
LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY
-LIGO-

CALIFORNIA INSTITUTE OF TECHNOLOGY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Technical Note LIGO-T-030168- 00- D August 13, 2003

Efficient Algorithm for computing a Running Median

Soumya D. Mohanty
Max Planck Institut für Gravitationsphysik
Am Mühlenberg 1, Golm D14476, Germany

This is an internal working note
of the LIGO Project.

California Institute of Technology Massachusetts Institute of Technology
LIGO Project - MS 18-34 LIGO Project - MS NW17-161

Pasadena CA 91125 Cambridge, MA 02139
Phone (626) 395-2129 Phone (617) 253-4824

Fax (626) 304-9834 Fax (617) 253-4824
E-mail: info@ligo.caltech.edu E-mail: info@ligo.mit.edu

WWW: http://www.ligo.caltech.edu/

2

Contents

I. Outline 3

II. Algorithm and pseudo-code 3

III. Application example 5

References 5

A. Running median C code 6
1. Function Documentation 6

a. void rngmed (const double ∗ data, unsigned int lendata, unsigned int nblocks, double ∗ medians) 6
b. int rngmed sortindex (const void ∗ elem1, const void ∗ elem2) 6

2. Structure Documentation 7
a. struct node 7
b. struct rngmed val index 7

B. The rngmed function body 7
1. Variables 7
2. Sort the first block 7
3. Set up checkpoints 8
4. Get the nearest checkpoint 8
5. Set up the linked list 9
6. Set up sorted list 10
7. The core part 10

a. Locate point of insertion 11
b. Find checkpoints to shift 12
c. Implementing the link changes 13
d. Implementing checkpoint shifts 15

8. Get the median 15
9. Clean up 15

3

I. OUTLINE

The median ν of a sample z[i], i = 1, . . . , n is defined as follows. Let Z[i] be the sequence obtained by sorting z[i]
in ascending order, Z[1] < Z[2] < . . . Z[n]. (The ordering of equal elements is immaterial.) Then,

ν = median({z[1], z[2], . . . , z[n]}) =

{
Z[n+1

2] n odd ,
Z[n/2]+Z[n/2+1]

2 n even
. (1)

The median is a better estimator of the typical value of a sample than the mean when there are large extraneous
outliers in the sample. For more details, see [1].

Let x[k], k = 0, 1, 2, . . . , N − 1 be a sequence such as a time series or a Power Spectral Density (PSD). Then the
running median is defined as the sequence y[k] = median({x[k], x[k + 1], , x[k + M − 1]}), k = 0, 1, , N −M . The
running median estimates the trend of the sequence x[k] more faithfully than a running average when there are outliers
in the data such as a short transient in a time series or a narrowband line feature in a power spectrum. This has
led to applications of the running median in transient resistant trend estimation in the time domain [2, 3], PSD floor
estimation [3, 4] and automated line detection [5].

Computation of the running median is very expensive if done in a brute force way, i.e., by sorting each block of M
samples. Sorting is, in the worst case, an O(n2) operation. But if one utilises the fact that the computation of y[k]
has already sorted most of the samples required for computing y[k + 1], then the computation can be made much
more efficient. This note describes one such algorithm and presents its pseudo code (the implementation programming
language must allow pointers [7]). In contrast to the worst case floating point operations count (flops) of ∼ NM2

for the brute force algorithm, the algorithm presented here involves ∼ N
√
M flops in the worst case. We have also

included a very detailed documentation of the C code which implements the algorithm presented below in appendices A
and B. The C code has been used in [2–4]. The documentation has been generated using DOXYGEN [8].

II. ALGORITHM AND PSEUDO-CODE

Inputs to the code:

• X : the sequence x[k], k = 0, . . . , N − 1.

• M : The number of points per block.

Output of the code:

• Y : sequence y[k], k = 0, . . . , N −M .

1. Sort the first M samples x[k], k = 0, . . . ,M −1, in ascending order. The ANSI C <stdlib.h> library comes with
a routine for sorting called qsort which can be used for this first step. Let the sorted list, in ascending order, be
Z[k], k = 0, . . . ,M − 1. Thus, Z[0] ≤ Z[1] ≤ Z[2] . . . ≤ Z[M − 1].

2. Load the sorted samples into the nodes of a linked list [6] with each node containing one sample. Each node of
the linked list has three types of links to other nodes.

Sequential link If the current node has sample x[p], then this link points to the node containing x[p+ 1].

Next Sorted link If the current node has sample Z[p], then this link points to the node containing Z[p+ 1].

Previous Sorted link If the current node has sample Z[p], then this link points to the node containing Z[p−1].

In the qsort algorithm, the ordering of equal samples is arbitrary and so is it assumed here.

3. Set up an array, checks[], of pointers to nodes of the linked list such that checks[n] points to the node
containing Z

[
n ∗ floor

(√
M
)]

. The special nodes pointed to by elements of checks[] are called checkpoints

in the following. Further denote the samples contained in checkpoint p by C[p] = Z
[
p ∗ floor

(√
M
)]

, p =

0, . . . , floor(
√
M)− 1.

Why are the checkpoints spaced
√
M samples apart? Once one obtains a sorted block of M samples, the

sequentially next sample outside this block must be placed in the sorted list and the sequentially first sample
in the block must be deleted. This is done by first comparing the new sample sequentially against the samples

4

in checkpoints. Once the checkpoints that bracket the new sample are found, comparisons are made with only
the samples within this bracket to locate the exact position of the new sample in the sorted list. This implies
that in the worst case P comparison operations are needed, if P is the number of checkpoints used, to find the
bracketing checkpoints. After this one may have to make M/P further comparisons to locate the exact position
of the new sample in the ordered list. Thus the total operation count K, in the worst case, is

K = P +M/P . (2)

The value of P which minimises K is P =
√
M . This is why checkpoints are spaced M/P = M/

√
M =

√
M

samples apart in this algorithm.

4. Find the element n0 of checks[] such that the sample in the corresponding node is nearest to the node containing
the median (for M odd) or the first member of the pair which needs to be averaged (for M even). This element
will provide a fast access to the node containing the samples needed to compute the median. This is necessary
because we are dealing with a linked list and not an array that can be randomly accessed.

5. FOR j = M TO N − 1 DO

(a) Get sample x[j].

(b) Locate the element pj of checks such that C[pj] ≤ x[j] < C[pj + 1].

(c) Start from the node checks[pj] and follow the Next Sorted link until a node is found such that the sample
value h it contains satisfies x[j] ≤ h. We have thus found the exact place where the new sample x[j] must
be inserted.
The next few steps find out the checkpoints that are bracketed by x[j] and the sample to be deleted,
x[j−M]. When the corresponding nodes are respectively inserted and deleted from the list, the bracketed
checlpoints must be shifted to adjacent nodes.

(d) Consider the node containing the first element of the sequential list. That sample will be x[j −M].

(e) Find elements q and p of checks such that

i. If x[j −M] < x[j]
x(j −M) < C[q] < . . . < C[p] < x[j]

ii. else if x[j −M] > x[j]
x[j] < C[p+ 1] < . . . < C[q] < x[j −M].

iii. else if x[j −M] == x[j]
Do nothing. No shifting of checkpoints required since in this case all samples in the sorted list between
x[j] and x[j −M] must be equal to x[j] = x[j −M].

(f) Shift the checkpoints found in step 5e.

i. If x[j −M] < x[j]
Shift each pointer checks[k], k ∈ [q, p], to point to the next right node (i.e., higher in sorted order).

ii. Else
shift to the next left node.

(g) Delete node containing x[j −M] from the linked list (repair the links between the nodes adjacent to it).

(h) Rewrite the data in this node by x[j].

(i) Insert this node before the node containing h.

(j) Follow Next Sorted link from checks[n0] to get the median value.

6. END DO

Several special cases may arise such as x[j] smaller or larger than any of the sample from the previous block. A lot
of the code is devoted to handling such special cases. However, for the sake of clarity, these special cases are not
shown in the outline above. Interested readers must consult the documentation of the C code (c.f., Appendix B) to
understand how these special cases are handled.

5

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

Frequency (Hz)

P
S

D

Raw PSD
Running median

FIG. 1:

III. APPLICATION EXAMPLE

We show an example of noise floor estimation using running median in Fig. 1. The Power Spectral Density (PSD)
of H1:LSC-AS Q for an arbitrary epoch during the LIGO S2 run is plotted along with a running median of the PSD
using a blocksize that corresponds to a bandwidth of 100 Hz. The frequency resolution of the raw PSD is 0.5 Hz. In
contrast to the running median estimate, a running average with the same blocksize will get significantly distorted
because of the presence of the line features (i.e., outliers) in the PSD. Fig. 2 illustrates the difference in performance
of the running median and running average estimate. The running median noise floor estimate can be used directly
in Fourier domain analyses [4] or in constructing a time domain whitening filter [3].

[1] A. Stuart, J. K. Ord, Kendall’s advanced theory of Statistics, Vol. 1 (Edward Arnold, 1994).
[2] S. D. Mohanty, Class. Quantum Grav., 19 (2002).
[3] S. Mukherjee, Class. Quantum Grav., In press (2003).
[4] http://www.lsc-group.phys.uwm.edu/pulgroup/, Pulgroup S2 investigations page.
[5] Y. Itoh et al, Ligo internal note LIGO-T030175-00-0-Z (2003); GEO600 technical note (2002).
[6] Y. Langsam et al, Data Structures using C and C++, (Prentice Hall, 1996).
[7] R. Kumar, R. Agrawal, Programming in ANSI C, (West Publishing Company, 1992).
[8] http://www.doxygen.org

6

200 400 600 800 1000 1200 1400

10
−4

10
−3

10
−2

10
−1

Frequency (Hz)

P
S

D

Raw PSD
Running median
Running mean

FIG. 2:

APPENDIX A: RUNNING MEDIAN C CODE

1. Function Documentation

a. void rngmed (const double ∗ data, unsigned int lendata, unsigned int nblocks, double ∗ medians)

Computes running median in an efficient manner.
Parameters:

data Pointer to input data array

lendata Length of input data array

nblocks Block size for computing running median

medians Pointer to output array. Number of elements is lendata - nblocks+1. Must be allocated outside this
function.

b. int rngmed sortindex (const void ∗ elem1, const void ∗ elem2)

This function is passed to the qsort function defined in <stdlib.h>. It is used internally by the rngmed function.
Parameters:

elem1 element of a rngmed val index (p. 7) array

elem2 another element of same rngmed val index (p. 7) array

7

2. Structure Documentation

a. struct node

This structure is used to make a linked list. The list holds the samples in one block in the running median algorithm.
Parameters:

data Holds a single number.

next sorted Points to the next node in the sorted list.

prev sorted Points to the previous node in the sorted list.

next sequence point to the next node in the sequential list.

b. struct rngmed val index

A structure to store values and indices of elements in an array
Parameters:

data Stores a single number

index Stores the original position of the number

This structure is used to track the indices of elements after sorting by qsort. An array of rngmed val index is passed
to qsort which rearranges the array according to the values in the data member. The indices of these elements in the
original unsorted array can then be read off from the index member.

APPENDIX B: THE RNGMED FUNCTION BODY

Here we provide documentation of the rngmed function body.

1. Variables

double *sorted_indices;

struct rngmed_val_index *index_block;

struct node **checks,**node_addresses;

struct node *first_sequence,*last_sequence;

struct node *currentnode,*previousnode;

struct node *leftnode, *rightnode;

struct node *reuse_next_sorted,*reuse_prev_sorted;

struct node *dummy_node,*dummy_node1,*dummy_node2;

int ncheckpts,stepchkpts;

int nextchkptindx,*checks4shift;

int nearestchk,midpoint,offset,numberoffsets;

int samplecount,k,counter_chkpt,chkcount,shiftcounter;

double nextsample,deletesample,dummy,*dummy_array;

int shift,dummy_int;

2. Sort the first block

Allocate storage for an array of rngmed val index.

index_block =(struct rngmed_val_index *)calloc(nblocks, sizeof(struct rngmed_val_index));

Store the samples in the data member of each array element. Store the index of the sample in the index member of
each array element.

8

for(k=0;k<nblocks;k++){

index_block[k].data=data[k];

index_block[k].index=k;

}

Pass the array to qsort along with pointer to function rngmed sortindex.

qsort(index_block, nblocks, sizeof(struct rngmed_val_index),rngmed_sortindex);

Get the original indices of the samples in the sorted list. This list of indices is used at the start of the core part of
the code.

sorted_indices=(double *)calloc(nblocks,sizeof(double));

for(k=0;k<nblocks;k++){

sorted_indices[k]=index_block[k].index;

}

3. Set up checkpoints

Checkpoints are special nodes in the linked list containing the block of nblocks samples. A new sample is first
compared against the values stored in these special nodes.

Get the number of nodes between consecutive checkpoints.

stepchkpts=sqrt(nblocks);

Get the number of checkpoints to use.

ncheckpts=nblocks/stepchkpts;

Allocate array to hold the pointers to checkpoints.

checks=(struct node **)calloc(ncheckpts,sizeof(struct node*));

The insertion of a new sample and the deletion of an old sample from the linked list containing the block of nblocks
samples leads to the shifting of the checkpoints. The indices of elements in checks that need to be changed is stored
in checks4shift.

if(!(checks4shift=(int*)calloc(ncheckpts,sizeof(int)))){

printf("Could not allocate storage for checks4shift\n");

return;

}

4. Get the nearest checkpoint

Get the nearest checkpoint to the node(s) containing the median of the block of nblocks samples. For odd nblocks,
the median is the datum in the node that lies at the midpoint of the sorted list. For even nblocks, the median is
the average of the data in the two nodes at the middle. The two cases are distinguished by the flag numberoffsets.

if((int)fmod(nblocks,2.0)){

midpoint=(nblocks+1)/2-1;

numberoffsets=1;

}

else{

midpoint=nblocks/2-1;

numberoffsets=2;

}

Get the nearest checkpoint to the median. This is used for fast access to the node(s) containing the median value.
The usual method of access in an elementary linked list is sequential, which is slower.

nearestchk=floor(midpoint/stepchkpts);

offset=midpoint-nearestchk*stepchkpts;

9

5. Set up the linked list

The linked list containing nblocks samples is set up and initialized. This list has three types of links from one
node to another. See the documentation for struct node. First, the sequential ordering is between nodes is set up.
But the addresses of the nodes are needed to set up later the links representing the sorted order. The linked list has
bidirectional links going in both the ascending and descending order.

Allocate storage to hold the node addresses.

node_addresses=(struct node **)calloc(nblocks,sizeof(struct node *));

Create a node. This stores the sequentially first sample in the block of nblocks samples.

first_sequence=(struct node *)calloc(1,sizeof(struct node));

Store its address.

node_addresses[0]=first_sequence;

Initialize this node.

first_sequence->next_sequence=NULL;

first_sequence->next_sorted=NULL;

first_sequence->prev_sorted=NULL;

first_sequence->data=data[0];

Start loop to setup links between nodes and load the sample values. Only the links representing the sequential order
are setup. Links representing the sorted order are setup later.

BEGIN FOR LOOP.

previousnode=first_sequence;

for(samplecount=1;samplecount<nblocks;samplecount++){

currentnode=(struct node *)calloc(1,sizeof(struct node));

if(!currentnode){

printf("Could not create node ");

return;

}

Store the address of the node.

node_addresses[samplecount]=currentnode;

Link from already allocated node previousnode to the new one, currentnode. Load current data sample into
currentnode.

previousnode->next_sequence=currentnode;

currentnode->next_sequence=NULL;

currentnode->prev_sorted=NULL;

currentnode->next_sorted=NULL;

currentnode->data=data[samplecount];

Set currentnode as previousnode for next iteration of the loop.

previousnode=currentnode;

}

END FOR LOOP.
This stores the sequentially last sample of the block of nblocks samples.

last_sequence=currentnode;

10

6. Set up sorted list

The links between nodes representing sorted order are set up. For this the previously stored indices, after sorting
using qsort, are used.

Node containing the lowest value.

currentnode=node_addresses[(int)sorted_indices[0]];

This is also the first checkpoint.

checks[0]=currentnode;

BEGIN FOR LOOP.

previousnode=NULL;

nextchkptindx=stepchkpts;

counter_chkpt=1;

for(samplecount=1;samplecount<nblocks;samplecount++){

Get the address of the node containing the next highest value.

dummy_node=node_addresses[(int)sorted_indices[samplecount]];

Make a link from current node to this address. A second link is made to the previous lower value also. Thus, the
linked list has bidirectional links going in both the ascending and descending order.

currentnode->next_sorted=dummy_node;

currentnode->prev_sorted=previousnode;

previousnode=currentnode;

currentnode=dummy_node;

If the node is also a checkpoint then record its address in the checks array.

if(samplecount==nextchkptindx && counter_chkpt<ncheckpts){

checks[counter_chkpt]=currentnode;

nextchkptindx+=stepchkpts;

counter_chkpt++;

}

}

END FOR LOOP.
Set up links for the last node in sorted order.

currentnode->prev_sorted=previousnode;

currentnode->next_sorted=NULL;

7. The core part

This is the core engine of the code.
The output is stored in the array medians which should be allocated outside the code.
First, get the median of the first block of samples. Go to the nearest checkpoint.

currentnode=checks[nearestchk];

Follow link from this node to the node containing the median.

for(k=1;k<=offset;k++){

currentnode=currentnode->next_sorted;

}

Depending on odd or even nblocks, get the value from the data member of currentnode or calculate the average
of this value and the value stored in the nest node.

11

dummy=0;

for(k=1;k<=numberoffsets;k++){

dummy+=currentnode->data;

currentnode=currentnode->next_sorted;

}

medians[0]=dummy/numberoffsets;

Now move to calculation of medians for successive blocks.
BEGIN FOR LOOP.

for(samplecount=nblocks;samplecount<lendata;samplecount++){

nextsample=data[samplecount];

a. Locate point of insertion

First the point where the nextsample must be inserted in the linked list constructed above must be located.
Compare the new sample, nextsample, with checkpoints. There are two cases to be considered.
a. Case 1

if(nextsample>checks[0]->data){

Find a checkpoint that is greater than the new sample.

for(chkcount=1;chkcount<ncheckpts;chkcount++){

if(nextsample>checks[chkcount]->data){

}

else{

break;

}

}

Back up to previous checkpoint.

chkcount-=1;

rightnode is the node that lies immediately to the right of the new sample in ascending order and leftnode is the
node immediately on the left.

Follow the link in ascending order, starting from the checkpoint to the left of nextsample, until the bracketing
nodes are found.

rightnode=checks[chkcount];

while(rightnode){

if(nextsample<=rightnode->data){

break;

}

leftnode=rightnode;

rightnode=rightnode->next_sorted;

}

The new sample must be inserted as a node between leftnode and rightnode.
The node containing the sequentially first sample of the block, first sequence, must be removed from the list and

the same node is reused to store the new sample. This node then becomes the sequentially last, i.e., last sequence.
Special care is needed if the node to be removed also happens to be either rightnode or leftnode. In this case,

the checkpoints need not be shifted (shift = 0).

if(rightnode==first_sequence){

rightnode->data=nextsample;

first_sequence=first_sequence->next_sequence;

rightnode->next_sequence=NULL;

last_sequence->next_sequence=rightnode;

last_sequence=rightnode;

shift=0;

}

else{

if(leftnode==first_sequence){

leftnode->data=nextsample;

12

first_sequence=first_sequence->next_sequence;

leftnode->next_sequence=NULL;

last_sequence->next_sequence=leftnode;

last_sequence=leftnode;

shift=0;

}

Otherwise the checkpoints may need to be shifted (shift = 1).

else {

reuse_next_sorted=rightnode;

reuse_prev_sorted=leftnode;

shift=1;

}

}

The nodes to the right and left of the node that will be recycled and inserted are rightnode and leftnode. So, store
the addresses of these nodes in reuse next(prev) sorted. The links between rightnode and leftnode must be
broken and pointed to the new node. Conversely the new node must form links to rightnode and leftnode.

b. Case 2 This is the case where nextsample ≤ checks[0] → data. Recall that the first checkpoint checks[0]
also holds the lowest value in sorted order. But this need not be the sequentially first value. Hence, distinguish the
two cases below.

else{

chkcount=0;

dummy_node=checks[0];

if(dummy_node==first_sequence){

dummy_node->data=nextsample;

first_sequence=first_sequence->next_sequence;

dummy_node->next_sequence=NULL;

last_sequence->next_sequence=dummy_node;

last_sequence=dummy_node;

shift=0;

}

else{

reuse_next_sorted=checks[0];

reuse_prev_sorted=NULL;

shift=1;

}

rightnode=checks[0];

leftnode=NULL;

}

b. Find checkpoints to shift

If the sequentially first sample is not immediately adjacent to nextsample then deleting the node containing the
first sample and reinserting the node elsewhere in the list (as located in the above code) requires that the intermediate
checkpoints be shifted by one node.

if(shift){

deletesample=first_sequence->data;

The direction of the shift depends on whether the sequentially first sample, deletesample, is less than, greater than
or equal to nextsample.

a. Sequentially first greater than sequentially last The checkpoints must be shifted to point to the nodes with
immediately lower values in the ordered list.

if(deletesample>nextsample){

shiftcounter=0;

for(k=chkcount;k<ncheckpts;k++){

dummy_node=checks[k];

dummy=dummy_node->data;

if(dummy>=nextsample){

if(dummy<=deletesample){

This checkpoint falls between deletesample and nextsample. So, it must be shifted. Store its index in checks4shift.

13

checks4shift[shiftcounter]=k;

shiftcounter++;

}

else{

break;

}

}

}

shift=-1;

}

b. Sequentially first less than sequentially last The checkpoints must be shifted to point to the nodes with im-
mediately higher values in the ordered list.

else

if(deletesample<nextsample){

shiftcounter=0;

for(k=chkcount;k>=0;k--){

dummy_node=checks[k];

dummy=dummy_node->data;

This checkpoint falls between deletesample and nextsample. So, it must be shifted. Store its index in checks4shift.

if(dummy>=deletesample){

checks4shift[shiftcounter]=k;

shiftcounter++;

}

else{

break;

}

}

shift=1;

}

c. Sequentially first equal to sequentially last The sequentially first and last samples are equal but they are
separated in the ordered list. This implies that all values in between in the ordered list must be equal. So, only the
sequential list links need be changed.

else{

dummy_node=first_sequence;

dummy_node->data=nextsample;

last_sequence->next_sequence=dummy_node;

first_sequence=dummy_node->next_sequence;

dummy_node->next_sequence=0;

last_sequence=dummy_node;

shift=0;

}

}

c. Implementing the link changes

Now the node containing the sequentially first sample, first sequence, must be recycled. This means its old
links (both sequential and ordered) must be severed. The nodes linking into first sequence must be relinked. The
links between the nodes immediately adjacent to the insertion point must be broken and relinked to the recycled
first sequence node.

if(shift){

Some cases did not require any shift and in those cases first sequence has already been recycled. Do the following
only if shift 6= 0.

First reset the sequential links and load nextsample into first sequence. The first sequence node becomes
dummy node.

14

dummy_node=first_sequence;

first_sequence=dummy_node->next_sequence;

dummy_node->next_sequence=NULL;

last_sequence->next_sequence=dummy_node;

last_sequence=dummy_node;

dummy_node->data=nextsample;

Store the sorted order links.

dummy_node1=dummy_node->prev_sorted;

dummy_node2=dummy_node->next_sorted;

a. Repair the deletion point The nodes adjacent to first sequence in the sorted list are relinked. Two cases
must be considered.

Case 1 If first sequence was also the first checkpoint then its prev sorted link (=dummy node1 above) must
be NULL. This may be a redundant check since this case has been addressed earlier in the code (shift = 0). But
there is no harm in repeating it.

if(!dummy_node1){

dummy_node2->prev_sorted=dummy_node1;

}

Case 2 If first sequence was the last node in the ascending order list then next sorted must be NULL.

else {

if(!dummy_node2){

dummy_node1->next_sorted=dummy_node2;

}

Case 3 The normal case where there are nodes on either side.

else{

dummy_node1->next_sorted=dummy_node2;

dummy_node2->prev_sorted=dummy_node1;

}

}

b. Relink nodes at insertion point Recall that the adjacent nodes were rightnode and leftnode. Link them into
the recycled node.

If the insertion point is at the end of the ascending order sorted list, rightnode must be NULL.

if(!rightnode){

leftnode->next_sorted=dummy_node;

}

If the insertion point is at the beginning of the ascending order sorted list, leftnode must be NULL.

else {

if(!leftnode){

rightnode->prev_sorted=dummy_node;

}

Else both leftnode and rightnode exist.

else{

leftnode->next_sorted=dummy_node;

rightnode->prev_sorted=dummy_node;

}

}

15

d. Implementing checkpoint shifts

Two cases here: shift to left or right.

if(shift==-1){

for(k=0;k<shiftcounter;k++){

dummy_int=checks4shift[k];

checks[dummy_int]=checks[dummy_int]->prev_sorted;

}

}

else

if(shift==1){

for(k=0;k<shiftcounter;k++){

dummy_int=checks4shift[k];

checks[dummy_int]=checks[dummy_int]->next_sorted;

}

}

Link the recycled node to leftnode and rightnode.

dummy_node->next_sorted=reuse_next_sorted;

dummy_node->prev_sorted=reuse_prev_sorted;

}

8. Get the median

Go to the nearest check point.

currentnode=checks[nearestchk];

Follow link through offset number of nodes.

for(k=1;k<=offset;k++){

currentnode=currentnode->next_sorted;

}

dummy=0;

Even and odd nblocks cases.

for(k=1;k<=numberoffsets;k++){

dummy+=currentnode->data;

currentnode=currentnode->next_sorted;

}

medians[samplecount-nblocks+1]=dummy/numberoffsets;

END FOR LOOP.

}

9. Clean up

Deallocate memory that was dynamically allocated. Not shown in this document are some sections of the code
where additional cleaning up is done during the course of execution.

free(node_addresses);

currentnode=first_sequence;

while(currentnode){

previousnode=currentnode;

currentnode=currentnode->next_sequence;

free(previousnode);

}

free(checks);

