
LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY
-LIGO-

CALIFORNIA INSTITUTE OF TECHNOLOGY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Technical Note LIGO-T030154- 00- E 7/31/03

Creating an e2e Primitive

Jeff Jauregui (2003 SURF Student)
Mentor: Hiro Yamamoto

This is an internal working note
of the LIGO Project.

California Institute of Technology
LIGO Project – MS 51-33

Pasadena CA 91125
Phone (626) 395-2129
Fax (626) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology
LIGO Project – MS 20B-145

Cambridge, MA 01239
Phone (617) 253-4824
Fax (617) 253-7014

E-mail: info@ligo.mit.edu
WWW: http://www.ligo.caltech.edu

Creating an e2e Primitive

Jeff Jauregui

July 31, 2003

Abstract

This document walks you through the process of creating your own
primitive module for use in alfi and e2e. Sample code is provided so that
a module can be generated with very few modifications.

1 Introduction

Before we begin writing code, let’s introduce and/or review a few terms. “e2e”
means the end-to-end time domain simulation program. Using what are known
as “box” files, the simulation is told what to do. A box file is merely a text file
(read by e2e at run time) that tells the simulation how to pass data among the
various modules, or primitives. A primitve can be thought of as a fundamen-
tal object; for example, the “sine” module has inputs of frequency, amplitude,
phase, and the current time, and outputs the resulting waveform for that par-
ticular time. Thus, a box file is nothing more than a series of these primitives
linked together. (Note that box files are rarely created by hand: a program
known as “alfi” (AdLib Friendly Interface) allows us to graphically generate
box files by positioning modules on a grid and connecting them with virtual
wires.) This document walks you through the steps needed to create a new
primitive.

2 Overview

1. For a primitive named “object,” create the object.cc and object.h files in
the AdlibMM folder.

2. Create the text file object.prm in the same directory.

3. To register the new module with the e2e code, edit the file “modeler base register.cc.”

4. To include the module code in the next build, edit “Makefile.am.”

5. In the sample code, don’t forget to replace every occurence of “example”
with your object’s name.

1

3 The Header File

Generally, a module inherits the public properties of the “primitive” class. The
only member function you need to modify is “action()”: it is in charge of per-
forming the module’s various tasks at each time step of the simulation. What-
ever protected member variables need to be created depends solely on the inputs
and outputs of the primitive.

3.1 Creating the Inputs

Variables can be input to the module in three ways: they can be read in from
another module, from a text file (called a “par” file), and from a setting in a
box file. We handle each case separately.

Suppose the module requires two real number inputs, in0 and in1. We then
need to make four declarations in the protected region of the class. First, we
need pointers to the actual input data:

adlib real *in0, *in1;

(Note that adlib real is the data type e2e uses for real numbers.) We also
need variables to hold the default values for in0 and in1 in the event that no
values are supplied:

adlib real default in0, default in1;

To create a single parameter named param0, we declare it to be, for example,
adlib real in the class header. A setting is declared in the same way.

3.2 Creating the Outputs

Creating the outputs is even easier. Suppose we have two real outputs, out0
and out1. Then we need only make the declaration:

adlib real out0, out1;

You’ll be finished with the header file as soon as the OBJECT INIT macro
is defined. (See the example code.) Don’t forget to pass your object’s construc-
tor as the second argument of MI STATIC INIT .

4 The Implementation File

In this section we discuss how to implement your specific module.

4.1 I/O Setup

Your module’s constuctor automatically calls the constructor of its parent class,
primitive. The five arguments this takes are, in order: name arg, parent arg,
your module’s name in quotation marks, number of inputs, and number of

2

outputs. Don’t worry about the first two; they are taken directly from your
module’s constuctor’s arguments.

Immediately following this point you must set the default values for the in-
puts and outputs. For the inputs use the syntax: default in0(0.0), default in1(0.0) .

For the outputs, we set the default values as: out0(0.0), out1(0.0) .
Within the constructor, we need to explicitly tell the program what variables

should be treated as inputs, outputs, parameters, and settings. For an input,
use the sample code below:

setup input (0, data ref(&default in0,
data ref::Type Real), (const void**)(&in0));

set input name(0, “in0”);

The first line tells e2e that there is a real input whose default value is stored
in default in0. The second line registers the input’s name, “in0”, so that alfi
will associate the variable in0 with the actual input of the primitive in a box
file. The first parameter, 0, common to both commands is simply an index that
tells e2e which input we are referring to. For the next input, an index of 1 would
need to be passed, etc.

To implement a parameter, we use the code:

add auxiliary(data ref(¶m0,
data ref::Type Real), “paramName”);

To create an internal setting that can be modified within alfi, use the same
procedure as for parameters, except add the line real setting = 0.0 to the *.prm
file, where 0.0 is the default value if none is given. Note that the string passed
to add auxiliary must agree with the variable name used in the *.prm file.

The syntax for creating an output is straightforward:

setup output (0, data ref(&out0, data ref::Type Real));
set output name (0, “out0”);

4.2 The Action Function

In essence, the action function sets values for the outputs in terms of the inputs,
parameters, settings, and possibly other variables. In fact, it could be as simple
as:

out0 = *in0 + *in1;
out1 = *in0 – *in1;

For a module such as this, the outputs would always hold the sum and
difference of the two inputs at any time step of the simulation.

3

5 Registering and Building the Primitive

In the AdlibMM directory, open the file “modeler base register.cc”. First, in-
clude your object’s header file at the bottom of the other preprocessing directives
using the line #include “object.h” . Then add the line OBJECT INIT(the modeler)
after the similar lines in the sample code. Save and close the file.

Now, your primitive is registered with e2e. However, we need to instruct
the compiler to include the new code in future builds. This is done through
the text file “Makefile.am” in the same directory. Add your implementation
file “object.cc” to the section MODULE DYNAMIC . Be sure to keep the
existing convention of separating lines with a backslash. In the same man-
ner, add your header file “object.h” under the line noinst HEADERS . Fi-
nally, add the alfi file, “object.prm” (even if you haven’t created it yet), under
moddesc HEADERS .

6 The ALFI File

Below is the code for the *.prm file corresponding to the module described above:

% Your description: out0 = in0 + in1, out1 = in0 – in1
%*Port input in0
%*{
%* dataType = real
%*}
%*Port input in1
%*{
%* dataType = real
%*}
%*Port output out0
%*{
%* dataType = real
%*}
%*Port output out1
%*{
%* dataType = real
%*}
%*GUI Settings
%*{
%* ScreenSize 150x150
%* Group ’Whatever’
%*}

4

Appendix: Source Code

Header File:
/*
 * This is an example to create a module based on primitive class.
 * This module has two real inputs, two real outputs and one parameter.
 */

#ifndef __EXAMPLE_H__

#define __EXAMPLE_H__

// this class is based on primitive class
#include "primitive.h"

/*******************************##*******************************\
*
* example class
*
*******************************##*******************************/

class example : public primitive
{
 public:
 // define constructor just this way
 example
 (const string& name_arg = "", const module* parent_arg = NULL);
 ~example(void);

 // this is used to create an object in the event queue
 module* new_type(const string& name_arg, const module* parent_arg) const;

 // Sets the simulation time step for this module.
 bool set_time_step(adlib_real time_step_arg);

 // this is called when settings are changed
 void sub_sub_load(void);

 // This is called repeatedly at each time step. This needs to update the output
 void action(void);

protected:
 // inputs
 adlib_real *in0, *in1;
 // storage of default inputs, if nothing is connected to input ports,
 // input ptrs point to these
 adlib_real default_in0, default_in1;

 // outputs
 adlib_real out0, out1;

 // settings
 adlib_real param;

 // private variable
 adlib_real val;

}; //end class

// this is needed for each header file
// MI_STATIC_INIT needs to be included for each function defined in this file
#if defined(engine_static)
#define EXAMPLE_INIT(a) \
 MI_STATIC_INIT(a,example());
#else
#define EXAMPLE_INIT(a)
#endif

#endif // __EXAMPLE_H__
//end of header file

Implementation File:
// implementation of example class

#include "example.h"

/* ++++ from here to a line with ---- are needed for each file. */
// MI_KEY is a tag for this file, and can be anything unique
#define MI_KEY example

#include "mi.h"

MI_FUNC()
{
 MI_DECL(1);

 MI_MODULE(example); // add for each function defined in this file
 MI_EXIT();
}
/* ----- */

example::example
(const string& name_arg, const module* parent_arg)
 : primitive(name_arg, parent_arg,
 "example" /* name of primitive */,
 2 /* number of inputs */,
 2 /* number of outputs */),
 default_in0(0.0), default_in1(0.0),
 out0(0.0), out1(0.0),
 param(0.0), val(0.0)

{
 // define inputs, one for each input
 setup_input
 (0 /* serial index, starting with 0 */,
 data_ref(&default_in0 /* default storage if none connected */,
 data_ref::Type_Real /* data type defined in data_ref.h */),
 (const void**)(&in0) /* pointer to the input */);
 set_input_name
 (0 /* serial index */,
 "in0" /* name of this input */);
 setup_input
 (1 /* serial index, starting with 0 */,
 data_ref(&default_in1 /* default storage if none connected */,
 data_ref::Type_Real /* data type defined in data_ref.h */),
 (const void**)(&in1) /* pointer to the input */);
 set_input_name
 (1 /* serial index */,
 "in1" /* name of this input */);

 /* define outputs, one for each output */
 setup_output
 (0 /* serial output index, starting with 0 */,
 data_ref(&out0 /* output variable */,
 data_ref::Type_Real /* data type */));
 set_output_name
 (0 /* serial index */,
 "out0" /* name of this input */);

 setup_output
 (1 /* serial output index, starting with 0 */,
 data_ref(&out1 /* output variable */,
 data_ref::Type_Real /* data type */));
 set_output_name
 (1 /* serial index */,
 "out1" /* name of this input */);

 // defining user settings, one for each setting
 add_auxiliary
 (data_ref(¶m /* storage of the setting value */,
 data_ref::Type_Integer /* data type defined in data_ref.h */),
 "paramName" /* name of setting */);
}

example::~example(void)
{}

// implement this just as it is
module* example::new_type
(const string& name_arg, const module* parent_arg) const
{ return new example(name_arg, parent_arg); }

bool example::set_time_step(adlib_real time_step_arg)
{

 if (time_step_arg < 1e-10)
 {
 mess(WARNING) << "time step too short : time step = "
 << time_step_arg << endl;
 return false;
 }
 else
 {
 return true;
 }
}

// this is called when a setting is changed
void example::sub_sub_load(void)
{
 if (param < 0)
 {
 mess(ERROR) << "param should be positive or 0" << endl;
 exit(1);
 }
 else if (param == 0)
 {
 mess(WARNING) << "param = 0 is fragile" << endl;
 val = 1;
 }
 else
 {
 val = 1/param;
 }
}

// this is the core part
void example::action(void)
{
 // calculate outputs using inputs and local variables
 out0 = *in0 + *in1;
 out1 = *in0 - *in1;
}

	primitive cover sheet.pdf
	Technical Note LIGO-T030154- 00- E 7/31/03
	
	Massachusetts Institute of Technology

	Source code.pdf
	Appendix: Source Code

