precisely reversed: the roles of increasing and decreasing
laser phase are swapped. Surely enough, we see this 180◦ phase flip in the strain
vs. time plots of figure 9.
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Figure 9: Results for Case 5

Rotating the source by 90◦ effectively swaps the two interferometer arms so that the laser phase shift in

each is moved 180◦.

Case 6: Vary φ one last time As the last of the basic test cases, φ is
offset to 180◦. Since gravitational waves are symmetric under 180◦ rotations
about the propagation axis, we expect the same results as the initial trial, case
0. For confirmation, see figure 10.

Figure 10: Results for Case 6

A 180◦ rotation of the source does not change the signal in either arm, because both arms are still aligned

along their original axes.

7



3 Advanced Trial Runs

The physical properties of the binary system remain fixed at their previous
values. However, we now begin to analyze the data in an alternative way. On a
rectangular two-dimensional plot, the axes will correspond to 0◦ ≤ θ < 180◦ and
0◦ ≤ φ < 360◦ so that the entire range of incidence angles will be considered.
There is one plot each from the x- and y-arms (but none for the phase difference).
The third dimension, represented by a color scale, corresponds to interferometer
laser phase shift2. This new technique allows visualization of the effect on all
source locations of altering a parameter.

Case 7: Simplest Trial To allow for adjusting to the new plot style, the
original case (α=β=γ=ψ=0◦) is repeated and shown in figure 11.

Figure 11: Results for Case 7

This plot actually contains all the information of the previous trials. For example, the θ ≡ 90◦ line registers

no signal in the x-arm at φ = 0◦ (as in case 2).

Case 8: Shift α We now move α to 15◦; physically, this is a shift of a LIGO
site from the north pole down by 15◦ of latitude. To arrange for the source
and detector to be in the same relative positions as in the initial case, θ would
likewise need to be shifted by 15◦. Thus, one would expect the plot for this case
to differ from the previous case only by a shift in the positive θ direction. For
confirmation, see figure 12.

2Of course, the absolute phases of these plots can be chosen arbitrarily. In this investigation they
were selected to maximize the phase shift and to make θ = 0◦, φ = 0◦ correspond to contraction of
the x-arm.
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Figure 12: Results for Case 8

Shifting the latitidude of LIGO does not fundamentally change the geometry of the system; we compensate

for it by simply shifting the source’s angle θ by the same amount. In the above plot, we see this effect.

Case 9: Shift β Similarly, we may shift β (with α held at 0◦). By the
same reasoning as above, this alteration shifts the entire plot in the positive φ
direction (see figure 13).

Figure 13: Results for Case 9

The effect of β on φ is analogous to the effect of α on θ: any change only shifts plot.

Case 10: Shift α and β To demonstrate the independence of α and β, we
shift them simultaneously to 15◦ each. Figure 14 shows that the resulting plots

9



are indeed shifted 15◦ each in both directions 3.

Figure 14: Results for Case 10

This plot is intended solely for showing that the effect on the plot of either α or β is does not depend on

the value of the other.

Case 11: Change the polarization Now we revert to α = β = 0◦

but consider only the cross component of the polarization. For θ = φ = 0◦, the
spatial effects of the gravitational wave are perpendicular to both interferometer
arms, so the phase changes are null. For θ = 0◦, φ = 45◦, we rotate the source
by 45◦ relative to the earth. This orientation places the interferometer arms in
line with the polarization axes; specifically, the x-arm undergoes stretching and
the y-arm undergoes contracting. These effects can be seen in figure 15 below.

3This result is no surprise, because the effects α and β are implemented in the simulation by
replacing θ with θ − α and φ with φ− β, and the rotation matrices for θ and φ commute. In other
words, the rotations can be applied in either order to achieve the same result
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Figure 15: Results for Case 11

Here, a cross-polarized gravitational wave is incident on LIGO from its z-axis. Note how the response of

the interferometer arms as a function of θ and φ differs from the case of plus-polarization.

Case 12: Vary γ The only physical difference between the two polarizations
of gravitational waves is orientation along the propagation axis. Therefore,
switching from plus- to cross-polarization is simply a special case of changing
γ (specifically, γ = 45◦). In this case we consider the effect of incrementing
gamma by smaller steps. Figure 16 a sequence of plots (of the same style as
above, but x-arm only) over a range of γ.

Several properties of these plots show that the simulation’s treatment of γ
is valid. First, consider gravitational waves arriving from along Earth’s axis
(θ = 0◦, 190◦). Since LIGO is positioned at a pole (α = 0◦), a rotation by γ is
equivalent to a rotation of LIGO by β. Indeed, in each case the plot is shifted in
the positive φ direction by amount γ at θ = 0◦, and by amount −γ at θ = 180◦.

Another validating factor can be seen by considering the strain in the x-arm
at the (θ, φ) locations (90◦, 0◦) and (90◦, 180◦). Physically, these correpond to
the two source positions where the x-arm is aligned with the propagation axis.
In figure 16 we see that at these points, the laser phase shift is zero for all values
of γ.
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Figure 16: Results for Case 12

Each of the ten squares above represents a colored plot of laser phase difference in the x-arm vs. θ and φ,

the x- and y-axes, respectively. From left to right, top to bottom, the plots show the effects of ranging γ

from 0◦ to 90◦.
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